320 Commits

Author SHA1 Message Date
fd303c8343 fixes asmjit deprecation warning 2024-07-05 07:51:37 +02:00
346b177a87 extends finishing conditions 2024-07-05 05:52:29 +02:00
d4ec131fa7 change COUNT_LIMIT to ICOUNT_LIMIT 2024-07-04 10:46:24 +02:00
48370a4555 asmjit passes backend with new CoreDSL 2024-06-22 09:28:26 +02:00
36b076774e Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-06-21 13:35:30 +02:00
482a4ec253 fixes semihosting callbacks in templates 2024-06-21 13:35:25 +02:00
2fb28364c5 fixes remaining templates 2024-06-21 10:49:36 +02:00
8460f4ab7f updates templates to re-enable interactive debugging of generator 2024-06-21 10:46:11 +02:00
3fd51cc68c fixes templates 2024-06-14 19:54:33 +02:00
551822916c applies clang-format 2024-06-14 17:43:12 +02:00
37db31fb4b removes repo that should not be checked in 2024-05-31 10:46:19 +02:00
e2da306eee fixes semihosting cb registration 2024-05-31 10:45:28 +02:00
41051f8f34 fixes tohost handling 2024-05-31 10:43:38 +02:00
2a7449fa1e Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-05-31 09:47:52 +02:00
a6c48ceaac Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-05-31 09:42:13 +02:00
1e30b68507 updates min cmake version 2024-05-31 09:37:19 +02:00
ed793471bb adding semhosting 2024-05-31 07:27:47 +02:00
58fb815f32 fixes gen_raise in tcc 2024-05-20 10:34:23 +02:00
3cc8bd0854 adds reformat bc of verilog literals 2024-05-18 21:01:05 +02:00
a27850f841 adds verilog literal and illegal_instr to asmjit 2024-05-18 21:00:21 +02:00
fb330cddea llvm passes act 2024-05-18 19:33:57 +02:00
b76c5bf0d6 adds flush to fence_i 2024-05-11 15:25:49 +02:00
001c6349f7 removes tcc sim stop when writing to tohost 2024-05-11 15:16:46 +02:00
ee6a11dae6 fixes typo 2024-05-09 20:54:30 +02:00
2e27b025cc improves dump-ir comments 2024-05-09 13:47:36 +02:00
f0a004be9d adds information for debugging 2024-05-09 13:42:16 +02:00
3422c7cd5c optimizes writebacks 2024-05-08 15:18:38 +02:00
ad79a28705 wip checkin 2024-04-30 19:21:27 +02:00
9fdbc3ff38 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-04-26 17:07:00 +02:00
602bc6e06a checking: working 2024-04-26 17:06:26 +02:00
6cb76fc256 updates tgc5c according to latest CoreDSL 2024-04-16 13:09:14 +02:00
fbcd389580 fix log macro 2024-04-15 13:03:47 +02:00
b25b7848c6 fix formatting 2024-03-19 11:47:12 +01:00
6c986d38d8 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-03-19 11:02:17 +01:00
a1ebd83d2a adds riscv_hart_common and signature output 2024-03-19 11:02:03 +01:00
8aed551813 Add a new LOG macro in SCC to avoid conflicts with other libraries. 2024-03-14 09:43:08 +01:00
1e6a0086e9 adds disass functionality 2024-03-07 13:58:08 +01:00
119d4a8b43 adds generation if IMEM space 2024-02-21 07:08:24 +01:00
9841b16122 fixes clang-format failures 2024-01-12 11:49:11 +01:00
fbda1424f3 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2024-01-10 16:22:31 +01:00
fe2d5cb2f9 adds semihosting to all backends 2024-01-10 11:47:12 +01:00
3ff59ba45d small refactor, adds baisc functionality 2024-01-10 10:15:05 +01:00
db5765b342 makes softfloat always a static library 2024-01-10 09:36:52 +01:00
075e04249a adds semihosting skeleton 2024-01-09 12:50:41 +01:00
207f778ee6 adds initial semihosting host capabilities 2024-01-08 17:17:59 +01:00
f4f90c5e65 backports clang-format changes to template 2023-12-02 17:42:57 +01:00
bc4ea30815 apply clang-format 10 fixes 2023-12-01 14:50:54 +01:00
e921201f7b applies clang-format fixes 2023-11-30 11:51:49 +01:00
e6aa6e5842 adds handling of variable number of clic interrupts 2023-11-22 11:47:31 +01:00
4418fa7e4f fixes include path of asmjit helpers 2023-11-20 16:07:01 +01:00
adaa7e1c04 updates template 2023-11-20 11:46:19 +01:00
0eb1db0e7e adds functionality, adds working asmjit 2023-11-20 11:45:52 +01:00
e48597b2b7 adds formatting fixes 2023-11-05 17:19:43 +01:00
458c773e19 corrects slow ca configuration of TGC5C 2023-11-05 14:47:24 +01:00
b3f40f9b15 build fixes due to dependencies 2023-11-04 13:05:30 +01:00
6419ad471e updates .gitignore 2023-10-29 17:08:18 +01:00
759061b569 applies clang-format changes 2023-10-29 17:06:56 +01:00
2115e9ceae adds missing include to templates 2023-10-29 14:31:15 +01:00
2bea95c1a7 adds option to disable DMI use 2023-10-28 17:06:50 +02:00
7001b693ae updates templates for SystemC registration 2023-10-27 22:14:11 +02:00
e6f11081eb fixes quantum and quantum break handling 2023-10-27 21:12:49 +02:00
09db0cd35d fixes LLVM backend registration for SystemC 2023-10-26 06:50:54 +02:00
980c8031c3 fixes tohost behavior of SC wrapper and cycle-estimate plugin 2023-10-25 20:37:10 +02:00
b86d7a517d adds dynamic cycle estimation 2023-10-25 17:13:52 +02:00
b7478965ab adds asmjit backend registration for SystemC 2023-10-23 10:18:25 +02:00
bf4a6deb86 fixes dump-ir handling 2023-10-22 23:19:09 +02:00
ffe730219d merge commit 2023-10-22 15:13:25 +02:00
60c926c921 adds asmjit 2023-10-22 15:11:20 +02:00
9371a09b71 adds asmjit 2023-10-22 15:10:55 +02:00
4c3a7386b0 updates generated files 2023-10-22 08:51:08 +02:00
82c26acfc8 does some cleanup of the directory structure 2023-10-21 17:26:09 +02:00
3a86f4f9de does some cleanup of generated files 2023-10-21 17:19:24 +02:00
74ff1d455a fixes install routine 2023-10-20 20:38:59 +02:00
aa12e93177 adds RPATH setting to install 2023-10-18 11:17:20 +02:00
ae4322c1b9 „src/main.cpp“ ändern 2023-10-15 09:03:31 +02:00
9180ad1f9c debugger memory accesses should never lead to traps 2023-10-06 21:39:48 +02:00
ee6a068b06 streamlines backends and reporting 2023-10-01 18:33:14 +02:00
b9b165465d adds some template updates 2023-09-30 22:17:18 +02:00
b97853ff5a update plugins to read YAML file 2023-09-30 22:10:24 +02:00
b7f023756e fixes constructor calls of derived riscv_hart classes 2023-09-27 07:51:49 +02:00
2095ac985b fixes forgotten removal of pctrace in core_complex 2023-09-27 06:19:59 +02:00
3fb8fe765a aligns riscv_hart_msu_vp with riscv_hart_m_p 2023-09-26 20:17:26 +02:00
5fd226b670 moves pctrace 2023-09-25 09:44:51 +02:00
417076f8e6 stops jit block creation in case of ECALL and EBREAK 2023-09-23 11:30:58 +02:00
70839bbbf2 changes templates for correct plugin callback in case of trap 2023-09-23 10:35:21 +02:00
8db0cc5d05 removes clutter 2023-09-23 10:34:58 +02:00
212fb1c8ff adds tracing functionality 2023-09-22 12:40:35 +02:00
f74f98f361 improves readability 2023-09-22 12:40:12 +02:00
f074092a78 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-09-20 15:18:05 +02:00
633c0d21a0 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-09-20 15:17:43 +02:00
51f6fbe0dd applies newest CoreDSL changes 2023-09-20 15:12:03 +02:00
de45d06878 adds initial working version of llvm backend 2023-09-19 16:26:07 +02:00
c7038cafa5 updates naming in checked-in sources 2023-09-19 12:11:49 +02:00
40f50b0ec0 changes register names to lower case in printing 2023-09-09 18:54:18 +02:00
b360fc2c75 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-09-05 10:08:49 +02:00
e21f8dc379 allows functions in interp and updates generated 2023-09-05 10:08:00 +02:00
8ee3ac90f7 adapts name changes 2023-09-04 12:45:45 +02:00
d5763d2f36 fixes option depended compilation 2023-08-30 17:11:50 +02:00
b5d915f389 fixes compile issues from merge 2023-08-30 15:49:28 +02:00
813b40409d Merge branch 'develop' of
https://git.minres.com/DBT-RISE/DBT-RISE-TGC.git into develop
2023-08-30 10:05:42 +02:00
c8a4a4c736 renames core(s) 2023-08-28 07:09:55 +02:00
18e08cfc50 fixes missing template updates 2023-08-08 06:23:38 +02:00
20e920338c removes v2p function 2023-08-04 13:08:10 +02:00
e151416f58 fixes systemc factory registration 2023-07-31 12:55:09 +02:00
24de2bbdf5 purge build system 2023-07-30 13:55:57 +02:00
e68f9c573f Merge branch 'develop' of
https://git.minres.com/DBT-RISE/DBT-RISE-TGC.git into develop
2023-07-30 09:14:58 +02:00
f38cc7d8b9 updates LLVM build 2023-07-29 17:55:37 +02:00
7af7e040da Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-07-29 11:47:25 +02:00
6e52af168b adds faster decoding to tcc and cleans up others 2023-07-29 11:42:46 +02:00
bd0d15f3a2 updates template for faster instruction decoding 2023-07-23 08:10:57 +02:00
c78026b720 adds faster instruction decoding 2023-07-23 08:05:15 +02:00
edba497fa1 fixes linker isseu using whole-archive 2023-07-19 08:19:38 +02:00
94e46b9968 adds some cleanup 2023-07-17 19:57:09 +02:00
9459632f6c adds llvm build support incl. conan 2023-07-17 19:52:50 +02:00
a0ca3cdfa5 revive LLVM support (WIP) 2023-07-14 12:55:34 +02:00
720236ec3f add generated core registration 2023-07-14 12:51:51 +02:00
957145ca84 add SystemC ISS factory 2023-07-14 11:11:03 +02:00
0b719a4b57 fixes literal type 2023-07-10 20:39:02 +02:00
57da07eb17 rework sc wrapper build 2023-07-10 12:52:48 +02:00
b4b03f7850 fixes build system to handle TCC properly 2023-07-09 22:20:50 +02:00
145a0cf68b updates registration of cores for sysc 2023-07-09 20:24:45 +02:00
1cef7de8c7 fixes missing namespaces 2023-07-09 20:16:16 +02:00
e95f422aab cleans vm implementation up 2023-07-09 20:13:26 +02:00
250ea3c980 extends factory to support SystemC core wrapper 2023-07-09 18:19:59 +02:00
7b31b8ca8e adds updated generated files 2023-07-09 16:58:47 +02:00
91a23a4a18 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-07-09 16:55:06 +02:00
21d3250e1a changes templates 2023-07-09 16:53:59 +02:00
2b094c3162 removes trace compass nature 2023-07-06 10:39:59 +02:00
a32c83e1be fixes CLI handling of plugin paramters in ISS 2023-07-05 08:32:05 +02:00
7e45a25218 adds a instr yaml for TGC 2023-07-05 08:28:42 +02:00
87b4082633 Merge branch 'tmp' into develop 2023-07-03 14:22:50 +02:00
4dbc7433a5 fixes cause CSR handling 2023-06-12 17:38:56 +02:00
99a9970ddd fixes sysc compile issues 2023-06-12 09:58:24 +02:00
0b5de90fb1 changes [m|u]cause rd/wr handling 2023-06-11 18:29:58 +02:00
15cd36dcd4 adds fix for compressed instructions and reads 2023-06-05 17:57:38 +02:00
2281ec4144 corrects errors and adds new backend and 2023-06-05 15:18:27 +02:00
11c481cec2 adds verbosity to error 2023-06-05 15:17:16 +02:00
60d07f2eb6 changes default loglevel to info for tgc-sim 2023-06-01 06:55:21 +02:00
a123beb301 fixes duplicate variable declaration and templates 2023-05-27 10:20:49 +02:00
ee6218279e adapts to latest code gen changes 2023-05-25 12:52:30 +02:00
ce5b2e60b9 amends template to fix branching instructions 2023-05-22 17:00:36 +02:00
c792f50427 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2023-05-16 21:57:32 +02:00
6ed7eafc5d adds inital version of tcc backend 2023-05-16 21:51:35 +02:00
8a5fe58d51 adds needed arch state members for TCC to tgc_c 2023-05-16 08:56:18 +02:00
16cd6d5ff5 fixes core name deduction in cmake build script 2023-05-16 08:54:08 +02:00
ee2ded931d adds remaining register offsets 2023-05-14 17:16:42 +02:00
95ba5c901a re-introduces last_branch register 2023-05-14 17:00:37 +02:00
32848ec396 fixes build system and typo in wt_cache 2023-05-13 16:57:01 +02:00
6789cf4c32 fixes case of unavailable backend 2023-05-12 15:45:53 +02:00
3bc4884a9d remove unneeded cmake include 2023-05-12 09:28:43 +02:00
fd6b738168 changes compile dependencies 2023-05-11 23:43:12 +02:00
afdf8fb97f adds missing namespaces 2023-05-11 23:11:04 +02:00
cfa7b72363 changes time handling at sockets 2023-05-06 19:57:29 +02:00
d330307ed5 splits bus into 2 sockets for i/dbus 2023-05-04 21:59:31 +02:00
916de2a26d changes build setup to compile specific files if a core is specified 2023-05-04 16:08:33 +02:00
aa70d8a54a fixes CLIC to match clicinfo description in CLIC spec 11.04.2023 2023-05-02 17:22:13 +02:00
b493745cd7 sets reset start time to 0 2023-05-02 11:21:42 +02:00
f9e8e1d857 fixes core_complex wrt. tlm quantum and DMI 2023-05-02 11:13:25 +02:00
974d64a627 adds logo to imported instance 2023-05-02 08:17:17 +02:00
d70489cbb8 update import script to initialize broker 2023-05-02 07:58:48 +02:00
d990f1cf5d fixes reading of 64bit CSR register 2023-05-01 22:23:35 +02:00
1672b01e62 adds WT cache functionality as mixin 2023-04-28 20:38:07 +02:00
00b0f101ac adapts to changes of instrumentation interface in dbt-rise-core 2023-04-28 20:38:07 +02:00
54f75f92ea improved testbench import; added prebuild FW for testing 2023-04-24 08:44:12 -07:00
0304aac9e5 fixed some issues in import script; added README for reference; added initial testbench script(to be improved) 2023-04-19 05:20:58 -07:00
8ff55d7b92 updates CWR dependent core_complex definition 2023-04-14 19:34:41 +02:00
f626ee2684 fixes privilege wrapper for M/U to cope with 64bit 2023-04-05 15:38:25 +02:00
a8a2782329 adds changes from latest CoreDSL description 2023-04-04 16:10:12 +02:00
98dd329833 fixes CSR access rights 2023-04-04 09:23:08 +02:00
6213445bc4 fixes 64bit behavior of CSR regs 2023-03-27 12:04:43 +02:00
c5465bf9e2 fixes according to fixed generator 2023-03-26 14:44:15 +02:00
d881cb6e63 fix data width of generated code 2023-03-26 12:12:34 +02:00
2e4faa4d50 fixes mstatus mask 2023-03-25 09:14:56 +01:00
8e1951f298 adds 64bit mstatus 2023-03-23 07:47:21 +01:00
7efa924510 fixes m/uintstatus read 2023-03-17 10:51:39 +01:00
febbc4fff0 fixes m/uintstatus read 2023-03-17 10:23:05 +01:00
39b2788b7e implements and fixes CLIC CSR behavior 2023-03-17 09:09:09 +01:00
a943dd3bdf fixes wrong array size which led to unintended CSR definitions 2023-03-15 14:16:08 +01:00
fedbff5971 fixes xcause and u-mode clic CSRs 2023-03-15 12:27:39 +01:00
c2758e8321 removes mscratchcsw from CLIC feature 2023-03-15 09:07:00 +01:00
8be5fe71df fixes template name typo 2023-03-12 07:42:09 +01:00
3f7ce41b9d fixes CLIC mtvt register behavior 2023-03-11 14:03:03 +01:00
ad1cbedf00 adds back missing max irq functions 2023-03-11 12:47:10 +01:00
83f54b5074 fixes CLICCFG settings 2023-03-11 08:48:03 +01:00
a83928fd8c fixes CSR/CLIC implementation 2023-03-10 20:40:21 +01:00
ec55efd322 adds generator changed files 2023-02-17 06:36:34 +01:00
8c3709f92a adds generator changed files 2023-02-17 06:29:27 +01:00
207dbf1071 fixes out of range access for register alias names 2023-02-17 06:28:30 +01:00
62c118e501 fixes CSR to match latest fast interrupts spec 2023-01-20 16:21:04 +01:00
65dca13b42 fixes WFI miss of interrupt 2023-01-14 17:40:21 +01:00
3187cbdfe2 removes CONAN_PKG from build system 2022-12-12 02:55:44 +01:00
8c701d55c1 adapt to latest changes in SCC 2022-12-05 09:15:48 +01:00
f585489ff5 fixes pin naming 2022-10-26 17:21:44 +02:00
7113683ee0 moves pending interrupt check before handling trap thus saving 1 cycle 2022-10-15 10:47:35 +02:00
1a0fc4bd5d fixes wrong mcounteren in M-mode only priv wrapper 2022-10-10 08:59:27 +02:00
40d1966e9a fixes pending irq within irq hander behavior 2022-10-08 11:20:52 +02:00
a977200284 cleans up priv wrappers 2022-10-05 08:58:57 +02:00
b20fd3eba5 fix static build 2022-09-28 19:37:47 +02:00
b20daa1ac2 fixes wrong path in install 2022-09-27 09:11:41 +02:00
b1a18459e7 adds more flexible use of availabel targets 2022-09-26 13:57:24 +02:00
6ba7c82f80 fixes wrapper definitions for hwl cores 2022-09-26 13:31:46 +02:00
ad7bb28b4c fixes write mask of clic memory mapped registers 2022-09-17 12:15:19 +02:00
fa7eda0889 fixes wrong check for exception 2022-08-31 11:45:53 +02:00
00e02bf565 adds support for different branch types in tracing 2022-08-08 06:30:37 +02:00
1ad66a71d8 extends supported break point types 2022-08-06 09:53:24 +02:00
e60fa3d5e6 adaptes to changes in dbt-rise-core 2022-08-06 09:49:32 +02:00
8407f6287f replaces core_complex socket 2022-07-24 20:52:28 +02:00
0833198d34 aads missing windows compat firx to template 2022-07-23 14:36:23 +02:00
57347ae4d9 fixes cppcheck flagged issues 2022-07-23 13:49:10 +02:00
4876f18ba9 adds windows compatibility fixes 2022-07-18 11:43:42 +02:00
a53ee42e13 updates TGC_C according to CoreDSL description update 2022-07-12 22:34:22 +02:00
12ccfc055a updates generate tgc_c definition 2022-07-11 22:58:10 +02:00
feaa49d367 removes decoder again as there is some issue 2022-06-20 00:39:11 +02:00
18f33b4a68 fixes ordering of instructions for decoding 2022-06-19 16:52:29 +02:00
f096b15dbd factors decoder into separate component 2022-06-19 13:17:31 +02:00
cb5375258a removes compilatioon of unneeded files 2022-06-10 07:19:46 +02:00
076b5a39ad fix class naming 2022-06-02 08:30:49 +02:00
f40ab41899 fix left-over from layout refactoring 2022-06-02 08:30:02 +02:00
e8fd5143bc fix build options for standalone ISS 2022-05-31 11:05:26 +02:00
31fb51de95 update tgc_c generated code 2022-05-30 22:15:44 +02:00
5d481eb79d fix generation of non-exception code 2022-05-30 22:04:16 +02:00
1c90fe765d Merge remote-tracking branch 'origin/Trace_enhancement' into develop 2022-05-30 14:18:09 +02:00
52ed8b81a6 fixed template to work with previous code generator 2022-05-30 14:08:02 +02:00
0703a0a845 update tgc-mapper 2022-05-30 07:45:32 +02:00
0c542d42aa separate generated sources 2022-05-21 12:48:28 +02:00
966d1616c5 change source code to unified layout 2022-05-21 11:55:24 +02:00
1720bd4aaa adds support for compressed instructions 2022-05-20 15:17:58 +02:00
df16378605 update template for changed code generator 2022-05-18 19:10:34 +02:00
1438f0f373 add backannotation to pc trace plugin 2022-05-17 15:29:04 +02:00
766f3ba9ee fix assertion in compressed pctrace writer 2022-05-13 12:38:12 +02:00
5da4e6b424 fix alignment check for unaligned debugger accesses 2022-05-13 12:37:47 +02:00
e382217e04 update vm_tgc_c due reworked CoreDSL generator 2022-05-11 18:52:15 +02:00
9db4e3fd87 fix assertion 2022-05-10 16:13:21 +02:00
bb658be3b4 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2022-05-08 15:25:56 +02:00
6579780dc9 add call column in output 2022-05-08 15:24:26 +02:00
e56bc12788 fix non-lz4 build of plugin 2022-05-07 17:27:11 +02:00
e88f309ea2 add lz4 compression to pctrace 2022-05-07 17:22:06 +02:00
03bec27376 implement extended instrumentation interface 2022-04-26 17:14:33 +02:00
9d9008a3a2 fix pointer mess 2022-04-26 15:35:17 +02:00
5f6d462973 check that no interrupts are pending before entering the wfi wait 2022-04-26 13:58:20 +02:00
a92b84bef4 add code word access for ISS plugins 2022-04-25 14:18:19 +02:00
477c530847 extend debug mode handling 2022-04-13 11:41:01 +02:00
c054d75717 update to latest coredsl description 2022-04-10 18:55:44 +02:00
15cd26f800 remove CoreDSL ISA repo 2022-04-10 12:15:40 +02:00
9465cffe79 adapt to change in dbt-rise-core 2022-04-09 14:55:36 +02:00
00d2d06cbd adapt to privileged spec 2022-03-31 20:33:12 +02:00
8e4e702cb9 Merge remote-tracking branch 'origin/feature/reduced_output' into develop 2022-03-28 14:09:06 +02:00
58311b37db Merge branch 'feature/reduced_output' of
https://git.minres.com/DBT-RISE/DBT-RISE-TGC.git into
feature/reduced_output
2022-03-28 11:16:09 +02:00
ad8dc09bee Merge branch 'feature/reduced_output' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC.git into feature/reduced_output 2022-03-28 11:15:45 +02:00
49be143588 make features configurable 2022-03-27 17:54:08 +02:00
0aea1d0177 remove mcounteren in M-mode only wrapper 2022-03-27 17:21:46 +02:00
6ea7721961 add TCM 2022-03-27 15:38:18 +02:00
b0cb997009 add TGC_X with DMR 2022-03-26 10:48:21 +01:00
9dfca612b7 add hardware loop CSR access 2022-03-25 11:33:44 +01:00
30ae743361 add pctrace plugin to iss 2022-03-20 17:41:54 +01:00
d91f5f9df4 fix compiler warning for reduced number of registers 2022-03-14 15:38:05 +01:00
5ec457c76b build pctrace plugin only if RapidJSON target is availble 2022-03-08 11:23:07 +01:00
2e670c4d03 change interpreter structure 2022-03-06 15:11:38 +01:00
3d32c33333 update gitignore 2022-03-05 20:59:45 +01:00
521f40a3d6 refactored interpreter backend structure 2022-03-05 20:59:17 +01:00
2bba5645c3 adds functionality to reduce the output 2022-02-16 10:13:29 +01:00
bf0a5a80de adds functionality to reduce the output 2022-02-16 10:12:45 +01:00
b37ef973de clean up 2022-02-14 20:36:12 +01:00
4c363f4073 adds additional functionality by fetching delay information 2022-02-11 11:28:00 +01:00
b8fa5fbbda adapt to extended instrumentation interface 2022-02-09 21:01:17 +01:00
ac86f14a54 add tgc_c_xrb_nn to tgc-sim 2022-02-02 21:33:42 +01:00
68b5697c8f Fix cycles JSON template 2022-02-01 21:48:56 +01:00
09b0f0d0c8 fix cycle estimation plugin 2022-02-01 21:14:50 +01:00
98b418ff43 fix JSON reading 2022-02-01 19:28:11 +01:00
059bd0d371 rework cycle estimation 2022-02-01 19:03:45 +01:00
ef2a4df925 simplify spawn block handling 2022-01-31 23:40:31 +01:00
7578906310 adds coverage plugin 2022-01-31 21:38:18 +01:00
afe8905ac9 fix else-ambiguity in CoreDSL description 2022-01-31 20:30:46 +01:00
ecc6091d1e cleans up source code to remove clang compiler warnings 2022-01-19 08:01:15 +01:00
3563ba80d0 add spawn blocks 2022-01-12 07:21:16 +01:00
09955be90f update gitignore 2021-12-05 08:45:49 +01:00
dd4c19a15c add option to configure number of irq 2021-12-01 12:56:36 +01:00
07d5af1dde fix stand-alone ISS compilation to include all generated cores 2021-11-26 17:56:40 +01:00
6f8595759e make tgc-sim include all available ISS 2021-11-25 20:00:27 +01:00
86da31033c correct size usage in pmp addr checks 2021-11-22 15:15:47 +01:00
974d103381 fix pmpcfg register write 2021-11-22 10:49:29 +01:00
309758b994 fix clic_cfg access scheme 2021-11-17 07:59:02 +01:00
965929d1eb remove descriptions 2021-11-15 09:30:16 +01:00
d47375a70e fix ebreak CSR update 2021-11-13 12:47:23 +01:00
d31b4ef5a8 fix MISA val 2021-11-11 12:58:57 +01:00
7452c5df43 add TGC_D_XRB_NN definition 2021-11-11 12:16:35 +01:00
43d7b99905 revert pmp check implementation 2021-11-11 09:58:19 +01:00
f90c48e881 adapt to changed define names 2021-11-11 08:33:35 +01:00
2d7973520b fix mip handling 2021-11-09 19:47:34 +01:00
fd98ad95f6 rework PMP check and fix MISA for TGC_D 2021-11-09 15:55:22 +01:00
bfa8166223 fix wrong template class name 2021-11-08 10:44:33 +01:00
c42e336509 fix proper debug mode handling (#267 & #268) 2021-11-07 17:48:44 +01:00
49d09a05d7 fix access rights to debug CSR register (#268) 2021-11-07 16:45:10 +01:00
459794b863 add proper handling of store access fault (hart_mu_p) 2021-11-06 13:29:11 +01:00
039746112b fix exception behavior 2021-11-02 15:10:20 +01:00
ac6d7ea5d4 add debug feature to platform 2021-11-02 11:13:29 +01:00
a89f00da19 fix plugins parameter utilization 2021-11-02 11:03:17 +01:00
ff04ee7807 get rid of the Boost::thread linking 2021-11-02 10:24:34 +01:00
8b6e3abd23 fix hard-code arch in templates 2021-10-30 13:37:17 +02:00
1616f0ac90 remove deprecated functions 2021-10-30 12:57:08 +02:00
a20f39e847 update core definitions to include Zicsr and Zifencei (#276) 2021-10-30 12:56:31 +02:00
334d3fb296 adapt to SCC changes 2021-10-21 22:53:16 +02:00
eb2ca33e5a remove unused sources 2021-10-12 15:17:56 +02:00
0ea4cba1ca add dynamic plugin loading 2021-10-12 14:24:55 +02:00
1d13c8196e fix wrong PGMASK usage 2021-10-11 10:40:01 +02:00
ee6e1d4092 Merge remote-tracking branch 'origin/msvc_compat' into develop
Conflicts:
	src/sysc/core_complex.cpp
2021-10-11 09:42:40 +02:00
b17682e50e fix YAML template 2021-10-01 23:49:04 +02:00
5866acf565 update .gitignore 2021-10-01 13:06:10 +02:00
6acf73a40f add template to generate instruction YAML 2021-10-01 13:05:36 +02:00
2f15d9676e fix unaligned instr fetch behavior 2021-09-30 19:27:46 +02:00
d78fcc48e5 use marchid in platform 2021-09-30 19:27:03 +02:00
4186723d37 add marchid setting to CoreDSL description 2021-09-30 19:26:21 +02:00
17ee7b138d update generated TGC-C VM 2021-09-29 00:44:17 +02:00
aa84a27a5b fix JALR alignment in description 2021-09-29 00:43:42 +02:00
438e598a4a remove clutter from core descriptions, added instr alignment setting 2021-09-29 00:03:11 +02:00
174259155d add support for non-compressed ISA 2021-09-23 21:09:52 +02:00
ba9339a50d fix MPP reset value, PMP inactive in U-mode handling and MRET in U-mode 2021-09-21 16:52:40 +02:00
65b4db5eca remove mcounteren in M-mode only platform 2021-09-18 11:40:00 +02:00
0fd82f1f3c add tgc_d_xrb_mac to SC and C++ ISS 2021-09-04 13:04:34 +02:00
a3084456fd rework core definitions 2021-09-04 12:47:07 +02:00
108 changed files with 28023 additions and 24315 deletions

View File

@ -1,4 +1,3 @@
---
Language: Cpp
# BasedOnStyle: LLVM
# should be in line with IndentWidth
@ -13,8 +12,8 @@ AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: true
AllowShortLoopsOnASingleLine: true
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
@ -39,8 +38,8 @@ BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: true
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 120
CommentPragmas: '^ IWYU pragma:'
ColumnLimit: 140
CommentPragmas: '^( IWYU pragma:| @suppress)'
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 0
ContinuationIndentWidth: 4
@ -76,13 +75,13 @@ PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
PointerAlignment: Left
ReflowComments: true
SortIncludes: true
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceBeforeParens: Never
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false

5
.gitignore vendored
View File

@ -1,5 +1,6 @@
.DS_Store
/*.il
/.settings
/avr-instr.html
/blink.S
/flash.*
@ -14,7 +15,6 @@
/*.ods
/build*/
/*.logs
language.settings.xml
/*.gtkw
/Debug wo LLVM/
/*.txdb
@ -30,4 +30,5 @@ language.settings.xml
/.gdbinit
/*.out
/dump.json
/src-gen/
/*.yaml
/*.json

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "gen_input/CoreDSL-Instruction-Set-Description"]
path = gen_input/CoreDSL-Instruction-Set-Description
url = ../CoreDSL-Instruction-Set-Description.git

View File

@ -23,6 +23,5 @@
<nature>org.eclipse.cdt.core.ccnature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.managedBuildNature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.ScannerConfigNature</nature>
<nature>org.eclipse.linuxtools.tmf.project.nature</nature>
</natures>
</projectDescription>

View File

@ -1,73 +0,0 @@
eclipse.preferences.version=1
org.eclipse.cdt.codan.checkers.errnoreturn=Warning
org.eclipse.cdt.codan.checkers.errnoreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return\\")",implicit\=>false}
org.eclipse.cdt.codan.checkers.errreturnvalue=Error
org.eclipse.cdt.codan.checkers.errreturnvalue.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused return value\\")"}
org.eclipse.cdt.codan.checkers.nocommentinside=-Error
org.eclipse.cdt.codan.checkers.nocommentinside.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Nesting comments\\")"}
org.eclipse.cdt.codan.checkers.nolinecomment=-Error
org.eclipse.cdt.codan.checkers.nolinecomment.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Line comments\\")"}
org.eclipse.cdt.codan.checkers.noreturn=Error
org.eclipse.cdt.codan.checkers.noreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return value\\")",implicit\=>false}
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation=Error
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Abstract class cannot be instantiated\\")"}
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem=Error
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Ambiguous problem\\")"}
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment in condition\\")"}
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem=Error
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment to itself\\")"}
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem=Warning
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No break at end of case\\")",no_break_comment\=>"no break",last_case_param\=>false,empty_case_param\=>false,enable_fallthrough_quickfix_param\=>false}
org.eclipse.cdt.codan.internal.checkers.CatchByReference=Warning
org.eclipse.cdt.codan.internal.checkers.CatchByReference.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Catching by reference is recommended\\")",unknown\=>false,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem=Error
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Circular inheritance\\")"}
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization=Warning
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class members should be properly initialized\\")",skip\=>true}
org.eclipse.cdt.codan.internal.checkers.DecltypeAutoProblem=Error
org.eclipse.cdt.codan.internal.checkers.DecltypeAutoProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid 'decltype(auto)' specifier\\")"}
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Field cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Function cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.InvalidArguments=Error
org.eclipse.cdt.codan.internal.checkers.InvalidArguments.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid arguments\\")"}
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem=Error
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid template argument\\")"}
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Label statement not found\\")"}
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Member declaration not found\\")"}
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Method cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker=-Info
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Name convention for function\\")",pattern\=>"^[a-z]",macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem=Warning
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class has a virtual method and non-virtual destructor\\")"}
org.eclipse.cdt.codan.internal.checkers.OverloadProblem=Error
org.eclipse.cdt.codan.internal.checkers.OverloadProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid overload\\")"}
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redeclaration\\")"}
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redefinition\\")"}
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Return with parenthesis\\")"}
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Format String Vulnerability\\")"}
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem=Warning
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Statement has no effect\\")",macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suggested parenthesis around expression\\")",paramNot\=>false}
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suspicious semicolon\\")",else\=>false,afterelse\=>false}
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Type cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused function declaration\\")",macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused static function\\")",macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused variable declaration in file scope\\")",macro\=>true,exceptions\=>("@(\#)","$Id")}
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Symbol is not resolved\\")"}

View File

@ -1,13 +0,0 @@
eclipse.preferences.version=1
environment/project/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/project/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/delimiter=\:
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/operation=append
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/value=/usr/lib/llvm-6.0
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/delimiter=\:
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/operation=append
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/value=/usr/lib/llvm-6.0
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true

View File

@ -1,37 +0,0 @@
eclipse.preferences.version=1
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true

View File

@ -1,169 +1,263 @@
cmake_minimum_required(VERSION 3.12)
###############################################################################
cmake_minimum_required(VERSION 3.18)
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
# ##############################################################################
#
###############################################################################
# ##############################################################################
project(dbt-rise-tgc VERSION 1.0.0)
include(GNUInstallDirs)
include(flink)
find_package(elfio)
if(WITH_LLVM)
if(DEFINED ENV{LLVM_HOME})
find_path (LLVM_DIR LLVM-Config.cmake $ENV{LLVM_HOME}/lib/cmake/llvm)
endif(DEFINED ENV{LLVM_HOME})
find_package(LLVM REQUIRED CONFIG)
message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")
llvm_map_components_to_libnames(llvm_libs support core mcjit x86codegen x86asmparser)
endif()
#Mac needed variables (adapt for your needs - http://www.cmake.org/Wiki/CMake_RPATH_handling#Mac_OS_X_and_the_RPATH)
#set(CMAKE_MACOSX_RPATH ON)
#set(CMAKE_SKIP_BUILD_RPATH FALSE)
#set(CMAKE_BUILD_WITH_INSTALL_RPATH FALSE)
#set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
#set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
find_package(elfio QUIET)
find_package(jsoncpp)
find_package(Boost COMPONENTS coroutine REQUIRED)
add_subdirectory(softfloat)
# library files
FILE(GLOB TGC_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/src/iss/*.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/vm/interp/vm_*.cpp
)
set(LIB_SOURCES
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/plugin/instruction_count.cpp
src/plugin/cycle_estimate.cpp
${TGC_SOURCES}
src/iss/semihosting/semihosting.cpp
)
if(WITH_TCC)
list(APPEND LIB_SOURCES
src/vm/tcc/vm_tgc5c.cpp
)
endif()
if(WITH_LLVM)
set(LIB_SOURCES ${LIB_SOURCES}
src/vm/llvm/fp_impl.cpp
#src/vm/llvm/vm_tgf_b.cpp
#src/vm/llvm/vm_tgf_c.cpp
)
list(APPEND LIB_SOURCES
src/vm/llvm/vm_tgc5c.cpp
src/vm/llvm/fp_impl.cpp
)
endif()
if(WITH_ASMJIT)
list(APPEND LIB_SOURCES
src/vm/asmjit/vm_tgc5c.cpp
)
endif()
# library files
FILE(GLOB GEN_ISS_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp)
FILE(GLOB GEN_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp)
FILE(GLOB GEN_YAML_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/contrib/instr/*.yaml)
list(APPEND LIB_SOURCES ${GEN_ISS_SOURCES} ${GEN_VM_SOURCES})
foreach(FILEPATH ${GEN_ISS_SOURCES})
get_filename_component(CORE ${FILEPATH} NAME_WE)
string(TOUPPER ${CORE} CORE)
list(APPEND LIB_DEFINES CORE_${CORE})
endforeach()
message(STATUS "Core defines are ${LIB_DEFINES}")
if(WITH_LLVM)
FILE(GLOB LLVM_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/llvm/vm_*.cpp)
list(APPEND LIB_SOURCES ${LLVM_GEN_SOURCES})
endif()
if(WITH_TCC)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/tcc/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(WITH_ASMJIT)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/asmjit/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(TARGET yaml-cpp::yaml-cpp)
list(APPEND LIB_SOURCES
src/iss/plugin/cycle_estimate.cpp
src/iss/plugin/instruction_count.cpp
)
endif()
# Define the library
add_library(${PROJECT_NAME} ${LIB_SOURCES})
# list code gen dependencies
if(TARGET ${CORE_NAME}_cpp)
add_dependencies(${PROJECT_NAME} ${CORE_NAME}_cpp)
endif()
add_library(${PROJECT_NAME} SHARED ${LIB_SOURCES})
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
target_compile_options(${PROJECT_NAME} PRIVATE -Wno-shift-count-overflow)
target_compile_options(${PROJECT_NAME} PRIVATE -Wno-shift-count-overflow)
elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
target_compile_options(${PROJECT_NAME} PRIVATE /wd4293)
endif()
target_include_directories(${PROJECT_NAME} PUBLIC incl)
target_link_libraries(${PROJECT_NAME} PUBLIC softfloat scc-util jsoncpp)
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
target_link_libraries(${PROJECT_NAME} PUBLIC -Wl,--whole-archive dbt-core -Wl,--no-whole-archive)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-core)
target_include_directories(${PROJECT_NAME} PUBLIC src)
target_include_directories(${PROJECT_NAME} PUBLIC src-gen)
target_force_link_libraries(${PROJECT_NAME} PRIVATE dbt-rise-core)
# only re-export the include paths
get_target_property(DBT_CORE_INCL dbt-rise-core INTERFACE_INCLUDE_DIRECTORIES)
target_include_directories(${PROJECT_NAME} INTERFACE ${DBT_CORE_INCL})
get_target_property(DBT_CORE_DEFS dbt-rise-core INTERFACE_COMPILE_DEFINITIONS)
if(NOT(DBT_CORE_DEFS STREQUAL DBT_CORE_DEFS-NOTFOUND))
target_compile_definitions(${PROJECT_NAME} INTERFACE ${DBT_CORE_DEFS})
endif()
if(TARGET CONAN_PKG::elfio)
target_link_libraries(${PROJECT_NAME} PUBLIC CONAN_PKG::elfio)
elseif(TARGET elfio::elfio)
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio)
else()
message(FATAL_ERROR "No elfio library found, maybe a find_package() call is missing")
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio softfloat scc-util Boost::coroutine)
if(TARGET yaml-cpp::yaml-cpp)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_PLUGINS)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
)
install(TARGETS ${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss COMPONENT ${PROJECT_NAME}
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # target directory
FILES_MATCHING # install only matched files
PATTERN "*.h" # select header files
)
###############################################################################
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # target directory
FILES_MATCHING # install only matched files
PATTERN "*.h" # select header files
)
install(FILES ${GEN_YAML_SOURCES} DESTINATION share/tgc-vp)
# ##############################################################################
#
###############################################################################
# ##############################################################################
set(CMAKE_INSTALL_RPATH $ORIGIN/../${CMAKE_INSTALL_LIBDIR})
project(tgc-sim)
find_package(Boost COMPONENTS program_options thread REQUIRED)
add_executable(${PROJECT_NAME} src/main.cpp)
# This sets the include directory for the reference project. This is the -I flag in gcc.
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
if(WITH_LLVM)
target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_LLVM)
target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
endif()
# Links the target exe against the libraries
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc)
if(TARGET Boost::program_options)
target_link_libraries(${PROJECT_NAME} PUBLIC Boost::program_options Boost::thread)
if(TARGET ${CORE_NAME}_cpp)
list(APPEND TGC_SOURCES ${${CORE_NAME}_OUTPUT_FILES})
else()
target_link_libraries(${PROJECT_NAME} PUBLIC ${BOOST_program_options_LIBRARY} ${BOOST_thread_LIBRARY})
FILE(GLOB TGC_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp
)
list(APPEND TGC_SOURCES ${GEN_SOURCES})
endif()
foreach(F IN LISTS TGC_SOURCES)
if(${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
string(TOUPPER ${CORE_NAME_LC} CORE_NAME)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
endif()
endforeach()
# if(WITH_LLVM)
# target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_LLVM)
# #target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
# endif()
# if(WITH_TCC)
# target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_TCC)
# endif()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc fmt::fmt)
if(TARGET Boost::program_options)
target_link_libraries(${PROJECT_NAME} PUBLIC Boost::program_options)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC ${BOOST_program_options_LIBRARY})
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC ${CMAKE_DL_LIBS})
if (Tcmalloc_FOUND)
if(Tcmalloc_FOUND)
target_link_libraries(${PROJECT_NAME} PUBLIC ${Tcmalloc_LIBRARIES})
endif(Tcmalloc_FOUND)
install(TARGETS tgc-sim
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
###############################################################################
#
###############################################################################
project(dbt-rise-tgc_sc VERSION 1.0.0)
include(SystemCPackage)
if(SystemC_FOUND)
add_library(${PROJECT_NAME} src/sysc/core_complex.cpp)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_SYSTEMC)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss/arch/tgc_b.h)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_TGC_B)
if(BUILD_TESTING)
# ... CMake code to create tests ...
add_test(NAME tgc-sim-interp
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend interp)
if(WITH_TCC)
add_test(NAME tgc-sim-tcc
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend tcc)
endif()
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss/arch/tgc_c.h)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_TGC_C)
endif()
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss/arch/tgc_d.h)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_TGC_D)
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc scc)
if(WITH_LLVM)
target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
add_test(NAME tgc-sim-llvm
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend llvm)
endif()
if(WITH_ASMJIT)
add_test(NAME tgc-sim-asmjit
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend asmjit)
endif()
set(LIB_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/incl/sysc/core_complex.h)
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
PUBLIC_HEADER "${LIB_HEADERS}" # specify the public headers
)
install(TARGETS ${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/sysc # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
endif()
# ##############################################################################
#
# ##############################################################################
if(TARGET scc-sysc)
project(dbt-rise-tgc_sc VERSION 1.0.0)
set(LIB_SOURCES
src/sysc/core_complex.cpp
src/sysc/register_tgc_c.cpp
)
FILE(GLOB GEN_SC_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/sysc/register_*.cpp)
list(APPEND LIB_SOURCES ${GEN_SC_SOURCES})
add_library(${PROJECT_NAME} ${LIB_SOURCES})
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_SYSTEMC)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
foreach(F IN LISTS TGC_SOURCES)
if(${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
string(TOUPPER ${CORE_NAME_LC} CORE_NAME)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
endif()
endforeach()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc scc-sysc)
# if(WITH_LLVM)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
# endif()
set(LIB_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/src/sysc/core_complex.h)
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
PUBLIC_HEADER "${LIB_HEADERS}" # specify the public headers
)
install(TARGETS ${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/sysc # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
endif()

35
cmake/flink.cmake Normal file
View File

@ -0,0 +1,35 @@
# according to https://github.com/horance-liu/flink.cmake/tree/master
# SPDX-License-Identifier: Apache-2.0
include(CMakeParseArguments)
function(target_do_force_link_libraries target visibility lib)
if(MSVC)
target_link_libraries(${target} ${visibility} "/WHOLEARCHIVE:${lib}")
elseif(APPLE)
target_link_libraries(${target} ${visibility} -Wl,-force_load ${lib})
else()
target_link_libraries(${target} ${visibility} -Wl,--whole-archive ${lib} -Wl,--no-whole-archive)
endif()
endfunction()
function(target_force_link_libraries target)
cmake_parse_arguments(FLINK
""
""
"PUBLIC;INTERFACE;PRIVATE"
${ARGN}
)
foreach(lib IN LISTS FLINK_PUBLIC)
target_do_force_link_libraries(${target} PUBLIC ${lib})
endforeach()
foreach(lib IN LISTS FLINK_INTERFACE)
target_do_force_link_libraries(${target} INTERFACE ${lib})
endforeach()
foreach(lib IN LISTS FLINK_PRIVATE)
target_do_force_link_libraries(${target} PRIVATE ${lib})
endforeach()
endfunction()

1
contrib/instr/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/*.yaml

View File

@ -0,0 +1,624 @@
RVI:
LUI:
index: 0
encoding: 0b00000000000000000000000000110111
mask: 0b00000000000000000000000001111111
size: 32
branch: false
delay: 1
AUIPC:
index: 1
encoding: 0b00000000000000000000000000010111
mask: 0b00000000000000000000000001111111
size: 32
branch: false
delay: 1
JAL:
index: 2
encoding: 0b00000000000000000000000001101111
mask: 0b00000000000000000000000001111111
size: 32
branch: true
delay: 1
JALR:
index: 3
encoding: 0b00000000000000000000000001100111
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BEQ:
index: 4
encoding: 0b00000000000000000000000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BNE:
index: 5
encoding: 0b00000000000000000001000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BLT:
index: 6
encoding: 0b00000000000000000100000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BGE:
index: 7
encoding: 0b00000000000000000101000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BLTU:
index: 8
encoding: 0b00000000000000000110000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
BGEU:
index: 9
encoding: 0b00000000000000000111000001100011
mask: 0b00000000000000000111000001111111
size: 32
branch: true
delay: [1,1]
LB:
index: 10
encoding: 0b00000000000000000000000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LH:
index: 11
encoding: 0b00000000000000000001000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LW:
index: 12
encoding: 0b00000000000000000010000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LBU:
index: 13
encoding: 0b00000000000000000100000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LHU:
index: 14
encoding: 0b00000000000000000101000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SB:
index: 15
encoding: 0b00000000000000000000000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SH:
index: 16
encoding: 0b00000000000000000001000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SW:
index: 17
encoding: 0b00000000000000000010000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ADDI:
index: 18
encoding: 0b00000000000000000000000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLTI:
index: 19
encoding: 0b00000000000000000010000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLTIU:
index: 20
encoding: 0b00000000000000000011000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
XORI:
index: 21
encoding: 0b00000000000000000100000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ORI:
index: 22
encoding: 0b00000000000000000110000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ANDI:
index: 23
encoding: 0b00000000000000000111000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLLI:
index: 24
encoding: 0b00000000000000000001000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRLI:
index: 25
encoding: 0b00000000000000000101000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRAI:
index: 26
encoding: 0b01000000000000000101000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
ADD:
index: 27
encoding: 0b00000000000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SUB:
index: 28
encoding: 0b01000000000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLL:
index: 29
encoding: 0b00000000000000000001000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLT:
index: 30
encoding: 0b00000000000000000010000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLTU:
index: 31
encoding: 0b00000000000000000011000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
XOR:
index: 32
encoding: 0b00000000000000000100000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRL:
index: 33
encoding: 0b00000000000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRA:
index: 34
encoding: 0b01000000000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
OR:
index: 35
encoding: 0b00000000000000000110000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
AND:
index: 36
encoding: 0b00000000000000000111000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
FENCE:
index: 37
encoding: 0b00000000000000000000000000001111
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ECALL:
index: 38
encoding: 0b00000000000000000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
EBREAK:
index: 39
encoding: 0b00000000000100000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
MRET:
index: 40
encoding: 0b00110000001000000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
WFI:
index: 41
encoding: 0b00010000010100000000000001110011
mask: 0b11111111111111111111111111111111
size: 32
branch: false
delay: 1
Zicsr:
CSRRW:
index: 42
encoding: 0b00000000000000000001000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRS:
index: 43
encoding: 0b00000000000000000010000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRC:
index: 44
encoding: 0b00000000000000000011000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRWI:
index: 45
encoding: 0b00000000000000000101000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRSI:
index: 46
encoding: 0b00000000000000000110000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRCI:
index: 47
encoding: 0b00000000000000000111000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
Zifencei:
FENCE_I:
index: 48
encoding: 0b00000000000000000001000000001111
mask: 0b00000000000000000111000001111111
attributes: [[name:flush]]
size: 32
branch: false
delay: 1
RVM:
MUL:
index: 49
encoding: 0b00000010000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULH:
index: 50
encoding: 0b00000010000000000001000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULHSU:
index: 51
encoding: 0b00000010000000000010000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULHU:
index: 52
encoding: 0b00000010000000000011000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
DIV:
index: 53
encoding: 0b00000010000000000100000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
DIVU:
index: 54
encoding: 0b00000010000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
REM:
index: 55
encoding: 0b00000010000000000110000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
REMU:
index: 56
encoding: 0b00000010000000000111000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
Zca:
C__ADDI4SPN:
index: 57
encoding: 0b0000000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__LW:
index: 58
encoding: 0b0100000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__SW:
index: 59
encoding: 0b1100000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__ADDI:
index: 60
encoding: 0b0000000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__NOP:
index: 61
encoding: 0b0000000000000001
mask: 0b1110111110000011
size: 16
branch: false
delay: 1
C__JAL:
index: 62
encoding: 0b0010000000000001
mask: 0b1110000000000011
attributes: [[name:enable, value:1]]
size: 16
branch: true
delay: 1
C__LI:
index: 63
encoding: 0b0100000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__LUI:
index: 64
encoding: 0b0110000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__ADDI16SP:
index: 65
encoding: 0b0110000100000001
mask: 0b1110111110000011
size: 16
branch: false
delay: 1
__reserved_clui:
index: 66
encoding: 0b0110000000000001
mask: 0b1111000001111111
size: 16
branch: false
delay: 1
C__SRLI:
index: 67
encoding: 0b1000000000000001
mask: 0b1111110000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__SRAI:
index: 68
encoding: 0b1000010000000001
mask: 0b1111110000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__ANDI:
index: 69
encoding: 0b1000100000000001
mask: 0b1110110000000011
size: 16
branch: false
delay: 1
C__SUB:
index: 70
encoding: 0b1000110000000001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__XOR:
index: 71
encoding: 0b1000110000100001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__OR:
index: 72
encoding: 0b1000110001000001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__AND:
index: 73
encoding: 0b1000110001100001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__J:
index: 74
encoding: 0b1010000000000001
mask: 0b1110000000000011
size: 16
branch: true
delay: 1
C__BEQZ:
index: 75
encoding: 0b1100000000000001
mask: 0b1110000000000011
size: 16
branch: true
delay: [1,1]
C__BNEZ:
index: 76
encoding: 0b1110000000000001
mask: 0b1110000000000011
size: 16
branch: true
delay: [1,1]
C__SLLI:
index: 77
encoding: 0b0000000000000010
mask: 0b1111000000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__LWSP:
index: 78
encoding: 0b0100000000000010
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__MV:
index: 79
encoding: 0b1000000000000010
mask: 0b1111000000000011
size: 16
branch: false
delay: 1
C__JR:
index: 80
encoding: 0b1000000000000010
mask: 0b1111000001111111
size: 16
branch: true
delay: 1
__reserved_cmv:
index: 81
encoding: 0b1000000000000010
mask: 0b1111111111111111
size: 16
branch: false
delay: 1
C__ADD:
index: 82
encoding: 0b1001000000000010
mask: 0b1111000000000011
size: 16
branch: false
delay: 1
C__JALR:
index: 83
encoding: 0b1001000000000010
mask: 0b1111000001111111
size: 16
branch: true
delay: 1
C__EBREAK:
index: 84
encoding: 0b1001000000000010
mask: 0b1111111111111111
size: 16
branch: false
delay: 1
C__SWSP:
index: 85
encoding: 0b1100000000000010
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
DII:
index: 86
encoding: 0b0000000000000000
mask: 0b1111111111111111
size: 16
branch: false
delay: 1

View File

@ -0,0 +1,650 @@
RV32I:
ADD:
branch: false
delay: 1
encoding: 51
index: 27
mask: 4261441663
size: 32
ADDI:
branch: false
delay: 1
encoding: 19
index: 18
mask: 28799
size: 32
AND:
branch: false
delay: 1
encoding: 28723
index: 36
mask: 4261441663
size: 32
ANDI:
branch: false
delay: 1
encoding: 28691
index: 23
mask: 28799
size: 32
AUIPC:
branch: false
delay: 1
encoding: 23
index: 1
mask: 127
size: 32
BEQ:
branch: true
delay:
- 1
- 2
encoding: 99
index: 4
mask: 28799
size: 32
BGE:
branch: true
delay:
- 1
- 2
encoding: 20579
index: 7
mask: 28799
size: 32
BGEU:
branch: true
delay:
- 1
- 2
encoding: 28771
index: 9
mask: 28799
size: 32
BLT:
branch: true
delay:
- 1
- 2
encoding: 16483
index: 6
mask: 28799
size: 32
BLTU:
branch: true
delay:
- 1
- 2
encoding: 24675
index: 8
mask: 28799
size: 32
BNE:
branch: true
delay:
- 1
- 2
encoding: 4195
index: 5
mask: 28799
size: 32
EBREAK:
attributes:
- - name:no_cont
branch: false
delay: 3
encoding: 1048691
index: 39
mask: 4294967295
size: 32
ECALL:
attributes:
- - name:no_cont
branch: false
delay: 1
encoding: 115
index: 38
mask: 4294967295
size: 32
FENCE:
branch: false
delay: 1
encoding: 15
index: 37
mask: 28799
size: 32
JAL:
branch: true
delay: 2
encoding: 111
index: 2
mask: 127
size: 32
JALR:
branch: true
delay: 2
encoding: 103
index: 3
mask: 28799
size: 32
LB:
branch: false
delay: 2
encoding: 3
index: 10
mask: 28799
size: 32
LBU:
branch: false
delay: 2
encoding: 16387
index: 13
mask: 28799
size: 32
LH:
branch: false
delay: 2
encoding: 4099
index: 11
mask: 28799
size: 32
LHU:
branch: false
delay: 2
encoding: 20483
index: 14
mask: 28799
size: 32
LUI:
branch: false
delay: 1
encoding: 55
index: 0
mask: 127
size: 32
LW:
branch: false
delay: 2
encoding: 8195
index: 12
mask: 28799
size: 32
MRET:
attributes:
- - name:no_cont
branch: false
delay: 2
encoding: 807403635
index: 40
mask: 4294967295
size: 32
OR:
branch: false
delay: 1
encoding: 24627
index: 35
mask: 4261441663
size: 32
ORI:
branch: false
delay: 1
encoding: 24595
index: 22
mask: 28799
size: 32
SB:
branch: false
delay: 1
encoding: 35
index: 15
mask: 28799
size: 32
SH:
branch: false
delay: 1
encoding: 4131
index: 16
mask: 28799
size: 32
SLL:
branch: false
delay: X_24:20
encoding: 4147
index: 29
mask: 4261441663
size: 32
SLLI:
branch: false
delay: u_24:20
encoding: 4115
index: 24
mask: 4261441663
size: 32
SLT:
branch: false
delay: 1
encoding: 8243
index: 30
mask: 4261441663
size: 32
SLTI:
branch: false
delay: 1
encoding: 8211
index: 19
mask: 28799
size: 32
SLTIU:
branch: false
delay: 1
encoding: 12307
index: 20
mask: 28799
size: 32
SLTU:
branch: false
delay: 1
encoding: 12339
index: 31
mask: 4261441663
size: 32
SRA:
branch: false
delay: X_24:20
encoding: 1073762355
index: 34
mask: 4261441663
size: 32
SRAI:
branch: false
delay: u_24:20
encoding: 1073762323
index: 26
mask: 4261441663
size: 32
SRL:
branch: false
delay: X_24:20
encoding: 20531
index: 33
mask: 4261441663
size: 32
SRLI:
branch: false
delay: u_24:20
encoding: 20499
index: 25
mask: 4261441663
size: 32
SUB:
branch: false
delay: 1
encoding: 1073741875
index: 28
mask: 4261441663
size: 32
SW:
branch: false
delay: 1
encoding: 8227
index: 17
mask: 28799
size: 32
WFI:
branch: false
delay: 1
encoding: 273678451
index: 41
mask: 4294967295
size: 32
XOR:
branch: false
delay: 1
encoding: 16435
index: 32
mask: 4261441663
size: 32
XORI:
branch: false
delay: 1
encoding: 16403
index: 21
mask: 28799
size: 32
RV32M:
DIV:
branch: false
delay: 33
encoding: 33570867
index: 53
mask: 4261441663
size: 32
DIVU:
branch: false
delay: 33
encoding: 33574963
index: 54
mask: 4261441663
size: 32
MUL:
branch: false
delay: 32
encoding: 33554483
index: 49
mask: 4261441663
size: 32
MULH:
branch: false
delay: 32
encoding: 33558579
index: 50
mask: 4261441663
size: 32
MULHSU:
branch: false
delay: 32
encoding: 33562675
index: 51
mask: 4261441663
size: 32
MULHU:
branch: false
delay: 32
encoding: 33566771
index: 52
mask: 4261441663
size: 32
REM:
branch: false
delay: 33
encoding: 33579059
index: 55
mask: 4261441663
size: 32
REMU:
branch: false
delay: 33
encoding: 33583155
index: 56
mask: 4261441663
size: 32
Zca:
C__ADD:
branch: false
delay: 1
encoding: 36866
index: 82
mask: 61443
size: 16
C__ADDI:
branch: false
delay: 1
encoding: 1
index: 60
mask: 57347
size: 16
C__ADDI16SP:
branch: false
delay: 1
encoding: 24833
index: 65
mask: 61315
size: 16
C__ADDI4SPN:
branch: false
delay: 1
encoding: 0
index: 57
mask: 57347
size: 16
C__AND:
branch: false
delay: 1
encoding: 35937
index: 73
mask: 64611
size: 16
C__ANDI:
branch: false
delay: 1
encoding: 34817
index: 69
mask: 60419
size: 16
C__BEQZ:
branch: true
delay:
- 1
- 2
encoding: 49153
index: 75
mask: 57347
size: 16
C__BNEZ:
branch: true
delay:
- 1
- 2
encoding: 57345
index: 76
mask: 57347
size: 16
C__EBREAK:
branch: false
delay: 3
encoding: 36866
index: 84
mask: 65535
size: 16
C__J:
branch: true
delay: 1
encoding: 40961
index: 74
mask: 57347
size: 16
C__JAL:
attributes:
- - name:enable
- value:1
branch: true
delay: 1
encoding: 8193
index: 62
mask: 57347
size: 16
C__JALR:
branch: true
delay: 1
encoding: 36866
index: 83
mask: 61567
size: 16
C__JR:
branch: true
delay: 1
encoding: 32770
index: 80
mask: 61567
size: 16
C__LI:
branch: false
delay: 1
encoding: 16385
index: 63
mask: 57347
size: 16
C__LUI:
branch: false
delay: 1
encoding: 24577
index: 64
mask: 57347
size: 16
C__LW:
branch: false
delay: 2
encoding: 16384
index: 58
mask: 57347
size: 16
C__LWSP:
branch: false
delay: 2
encoding: 16386
index: 78
mask: 57347
size: 16
C__MV:
branch: false
delay: 1
encoding: 32770
index: 79
mask: 61443
size: 16
C__NOP:
branch: false
delay: 1
encoding: 1
index: 61
mask: 61315
size: 16
C__OR:
branch: false
delay: 1
encoding: 35905
index: 72
mask: 64611
size: 16
C__SLLI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 2
index: 77
mask: 61443
size: 16
C__SRAI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 33793
index: 68
mask: 64515
size: 16
C__SRLI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 32769
index: 67
mask: 64515
size: 16
C__SUB:
branch: false
delay: 1
encoding: 35841
index: 70
mask: 64611
size: 16
C__SW:
branch: false
delay: 1
encoding: 49152
index: 59
mask: 57347
size: 16
C__SWSP:
branch: false
delay: 1
encoding: 49154
index: 85
mask: 57347
size: 16
C__XOR:
branch: false
delay: 1
encoding: 35873
index: 71
mask: 64611
size: 16
DII:
branch: false
delay: 1
encoding: 0
index: 86
mask: 65535
size: 16
__reserved_clui:
branch: false
delay: 1
encoding: 24577
index: 66
mask: 61567
size: 16
__reserved_cmv:
branch: false
delay: 1
encoding: 32770
index: 81
mask: 65535
size: 16
Zicsr:
CSRRC:
branch: false
delay: 1
encoding: 12403
index: 44
mask: 28799
size: 32
CSRRCI:
branch: false
delay: 1
encoding: 28787
index: 47
mask: 28799
size: 32
CSRRS:
branch: false
delay: 1
encoding: 8307
index: 43
mask: 28799
size: 32
CSRRSI:
branch: false
delay: 1
encoding: 24691
index: 46
mask: 28799
size: 32
CSRRW:
branch: false
delay: 1
encoding: 4211
index: 42
mask: 28799
size: 32
CSRRWI:
branch: false
delay: 1
encoding: 20595
index: 45
mask: 28799
size: 32
Zifencei:
FENCE_I:
attributes:
- - name:flush
branch: false
delay: 1
encoding: 4111
index: 48
mask: 28799
size: 32

3
contrib/pa/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/results
/cwr
/*.xml

43
contrib/pa/README.md Normal file
View File

@ -0,0 +1,43 @@
# Notes
* requires conan version 1.59
* requires decent cmake version 3.23
Setup for tcsh:
```
git clone --recursive -b develop https://git.minres.com/TGFS/TGC-ISS.git
cd TGC-ISS/
setenv TGFS_INSTALL_ROOT `pwd`/install
setenv COWAREHOME <your SNPS PA installation>
setenv SNPSLMD_LICENSE_FILE <your SNPS PA license file>
source $COWAREHOME/SLS/linux/setup.csh pae
setenv SNPS_ENABLE_MEM_ON_DEMAND_IN_GENERIC_MEM 1
setenv PATH $COWAREHOME/common/bin/:${PATH}
setenv CC $COWAREHOME/SLS/linux/common/bin/gcc
setenv CXX $COWAREHOME/SLS/linux/common/bin/g++
cmake -S . -B build/PA -DCMAKE_BUILD_TYPE=Debug -DUSE_CWR_SYSTEMC=ON -DBUILD_SHARED_LIBS=ON \
-DCODEGEN=OFF -DCMAKE_INSTALL_PREFIX=${TGFS_INSTALL_ROOT}
cmake --build build/PA --target install -j16
cd dbt-rise-tgc/contrib/pa
# import the TGC core itself
pct tgc_import_tb.tcl
```
Setup for bash:
```
git clone --recursive -b develop https://git.minres.com/TGFS/TGC-ISS.git
cd TGC-ISS/
export TGFS_INSTALL_ROOT `pwd`/install
module load tools/pa/T-2022.06
export SNPS_ENABLE_MEM_ON_DEMAND_IN_GENERIC_MEM=1
export CC=$COWAREHOME/SLS/linux/common/bin/gcc
export CXX=$COWAREHOME/SLS/linux/common/bin/g++
cmake -S . -B build/PA -DCMAKE_BUILD_TYPE=Debug -DUSE_CWR_SYSTEMC=ON -DBUILD_SHARED_LIBS=ON \
-DCODEGEN=OFF -DCMAKE_INSTALL_PREFIX=${TGFS_INSTALL_ROOT}
cmake --build build/PA --target install -j16
cd dbt-rise-tgc/contrib/pa
# import the TGC core itself
pct tgc_import_tb.tcl
```

View File

@ -16,7 +16,7 @@ namespace eval Specification {
set libdir "${install_dir}/lib64"
set preprocessorOptions [concat $preprocessorOptions "-I${incldir}"]
# Set the Linker paths.
set linkerOptions [concat $linkerOptions "-Wl,-rpath,${libdir} -L${libdir} -ldbt-rise-tgc_sc"]
set linkerOptions [concat $linkerOptions "-Wl,-rpath,${libdir} -L${libdir} -ldbt-rise-tgc_sc -lscc-sysc"]
}
default {
puts stderr "ERROR: \"$target\" is not supported, [::scsh::version]"

2092
contrib/pa/hello.dis Normal file

File diff suppressed because it is too large Load Diff

BIN
contrib/pa/hello.elf Executable file

Binary file not shown.

BIN
contrib/pa/minres.png Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -6,14 +6,11 @@ proc getScriptDirectory {} {
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder
}
if { $::env(SNPS_VP_PRODUCT) == "PAULTRA" } {
set hardware /HARDWARE/HW/HW
} else {
set hardware /HARDWARE
}
set scriptDir [getScriptDirectory]
set top_design_name core_complex
set encap_name sysc::tgfs::${top_design_name}
set clocks clk_i
set resets rst_i
set model_prefix "i_"
@ -28,7 +25,8 @@ set model_postfix ""
::pct::set_update_existing_encaps_flag true
::pct::set_dynamic_port_arrays_flag true
::pct::set_import_scml_properties_flag true
::pct::load_modules --set-category modules tgc_import.cc
::pct::set_import_encap_prop_as_extra_prop_flag true
::pct::load_modules --set-category modules ${scriptDir}/tgc_import.cc
# Set Port Protocols correctly
set block ${top_design_name}
@ -38,13 +36,15 @@ foreach clock ${clocks} {
foreach reset ${resets} {
::pct::set_block_port_protocol --set-category SYSTEM_LIBRARY:$block/${reset} SYSTEM_LIBRARY:RESET
}
::pct::set_encap_port_array_size SYSTEM_LIBRARY:$block/local_irq_i 16
#::pct::set_encap_port_array_size SYSTEM_LIBRARY:$block/local_irq_i 16
# Set compile settings and look
set block SYSTEM_LIBRARY:${top_design_name}
::pct::set_encap_build_script $block/${top_design_name} $scriptDir/build.tcl
::pct::set_encap_build_script $block/${encap_name} $scriptDir/build.tcl
::pct::set_background_color_rgb $block 255 255 255 255
::pct::create_instance SYSTEM_LIBRARY:${top_design_name} ${hardware} ${model_prefix}${top_design_name}${model_postfix} ${top_design_name}
::pct::create_instance SYSTEM_LIBRARY:${top_design_name} ${hardware} ${model_prefix}${top_design_name}${model_postfix} ${encap_name} ${encap_name}()
::pct::set_bounds i_${top_design_name} 200 300 100 400
::pct::set_image i_${top_design_name} "$scriptDir/minres.png" center center false true
# export the result as component
::pct::export_system_library ${top_design_name} ${top_design_name}.xml

View File

@ -0,0 +1,71 @@
source tgc_import.tcl
set hardware /HARDWARE/HW/HW
set FW_name ${scriptDir}/hello.elf
puts "instantiate testbench elements"
::paultra::add_hw_instance GenericIPlib:Memory_Generic -inst_name i_Memory_Generic
::pct::set_param_value i_Memory_Generic/MEM:protocol {Protocol Common Parameters} address_width 30
::pct::set_param_value i_Memory_Generic {Scml Properties} /timing/LT/clock_period_in_ns 1
::pct::set_param_value i_Memory_Generic {Scml Properties} /timing/read/cmd_accept_cycles 1
::pct::set_param_value i_Memory_Generic {Scml Properties} /timing/write/cmd_accept_cycles 1
::pct::set_bounds i_Memory_Generic 1000 300 100 100
::paultra::add_hw_instance Bus:Bus -inst_name i_Bus
::BLWizard::generateFramework i_Bus SBLTLM2FT * {} \
{ common_configuration:BackBone:/advanced/num_resources_per_target:1 }
::pct::set_bounds i_Bus 700 300 100 400
::pct::create_connection C_ibus i_core_complex/ibus i_Bus/i_core_complex_ibus
::pct::set_location_on_owner i_Bus/i_core_complex_ibus 10
::pct::create_connection C_dbus i_core_complex/dbus i_Bus/i_core_complex_dbus
::pct::set_location_on_owner i_Bus/i_core_complex_dbus 10
::pct::create_connection C_mem i_Bus/i_Memory_Generic_MEM i_Memory_Generic/MEM
puts "instantiating clock manager"
set clock "Clk"
::hw::create_hw_instance "" GenericIPlib:ClockGenerator ${clock}_clock
::pct::set_bounds ${clock}_clock 100 100 100 100
::pct::set_param_value $hardware/${clock}_clock {Constructor Arguments} period 1000
::pct::set_param_value $hardware/${clock}_clock {Constructor Arguments} period_unit sc_core::SC_PS
puts "instantiating reset manager"
set reset "Rst"
::hw::create_hw_instance "" GenericIPlib:ResetGenerator ${reset}_reset
::pct::set_param_value $hardware/${reset}_reset {Constructor Arguments} start_time 0
::pct::set_param_value $hardware/${reset}_reset {Constructor Arguments} start_time_unit sc_core::SC_PS
::pct::set_param_value $hardware/${reset}_reset {Constructor Arguments} duration 10000
::pct::set_param_value $hardware/${reset}_reset {Constructor Arguments} duration_unit sc_core::SC_PS
::pct::set_param_value $hardware/${reset}_reset {Constructor Arguments} active_level true
::pct::set_bounds ${reset}_reset 300 100 100 100
puts "connecting reset/clock"
::pct::create_connection C_clk . Clk_clock/CLK i_core_complex/clk_i
::pct::add_ports_to_connection C_clk i_Bus/Clk
::pct::add_ports_to_connection C_clk i_Memory_Generic/CLK
::pct::create_connection C_rst . Rst_reset/RST i_core_complex/rst_i
::pct::add_ports_to_connection C_rst i_Bus/Rst
puts "setting parameters for DBT-RISE-TGC/Bus and memory components"
::pct::set_param_value $hardware/i_${top_design_name} {Extra properties} elf_file ${FW_name}
::pct::set_address $hardware/i_${top_design_name}/ibus:i_Memory_Generic/MEM 0x0
::pct::set_address $hardware/i_${top_design_name}/dbus:i_Memory_Generic/MEM 0x0
::BLWizard::updateFramework i_Bus {} { common_configuration:BackBone:/advanced/num_resources_per_target:1 }
::pct::set_main_configuration Default {{#include <scc/report.h>} {::scc::init_logging(::scc::LogConfig().logLevel(::scc::log::INFO).coloredOutput(false).logAsync(false));} {} {} {}}
::pct::set_main_configuration Debug {{#include <scc/report.h>} {::scc::init_logging(::scc::LogConfig().logLevel(::scc::log::DEBUG).coloredOutput(false).logAsync(false));} {} {} {}}
::pct::create_simulation_build_config Debug
::pct::set_simulation_build_project_setting Debug "Main Configuration" Default
# add build settings and save design for next steps
#::pct::set_simulation_build_project_setting "Debug" "Linker Flags" "-Wl,-z,muldefs $::env(VERILATOR_ROOT)/include/verilated.cpp $::env(VERILATOR_ROOT)/include/verilated_vcd_sc.cpp $::env(VERILATOR_ROOT)/include/verilated_vcd_c.cpp"
#::pct::set_simulation_build_project_setting "Debug" "Include Paths" $::env(VERILATOR_ROOT)/include/
#::simulation::set_simulation_property Simulation [list run_for_duration:200ns results_dir:results/test_0 "TLM Port Trace:true"]
#::simulation::run_simulation Simulation
#::pct::set_simulation_build_project_setting Debug {Export Type} {STATIC NETLIST}
#::pct::set_simulation_build_project_setting Debug {Encapsulated Netlist} false
#::pct::export_system "export"
#::cd "export"
#::scsh::open-project
#::scsh::build
#::scsh::elab sim
::pct::save_system testbench.xml

View File

@ -1 +1,2 @@
/src-gen/
/CoreDSL-Instruction-Set-Description

13
gen_input/TGC5C.core_desc Normal file
View File

@ -0,0 +1,13 @@
import "ISA/RVI.core_desc"
import "ISA/RVM.core_desc"
import "ISA/RVC.core_desc"
Core TGC5C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
architectural_state {
XLEN=32;
// definitions for the architecture wrapper
// XL ZYXWVUTSRQPONMLKJIHGFEDCBA
unsigned int MISA_VAL = 0b01000000000000000001000100000100;
unsigned int MARCHID_VAL = 0x80000003;
}
}

View File

@ -1,37 +0,0 @@
import "CoreDSL-Instruction-Set-Description/RV32I.core_desc"
import "CoreDSL-Instruction-Set-Description/RVM.core_desc"
import "CoreDSL-Instruction-Set-Description/RVC.core_desc"
Core TGC_B provides RV32I {
architectural_state {
unsigned XLEN=32;
unsigned PCLEN=32;
// definitions for the architecture wrapper
// XL ZYXWVUTSRQPONMLKJIHGFEDCBA
unsigned MISA_VAL = 0b01000000000000000000000100000000;
unsigned PGSIZE = 0x1000; //1 << 12;
unsigned PGMASK = 0xfff; //PGSIZE-1
}
}
Core TGC_C provides RV32I, RV32M, RV32IC {
architectural_state {
unsigned XLEN=32;
unsigned PCLEN=32;
// definitions for the architecture wrapper
// XL ZYXWVUTSRQPONMLKJIHGFEDCBA
unsigned MISA_VAL = 0b01000000000000000001000100000100;
unsigned PGSIZE = 0x1000; //1 << 12;
unsigned PGMASK = 0xfff; //PGSIZE-1
}
}
Core TGC_D provides RV32I, RV32M, RV32IC {
architectural_state {
unsigned XLEN=32;
unsigned PCLEN=32;
// definitions for the architecture wrapper
// XL ZYXWVUTSRQPONMLKJIHGFEDCBA
unsigned MISA_VAL = 0b01000000000000000001000100000100;
}
}

View File

@ -33,32 +33,33 @@
def getRegisterSizes(){
def regs = registers.collect{it.size}
regs[-1]=64 // correct for NEXT_PC
regs+=[32, 32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET
regs+=[32,32, 64, 64, 64, 32, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
return regs
}
%>
// clang-format off
#include "${coreDef.name.toLowerCase()}.h"
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
constexpr std::array<const char*, ${registers.size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${registers.size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() = default;
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
auto base_ptr = reinterpret_cast<traits<${coreDef.name.toLowerCase()}>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i)
*(base_ptr+i)=0;
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.PRIV=0x3;
@ -70,7 +71,7 @@ uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &addr) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
}
// clang-format on

View File

@ -30,14 +30,12 @@
*
*******************************************************************************/
<%
import com.minres.coredsl.util.BigIntegerWithRadix
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
def getRegisterSizes(){
def regs = registers.collect{nativeTypeSize(it.size)}
regs+=[32,32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET
regs+=[32,32, 64, 64, 64, 32, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
return regs
}
def getRegisterOffsets(){
@ -57,15 +55,12 @@ def byteSize(int size){
return 128;
}
def getCString(def val){
if(val instanceof BigIntegerWithRadix)
return ((BigIntegerWithRadix)val).toCString()
else
return val.toString()
return val.toString()+'ULL'
}
%>
#ifndef _${coreDef.name.toUpperCase()}_H_
#define _${coreDef.name.toUpperCase()}_H_
// clang-format off
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
@ -80,23 +75,18 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${registers.size}> reg_names{
{"${registers.collect{it.name}.join('", "')}"}};
static constexpr std::array<const char*, ${registers.size()}> reg_names{
{"${registers.collect{it.name.toLowerCase()}.join('", "')}"}};
static constexpr std::array<const char*, ${registers.size}> reg_aliases{
{"${registers.collect{it.alias}.join('", "')}"}};
static constexpr std::array<const char*, ${registers.size()}> reg_aliases{
{"${registers.collect{it.alias.toLowerCase()}.join('", "')}"}};
enum constants {${constants.collect{c -> c.name+"="+getCString(c.value)}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS,
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
${registers.collect{it.name}.join(', ')}, NUM_REGS, TRAP_STATE=NUM_REGS, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
};
using reg_t = uint${addrDataWidth}_t;
@ -109,19 +99,19 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, ${getRegisterSizes().size}> reg_bit_widths{
static constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> reg_bit_widths{
{${getRegisterSizes().join(',')}}};
static constexpr std::array<const uint32_t, ${getRegisterOffsets().size}> reg_byte_offsets{
static constexpr std::array<const uint32_t, ${getRegisterOffsets().size()}> reg_byte_offsets{
{${getRegisterOffsets().join(',')}}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')} };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')}, IMEM = MEM };
enum class opcode_e : unsigned short {<%instructions.eachWithIndex{instr, index -> %>
enum class opcode_e {<%instructions.eachWithIndex{instr, index -> %>
${instr.instruction.name} = ${index},<%}%>
MAX_OPCODE
};
@ -140,14 +130,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
void reset(uint64_t address=0) override;
uint8_t* get_regs_base_ptr() override;
/// deprecated
void get_reg(short idx, std::vector<uint8_t>& value) override {}
void set_reg(short idx, const std::vector<uint8_t>& value) override {}
/// deprecated
bool get_flag(int flag) override {return false;}
void set_flag(int, bool value) override {};
/// deprecated
void update_flags(operations op, uint64_t opr1, uint64_t opr2) override {};
inline uint64_t get_icount() { return reg.icount; }
@ -155,21 +137,13 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<${coreDef.name.toLowerCase()}>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
protected:
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%
registers.each { reg -> if(reg.size>0) {%>
@ -179,7 +153,8 @@ protected:
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t last_branch;
uint32_t instruction = 0;
uint32_t last_branch = 0;
} reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode;
@ -199,3 +174,4 @@ if(fcsr != null) {%>
}
}
#endif /* _${coreDef.name.toUpperCase()}_H_ */
// clang-format on

View File

@ -1,9 +1,12 @@
{
{
"${coreDef.name}" : [<%instructions.eachWithIndex{instr,index -> %>${index==0?"":","}
{
"name" : "${instr.name}",
"size" : ${instr.length},
"delay" : ${generator.hasAttribute(instr.instruction, com.minres.coredsl.coreDsl.InstrAttribute.COND)?[1,1]:1}
"name" : "${instr.name}",
"size" : ${instr.length},
"encoding": "${instr.encoding}",
"mask": "${instr.mask}",
"branch": ${instr.modifiesPC},
"delay" : ${instr.isConditional?"[1,1]":"1"}
}<%}%>
]
}

View File

@ -0,0 +1,21 @@
<% def getInstructionGroups() {
def instrGroups = [:]
instructions.each {
def groupName = it['instruction'].eContainer().name
if(!instrGroups.containsKey(groupName)) {
instrGroups[groupName]=[]
}
instrGroups[groupName]+=it;
}
instrGroups
}%><%int index = 0; getInstructionGroups().each{name, instrList -> %>
${name}: <% instrList.each { %>
${it.instruction.name}:
index: ${index++}
encoding: ${it.encoding}
mask: ${it.mask}<%if(it.attributes.size) {%>
attributes: ${it.attributes}<%}%>
size: ${it.length}
branch: ${it.modifiesPC}
delay: ${it.isConditional?"[1,1]":"1"}<%}}%>

View File

@ -0,0 +1,131 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <sysc/iss_factory.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <sysc/sc_core_adapter.h>
#include <sysc/core_complex.h>
#include <array>
<%
def array_count = coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e"? 3 : 2;
%>
namespace iss {
namespace interp {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#if defined(WITH_LLVM)
namespace llvm {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
#if defined(WITH_TCC)
namespace tcc {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
#if defined(WITH_ASMJIT)
namespace asmjit {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
}
// clang-format on

View File

@ -0,0 +1,384 @@
/*******************************************************************************
* Copyright (C) 2017-2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/asmjit/vm_base.h>
#include <asmjit/asmjit.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace asmjit {
namespace ${coreDef.name.toLowerCase()} {
using namespace ::asmjit;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::asmjit::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::asmjit::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename super::mem_type_e;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using super::get_ptr_for;
using super::get_reg;
using super::get_reg_for;
using super::load_reg_from_mem;
using super::write_reg_to_mem;
using super::gen_ext;
using super::gen_read_mem;
using super::gen_write_mem;
using super::gen_wait;
using super::gen_leave;
using super::gen_operation;
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void gen_instr_prologue(jit_holder& jh);
void gen_instr_epilogue(jit_holder& jh);
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause);
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
continuation_e __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate disass */
<%instr.disass.eachLine{%>
${it}<%}%>
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignature::build<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("${instr.name}_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, ${idx});
cc.mov(jh.pc, pc.val);
pc = pc+${instr.length/8};
cc.mov(jh.next_pc, pc.val);
gen_instr_prologue(jh);
cc.comment("//behavior:");
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, ${idx});
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("illegal_intruction{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, instr_descr.size());
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_instr_prologue(jh);
cc.comment("//behavior:");
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, instr_descr.size());
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr: instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr)
f = &this_class::illegal_intruction;
return (this->*f)(pc, instr, jh);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_prologue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_prologue");
cc.inc(get_ptr_for(jh, traits::ICOUNT));
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cc.mov(get_ptr_for(jh, traits::PENDING_TRAP), current_trap_state);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_epilogue");
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cc.cmp(current_trap_state, 0);
cc.jne(jh.trap_entry);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
jh.pc = load_reg_from_mem(jh, traits::PC);
jh.next_pc = load_reg_from_mem(jh, traits::NEXT_PC);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
x86::Compiler& cc = jh.cc;
cc.comment("//gen_block_epilogue");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
this->write_back(jh);
this->gen_sync(jh, POST_SYNC, -1);
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
x86::Gp current_pc = get_reg_for(jh, traits::PC);
cc.mov(current_pc, get_ptr_for(jh, traits::PC));
x86::Gp instr = cc.newInt32("instr");
cc.mov(instr, 0); // FIXME:this is not correct
cc.comment("//enter trap call;");
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignature::build<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
call_enter_trap->setArg(1, current_trap_state);
call_enter_trap->setArg(2, current_pc);
call_enter_trap->setArg(3, instr);
x86::Gp current_next_pc = get_reg_for(jh, traits::NEXT_PC);
cc.mov(current_next_pc, get_ptr_for(jh, traits::NEXT_PC));
cc.mov(jh.next_pc, current_next_pc);
cc.mov(get_ptr_for(jh, traits::LAST_BRANCH), std::numeric_limits<uint32_t>::max());
cc.ret(jh.next_pc);
}
template <typename ARCH>
inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
auto& cc = jh.cc;
cc.comment("//gen_raise");
auto tmp1 = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
cc.mov(get_ptr_for(jh, traits::TRAP_STATE), tmp1);
cc.mov(jh.next_pc, std::numeric_limits<uint32_t>::max());
}
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace asmjit
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* Copyright (C) 20217-2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -29,15 +29,23 @@
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include "../fp_functions.h"
<%
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
%>
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
#include <vm/fp_functions.h>
#include <util/logging.h>
#include <boost/coroutine2/all.hpp>
#include <functional>
#include <exception>
#include <vector>
#include <sstream>
#ifndef FMT_HEADER_ONLY
@ -53,6 +61,11 @@ namespace interp {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
using namespace std::placeholders;
struct memory_access_exception : public std::exception{
memory_access_exception(){}
};
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
public:
@ -64,7 +77,8 @@ public:
using addr_t = typename super::addr_t;
using reg_t = typename traits::reg_t;
using mem_type_e = typename traits::mem_type_e;
using opcode_e = typename traits::opcode_e;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
@ -83,34 +97,16 @@ protected:
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
inline const char *name(size_t index){return index<traits::reg_aliases.size()?traits::reg_aliases[index]:"illegal";}
compile_func decode_inst(code_word_t instr) ;
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
struct instruction_pattern {
uint32_t value;
uint32_t mask;
compile_func opc;
};
std::array<std::vector<instruction_pattern>, 4> qlut;
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
this->core.reg.trap_state = trap_val;
this->template get_reg<uint${addrDataWidth}_t>(traits::NEXT_PC) = std::numeric_limits<uint${addrDataWidth}_t>::max();
}
inline void leave(unsigned lvl){
@ -121,139 +117,126 @@ protected:
this->core.wait_until(type);
}
template<typename T>
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint8_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
return ret;
}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint16_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
return ret;
}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint32_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
return ret;
}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint64_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
return ret;
}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
}
uint64_t fetch_count{0};
using yield_t = boost::coroutines2::coroutine<void>::push_type;
using coro_t = boost::coroutines2::coroutine<void>::pull_type;
std::vector<coro_t> spawn_blocks;
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
inline void process_spawn_blocks() {
if(spawn_blocks.size()==0) return;
for(auto it = std::begin(spawn_blocks); it!=std::end(spawn_blocks);)
if(*it){
(*it)();
++it;
} else
spawn_blocks.erase(it);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
typename arch::traits<ARCH>::opcode_e op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
{${instr.length}, ${instr.encoding}, ${instr.mask}, arch::traits<ARCH>::opcode_e::${instr.instruction.name}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
// pre execution stuff
auto* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*PC=*NEXT_PC;
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
*trap_state = *reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PENDING_TRAP]);
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, ${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${v.type.size}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${v.type.size}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
try {
<%instr.behavior.eachLine{%>${it}
<%}%>} catch(...){}
// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val, instr);
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
if(this->core.has_mmu()) {
auto phys_pc = this->core.virt2phys(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok)
// return iss::Err;
// } else {
if (this->core.read(phys_pc, 4, data) != iss::Ok)
return iss::Err;
// }
} else {
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::ICOUNT]))++;
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::INSTRET]))++;
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::CYCLE]))++;
pc.val=*NEXT_PC;
return pc;
return iss::Ok;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
this->do_sync(PRE_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
uint32_t* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
uint32_t* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val, instr);
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
pc.val=*NEXT_PC;
return pc;
}
static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
auto phys_pc = this->core.v2p(pc);
//if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
//} else {
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
//}
return iss::Ok;
typename arch::traits<ARCH>::opcode_e decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
};
@ -281,19 +264,19 @@ constexpr size_t bit_count(uint32_t u) {
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) > bit_count(b.mask);
});
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
inline bool is_count_limit_enabled(finish_cond_e cond){
return (cond & finish_cond_e::COUNT_LIMIT) == finish_cond_e::COUNT_LIMIT;
inline bool is_icount_limit_enabled(finish_cond_e cond){
return (cond & finish_cond_e::ICOUNT_LIMIT) == finish_cond_e::ICOUNT_LIMIT;
}
inline bool is_fcount_limit_enabled(finish_cond_e cond){
return (cond & finish_cond_e::FCOUNT_LIMIT) == finish_cond_e::FCOUNT_LIMIT;
}
inline bool is_jump_to_self_enabled(finish_cond_e cond){
@ -301,36 +284,78 @@ inline bool is_jump_to_self_enabled(finish_cond_e cond){
}
template <typename ARCH>
typename vm_impl<ARCH>::compile_func vm_impl<ARCH>::decode_inst(code_word_t instr){
for(auto& e: qlut[instr&0x3]){
if(!((instr&e.mask) ^ e.value )) return e.opc;
}
return &this_class::illegal_intruction;
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
// we fetch at max 4 byte, alignment is 2
code_word_t insn = 0;
auto *const data = (uint8_t *)&insn;
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t count_limit){
auto pc=start;
auto* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto* NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
auto& trap_state = this->core.reg.trap_state;
auto& icount = this->core.reg.icount;
auto& cycle = this->core.reg.cycle;
auto& instret = this->core.reg.instret;
auto& instr = this->core.reg.instruction;
// we fetch at max 4 byte, alignment is 2
auto *const data = reinterpret_cast<uint8_t*>(&instr);
while(!this->core.should_stop() &&
!(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){
auto res = fetch_ins(pc, data);
if(res!=iss::Ok){
!(is_icount_limit_enabled(cond) && icount >= count_limit) &&
!(is_fcount_limit_enabled(cond) && fetch_count >= count_limit)){
fetch_count++;
if(fetch_ins(pc, data)!=iss::Ok){
this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0);
} else {
if (is_jump_to_self_enabled(cond) &&
(insn == 0x0000006f || (insn&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto f = decode_inst(insn);
pc = (this->*f)(pc, insn);
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto inst_id = decode_instr(root, instr);
// pre execution stuff
this->core.reg.last_branch = 0;
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast<unsigned>(inst_id));
try{
switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %>
case arch::traits<ARCH>::opcode_e::${instr.name}: {
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
${it}<%}%>
break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
}
}
}catch(memory_access_exception& e){}
// post execution stuff
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(inst_id));
// if(!this->core.reg.trap_state) // update trap state if there is a pending interrupt
// this->core.reg.trap_state = this->core.reg.pending_trap;
// trap check
if(trap_state!=0){
super::core.enter_trap(trap_state, pc.val, instr);
} else {
icount++;
instret++;
}
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC;
this->core.reg.trap_state = this->core.reg.pending_trap;
}
}
return pc;
}
} // namespace mnrv32
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
@ -340,3 +365,34 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
}
} // namespace interp
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -0,0 +1,394 @@
/*******************************************************************************
* Copyright (C) 2017-2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace llvm {
namespace fp_impl {
void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned);
}
namespace ${coreDef.name.toLowerCase()} {
using namespace ::llvm;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::llvm::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::llvm::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
void setup_module(Module* m) override {
super::setup_module(m);
iss::llvm::fp_impl::add_fp_functions_2_module(m, traits::FP_REGS_SIZE, traits::XLEN);
}
inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) {
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void gen_trap_behavior(BasicBlock *) override;
void gen_instr_epilogue(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(this->get_typeptr(i), get_reg_ptr(i), false);
}
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val),
this->get_type(traits::XLEN));
this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
// some compile time constants
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<continuation_e, BasicBlock *> (this_class::*)(virt_addr_t &pc,
code_word_t instr,
BasicBlock *bb);
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
std::tuple<continuation_e, BasicBlock*> __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
bb->setName(fmt::format("${instr.name}_0x{:X}",pc.val));
this->gen_sync(PRE_SYNC,${idx});
auto cur_pc_val = this->gen_const(32,pc.val);
pc=pc+ ${instr.length/8};
this->gen_set_pc(pc, traits::NEXT_PC);
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
this->gen_instr_epilogue(bb);
this->gen_sync(POST_SYNC, ${idx});
this->builder.CreateBr(bb);
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), true),
get_reg_ptr(traits::PC), true);
this->builder.CreateStore(
this->builder.CreateAdd(this->builder.CreateLoad(this->get_typeptr(traits::ICOUNT), get_reg_ptr(traits::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC, instr_descr.size());
this->gen_instr_epilogue(this->leave_blk);
return std::make_tuple(BRANCH, nullptr);
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((instr & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, this_block);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC),get_reg_ptr(traits::NEXT_PC), false));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) };
this->builder.CreateCall(this->mod->getFunction("leave_trap"), args);
auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8);
this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) };
this->builder.CreateCall(this->mod->getFunction("wait"), args);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
this->gen_sync(POST_SYNC, -1); //TODO get right InstrId
auto *trap_state_val = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(this->get_typeptr(traits::PC), get_reg_ptr(traits::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
auto *trap_addr_val = this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* target_bb = BasicBlock::Create(this->mod->getContext(), "", this->func, bb);
auto *v = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
ICmpInst::ICMP_EQ, v,
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
target_bb, this->trap_blk, 1);
this->builder.SetInsertPoint(target_bb);
}
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace llvm
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -1,9 +0,0 @@
{
"${coreDef.name}" : [<%instructions.eachWithIndex{instr,index -> %>${index==0?"":","}
{
"name" : "${instr.name}",
"size" : ${instr.length},
"delay" : ${generator.hasAttribute(instr.instruction, com.minres.coredsl.coreDsl.InstrAttribute.COND)?[1,1]:1}
}<%}%>
]
}

View File

@ -1,223 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getTypeSize(size){
if(size > 32) 64 else if(size > 16) 32 else if(size > 8) 16 else 8
}
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#ifndef _${coreDef.name.toUpperCase()}_H_
#define _${coreDef.name.toUpperCase()}_H_
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/vm_if.h>
namespace iss {
namespace arch {
struct ${coreDef.name.toLowerCase()};
template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${getRegisterNames().size}> reg_names{
{"${getRegisterNames().join("\", \"")}"}};
static constexpr std::array<const char*, ${getRegisterAliasNames().size}> reg_aliases{
{"${getRegisterAliasNames().join("\", \"")}"}};
enum constants {${coreDef.constants.collect{c -> c.name+"="+c.value}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${coreDef.constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
${reg.name}${it},<%
}
} else if(reg instanceof Register){ %>
${reg.name},<%
}
}%>
NUM_REGS,
NEXT_${pc.name}=NUM_REGS,
TRAP_STATE,
PENDING_TRAP,
MACHINE_STATE,
LAST_BRANCH,
ICOUNT<%
allRegs.each { reg ->
if(reg instanceof RegisterAlias){ def aliasname=getOriginalName(reg)%>,
${reg.name} = ${aliasname}<%
}
}%>
};
using reg_t = uint${regDataWidth}_t;
using addr_t = uint${addrDataWidth}_t;
using code_word_t = uint${addrDataWidth}_t; //TODO: check removal
using virt_addr_t = iss::typed_addr_t<iss::address_type::VIRTUAL>;
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, ${regSizes.size}> reg_bit_widths{
{${regSizes.join(",")}}};
static constexpr std::array<const uint32_t, ${regOffsets.size}> reg_byte_offsets{
{${regOffsets.join(",")}}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${allSpaces.collect{s -> s.name}.join(', ')} };
};
struct ${coreDef.name.toLowerCase()}: public arch_if {
using virt_addr_t = typename traits<${coreDef.name.toLowerCase()}>::virt_addr_t;
using phys_addr_t = typename traits<${coreDef.name.toLowerCase()}>::phys_addr_t;
using reg_t = typename traits<${coreDef.name.toLowerCase()}>::reg_t;
using addr_t = typename traits<${coreDef.name.toLowerCase()}>::addr_t;
${coreDef.name.toLowerCase()}();
~${coreDef.name.toLowerCase()}();
void reset(uint64_t address=0) override;
uint8_t* get_regs_base_ptr() override;
/// deprecated
void get_reg(short idx, std::vector<uint8_t>& value) override {}
void set_reg(short idx, const std::vector<uint8_t>& value) override {}
/// deprecated
bool get_flag(int flag) override {return false;}
void set_flag(int, bool value) override {};
/// deprecated
void update_flags(operations op, uint64_t opr1, uint64_t opr2) override {};
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<${coreDef.name.toLowerCase()}>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
protected:
struct ${coreDef.name}_regs {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
uint${generator.getSize(reg)}_t ${reg.name}${it} = 0;<%
}
} else if(reg instanceof Register){ %>
uint${generator.getSize(reg)}_t ${reg.name} = 0;<%
}
}%>
uint${generator.getSize(pc)}_t NEXT_${pc.name} = 0;
uint32_t trap_state = 0, pending_trap = 0, machine_state = 0, last_branch = 0;
uint64_t icount = 0;
} reg;
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;
<%
def fcsr = allRegs.find {it.name=='FCSR'}
if(fcsr != null) {%>
uint${generator.getSize(fcsr)}_t get_fcsr(){return reg.FCSR;}
void set_fcsr(uint${generator.getSize(fcsr)}_t val){reg.FCSR = val;}
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}%>
};
}
}
#endif /* _${coreDef.name.toUpperCase()}_H_ */

View File

@ -1,107 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, ${getRegisterNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${getRegisterAliasNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${regSizes.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${regOffsets.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.trap_state=0;
reg.machine_state=0x3;
reg.icount=0;
}
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}

View File

@ -1,325 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace llvm {
namespace fp_impl {
void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned);
}
namespace ${coreDef.name.toLowerCase()} {
using namespace ::llvm;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::llvm::vm_base<ARCH> {
public:
using super = typename iss::llvm::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits<ARCH>::reg_aliases.at(index);}
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
void setup_module(Module* m) override {
super::setup_module(m);
iss::llvm::fp_impl::add_fp_functions_2_module(m, traits<ARCH>::FP_REGS_SIZE, traits<ARCH>::XLEN);
}
inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) {
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void gen_trap_behavior(BasicBlock *) override;
void gen_trap_check(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(get_reg_ptr(i), false);
}
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits<ARCH>::XLEN, pc.val),
this->get_type(traits<ARCH>::XLEN));
this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<continuation_e, BasicBlock *> (this_class::*)(virt_addr_t &pc,
code_word_t instr,
BasicBlock *bb);
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.value}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
std::tuple<continuation_e, BasicBlock*> __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){<%instr.code.eachLine{%>
${it}<%}%>
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), true),
get_reg_ptr(traits<ARCH>::PC), true);
this->builder.CreateStore(
this->builder.CreateAdd(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits<ARCH>::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC, instr_descr.size());
this->gen_trap_check(this->leave_blk);
return std::make_tuple(BRANCH, nullptr);
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
auto res = this->core.read(paddr, 2, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
}
} else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, insn, this_block);
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) };
this->builder.CreateCall(this->mod->getFunction("leave_trap"), args);
auto *PC_val = this->gen_read_mem(traits<ARCH>::CSR, (lvl << 8) + 0x41, traits<ARCH>::XLEN / 8);
this->builder.CreateStore(PC_val, get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
}
template <typename ARCH> void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) };
this->builder.CreateCall(this->mod->getFunction("wait"), args);
}
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
auto *trap_state_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
auto *trap_addr_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH> inline void vm_impl<ARCH>::gen_trap_check(BasicBlock *bb) {
auto *v = this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
ICmpInst::ICMP_EQ, v,
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
bb, this->trap_blk, 1);
}
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace llvm
} // namespace iss

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2020 MINRES Technologies GmbH
* Copyright (C) 2020-2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -29,9 +29,8 @@
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
@ -55,10 +54,12 @@ using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::tcc::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::tcc::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename traits::mem_type_e;
using addr_t = typename super::addr_t;
using tu_builder = typename super::tu_builder;
@ -82,7 +83,7 @@ protected:
using compile_ret_t = std::tuple<continuation_e>;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits<ARCH>::reg_aliases.at(index);}
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void setup_module(std::string m) override {
super::setup_module(m);
@ -104,10 +105,10 @@ protected:
inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) {
switch(reg_num){
case traits<ARCH>::NEXT_PC:
case traits::NEXT_PC:
tu("*next_pc = {:#x};", pc.val);
break;
case traits<ARCH>::PC:
case traits::PC:
tu("*pc = {:#x};", pc.val);
break;
default:
@ -119,79 +120,61 @@ protected:
}
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, 0b${instr.value}, 0b${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){<%instr.code.eachLine{%>
${it}<%}%>
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("${instr.name}_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,${idx});
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
<%instr.behavior.eachLine{%>${it}
<%}%>
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
return returnValue;
}
<%}%>
/****************************************************************************
@ -205,11 +188,64 @@ private:
vm_impl::gen_trap_check(tu);
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
@ -217,14 +253,11 @@ template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
@ -232,41 +265,40 @@ std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
auto res = this->core.read(paddr, 2, data);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
}
} else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, insn, tu);
return (this->*f)(pc, instr, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
tu.store(tu.constant(std::numeric_limits<uint32_t>::max(), 32),traits<ARCH>::LAST_BRANCH);
tu.store(traits::NEXT_PC, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
tu.store(tu.read_mem(traits<ARCH>::CSR, (lvl << 8) + 0x41, traits<ARCH>::XLEN),traits<ARCH>::NEXT_PC);
tu.store(tu.constant(std::numeric_limits<uint32_t>::max(), 32),traits<ARCH>::LAST_BRANCH);
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
@ -274,12 +306,13 @@ template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned t
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
tu("enter_trap(core_ptr, *trap_state, *pc);");
tu.store(tu.constant(std::numeric_limits<uint32_t>::max(),32),traits<ARCH>::LAST_BRANCH);
this->gen_sync(tu, POST_SYNC, -1);
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
tu("return *next_pc;");
}
} // namespace mnrv32
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
@ -287,5 +320,36 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
}
} // namesapce tcc
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -1,9 +0,0 @@
{
"${coreDef.name}" : [<%instructions.eachWithIndex{instr,index -> %>${index==0?"":","}
{
"name" : "${instr.name}",
"size" : ${instr.length},
"delay" : ${generator.hasAttribute(instr.instruction, com.minres.coredsl.coreDsl.InstrAttribute.COND)?[1,1]:1}
}<%}%>
]
}

View File

@ -1,223 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getTypeSize(size){
if(size > 32) 64 else if(size > 16) 32 else if(size > 8) 16 else 8
}
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#ifndef _${coreDef.name.toUpperCase()}_H_
#define _${coreDef.name.toUpperCase()}_H_
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/vm_if.h>
namespace iss {
namespace arch {
struct ${coreDef.name.toLowerCase()};
template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${getRegisterNames().size}> reg_names{
{"${getRegisterNames().join("\", \"")}"}};
static constexpr std::array<const char*, ${getRegisterAliasNames().size}> reg_aliases{
{"${getRegisterAliasNames().join("\", \"")}"}};
enum constants {${coreDef.constants.collect{c -> c.name+"="+c.value}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${coreDef.constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
${reg.name}${it},<%
}
} else if(reg instanceof Register){ %>
${reg.name},<%
}
}%>
NUM_REGS,
NEXT_${pc.name}=NUM_REGS,
TRAP_STATE,
PENDING_TRAP,
MACHINE_STATE,
LAST_BRANCH,
ICOUNT<%
allRegs.each { reg ->
if(reg instanceof RegisterAlias){ def aliasname=getOriginalName(reg)%>,
${reg.name} = ${aliasname}<%
}
}%>
};
using reg_t = uint${regDataWidth}_t;
using addr_t = uint${addrDataWidth}_t;
using code_word_t = uint${addrDataWidth}_t; //TODO: check removal
using virt_addr_t = iss::typed_addr_t<iss::address_type::VIRTUAL>;
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, ${regSizes.size}> reg_bit_widths{
{${regSizes.join(",")}}};
static constexpr std::array<const uint32_t, ${regOffsets.size}> reg_byte_offsets{
{${regOffsets.join(",")}}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${allSpaces.collect{s -> s.name}.join(', ')} };
};
struct ${coreDef.name.toLowerCase()}: public arch_if {
using virt_addr_t = typename traits<${coreDef.name.toLowerCase()}>::virt_addr_t;
using phys_addr_t = typename traits<${coreDef.name.toLowerCase()}>::phys_addr_t;
using reg_t = typename traits<${coreDef.name.toLowerCase()}>::reg_t;
using addr_t = typename traits<${coreDef.name.toLowerCase()}>::addr_t;
${coreDef.name.toLowerCase()}();
~${coreDef.name.toLowerCase()}();
void reset(uint64_t address=0) override;
uint8_t* get_regs_base_ptr() override;
/// deprecated
void get_reg(short idx, std::vector<uint8_t>& value) override {}
void set_reg(short idx, const std::vector<uint8_t>& value) override {}
/// deprecated
bool get_flag(int flag) override {return false;}
void set_flag(int, bool value) override {};
/// deprecated
void update_flags(operations op, uint64_t opr1, uint64_t opr2) override {};
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<${coreDef.name.toLowerCase()}>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
protected:
struct ${coreDef.name}_regs {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
uint${generator.getSize(reg)}_t ${reg.name}${it} = 0;<%
}
} else if(reg instanceof Register){ %>
uint${generator.getSize(reg)}_t ${reg.name} = 0;<%
}
}%>
uint${generator.getSize(pc)}_t NEXT_${pc.name} = 0;
uint32_t trap_state = 0, pending_trap = 0, machine_state = 0, last_branch = 0;
uint64_t icount = 0;
} reg;
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;
<%
def fcsr = allRegs.find {it.name=='FCSR'}
if(fcsr != null) {%>
uint${generator.getSize(fcsr)}_t get_fcsr(){return reg.FCSR;}
void set_fcsr(uint${generator.getSize(fcsr)}_t val){reg.FCSR = val;}
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}%>
};
}
}
#endif /* _${coreDef.name.toUpperCase()}_H_ */

View File

@ -1,107 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, ${getRegisterNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${getRegisterAliasNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${regSizes.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${regOffsets.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.trap_state=0;
reg.machine_state=0x3;
reg.icount=0;
}
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}

View File

@ -1 +0,0 @@
/tgc_*.h

View File

@ -1,976 +0,0 @@
/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
#include "riscv_hart_common.h"
#include "iss/arch/traits.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iomanip>
#include <sstream>
#include <type_traits>
#include <unordered_map>
#include <functional>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
namespace iss {
namespace arch {
template <typename BASE> class riscv_hart_m_p : public BASE {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char *, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char *, 12> irq_str = {
{"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
public:
using core = BASE;
using this_class = riscv_hart_m_p<BASE>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0x1800;
void write_mstatus(T val) {
auto mask = get_mask() &0xff; // MPP is hardcode as 0x3
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
static constexpr uint32_t get_mask() {
//return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported
// +-SD
// | +-TSR
// | |+-TW
// | ||+-TVM
// | |||+-MXR
// | ||||+-SUM
// | |||||+-MPRV
// | |||||| +-XS
// | |||||| | +-FS
// | |||||| | | +-MPP
// | |||||| | | | +-SPP
// | |||||| | | | |+-MPIE
// | ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
}
};
using hart_state_type = hart_state<reg_t>;
constexpr reg_t get_irq_mask() {
return 0b100010001000; // only machine mode is supported
}
constexpr reg_t get_pc_mask() {
return traits<BASE>::MISA_VAL&0b0100?~1:~3;
}
riscv_hart_m_p();
virtual ~riscv_hart_m_p() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
iss::status read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) override;
virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); }
virtual uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
virtual uint64_t leave_trap(uint64_t flags) override;
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
void setMemReadCb(std::function<iss::status(phys_addr_t, unsigned, uint8_t* const)> const& memReadCb) {
mem_read_cb = memReadCb;
}
void setMemWriteCb(std::function<iss::status(phys_addr_t, unsigned, const uint8_t* const)> const& memWriteCb) {
mem_write_cb = memWriteCb;
}
void set_csr(unsigned addr, reg_t val){
csr[addr & csr.page_addr_mask] = val;
}
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_m_p<BASE> &arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
virtual uint64_t get_pc() { return arch.get_pc(); };
virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
riscv_hart_m_p<BASE> &arch;
};
friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
virtual iss::status read_csr(unsigned addr, reg_t &val);
virtual iss::status write_csr(unsigned addr, reg_t val);
hart_state_type state;
int64_t cycle_offset{0};
uint64_t mcycle_csr{0};
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
unsigned to_host_wr_cnt = 0;
riscv_instrumentation_if instr_if;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
private:
iss::status read_reg(unsigned addr, reg_t &val);
iss::status write_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t &val);
iss::status write_null(unsigned addr, reg_t val){return iss::status::Ok;}
iss::status read_cycle(unsigned addr, reg_t &val);
iss::status write_cycle(unsigned addr, reg_t val);
iss::status read_instret(unsigned addr, reg_t &val);
iss::status write_instret(unsigned addr, reg_t val);
iss::status read_tvec(unsigned addr, reg_t &val);
iss::status read_time(unsigned addr, reg_t &val);
iss::status read_status(unsigned addr, reg_t &val);
iss::status write_status(unsigned addr, reg_t val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val);
iss::status write_epc(unsigned addr, reg_t val);
reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
protected:
void check_interrupt();
};
template <typename BASE>
riscv_hart_m_p<BASE>::riscv_hart_m_p()
: state()
, instr_if(*this) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = 0x80000003;
csr[mimpid] = 1;
uart_buf.str("");
for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_reg;
}
for (unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_reg;
}
for (unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_reg;
}
for (unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
}
for (unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
//csr_wr_cb[addr] = &this_class::write_reg;
}
// common regs
const std::array<unsigned, 10> addrs{{misa, mvendorid, marchid, mimpid, mepc, mtvec, mscratch, mcause, mtval, mscratch}};
for(auto addr: addrs) {
csr_rd_cb[addr] = &this_class::read_reg;
csr_wr_cb[addr] = &this_class::write_reg;
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
csr_rd_cb[timeh] = &this_class::read_time;
csr_rd_cb[cycle] = &this_class::read_cycle;
csr_rd_cb[cycleh] = &this_class::read_cycle;
csr_rd_cb[instret] = &this_class::read_instret;
csr_rd_cb[instreth] = &this_class::read_instret;
csr_rd_cb[mcycle] = &this_class::read_cycle;
csr_wr_cb[mcycle] = &this_class::write_cycle;
csr_rd_cb[mcycleh] = &this_class::read_cycle;
csr_wr_cb[mcycleh] = &this_class::write_cycle;
csr_rd_cb[minstret] = &this_class::read_instret;
csr_wr_cb[minstret] = &this_class::write_instret;
csr_rd_cb[minstreth] = &this_class::read_instret;
csr_wr_cb[minstreth] = &this_class::write_instret;
csr_rd_cb[mstatus] = &this_class::read_status;
csr_wr_cb[mstatus] = &this_class::write_status;
csr_wr_cb[mcause] = &this_class::write_cause;
csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_ip;
csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid;
csr_rd_cb[mcounteren] = &this_class::read_null;
csr_wr_cb[mcounteren] = &this_class::write_null;
csr_wr_cb[misa] = &this_class::write_null;
csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
}
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_m_p<BASE>::load_file(std::string name, int type) {
FILE *fp = fopen(name.c_str(), "r");
if (fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
if (n != 4) throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if (strcmp(buf.data() + 1, "ELF") == 0) {
fclose(fp);
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
// check elf properties
if (reader.get_class() != ELFCLASS32)
if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if (fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE,
traits<BASE>::MEM, pseg->get_physical_address(),
fsize, reinterpret_cast<const uint8_t *const>(seg_data));
if (res != iss::Ok)
LOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex
<< pseg->get_physical_address();
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".symtab") {
if ( SHT_SYMTAB == sec->get_type() ||
SHT_DYNSYM == sec->get_type() ) {
ELFIO::symbol_section_accessor symbols( reader, sec );
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for ( auto i = 0U; i < sym_no; ++i ) {
symbols.get_symbol( i, name, value, size, bind, type, section, other );
if(name=="tohost") {
tohost = value;
} else if(name=="fromhost") {
fromhost = value;
}
}
}
} else if (sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(entry, true);
}
throw std::runtime_error("memory load file is not a valid elf file");
}
throw std::runtime_error("memory load file not found");
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) {
#ifndef NDEBUG
if (access && iss::access_type::DEBUG) {
LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH){
LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto alignment = access == iss::access_type::FETCH? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if(alignment>1 && (addr&(alignment-1))){
this->reg.trap_state = 1<<31 | 4<<16;
fault_data=addr;
return iss::Err;
}
auto res = type==iss::address_type::PHYSICAL?
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data):
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t *const>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if (it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) {
#ifndef NDEBUG
const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch (length) {
case 8:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 4:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 2:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 1:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
default:
LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if(!(access && iss::access_type::DEBUG) && length>1 && (addr&(length-1))){
this->reg.trap_state = 1<<31 | 6<<16;
fault_data=addr;
return iss::Err;
}
auto res = type==iss::address_type::PHYSICAL?
write_mem(phys_addr_t{access, space, addr}, length, data):
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr});
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
return iss::Ok;
}
case 0x10008008: { // HFROSC base, pllcfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
return iss::Ok;
} break;
default: {}
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t *>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
switch (addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_csr(unsigned addr, reg_t &val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_csr(unsigned addr, reg_t val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr&0xc00)==0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_reg(unsigned addr, reg_t &val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_null(unsigned addr, reg_t &val) {
val = 0;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_cycle(unsigned addr, reg_t val) {
if (sizeof(typename traits<BASE>::reg_t) != 4) {
if (addr == mcycleh)
return iss::Err;
mcycle_csr = static_cast<uint64_t>(val);
} else {
if (addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_instret(unsigned addr, reg_t &val) {
if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if ((addr&0xff) == (minstreth&0xff)) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_instret(unsigned addr, reg_t val) {
if (sizeof(typename traits<BASE>::reg_t) != 4) {
if ((addr&0xff) == (minstreth&0xff))
return iss::Err;
this->reg.instret = static_cast<uint64_t>(val);
} else {
if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_tvec(unsigned addr, reg_t &val) {
val = csr[mtvec] & ~2;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_status(unsigned addr, reg_t &val) {
val = state.mstatus & hart_state_type::get_mask();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_status(unsigned addr, reg_t val) {
state.write_mstatus(val);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_cause(unsigned addr, reg_t val) {
csr[mcause] = val & ((1UL<<(traits<BASE>::XLEN-1))|0xf); //TODO: make exception code size configurable
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_ie(unsigned addr, reg_t &val) {
val = csr[mie];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_hartid(unsigned addr, reg_t &val) {
val = mhartid_reg;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_ip(unsigned addr, reg_t &val) {
val = csr[mip];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_ip(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
mask &= ~(1 << 7); // MTIP is read only
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
if(mem_read_cb) return mem_read_cb(paddr, length, data);
switch (paddr.val) {
case 0x0200BFF8: { // CLINT base, mtime reg
if (sizeof(reg_t) < length) return iss::Err;
reg_t time_val;
this->read_csr(time, time_val);
std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data);
} break;
case 0x10008000: {
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
} break;
default: {
for(auto offs=0U; offs<length; ++offs) {
*(data + offs)=mem[(paddr.val+offs)%mem.size()];
}
}
}
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) {
if(mem_write_cb) return mem_write_cb(paddr, length, data);
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
break;
case 0x10008000: { // HFROSC base, hfrosccfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
} break;
case 0x10008008: { // HFROSC base, pllcfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
} break;
default: {
mem_type::page_type &p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if (paddr.access && iss::access_type::FUNC) {
auto tohost_upper = (traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) ||
(traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower =
(traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if (tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask));
if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch (hostvar >> 48) {
case 0:
if (hostvar != 0x1) {
LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if (c == '\n' || c == 0) {
LOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
to_host_wr_cnt = 0;
} break;
default:
break;
}
} else if (tohost_lower)
to_host_wr_cnt++;
} else if ((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) ||
(traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t *>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}
template <typename BASE> inline void riscv_hart_m_p<BASE>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state_type::mstatus_reset_val;
}
template <typename BASE> void riscv_hart_m_p<BASE>::check_interrupt() {
//auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
bool mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || (this->reg.PRIV == PRIV_M && mie);
auto enabled_interrupts = m_enabled ? ena_irq : 0;
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE> uint64_t riscv_hart_m_p<BASE>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
// calculate effective privilege level
if (trap_id == 0) { // exception
// store ret addr in xepc register
csr[mepc] = static_cast<reg_t>(addr) & get_pc_mask(); // store actual address instruction of exception
csr[mtval] = cause==2?((instr & 0x3)==3?instr:instr&0xffff):fault_data;
fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
}
csr[mcause] = (trap_id << 31) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
state.mstatus.MPP = PRIV_M;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
// get trap vector
auto ivec = csr[mtvec];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x3UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state
this->reg.PRIV = PRIV_M;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags&0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
template <typename BASE> uint64_t riscv_hart_m_p<BASE>::leave_trap(uint64_t flags) {
state.mstatus.MIE = state.mstatus.MPIE;
state.mstatus.MPIE = 1;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc] & get_pc_mask();
CLOG(INFO, disass) << "Executing xRET";
check_interrupt();
return this->reg.NEXT_PC;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,282 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017 - 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#ifndef _TGC_C_H_
#define _TGC_C_H_
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/vm_if.h>
namespace iss {
namespace arch {
struct tgc_c;
template <> struct traits<tgc_c> {
constexpr static char const* const core_type = "TGC_C";
static constexpr std::array<const char*, 35> reg_names{
{"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV"}};
static constexpr std::array<const char*, 35> reg_aliases{
{"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV"}};
enum constants {XLEN=32, PCLEN=32, MISA_VAL=0b01000000000000000001000100000100, PGSIZE=0x1000, PGMASK=0b111111111111, CSR_SIZE=4096, fence=0, fencei=1, fencevmal=2, fencevmau=3, MUL_LEN=64};
constexpr static unsigned FP_REGS_SIZE = 0;
enum reg_e {
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, PC, NEXT_PC, PRIV, NUM_REGS,
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
};
using reg_t = uint32_t;
using addr_t = uint32_t;
using code_word_t = uint32_t; //TODO: check removal
using virt_addr_t = iss::typed_addr_t<iss::address_type::VIRTUAL>;
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, 40> reg_bit_widths{
{32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32,32,64,64,64}};
static constexpr std::array<const uint32_t, 40> reg_byte_offsets{
{0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137,141,145,153,161}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { MEM, CSR, FENCE, RES };
enum class opcode_e : unsigned short {
LUI = 0,
AUIPC = 1,
JAL = 2,
JALR = 3,
BEQ = 4,
BNE = 5,
BLT = 6,
BGE = 7,
BLTU = 8,
BGEU = 9,
LB = 10,
LH = 11,
LW = 12,
LBU = 13,
LHU = 14,
SB = 15,
SH = 16,
SW = 17,
ADDI = 18,
SLTI = 19,
SLTIU = 20,
XORI = 21,
ORI = 22,
ANDI = 23,
SLLI = 24,
SRLI = 25,
SRAI = 26,
ADD = 27,
SUB = 28,
SLL = 29,
SLT = 30,
SLTU = 31,
XOR = 32,
SRL = 33,
SRA = 34,
OR = 35,
AND = 36,
FENCE = 37,
ECALL = 38,
EBREAK = 39,
URET = 40,
SRET = 41,
MRET = 42,
WFI = 43,
CSRRW = 44,
CSRRS = 45,
CSRRC = 46,
CSRRWI = 47,
CSRRSI = 48,
CSRRCI = 49,
MUL = 50,
MULH = 51,
MULHSU = 52,
MULHU = 53,
DIV = 54,
DIVU = 55,
REM = 56,
REMU = 57,
CADDI4SPN = 58,
CLW = 59,
CSW = 60,
CADDI = 61,
CNOP = 62,
CJAL = 63,
CLI = 64,
CLUI = 65,
CADDI16SP = 66,
__reserved_clui = 67,
CSRLI = 68,
CSRAI = 69,
CANDI = 70,
CSUB = 71,
CXOR = 72,
COR = 73,
CAND = 74,
CJ = 75,
CBEQZ = 76,
CBNEZ = 77,
CSLLI = 78,
CLWSP = 79,
CMV = 80,
CJR = 81,
__reserved_cmv = 82,
CADD = 83,
CJALR = 84,
CEBREAK = 85,
CSWSP = 86,
DII = 87,
MAX_OPCODE
};
};
struct tgc_c: public arch_if {
using virt_addr_t = typename traits<tgc_c>::virt_addr_t;
using phys_addr_t = typename traits<tgc_c>::phys_addr_t;
using reg_t = typename traits<tgc_c>::reg_t;
using addr_t = typename traits<tgc_c>::addr_t;
tgc_c();
~tgc_c();
void reset(uint64_t address=0) override;
uint8_t* get_regs_base_ptr() override;
/// deprecated
void get_reg(short idx, std::vector<uint8_t>& value) override {}
void set_reg(short idx, const std::vector<uint8_t>& value) override {}
/// deprecated
bool get_flag(int flag) override {return false;}
void set_flag(int, bool value) override {};
/// deprecated
void update_flags(operations op, uint64_t opr1, uint64_t opr2) override {};
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<tgc_c>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc_c>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
protected:
#pragma pack(push, 1)
struct TGC_C_regs {
uint32_t X0 = 0;
uint32_t X1 = 0;
uint32_t X2 = 0;
uint32_t X3 = 0;
uint32_t X4 = 0;
uint32_t X5 = 0;
uint32_t X6 = 0;
uint32_t X7 = 0;
uint32_t X8 = 0;
uint32_t X9 = 0;
uint32_t X10 = 0;
uint32_t X11 = 0;
uint32_t X12 = 0;
uint32_t X13 = 0;
uint32_t X14 = 0;
uint32_t X15 = 0;
uint32_t X16 = 0;
uint32_t X17 = 0;
uint32_t X18 = 0;
uint32_t X19 = 0;
uint32_t X20 = 0;
uint32_t X21 = 0;
uint32_t X22 = 0;
uint32_t X23 = 0;
uint32_t X24 = 0;
uint32_t X25 = 0;
uint32_t X26 = 0;
uint32_t X27 = 0;
uint32_t X28 = 0;
uint32_t X29 = 0;
uint32_t X30 = 0;
uint32_t X31 = 0;
uint32_t PC = 0;
uint32_t NEXT_PC = 0;
uint8_t PRIV = 0;
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t last_branch;
} reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
};
}
}
#endif /* _TGC_C_H_ */

View File

@ -8,7 +8,7 @@ project("sotfloat" VERSION 3.0.0)
# Set the version number of your project here (format is MAJOR.MINOR.PATCHLEVEL - e.g. 1.0.0)
set(VERSION "3e")
include(Common)
#include(Common)
include(GNUInstallDirs)
set(SPECIALIZATION RISCV)
@ -327,7 +327,7 @@ set(OTHERS
set(LIB_SOURCES ${PRIMITIVES} ${SPECIALIZE} ${OTHERS})
add_library(softfloat ${LIB_SOURCES})
add_library(softfloat STATIC ${LIB_SOURCES})
set_property(TARGET softfloat PROPERTY C_STANDARD 99)
target_compile_definitions(softfloat PRIVATE
SOFTFLOAT_ROUND_ODD
@ -347,7 +347,7 @@ set_target_properties(softfloat PROPERTIES
install(TARGETS softfloat
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # static lib
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}/static COMPONENT libs # static lib
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} COMPONENT devel # headers for mac (note the different component -> different package)

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
//#define INLINE inline
#define INLINE static
@ -48,10 +48,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC__
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#endif
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,8 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#include "opts-GCC.h"

View File

@ -37,14 +37,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Edit lines marked with `==>'. See "SoftFloat-source.html".
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define LITTLEENDIAN 1
*----------------------------------------------------------------------------*/
== > #define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define THREAD_LOCAL _Thread_local
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -37,14 +37,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Edit lines marked with `==>'. See "SoftFloat-source.html".
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define LITTLEENDIAN 1
*----------------------------------------------------------------------------*/
== > #define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define THREAD_LOCAL _Thread_local
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,27 +53,29 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN { char _unused; };
struct commonNaN {
char _unused;
};
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit floating-point NaN.
@ -85,7 +87,7 @@ struct commonNaN { char _unused; };
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -93,13 +95,15 @@ struct commonNaN { char _unused; };
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f16UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x0200) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0200)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF16UI( aPtr ) ((uint_fast16_t) defaultNaNF16UI)
#define softfloat_commonNaNToF16UI(aPtr) ((uint_fast16_t)defaultNaNF16UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -107,8 +111,7 @@ struct commonNaN { char _unused; };
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -120,7 +123,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -128,13 +131,15 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f32UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x00400000) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f32UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x00400000)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF32UI( aPtr ) ((uint_fast32_t) defaultNaNF32UI)
#define softfloat_commonNaNToF32UI(aPtr) ((uint_fast32_t)defaultNaNF32UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -142,20 +147,20 @@ uint_fast16_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -163,13 +168,15 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f64UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & UINT64_C( 0x0008000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f64UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&UINT64_C(0x0008000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF64UI( aPtr ) ((uint_fast64_t) defaultNaNF64UI)
#define softfloat_commonNaNToF64UI(aPtr) ((uint_fast64_t)defaultNaNF64UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -177,14 +184,13 @@ uint_fast32_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -192,7 +198,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@ -208,24 +215,25 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA0) & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA0)&UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80UI
#if defined INLINE && !defined softfloat_commonNaNToExtF80UI
INLINE
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
uiZ.v0 = defaultNaNExtF80UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
#endif
/*----------------------------------------------------------------------------
@ -237,19 +245,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -257,7 +259,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -266,23 +269,24 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f128UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA64) & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA64)&UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128UI
#if defined INLINE && !defined softfloat_commonNaNToF128UI
INLINE
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
uiZ.v0 = defaultNaNF128UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
#endif
/*----------------------------------------------------------------------------
@ -294,13 +298,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@ -315,26 +313,23 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80MToCommonNaN( aSPtr, zPtr ) if ( ! ((aSPtr)->signif & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80MToCommonNaN(aSPtr, zPtr) \
if(!((aSPtr)->signif & UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80M
#if defined INLINE && !defined softfloat_commonNaNToExtF80M
INLINE
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr )
{
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr) {
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
zSPtr->signif = defaultNaNExtF80UI0;
}
#else
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
#endif
/*----------------------------------------------------------------------------
@ -343,12 +338,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -356,7 +346,7 @@ void
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -366,7 +356,9 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#define softfloat_f128MToCommonNaN( aWPtr, zPtr ) if ( ! ((aWPtr)[indexWordHi( 4 )] & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128MToCommonNaN(aWPtr, zPtr) \
if(!((aWPtr)[indexWordHi(4)] & UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -374,19 +366,16 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128M
#if defined INLINE && !defined softfloat_commonNaNToF128M
INLINE
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr )
{
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr) {
zWPtr[indexWord(4, 3)] = defaultNaNF128UI96;
zWPtr[indexWord(4, 2)] = defaultNaNF128UI64;
zWPtr[indexWord(4, 1)] = defaultNaNF128UI32;
zWPtr[indexWord(4, 0)] = defaultNaNF128UI0;
}
#else
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
#endif
/*----------------------------------------------------------------------------
@ -397,11 +386,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow UINT32_C(0xFFFFFFFF)
#define ui32_fromNegOverflow UINT32_C(0x0)
#define ui32_fromNaN UINT32_C(0xFFFFFFFF)
#define i32_fromPosOverflow INT64_C(0x7FFFFFFF)
#define i32_fromNegOverflow (-INT64_C(0x7FFFFFFF)-1)
#define i32_fromNaN INT64_C(0x7FFFFFFF)
#define ui32_fromNaN UINT32_C(0xFFFFFFFF)
#define i32_fromPosOverflow INT64_C(0x7FFFFFFF)
#define i32_fromNegOverflow (-INT64_C(0x7FFFFFFF) - 1)
#define i32_fromNaN INT64_C(0x7FFFFFFF)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0x0 )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF)-1)
#define i64_fromNaN INT64_C( 0x7FFFFFFFFFFFFFFF)
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0x0)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN INT64_C(0x7FFFFFFFFFFFFFFF)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@ -37,242 +37,205 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef internals_h
#define internals_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitives.h"
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
union ui16_f16 { uint16_t ui; float16_t f; };
union ui32_f32 { uint32_t ui; float32_t f; };
union ui64_f64 { uint64_t ui; float64_t f; };
#ifdef SOFTFLOAT_FAST_INT64
union extF80M_extF80 { struct extFloat80M fM; extFloat80_t f; };
union ui128_f128 { struct uint128 ui; float128_t f; };
#endif
enum {
softfloat_mulAdd_subC = 1,
softfloat_mulAdd_subProd = 2
union ui16_f16 {
uint16_t ui;
float16_t f;
};
union ui32_f32 {
uint32_t ui;
float32_t f;
};
union ui64_f64 {
uint64_t ui;
float64_t f;
};
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32( bool, uint_fast64_t, uint_fast8_t, bool );
#ifdef SOFTFLOAT_FAST_INT64
uint_fast64_t
softfloat_roundToUI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
#else
uint_fast64_t softfloat_roundMToUI64( bool, uint32_t *, uint_fast8_t, bool );
union extF80M_extF80 {
struct extFloat80M fM;
extFloat80_t f;
};
union ui128_f128 {
struct uint128 ui;
float128_t f;
};
#endif
int_fast32_t softfloat_roundToI32( bool, uint_fast64_t, uint_fast8_t, bool );
enum { softfloat_mulAdd_subC = 1, softfloat_mulAdd_subProd = 2 };
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32(bool, uint_fast64_t, uint_fast8_t, bool);
#ifdef SOFTFLOAT_FAST_INT64
int_fast64_t
softfloat_roundToI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
uint_fast64_t softfloat_roundToUI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
#else
int_fast64_t softfloat_roundMToI64( bool, uint32_t *, uint_fast8_t, bool );
uint_fast64_t softfloat_roundMToUI64(bool, uint32_t*, uint_fast8_t, bool);
#endif
int_fast32_t softfloat_roundToI32(bool, uint_fast64_t, uint_fast8_t, bool);
#ifdef SOFTFLOAT_FAST_INT64
int_fast64_t softfloat_roundToI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
#else
int_fast64_t softfloat_roundMToI64(bool, uint32_t*, uint_fast8_t, bool);
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF16UI( a ) ((bool) ((uint16_t) (a)>>15))
#define expF16UI( a ) ((int_fast8_t) ((a)>>10) & 0x1F)
#define fracF16UI( a ) ((a) & 0x03FF)
#define packToF16UI( sign, exp, sig ) (((uint16_t) (sign)<<15) + ((uint16_t) (exp)<<10) + (sig))
*----------------------------------------------------------------------------*/
#define signF16UI(a) ((bool)((uint16_t)(a) >> 15))
#define expF16UI(a) ((int_fast8_t)((a) >> 10) & 0x1F)
#define fracF16UI(a) ((a)&0x03FF)
#define packToF16UI(sign, exp, sig) (((uint16_t)(sign) << 15) + ((uint16_t)(exp) << 10) + (sig))
#define isNaNF16UI( a ) (((~(a) & 0x7C00) == 0) && ((a) & 0x03FF))
#define isNaNF16UI(a) (((~(a)&0x7C00) == 0) && ((a)&0x03FF))
struct exp8_sig16 { int_fast8_t exp; uint_fast16_t sig; };
struct exp8_sig16 softfloat_normSubnormalF16Sig( uint_fast16_t );
struct exp8_sig16 {
int_fast8_t exp;
uint_fast16_t sig;
};
struct exp8_sig16 softfloat_normSubnormalF16Sig(uint_fast16_t);
float16_t softfloat_roundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_normRoundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_roundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_normRoundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_addMagsF16( uint_fast16_t, uint_fast16_t );
float16_t softfloat_subMagsF16( uint_fast16_t, uint_fast16_t );
float16_t
softfloat_mulAddF16(
uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t );
float16_t softfloat_addMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_subMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_mulAddF16(uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF32UI( a ) ((bool) ((uint32_t) (a)>>31))
#define expF32UI( a ) ((int_fast16_t) ((a)>>23) & 0xFF)
#define fracF32UI( a ) ((a) & 0x007FFFFF)
#define packToF32UI( sign, exp, sig ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<23) + (sig))
*----------------------------------------------------------------------------*/
#define signF32UI(a) ((bool)((uint32_t)(a) >> 31))
#define expF32UI(a) ((int_fast16_t)((a) >> 23) & 0xFF)
#define fracF32UI(a) ((a)&0x007FFFFF)
#define packToF32UI(sign, exp, sig) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 23) + (sig))
#define isNaNF32UI( a ) (((~(a) & 0x7F800000) == 0) && ((a) & 0x007FFFFF))
#define isNaNF32UI(a) (((~(a)&0x7F800000) == 0) && ((a)&0x007FFFFF))
struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; };
struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t );
struct exp16_sig32 {
int_fast16_t exp;
uint_fast32_t sig;
};
struct exp16_sig32 softfloat_normSubnormalF32Sig(uint_fast32_t);
float32_t softfloat_roundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_normRoundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_roundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_normRoundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_addMagsF32( uint_fast32_t, uint_fast32_t );
float32_t softfloat_subMagsF32( uint_fast32_t, uint_fast32_t );
float32_t
softfloat_mulAddF32(
uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t );
float32_t softfloat_addMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_subMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_mulAddF32(uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF64UI( a ) ((bool) ((uint64_t) (a)>>63))
#define expF64UI( a ) ((int_fast16_t) ((a)>>52) & 0x7FF)
#define fracF64UI( a ) ((a) & UINT64_C( 0x000FFFFFFFFFFFFF ))
#define packToF64UI( sign, exp, sig ) ((uint64_t) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<52) + (sig)))
*----------------------------------------------------------------------------*/
#define signF64UI(a) ((bool)((uint64_t)(a) >> 63))
#define expF64UI(a) ((int_fast16_t)((a) >> 52) & 0x7FF)
#define fracF64UI(a) ((a)&UINT64_C(0x000FFFFFFFFFFFFF))
#define packToF64UI(sign, exp, sig) ((uint64_t)(((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 52) + (sig)))
#define isNaNF64UI( a ) (((~(a) & UINT64_C( 0x7FF0000000000000 )) == 0) && ((a) & UINT64_C( 0x000FFFFFFFFFFFFF )))
#define isNaNF64UI(a) (((~(a)&UINT64_C(0x7FF0000000000000)) == 0) && ((a)&UINT64_C(0x000FFFFFFFFFFFFF)))
struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; };
struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t );
struct exp16_sig64 {
int_fast16_t exp;
uint_fast64_t sig;
};
struct exp16_sig64 softfloat_normSubnormalF64Sig(uint_fast64_t);
float64_t softfloat_roundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_normRoundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_roundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_normRoundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_addMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t softfloat_subMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t
softfloat_mulAddF64(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
float64_t softfloat_addMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_subMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_mulAddF64(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signExtF80UI64( a64 ) ((bool) ((uint16_t) (a64)>>15))
#define expExtF80UI64( a64 ) ((a64) & 0x7FFF)
#define packToExtF80UI64( sign, exp ) ((uint_fast16_t) (sign)<<15 | (exp))
*----------------------------------------------------------------------------*/
#define signExtF80UI64(a64) ((bool)((uint16_t)(a64) >> 15))
#define expExtF80UI64(a64) ((a64)&0x7FFF)
#define packToExtF80UI64(sign, exp) ((uint_fast16_t)(sign) << 15 | (exp))
#define isNaNExtF80UI( a64, a0 ) ((((a64) & 0x7FFF) == 0x7FFF) && ((a0) & UINT64_C( 0x7FFFFFFFFFFFFFFF )))
#define isNaNExtF80UI(a64, a0) ((((a64)&0x7FFF) == 0x7FFF) && ((a0)&UINT64_C(0x7FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
struct exp32_sig64 { int_fast32_t exp; uint64_t sig; };
struct exp32_sig64 softfloat_normSubnormalExtF80Sig( uint_fast64_t );
struct exp32_sig64 {
int_fast32_t exp;
uint64_t sig;
};
struct exp32_sig64 softfloat_normSubnormalExtF80Sig(uint_fast64_t);
extFloat80_t
softfloat_roundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t
softfloat_normRoundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t softfloat_roundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t softfloat_normRoundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t
softfloat_addMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
extFloat80_t
softfloat_subMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
extFloat80_t softfloat_addMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
extFloat80_t softfloat_subMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI64( a64 ) ((bool) ((uint64_t) (a64)>>63))
#define expF128UI64( a64 ) ((int_fast32_t) ((a64)>>48) & 0x7FFF)
#define fracF128UI64( a64 ) ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))
#define packToF128UI64( sign, exp, sig64 ) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<48) + (sig64))
*----------------------------------------------------------------------------*/
#define signF128UI64(a64) ((bool)((uint64_t)(a64) >> 63))
#define expF128UI64(a64) ((int_fast32_t)((a64) >> 48) & 0x7FFF)
#define fracF128UI64(a64) ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))
#define packToF128UI64(sign, exp, sig64) (((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 48) + (sig64))
#define isNaNF128UI( a64, a0 ) (((~(a64) & UINT64_C( 0x7FFF000000000000 )) == 0) && (a0 || ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))))
#define isNaNF128UI(a64, a0) (((~(a64)&UINT64_C(0x7FFF000000000000)) == 0) && (a0 || ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))))
struct exp32_sig128 { int_fast32_t exp; struct uint128 sig; };
struct exp32_sig128
softfloat_normSubnormalF128Sig( uint_fast64_t, uint_fast64_t );
struct exp32_sig128 {
int_fast32_t exp;
struct uint128 sig;
};
struct exp32_sig128 softfloat_normSubnormalF128Sig(uint_fast64_t, uint_fast64_t);
float128_t
softfloat_roundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t );
float128_t
softfloat_normRoundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t );
float128_t softfloat_roundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t);
float128_t softfloat_normRoundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t);
float128_t
softfloat_addMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_subMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_mulAddF128(
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast8_t
);
float128_t softfloat_addMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_subMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_mulAddF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
#else
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
bool
softfloat_tryPropagateNaNExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *
);
void softfloat_invalidExtF80M( struct extFloat80M * );
bool softfloat_tryPropagateNaNExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*);
void softfloat_invalidExtF80M(struct extFloat80M*);
int softfloat_normExtF80SigM( uint64_t * );
int softfloat_normExtF80SigM(uint64_t*);
void
softfloat_roundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void
softfloat_normRoundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void softfloat_roundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void softfloat_normRoundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void
softfloat_addExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *,
bool
);
void softfloat_addExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*, bool);
int
softfloat_compareNonnormExtF80M(
const struct extFloat80M *, const struct extFloat80M * );
int softfloat_compareNonnormExtF80M(const struct extFloat80M*, const struct extFloat80M*);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI96( a96 ) ((bool) ((uint32_t) (a96)>>31))
#define expF128UI96( a96 ) ((int32_t) ((a96)>>16) & 0x7FFF)
#define fracF128UI96( a96 ) ((a96) & 0x0000FFFF)
#define packToF128UI96( sign, exp, sig96 ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<16) + (sig96))
*----------------------------------------------------------------------------*/
#define signF128UI96(a96) ((bool)((uint32_t)(a96) >> 31))
#define expF128UI96(a96) ((int32_t)((a96) >> 16) & 0x7FFF)
#define fracF128UI96(a96) ((a96)&0x0000FFFF)
#define packToF128UI96(sign, exp, sig96) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 16) + (sig96))
bool softfloat_isNaNF128M( const uint32_t * );
bool softfloat_isNaNF128M(const uint32_t*);
bool
softfloat_tryPropagateNaNF128M(
const uint32_t *, const uint32_t *, uint32_t * );
void softfloat_invalidF128M( uint32_t * );
bool softfloat_tryPropagateNaNF128M(const uint32_t*, const uint32_t*, uint32_t*);
void softfloat_invalidF128M(uint32_t*);
int softfloat_shiftNormSigF128M( const uint32_t *, uint_fast8_t, uint32_t * );
int softfloat_shiftNormSigF128M(const uint32_t*, uint_fast8_t, uint32_t*);
void softfloat_roundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_normRoundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_roundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void softfloat_normRoundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void
softfloat_addF128M( const uint32_t *, const uint32_t *, uint32_t *, bool );
void
softfloat_mulAddF128M(
const uint32_t *,
const uint32_t *,
const uint32_t *,
uint32_t *,
uint_fast8_t
);
void softfloat_addF128M(const uint32_t*, const uint32_t*, uint32_t*, bool);
void softfloat_mulAddF128M(const uint32_t*, const uint32_t*, const uint32_t*, uint32_t*, uint_fast8_t);
#endif
#endif

View File

@ -39,70 +39,70 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef INLINE
#include <stdint.h>
#include "primitiveTypes.h"
#include <stdint.h>
#ifdef SOFTFLOAT_BUILTIN_CLZ
INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
{ return a ? __builtin_clz( a ) - 16 : 16; }
INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) { return a ? __builtin_clz(a) - 16 : 16; }
#define softfloat_countLeadingZeros16 softfloat_countLeadingZeros16
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{ return a ? __builtin_clz( a ) : 32; }
INLINE uint_fast8_t softfloat_countLeadingZeros32(uint32_t a) { return a ? __builtin_clz(a) : 32; }
#define softfloat_countLeadingZeros32 softfloat_countLeadingZeros32
INLINE uint_fast8_t softfloat_countLeadingZeros64( uint64_t a )
{ return a ? __builtin_clzll( a ) : 64; }
INLINE uint_fast8_t softfloat_countLeadingZeros64(uint64_t a) { return a ? __builtin_clzll(a) : 64; }
#define softfloat_countLeadingZeros64 softfloat_countLeadingZeros64
#endif
#ifdef SOFTFLOAT_INTRINSIC_INT128
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = (unsigned __int128) a * ((uint_fast64_t) b<<32);
INLINE struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = (unsigned __int128)a * ((uint_fast64_t)b << 32);
return uZ.s;
}
#define softfloat_mul64ByShifted32To128 softfloat_mul64ByShifted32To128
INLINE struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = (unsigned __int128) a * b;
INLINE struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = (unsigned __int128)a * b;
return uZ.s;
}
#define softfloat_mul64To128 softfloat_mul64To128
INLINE
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = ((unsigned __int128) a64<<64 | a0) * b;
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = ((unsigned __int128)a64 << 64 | a0) * b;
return uZ.s;
}
#define softfloat_mul128By32 softfloat_mul128By32
INLINE
void
softfloat_mul128To256M(
uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr )
{
void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t* zPtr) {
unsigned __int128 z0, mid1, mid, z128;
z0 = (unsigned __int128) a0 * b0;
mid1 = (unsigned __int128) a64 * b0;
mid = mid1 + (unsigned __int128) a0 * b64;
z128 = (unsigned __int128) a64 * b64;
z128 += (unsigned __int128) (mid < mid1)<<64 | mid>>64;
z0 = (unsigned __int128)a0 * b0;
mid1 = (unsigned __int128)a64 * b0;
mid = mid1 + (unsigned __int128)a0 * b64;
z128 = (unsigned __int128)a64 * b64;
z128 += (unsigned __int128)(mid < mid1) << 64 | mid >> 64;
mid <<= 64;
z0 += mid;
z128 += (z0 < mid);
zPtr[indexWord( 4, 0 )] = z0;
zPtr[indexWord( 4, 1 )] = z0>>64;
zPtr[indexWord( 4, 2 )] = z128;
zPtr[indexWord( 4, 3 )] = z128>>64;
zPtr[indexWord(4, 0)] = z0;
zPtr[indexWord(4, 1)] = z0 >> 64;
zPtr[indexWord(4, 2)] = z128;
zPtr[indexWord(4, 3)] = z128 >> 64;
}
#define softfloat_mul128To256M softfloat_mul128To256M
@ -111,4 +111,3 @@ void
#endif
#endif

View File

@ -42,13 +42,27 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef SOFTFLOAT_FAST_INT64
#ifdef LITTLEENDIAN
struct uint128 { uint64_t v0, v64; };
struct uint64_extra { uint64_t extra, v; };
struct uint128_extra { uint64_t extra; struct uint128 v; };
struct uint128 {
uint64_t v0, v64;
};
struct uint64_extra {
uint64_t extra, v;
};
struct uint128_extra {
uint64_t extra;
struct uint128 v;
};
#else
struct uint128 { uint64_t v64, v0; };
struct uint64_extra { uint64_t v, extra; };
struct uint128_extra { struct uint128 v; uint64_t extra; };
struct uint128 {
uint64_t v64, v0;
};
struct uint64_extra {
uint64_t v, extra;
};
struct uint128_extra {
struct uint128 v;
uint64_t extra;
};
#endif
#endif
@ -59,27 +73,28 @@ struct uint128_extra { struct uint128 v; uint64_t extra; };
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
#define wordIncr 1
#define indexWord( total, n ) (n)
#define indexWordHi( total ) ((total) - 1)
#define indexWordLo( total ) 0
#define indexMultiword( total, m, n ) (n)
#define indexMultiwordHi( total, n ) ((total) - (n))
#define indexMultiwordLo( total, n ) 0
#define indexMultiwordHiBut( total, n ) (n)
#define indexMultiwordLoBut( total, n ) 0
#define INIT_UINTM4( v3, v2, v1, v0 ) { v0, v1, v2, v3 }
#define indexWord(total, n) (n)
#define indexWordHi(total) ((total)-1)
#define indexWordLo(total) 0
#define indexMultiword(total, m, n) (n)
#define indexMultiwordHi(total, n) ((total) - (n))
#define indexMultiwordLo(total, n) 0
#define indexMultiwordHiBut(total, n) (n)
#define indexMultiwordLoBut(total, n) 0
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v0, v1, v2, v3 }
#else
#define wordIncr -1
#define indexWord( total, n ) ((total) - 1 - (n))
#define indexWordHi( total ) 0
#define indexWordLo( total ) ((total) - 1)
#define indexMultiword( total, m, n ) ((total) - 1 - (m))
#define indexMultiwordHi( total, n ) 0
#define indexMultiwordLo( total, n ) ((total) - (n))
#define indexMultiwordHiBut( total, n ) 0
#define indexMultiwordLoBut( total, n ) (n)
#define INIT_UINTM4( v3, v2, v1, v0 ) { v3, v2, v1, v0 }
#define indexWord(total, n) ((total)-1 - (n))
#define indexWordHi(total) 0
#define indexWordLo(total) ((total)-1)
#define indexMultiword(total, m, n) ((total)-1 - (m))
#define indexMultiwordHi(total, n) 0
#define indexMultiwordLo(total, n) ((total) - (n))
#define indexMultiwordHiBut(total, n) 0
#define indexMultiwordLoBut(total, n) (n)
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v3, v2, v1, v0 }
#endif
#endif

View File

@ -37,9 +37,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef primitives_h
#define primitives_h 1
#include "primitiveTypes.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#ifndef softfloat_shortShiftRightJam64
/*----------------------------------------------------------------------------
@ -50,10 +50,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist )
{ return a>>dist | ((a & (((uint_fast64_t) 1<<dist) - 1)) != 0); }
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist) { return a >> dist | ((a & (((uint_fast64_t)1 << dist) - 1)) != 0); }
#else
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist );
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist);
#endif
#endif
@ -68,13 +67,11 @@ uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist );
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist )
{
return
(dist < 31) ? a>>dist | ((uint32_t) (a<<(-dist & 31)) != 0) : (a != 0);
INLINE uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist) {
return (dist < 31) ? a >> dist | ((uint32_t)(a << (-dist & 31)) != 0) : (a != 0);
}
#else
uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist );
uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist);
#endif
#endif
@ -89,13 +86,11 @@ uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist );
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist )
{
return
(dist < 63) ? a>>dist | ((uint64_t) (a<<(-dist & 63)) != 0) : (a != 0);
INLINE uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist) {
return (dist < 63) ? a >> dist | ((uint64_t)(a << (-dist & 63)) != 0) : (a != 0);
}
#else
uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist );
uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist);
#endif
#endif
@ -112,10 +107,9 @@ extern const uint_least8_t softfloat_countLeadingZeros8[256];
| 'a'. If 'a' is zero, 16 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
{
INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) {
uint_fast8_t count = 8;
if ( 0x100 <= a ) {
if(0x100 <= a) {
count = 0;
a >>= 8;
}
@ -123,7 +117,7 @@ INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros16( uint16_t a );
uint_fast8_t softfloat_countLeadingZeros16(uint16_t a);
#endif
#endif
@ -133,22 +127,21 @@ uint_fast8_t softfloat_countLeadingZeros16( uint16_t a );
| 'a'. If 'a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{
INLINE uint_fast8_t softfloat_countLeadingZeros32(uint32_t a) {
uint_fast8_t count = 0;
if ( a < 0x10000 ) {
if(a < 0x10000) {
count = 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
if(a < 0x1000000) {
count += 8;
a <<= 8;
}
count += softfloat_countLeadingZeros8[a>>24];
count += softfloat_countLeadingZeros8[a >> 24];
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
uint_fast8_t softfloat_countLeadingZeros32(uint32_t a);
#endif
#endif
@ -157,7 +150,7 @@ uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
| Returns the number of leading 0 bits before the most-significant 1 bit of
| 'a'. If 'a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_countLeadingZeros64( uint64_t a );
uint_fast8_t softfloat_countLeadingZeros64(uint64_t a);
#endif
extern const uint16_t softfloat_approxRecip_1k0s[16];
@ -176,9 +169,9 @@ extern const uint16_t softfloat_approxRecip_1k1s[16];
| (units in the last place).
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_DIV64TO32
#define softfloat_approxRecip32_1( a ) ((uint32_t) (UINT64_C( 0x7FFFFFFFFFFFFFFF ) / (uint32_t) (a)))
#define softfloat_approxRecip32_1(a) ((uint32_t)(UINT64_C(0x7FFFFFFFFFFFFFFF) / (uint32_t)(a)))
#else
uint32_t softfloat_approxRecip32_1( uint32_t a );
uint32_t softfloat_approxRecip32_1(uint32_t a);
#endif
#endif
@ -204,7 +197,7 @@ extern const uint16_t softfloat_approxRecipSqrt_1k1s[16];
| returned is also always within the range 0.5 to 1; thus, the most-
| significant bit of the result is always set.
*----------------------------------------------------------------------------*/
uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
uint32_t softfloat_approxRecipSqrt32_1(unsigned int oddExpA, uint32_t a);
#endif
#ifdef SOFTFLOAT_FAST_INT64
@ -222,10 +215,9 @@ uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (1 <= INLINE_LEVEL)
INLINE
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 == b64) && (a0 == b0); }
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 == b64) && (a0 == b0); }
#else
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@ -237,10 +229,9 @@ bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
#else
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@ -252,10 +243,9 @@ bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
#else
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@ -266,17 +256,14 @@ bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128 z;
z.v64 = a64<<dist | a0>>(-dist & 63);
z.v0 = a0<<dist;
z.v64 = a64 << dist | a0 >> (-dist & 63);
z.v0 = a0 << dist;
return z;
}
#else
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@ -287,17 +274,14 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128 z;
z.v64 = a64>>dist;
z.v0 = a64<<(-dist & 63) | a0>>dist;
z.v64 = a64 >> dist;
z.v0 = a64 << (-dist & 63) | a0 >> dist;
return z;
}
#else
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@ -308,19 +292,14 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist )
{
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist) {
struct uint64_extra z;
z.v = a>>dist;
z.extra = a<<(-dist & 63) | (extra != 0);
z.v = a >> dist;
z.extra = a << (-dist & 63) | (extra != 0);
return z;
}
#else
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist );
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist);
#endif
#endif
@ -334,22 +313,15 @@ struct uint64_extra
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
uint_fast8_t negDist = -dist;
struct uint128 z;
z.v64 = a64>>dist;
z.v0 =
a64<<(negDist & 63) | a0>>dist
| ((uint64_t) (a0<<(negDist & 63)) != 0);
z.v64 = a64 >> dist;
z.v0 = a64 << (negDist & 63) | a0 >> dist | ((uint64_t)(a0 << (negDist & 63)) != 0);
return z;
}
#else
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@ -360,21 +332,16 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist )
{
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist) {
uint_fast8_t negDist = -dist;
struct uint128_extra z;
z.v.v64 = a64>>dist;
z.v.v0 = a64<<(negDist & 63) | a0>>dist;
z.extra = a0<<(negDist & 63) | (extra != 0);
z.v.v64 = a64 >> dist;
z.v.v0 = a64 << (negDist & 63) | a0 >> dist;
z.extra = a0 << (negDist & 63) | (extra != 0);
return z;
}
#else
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist );
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist);
#endif
#endif
@ -397,14 +364,11 @@ struct uint128_extra
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist )
{
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist) {
struct uint64_extra z;
if ( dist < 64 ) {
z.v = a>>dist;
z.extra = a<<(-dist & 63);
if(dist < 64) {
z.v = a >> dist;
z.extra = a << (-dist & 63);
} else {
z.v = 0;
z.extra = (dist == 64) ? a : (a != 0);
@ -413,9 +377,7 @@ struct uint64_extra
return z;
}
#else
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist );
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist);
#endif
#endif
@ -430,8 +392,7 @@ struct uint64_extra
| greater than 128, the result will be either 0 or 1, depending on whether the
| original 128 bits are all zeros.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t dist );
struct uint128 softfloat_shiftRightJam128(uint64_t a64, uint64_t a0, uint_fast32_t dist);
#endif
#ifndef softfloat_shiftRightJam128Extra
@ -452,9 +413,7 @@ struct uint128
| is modified as described above and returned in the 'extra' field of the
| result.)
*----------------------------------------------------------------------------*/
struct uint128_extra
softfloat_shiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist );
struct uint128_extra softfloat_shiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist);
#endif
#ifndef softfloat_shiftRightJam256M
@ -470,9 +429,7 @@ struct uint128_extra
| is greater than 256, the stored result will be either 0 or 1, depending on
| whether the original 256 bits are all zeros.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightJam256M(
const uint64_t *aPtr, uint_fast32_t dist, uint64_t *zPtr );
void softfloat_shiftRightJam256M(const uint64_t* aPtr, uint_fast32_t dist, uint64_t* zPtr);
#endif
#ifndef softfloat_add128
@ -483,17 +440,14 @@ void
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128 z;
z.v0 = a0 + b0;
z.v64 = a64 + b64 + (z.v0 < a0);
return z;
}
#else
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@ -505,9 +459,7 @@ struct uint128
| an array of four 64-bit elements that concatenate in the platform's normal
| endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_add256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
void softfloat_add256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
#endif
#ifndef softfloat_sub128
@ -518,9 +470,7 @@ void
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128 z;
z.v0 = a0 - b0;
z.v64 = a64 - b64;
@ -528,8 +478,7 @@ struct uint128
return z;
}
#else
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@ -542,9 +491,7 @@ struct uint128
| 64-bit elements that concatenate in the platform's normal endian order to
| form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_sub256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
void softfloat_sub256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
#endif
#ifndef softfloat_mul64ByShifted32To128
@ -552,17 +499,16 @@ void
| Returns the 128-bit product of 'a', 'b', and 2^32.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
INLINE struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b) {
uint_fast64_t mid;
struct uint128 z;
mid = (uint_fast64_t) (uint32_t) a * b;
z.v0 = mid<<32;
z.v64 = (uint_fast64_t) (uint32_t) (a>>32) * b + (mid>>32);
mid = (uint_fast64_t)(uint32_t)a * b;
z.v0 = mid << 32;
z.v64 = (uint_fast64_t)(uint32_t)(a >> 32) * b + (mid >> 32);
return z;
}
#else
struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b);
#endif
#endif
@ -570,7 +516,7 @@ struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
/*----------------------------------------------------------------------------
| Returns the 128-bit product of 'a' and 'b'.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b);
#endif
#ifndef softfloat_mul128By32
@ -581,19 +527,18 @@ struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b) {
struct uint128 z;
uint_fast64_t mid;
uint_fast32_t carry;
z.v0 = a0 * b;
mid = (uint_fast64_t) (uint32_t) (a0>>32) * b;
carry = (uint32_t) ((uint_fast32_t) (z.v0>>32) - (uint_fast32_t) mid);
z.v64 = a64 * b + (uint_fast32_t) ((mid + carry)>>32);
mid = (uint_fast64_t)(uint32_t)(a0 >> 32) * b;
carry = (uint32_t)((uint_fast32_t)(z.v0 >> 32) - (uint_fast32_t)mid);
z.v64 = a64 * b + (uint_fast32_t)((mid + carry) >> 32);
return z;
}
#else
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b);
#endif
#endif
@ -605,9 +550,7 @@ struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
| Argument 'zPtr' points to an array of four 64-bit elements that concatenate
| in the platform's normal endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_mul128To256M(
uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr );
void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t* zPtr);
#endif
#else
@ -626,7 +569,7 @@ void
| Each of 'aPtr' and 'bPtr' points to an array of three 32-bit elements that
| concatenate in the platform's normal endian order to form a 96-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
int_fast8_t softfloat_compare96M(const uint32_t* aPtr, const uint32_t* bPtr);
#endif
#ifndef softfloat_compare128M
@ -638,8 +581,7 @@ int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
| Each of 'aPtr' and 'bPtr' points to an array of four 32-bit elements that
| concatenate in the platform's normal endian order to form a 128-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t
softfloat_compare128M( const uint32_t *aPtr, const uint32_t *bPtr );
int_fast8_t softfloat_compare128M(const uint32_t* aPtr, const uint32_t* bPtr);
#endif
#ifndef softfloat_shortShiftLeft64To96M
@ -652,19 +594,14 @@ int_fast8_t
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr )
{
zPtr[indexWord( 3, 0 )] = (uint32_t) a<<dist;
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr) {
zPtr[indexWord(3, 0)] = (uint32_t)a << dist;
a >>= 32 - dist;
zPtr[indexWord( 3, 2 )] = a>>32;
zPtr[indexWord( 3, 1 )] = a;
zPtr[indexWord(3, 2)] = a >> 32;
zPtr[indexWord(3, 1)] = a;
}
#else
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr );
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr);
#endif
#endif
@ -678,13 +615,7 @@ void
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shortShiftLeft96M
@ -692,7 +623,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft96M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 3, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft96M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftLeft128M
@ -700,7 +631,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft128M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 4, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft128M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftLeft160M
@ -708,7 +639,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft160M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft160M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeftM
@ -722,13 +653,7 @@ void
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
softfloat_shiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftLeft96M
@ -736,7 +661,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft96M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 3, aPtr, dist, zPtr )
#define softfloat_shiftLeft96M(aPtr, dist, zPtr) softfloat_shiftLeftM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeft128M
@ -744,7 +669,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft128M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 4, aPtr, dist, zPtr )
#define softfloat_shiftLeft128M(aPtr, dist, zPtr) softfloat_shiftLeftM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeft160M
@ -752,7 +677,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft160M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 5, aPtr, dist, zPtr )
#define softfloat_shiftLeft160M(aPtr, dist, zPtr) softfloat_shiftLeftM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRightM
@ -765,13 +690,7 @@ void
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shortShiftRight128M
@ -779,7 +698,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight128M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 4, aPtr, dist, zPtr )
#define softfloat_shortShiftRight128M(aPtr, dist, zPtr) softfloat_shortShiftRightM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRight160M
@ -787,7 +706,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight160M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftRight160M(aPtr, dist, zPtr) softfloat_shortShiftRightM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRightJamM
@ -801,9 +720,7 @@ void
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftRightJamM(
uint_fast8_t, const uint32_t *, uint_fast8_t, uint32_t * );
void softfloat_shortShiftRightJamM(uint_fast8_t, const uint32_t*, uint_fast8_t, uint32_t*);
#endif
#ifndef softfloat_shortShiftRightJam160M
@ -811,7 +728,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRightJam160M( aPtr, dist, zPtr ) softfloat_shortShiftRightJamM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftRightJam160M(aPtr, dist, zPtr) softfloat_shortShiftRightJamM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightM
@ -825,13 +742,7 @@ void
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftRight96M
@ -839,7 +750,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRight96M( aPtr, dist, zPtr ) softfloat_shiftRightM( 3, aPtr, dist, zPtr )
#define softfloat_shiftRight96M(aPtr, dist, zPtr) softfloat_shiftRightM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJamM
@ -856,13 +767,7 @@ void
| is greater than N, the stored result will be either 0 or 1, depending on
| whether the original N bits are all zeros.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightJamM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftRightJam96M
@ -870,7 +775,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam96M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 3, aPtr, dist, zPtr )
#define softfloat_shiftRightJam96M(aPtr, dist, zPtr) softfloat_shiftRightJamM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJam128M
@ -878,7 +783,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam128M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 4, aPtr, dist, zPtr )
#define softfloat_shiftRightJam128M(aPtr, dist, zPtr) softfloat_shiftRightJamM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJam160M
@ -886,7 +791,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam160M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 5, aPtr, dist, zPtr )
#define softfloat_shiftRightJam160M(aPtr, dist, zPtr) softfloat_shiftRightJamM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_addM
@ -898,13 +803,7 @@ void
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_addM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_add96M
@ -912,7 +811,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_add96M( aPtr, bPtr, zPtr ) softfloat_addM( 3, aPtr, bPtr, zPtr )
#define softfloat_add96M(aPtr, bPtr, zPtr) softfloat_addM(3, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_add128M
@ -920,7 +819,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_add128M( aPtr, bPtr, zPtr ) softfloat_addM( 4, aPtr, bPtr, zPtr )
#define softfloat_add128M(aPtr, bPtr, zPtr) softfloat_addM(4, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_add160M
@ -928,7 +827,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_add160M( aPtr, bPtr, zPtr ) softfloat_addM( 5, aPtr, bPtr, zPtr )
#define softfloat_add160M(aPtr, bPtr, zPtr) softfloat_addM(5, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_addCarryM
@ -940,14 +839,7 @@ void
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
uint_fast8_t
softfloat_addCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
uint_fast8_t softfloat_addCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry, uint32_t* zPtr);
#endif
#ifndef softfloat_addComplCarryM
@ -956,14 +848,8 @@ uint_fast8_t
| the value of the unsigned integer pointed to by 'bPtr' is bit-wise completed
| before the addition.
*----------------------------------------------------------------------------*/
uint_fast8_t
softfloat_addComplCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
uint_fast8_t softfloat_addComplCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry,
uint32_t* zPtr);
#endif
#ifndef softfloat_addComplCarry96M
@ -971,7 +857,7 @@ uint_fast8_t
| This function or macro is the same as 'softfloat_addComplCarryM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_addComplCarry96M( aPtr, bPtr, carry, zPtr ) softfloat_addComplCarryM( 3, aPtr, bPtr, carry, zPtr )
#define softfloat_addComplCarry96M(aPtr, bPtr, carry, zPtr) softfloat_addComplCarryM(3, aPtr, bPtr, carry, zPtr)
#endif
#ifndef softfloat_negXM
@ -981,7 +867,7 @@ uint_fast8_t
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
#endif
#ifndef softfloat_negX96M
@ -989,7 +875,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_negX96M( zPtr ) softfloat_negXM( 3, zPtr )
#define softfloat_negX96M(zPtr) softfloat_negXM(3, zPtr)
#endif
#ifndef softfloat_negX128M
@ -997,7 +883,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_negX128M( zPtr ) softfloat_negXM( 4, zPtr )
#define softfloat_negX128M(zPtr) softfloat_negXM(4, zPtr)
#endif
#ifndef softfloat_negX160M
@ -1005,7 +891,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_negX160M( zPtr ) softfloat_negXM( 5, zPtr )
#define softfloat_negX160M(zPtr) softfloat_negXM(5, zPtr)
#endif
#ifndef softfloat_negX256M
@ -1013,7 +899,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 8 (N = 256).
*----------------------------------------------------------------------------*/
#define softfloat_negX256M( zPtr ) softfloat_negXM( 8, zPtr )
#define softfloat_negX256M(zPtr) softfloat_negXM(8, zPtr)
#endif
#ifndef softfloat_sub1XM
@ -1024,7 +910,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
#endif
#ifndef softfloat_sub1X96M
@ -1032,7 +918,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X96M( zPtr ) softfloat_sub1XM( 3, zPtr )
#define softfloat_sub1X96M(zPtr) softfloat_sub1XM(3, zPtr)
#endif
#ifndef softfloat_sub1X160M
@ -1040,7 +926,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X160M( zPtr ) softfloat_sub1XM( 5, zPtr )
#define softfloat_sub1X160M(zPtr) softfloat_sub1XM(5, zPtr)
#endif
#ifndef softfloat_subM
@ -1052,13 +938,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| array of 32-bit elements that concatenate in the platform's normal endian
| order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_subM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_sub96M
@ -1066,7 +946,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub96M( aPtr, bPtr, zPtr ) softfloat_subM( 3, aPtr, bPtr, zPtr )
#define softfloat_sub96M(aPtr, bPtr, zPtr) softfloat_subM(3, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_sub128M
@ -1074,7 +954,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_sub128M( aPtr, bPtr, zPtr ) softfloat_subM( 4, aPtr, bPtr, zPtr )
#define softfloat_sub128M(aPtr, bPtr, zPtr) softfloat_subM(4, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_sub160M
@ -1082,7 +962,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub160M( aPtr, bPtr, zPtr ) softfloat_subM( 5, aPtr, bPtr, zPtr )
#define softfloat_sub160M(aPtr, bPtr, zPtr) softfloat_subM(5, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_mul64To128M
@ -1092,7 +972,7 @@ void
| elements that concatenate in the platform's normal endian order to form a
| 128-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
void softfloat_mul64To128M(uint64_t a, uint64_t b, uint32_t* zPtr);
#endif
#ifndef softfloat_mul128MTo256M
@ -1104,9 +984,7 @@ void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
| Argument 'zPtr' points to an array of eight 32-bit elements that concatenate
| to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_mul128MTo256M(
const uint32_t *aPtr, const uint32_t *bPtr, uint32_t *zPtr );
void softfloat_mul128MTo256M(const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_remStepMBy32
@ -1119,15 +997,8 @@ void
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_remStepMBy32(
uint_fast8_t size_words,
const uint32_t *remPtr,
uint_fast8_t dist,
const uint32_t *bPtr,
uint32_t q,
uint32_t *zPtr
);
void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uint_fast8_t dist, const uint32_t* bPtr, uint32_t q,
uint32_t* zPtr);
#endif
#ifndef softfloat_remStep96MBy32
@ -1135,7 +1006,7 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_remStep96MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 3, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep96MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(3, remPtr, dist, bPtr, q, zPtr)
#endif
#ifndef softfloat_remStep128MBy32
@ -1143,7 +1014,7 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_remStep128MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 4, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep128MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(4, remPtr, dist, bPtr, q, zPtr)
#endif
#ifndef softfloat_remStep160MBy32
@ -1151,10 +1022,9 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_remStep160MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 5, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep160MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(5, remPtr, dist, bPtr, q, zPtr)
#endif
#endif
#endif

View File

@ -34,7 +34,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*============================================================================
| Note: If SoftFloat is made available as a general library for programs to
| use, it is strongly recommended that a platform-specific version of this
@ -42,13 +41,12 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| eliminates all dependencies on compile-time macros.
*============================================================================*/
#ifndef softfloat_h
#define softfloat_h 1
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
#include "softfloat_types.h"
#ifndef THREAD_LOCAL
#define THREAD_LOCAL
@ -58,10 +56,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| Software floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_detectTininess;
enum {
softfloat_tininess_beforeRounding = 0,
softfloat_tininess_afterRounding = 1
};
enum { softfloat_tininess_beforeRounding = 0, softfloat_tininess_afterRounding = 1 };
/*----------------------------------------------------------------------------
| Software floating-point rounding mode. (Mode "odd" is supported only if
@ -69,12 +64,12 @@ enum {
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_roundingMode;
enum {
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_maxMag = 4,
softfloat_round_odd = 6
softfloat_round_odd = 6
};
/*----------------------------------------------------------------------------
@ -82,162 +77,162 @@ enum {
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_exceptionFlags;
enum {
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
};
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software floating-point exception flags.
*----------------------------------------------------------------------------*/
void softfloat_raiseFlags( uint_fast8_t );
void softfloat_raiseFlags(uint_fast8_t);
/*----------------------------------------------------------------------------
| Integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float16_t ui32_to_f16( uint32_t );
float32_t ui32_to_f32( uint32_t );
float64_t ui32_to_f64( uint32_t );
float16_t ui32_to_f16(uint32_t);
float32_t ui32_to_f32(uint32_t);
float64_t ui32_to_f64(uint32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui32_to_extF80( uint32_t );
float128_t ui32_to_f128( uint32_t );
extFloat80_t ui32_to_extF80(uint32_t);
float128_t ui32_to_f128(uint32_t);
#endif
void ui32_to_extF80M( uint32_t, extFloat80_t * );
void ui32_to_f128M( uint32_t, float128_t * );
float16_t ui64_to_f16( uint64_t );
float32_t ui64_to_f32( uint64_t );
float64_t ui64_to_f64( uint64_t );
void ui32_to_extF80M(uint32_t, extFloat80_t*);
void ui32_to_f128M(uint32_t, float128_t*);
float16_t ui64_to_f16(uint64_t);
float32_t ui64_to_f32(uint64_t);
float64_t ui64_to_f64(uint64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui64_to_extF80( uint64_t );
float128_t ui64_to_f128( uint64_t );
extFloat80_t ui64_to_extF80(uint64_t);
float128_t ui64_to_f128(uint64_t);
#endif
void ui64_to_extF80M( uint64_t, extFloat80_t * );
void ui64_to_f128M( uint64_t, float128_t * );
float16_t i32_to_f16( int32_t );
float32_t i32_to_f32( int32_t );
float64_t i32_to_f64( int32_t );
void ui64_to_extF80M(uint64_t, extFloat80_t*);
void ui64_to_f128M(uint64_t, float128_t*);
float16_t i32_to_f16(int32_t);
float32_t i32_to_f32(int32_t);
float64_t i32_to_f64(int32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i32_to_extF80( int32_t );
float128_t i32_to_f128( int32_t );
extFloat80_t i32_to_extF80(int32_t);
float128_t i32_to_f128(int32_t);
#endif
void i32_to_extF80M( int32_t, extFloat80_t * );
void i32_to_f128M( int32_t, float128_t * );
float16_t i64_to_f16( int64_t );
float32_t i64_to_f32( int64_t );
float64_t i64_to_f64( int64_t );
void i32_to_extF80M(int32_t, extFloat80_t*);
void i32_to_f128M(int32_t, float128_t*);
float16_t i64_to_f16(int64_t);
float32_t i64_to_f32(int64_t);
float64_t i64_to_f64(int64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i64_to_extF80( int64_t );
float128_t i64_to_f128( int64_t );
extFloat80_t i64_to_extF80(int64_t);
float128_t i64_to_f128(int64_t);
#endif
void i64_to_extF80M( int64_t, extFloat80_t * );
void i64_to_f128M( int64_t, float128_t * );
void i64_to_extF80M(int64_t, extFloat80_t*);
void i64_to_f128M(int64_t, float128_t*);
/*----------------------------------------------------------------------------
| 16-bit (half-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f16_to_ui32( float16_t, uint_fast8_t, bool );
uint_fast64_t f16_to_ui64( float16_t, uint_fast8_t, bool );
int_fast32_t f16_to_i32( float16_t, uint_fast8_t, bool );
int_fast64_t f16_to_i64( float16_t, uint_fast8_t, bool );
uint_fast32_t f16_to_ui32_r_minMag( float16_t, bool );
uint_fast64_t f16_to_ui64_r_minMag( float16_t, bool );
int_fast32_t f16_to_i32_r_minMag( float16_t, bool );
int_fast64_t f16_to_i64_r_minMag( float16_t, bool );
float32_t f16_to_f32( float16_t );
float64_t f16_to_f64( float16_t );
uint_fast32_t f16_to_ui32(float16_t, uint_fast8_t, bool);
uint_fast64_t f16_to_ui64(float16_t, uint_fast8_t, bool);
int_fast32_t f16_to_i32(float16_t, uint_fast8_t, bool);
int_fast64_t f16_to_i64(float16_t, uint_fast8_t, bool);
uint_fast32_t f16_to_ui32_r_minMag(float16_t, bool);
uint_fast64_t f16_to_ui64_r_minMag(float16_t, bool);
int_fast32_t f16_to_i32_r_minMag(float16_t, bool);
int_fast64_t f16_to_i64_r_minMag(float16_t, bool);
float32_t f16_to_f32(float16_t);
float64_t f16_to_f64(float16_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f16_to_extF80( float16_t );
float128_t f16_to_f128( float16_t );
extFloat80_t f16_to_extF80(float16_t);
float128_t f16_to_f128(float16_t);
#endif
void f16_to_extF80M( float16_t, extFloat80_t * );
void f16_to_f128M( float16_t, float128_t * );
float16_t f16_roundToInt( float16_t, uint_fast8_t, bool );
float16_t f16_add( float16_t, float16_t );
float16_t f16_sub( float16_t, float16_t );
float16_t f16_mul( float16_t, float16_t );
float16_t f16_mulAdd( float16_t, float16_t, float16_t );
float16_t f16_div( float16_t, float16_t );
float16_t f16_rem( float16_t, float16_t );
float16_t f16_sqrt( float16_t );
bool f16_eq( float16_t, float16_t );
bool f16_le( float16_t, float16_t );
bool f16_lt( float16_t, float16_t );
bool f16_eq_signaling( float16_t, float16_t );
bool f16_le_quiet( float16_t, float16_t );
bool f16_lt_quiet( float16_t, float16_t );
bool f16_isSignalingNaN( float16_t );
void f16_to_extF80M(float16_t, extFloat80_t*);
void f16_to_f128M(float16_t, float128_t*);
float16_t f16_roundToInt(float16_t, uint_fast8_t, bool);
float16_t f16_add(float16_t, float16_t);
float16_t f16_sub(float16_t, float16_t);
float16_t f16_mul(float16_t, float16_t);
float16_t f16_mulAdd(float16_t, float16_t, float16_t);
float16_t f16_div(float16_t, float16_t);
float16_t f16_rem(float16_t, float16_t);
float16_t f16_sqrt(float16_t);
bool f16_eq(float16_t, float16_t);
bool f16_le(float16_t, float16_t);
bool f16_lt(float16_t, float16_t);
bool f16_eq_signaling(float16_t, float16_t);
bool f16_le_quiet(float16_t, float16_t);
bool f16_lt_quiet(float16_t, float16_t);
bool f16_isSignalingNaN(float16_t);
/*----------------------------------------------------------------------------
| 32-bit (single-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f32_to_ui32( float32_t, uint_fast8_t, bool );
uint_fast64_t f32_to_ui64( float32_t, uint_fast8_t, bool );
int_fast32_t f32_to_i32( float32_t, uint_fast8_t, bool );
int_fast64_t f32_to_i64( float32_t, uint_fast8_t, bool );
uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool );
uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool );
int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
int_fast64_t f32_to_i64_r_minMag( float32_t, bool );
float16_t f32_to_f16( float32_t );
float64_t f32_to_f64( float32_t );
uint_fast32_t f32_to_ui32(float32_t, uint_fast8_t, bool);
uint_fast64_t f32_to_ui64(float32_t, uint_fast8_t, bool);
int_fast32_t f32_to_i32(float32_t, uint_fast8_t, bool);
int_fast64_t f32_to_i64(float32_t, uint_fast8_t, bool);
uint_fast32_t f32_to_ui32_r_minMag(float32_t, bool);
uint_fast64_t f32_to_ui64_r_minMag(float32_t, bool);
int_fast32_t f32_to_i32_r_minMag(float32_t, bool);
int_fast64_t f32_to_i64_r_minMag(float32_t, bool);
float16_t f32_to_f16(float32_t);
float64_t f32_to_f64(float32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f32_to_extF80( float32_t );
float128_t f32_to_f128( float32_t );
extFloat80_t f32_to_extF80(float32_t);
float128_t f32_to_f128(float32_t);
#endif
void f32_to_extF80M( float32_t, extFloat80_t * );
void f32_to_f128M( float32_t, float128_t * );
float32_t f32_roundToInt( float32_t, uint_fast8_t, bool );
float32_t f32_add( float32_t, float32_t );
float32_t f32_sub( float32_t, float32_t );
float32_t f32_mul( float32_t, float32_t );
float32_t f32_mulAdd( float32_t, float32_t, float32_t );
float32_t f32_div( float32_t, float32_t );
float32_t f32_rem( float32_t, float32_t );
float32_t f32_sqrt( float32_t );
bool f32_eq( float32_t, float32_t );
bool f32_le( float32_t, float32_t );
bool f32_lt( float32_t, float32_t );
bool f32_eq_signaling( float32_t, float32_t );
bool f32_le_quiet( float32_t, float32_t );
bool f32_lt_quiet( float32_t, float32_t );
bool f32_isSignalingNaN( float32_t );
void f32_to_extF80M(float32_t, extFloat80_t*);
void f32_to_f128M(float32_t, float128_t*);
float32_t f32_roundToInt(float32_t, uint_fast8_t, bool);
float32_t f32_add(float32_t, float32_t);
float32_t f32_sub(float32_t, float32_t);
float32_t f32_mul(float32_t, float32_t);
float32_t f32_mulAdd(float32_t, float32_t, float32_t);
float32_t f32_div(float32_t, float32_t);
float32_t f32_rem(float32_t, float32_t);
float32_t f32_sqrt(float32_t);
bool f32_eq(float32_t, float32_t);
bool f32_le(float32_t, float32_t);
bool f32_lt(float32_t, float32_t);
bool f32_eq_signaling(float32_t, float32_t);
bool f32_le_quiet(float32_t, float32_t);
bool f32_lt_quiet(float32_t, float32_t);
bool f32_isSignalingNaN(float32_t);
/*----------------------------------------------------------------------------
| 64-bit (double-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f64_to_ui32( float64_t, uint_fast8_t, bool );
uint_fast64_t f64_to_ui64( float64_t, uint_fast8_t, bool );
int_fast32_t f64_to_i32( float64_t, uint_fast8_t, bool );
int_fast64_t f64_to_i64( float64_t, uint_fast8_t, bool );
uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool );
uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool );
int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
int_fast64_t f64_to_i64_r_minMag( float64_t, bool );
float16_t f64_to_f16( float64_t );
float32_t f64_to_f32( float64_t );
uint_fast32_t f64_to_ui32(float64_t, uint_fast8_t, bool);
uint_fast64_t f64_to_ui64(float64_t, uint_fast8_t, bool);
int_fast32_t f64_to_i32(float64_t, uint_fast8_t, bool);
int_fast64_t f64_to_i64(float64_t, uint_fast8_t, bool);
uint_fast32_t f64_to_ui32_r_minMag(float64_t, bool);
uint_fast64_t f64_to_ui64_r_minMag(float64_t, bool);
int_fast32_t f64_to_i32_r_minMag(float64_t, bool);
int_fast64_t f64_to_i64_r_minMag(float64_t, bool);
float16_t f64_to_f16(float64_t);
float32_t f64_to_f32(float64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f64_to_extF80( float64_t );
float128_t f64_to_f128( float64_t );
extFloat80_t f64_to_extF80(float64_t);
float128_t f64_to_f128(float64_t);
#endif
void f64_to_extF80M( float64_t, extFloat80_t * );
void f64_to_f128M( float64_t, float128_t * );
float64_t f64_roundToInt( float64_t, uint_fast8_t, bool );
float64_t f64_add( float64_t, float64_t );
float64_t f64_sub( float64_t, float64_t );
float64_t f64_mul( float64_t, float64_t );
float64_t f64_mulAdd( float64_t, float64_t, float64_t );
float64_t f64_div( float64_t, float64_t );
float64_t f64_rem( float64_t, float64_t );
float64_t f64_sqrt( float64_t );
bool f64_eq( float64_t, float64_t );
bool f64_le( float64_t, float64_t );
bool f64_lt( float64_t, float64_t );
bool f64_eq_signaling( float64_t, float64_t );
bool f64_le_quiet( float64_t, float64_t );
bool f64_lt_quiet( float64_t, float64_t );
bool f64_isSignalingNaN( float64_t );
void f64_to_extF80M(float64_t, extFloat80_t*);
void f64_to_f128M(float64_t, float128_t*);
float64_t f64_roundToInt(float64_t, uint_fast8_t, bool);
float64_t f64_add(float64_t, float64_t);
float64_t f64_sub(float64_t, float64_t);
float64_t f64_mul(float64_t, float64_t);
float64_t f64_mulAdd(float64_t, float64_t, float64_t);
float64_t f64_div(float64_t, float64_t);
float64_t f64_rem(float64_t, float64_t);
float64_t f64_sqrt(float64_t);
bool f64_eq(float64_t, float64_t);
bool f64_le(float64_t, float64_t);
bool f64_lt(float64_t, float64_t);
bool f64_eq_signaling(float64_t, float64_t);
bool f64_le_quiet(float64_t, float64_t);
bool f64_lt_quiet(float64_t, float64_t);
bool f64_isSignalingNaN(float64_t);
/*----------------------------------------------------------------------------
| Rounding precision for 80-bit extended double-precision floating-point.
@ -249,124 +244,118 @@ extern THREAD_LOCAL uint_fast8_t extF80_roundingPrecision;
| 80-bit extended double-precision floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t extF80_to_ui32( extFloat80_t, uint_fast8_t, bool );
uint_fast64_t extF80_to_ui64( extFloat80_t, uint_fast8_t, bool );
int_fast32_t extF80_to_i32( extFloat80_t, uint_fast8_t, bool );
int_fast64_t extF80_to_i64( extFloat80_t, uint_fast8_t, bool );
uint_fast32_t extF80_to_ui32_r_minMag( extFloat80_t, bool );
uint_fast64_t extF80_to_ui64_r_minMag( extFloat80_t, bool );
int_fast32_t extF80_to_i32_r_minMag( extFloat80_t, bool );
int_fast64_t extF80_to_i64_r_minMag( extFloat80_t, bool );
float16_t extF80_to_f16( extFloat80_t );
float32_t extF80_to_f32( extFloat80_t );
float64_t extF80_to_f64( extFloat80_t );
float128_t extF80_to_f128( extFloat80_t );
extFloat80_t extF80_roundToInt( extFloat80_t, uint_fast8_t, bool );
extFloat80_t extF80_add( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sub( extFloat80_t, extFloat80_t );
extFloat80_t extF80_mul( extFloat80_t, extFloat80_t );
extFloat80_t extF80_div( extFloat80_t, extFloat80_t );
extFloat80_t extF80_rem( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sqrt( extFloat80_t );
bool extF80_eq( extFloat80_t, extFloat80_t );
bool extF80_le( extFloat80_t, extFloat80_t );
bool extF80_lt( extFloat80_t, extFloat80_t );
bool extF80_eq_signaling( extFloat80_t, extFloat80_t );
bool extF80_le_quiet( extFloat80_t, extFloat80_t );
bool extF80_lt_quiet( extFloat80_t, extFloat80_t );
bool extF80_isSignalingNaN( extFloat80_t );
uint_fast32_t extF80_to_ui32(extFloat80_t, uint_fast8_t, bool);
uint_fast64_t extF80_to_ui64(extFloat80_t, uint_fast8_t, bool);
int_fast32_t extF80_to_i32(extFloat80_t, uint_fast8_t, bool);
int_fast64_t extF80_to_i64(extFloat80_t, uint_fast8_t, bool);
uint_fast32_t extF80_to_ui32_r_minMag(extFloat80_t, bool);
uint_fast64_t extF80_to_ui64_r_minMag(extFloat80_t, bool);
int_fast32_t extF80_to_i32_r_minMag(extFloat80_t, bool);
int_fast64_t extF80_to_i64_r_minMag(extFloat80_t, bool);
float16_t extF80_to_f16(extFloat80_t);
float32_t extF80_to_f32(extFloat80_t);
float64_t extF80_to_f64(extFloat80_t);
float128_t extF80_to_f128(extFloat80_t);
extFloat80_t extF80_roundToInt(extFloat80_t, uint_fast8_t, bool);
extFloat80_t extF80_add(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sub(extFloat80_t, extFloat80_t);
extFloat80_t extF80_mul(extFloat80_t, extFloat80_t);
extFloat80_t extF80_div(extFloat80_t, extFloat80_t);
extFloat80_t extF80_rem(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sqrt(extFloat80_t);
bool extF80_eq(extFloat80_t, extFloat80_t);
bool extF80_le(extFloat80_t, extFloat80_t);
bool extF80_lt(extFloat80_t, extFloat80_t);
bool extF80_eq_signaling(extFloat80_t, extFloat80_t);
bool extF80_le_quiet(extFloat80_t, extFloat80_t);
bool extF80_lt_quiet(extFloat80_t, extFloat80_t);
bool extF80_isSignalingNaN(extFloat80_t);
#endif
uint_fast32_t extF80M_to_ui32( const extFloat80_t *, uint_fast8_t, bool );
uint_fast64_t extF80M_to_ui64( const extFloat80_t *, uint_fast8_t, bool );
int_fast32_t extF80M_to_i32( const extFloat80_t *, uint_fast8_t, bool );
int_fast64_t extF80M_to_i64( const extFloat80_t *, uint_fast8_t, bool );
uint_fast32_t extF80M_to_ui32_r_minMag( const extFloat80_t *, bool );
uint_fast64_t extF80M_to_ui64_r_minMag( const extFloat80_t *, bool );
int_fast32_t extF80M_to_i32_r_minMag( const extFloat80_t *, bool );
int_fast64_t extF80M_to_i64_r_minMag( const extFloat80_t *, bool );
float16_t extF80M_to_f16( const extFloat80_t * );
float32_t extF80M_to_f32( const extFloat80_t * );
float64_t extF80M_to_f64( const extFloat80_t * );
void extF80M_to_f128M( const extFloat80_t *, float128_t * );
void
extF80M_roundToInt(
const extFloat80_t *, uint_fast8_t, bool, extFloat80_t * );
void extF80M_add( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sub( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_mul( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_div( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_rem( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sqrt( const extFloat80_t *, extFloat80_t * );
bool extF80M_eq( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt( const extFloat80_t *, const extFloat80_t * );
bool extF80M_eq_signaling( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_isSignalingNaN( const extFloat80_t * );
uint_fast32_t extF80M_to_ui32(const extFloat80_t*, uint_fast8_t, bool);
uint_fast64_t extF80M_to_ui64(const extFloat80_t*, uint_fast8_t, bool);
int_fast32_t extF80M_to_i32(const extFloat80_t*, uint_fast8_t, bool);
int_fast64_t extF80M_to_i64(const extFloat80_t*, uint_fast8_t, bool);
uint_fast32_t extF80M_to_ui32_r_minMag(const extFloat80_t*, bool);
uint_fast64_t extF80M_to_ui64_r_minMag(const extFloat80_t*, bool);
int_fast32_t extF80M_to_i32_r_minMag(const extFloat80_t*, bool);
int_fast64_t extF80M_to_i64_r_minMag(const extFloat80_t*, bool);
float16_t extF80M_to_f16(const extFloat80_t*);
float32_t extF80M_to_f32(const extFloat80_t*);
float64_t extF80M_to_f64(const extFloat80_t*);
void extF80M_to_f128M(const extFloat80_t*, float128_t*);
void extF80M_roundToInt(const extFloat80_t*, uint_fast8_t, bool, extFloat80_t*);
void extF80M_add(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sub(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_mul(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_div(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_rem(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sqrt(const extFloat80_t*, extFloat80_t*);
bool extF80M_eq(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt(const extFloat80_t*, const extFloat80_t*);
bool extF80M_eq_signaling(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_isSignalingNaN(const extFloat80_t*);
/*----------------------------------------------------------------------------
| 128-bit (quadruple-precision) floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t f128_to_ui32( float128_t, uint_fast8_t, bool );
uint_fast64_t f128_to_ui64( float128_t, uint_fast8_t, bool );
int_fast32_t f128_to_i32( float128_t, uint_fast8_t, bool );
int_fast64_t f128_to_i64( float128_t, uint_fast8_t, bool );
uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool );
uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool );
int_fast32_t f128_to_i32_r_minMag( float128_t, bool );
int_fast64_t f128_to_i64_r_minMag( float128_t, bool );
float16_t f128_to_f16( float128_t );
float32_t f128_to_f32( float128_t );
float64_t f128_to_f64( float128_t );
extFloat80_t f128_to_extF80( float128_t );
float128_t f128_roundToInt( float128_t, uint_fast8_t, bool );
float128_t f128_add( float128_t, float128_t );
float128_t f128_sub( float128_t, float128_t );
float128_t f128_mul( float128_t, float128_t );
float128_t f128_mulAdd( float128_t, float128_t, float128_t );
float128_t f128_div( float128_t, float128_t );
float128_t f128_rem( float128_t, float128_t );
float128_t f128_sqrt( float128_t );
bool f128_eq( float128_t, float128_t );
bool f128_le( float128_t, float128_t );
bool f128_lt( float128_t, float128_t );
bool f128_eq_signaling( float128_t, float128_t );
bool f128_le_quiet( float128_t, float128_t );
bool f128_lt_quiet( float128_t, float128_t );
bool f128_isSignalingNaN( float128_t );
uint_fast32_t f128_to_ui32(float128_t, uint_fast8_t, bool);
uint_fast64_t f128_to_ui64(float128_t, uint_fast8_t, bool);
int_fast32_t f128_to_i32(float128_t, uint_fast8_t, bool);
int_fast64_t f128_to_i64(float128_t, uint_fast8_t, bool);
uint_fast32_t f128_to_ui32_r_minMag(float128_t, bool);
uint_fast64_t f128_to_ui64_r_minMag(float128_t, bool);
int_fast32_t f128_to_i32_r_minMag(float128_t, bool);
int_fast64_t f128_to_i64_r_minMag(float128_t, bool);
float16_t f128_to_f16(float128_t);
float32_t f128_to_f32(float128_t);
float64_t f128_to_f64(float128_t);
extFloat80_t f128_to_extF80(float128_t);
float128_t f128_roundToInt(float128_t, uint_fast8_t, bool);
float128_t f128_add(float128_t, float128_t);
float128_t f128_sub(float128_t, float128_t);
float128_t f128_mul(float128_t, float128_t);
float128_t f128_mulAdd(float128_t, float128_t, float128_t);
float128_t f128_div(float128_t, float128_t);
float128_t f128_rem(float128_t, float128_t);
float128_t f128_sqrt(float128_t);
bool f128_eq(float128_t, float128_t);
bool f128_le(float128_t, float128_t);
bool f128_lt(float128_t, float128_t);
bool f128_eq_signaling(float128_t, float128_t);
bool f128_le_quiet(float128_t, float128_t);
bool f128_lt_quiet(float128_t, float128_t);
bool f128_isSignalingNaN(float128_t);
#endif
uint_fast32_t f128M_to_ui32( const float128_t *, uint_fast8_t, bool );
uint_fast64_t f128M_to_ui64( const float128_t *, uint_fast8_t, bool );
int_fast32_t f128M_to_i32( const float128_t *, uint_fast8_t, bool );
int_fast64_t f128M_to_i64( const float128_t *, uint_fast8_t, bool );
uint_fast32_t f128M_to_ui32_r_minMag( const float128_t *, bool );
uint_fast64_t f128M_to_ui64_r_minMag( const float128_t *, bool );
int_fast32_t f128M_to_i32_r_minMag( const float128_t *, bool );
int_fast64_t f128M_to_i64_r_minMag( const float128_t *, bool );
float16_t f128M_to_f16( const float128_t * );
float32_t f128M_to_f32( const float128_t * );
float64_t f128M_to_f64( const float128_t * );
void f128M_to_extF80M( const float128_t *, extFloat80_t * );
void f128M_roundToInt( const float128_t *, uint_fast8_t, bool, float128_t * );
void f128M_add( const float128_t *, const float128_t *, float128_t * );
void f128M_sub( const float128_t *, const float128_t *, float128_t * );
void f128M_mul( const float128_t *, const float128_t *, float128_t * );
void
f128M_mulAdd(
const float128_t *, const float128_t *, const float128_t *, float128_t *
);
void f128M_div( const float128_t *, const float128_t *, float128_t * );
void f128M_rem( const float128_t *, const float128_t *, float128_t * );
void f128M_sqrt( const float128_t *, float128_t * );
bool f128M_eq( const float128_t *, const float128_t * );
bool f128M_le( const float128_t *, const float128_t * );
bool f128M_lt( const float128_t *, const float128_t * );
bool f128M_eq_signaling( const float128_t *, const float128_t * );
bool f128M_le_quiet( const float128_t *, const float128_t * );
bool f128M_lt_quiet( const float128_t *, const float128_t * );
bool f128M_isSignalingNaN( const float128_t * );
uint_fast32_t f128M_to_ui32(const float128_t*, uint_fast8_t, bool);
uint_fast64_t f128M_to_ui64(const float128_t*, uint_fast8_t, bool);
int_fast32_t f128M_to_i32(const float128_t*, uint_fast8_t, bool);
int_fast64_t f128M_to_i64(const float128_t*, uint_fast8_t, bool);
uint_fast32_t f128M_to_ui32_r_minMag(const float128_t*, bool);
uint_fast64_t f128M_to_ui64_r_minMag(const float128_t*, bool);
int_fast32_t f128M_to_i32_r_minMag(const float128_t*, bool);
int_fast64_t f128M_to_i64_r_minMag(const float128_t*, bool);
float16_t f128M_to_f16(const float128_t*);
float32_t f128M_to_f32(const float128_t*);
float64_t f128M_to_f64(const float128_t*);
void f128M_to_extF80M(const float128_t*, extFloat80_t*);
void f128M_roundToInt(const float128_t*, uint_fast8_t, bool, float128_t*);
void f128M_add(const float128_t*, const float128_t*, float128_t*);
void f128M_sub(const float128_t*, const float128_t*, float128_t*);
void f128M_mul(const float128_t*, const float128_t*, float128_t*);
void f128M_mulAdd(const float128_t*, const float128_t*, const float128_t*, float128_t*);
void f128M_div(const float128_t*, const float128_t*, float128_t*);
void f128M_rem(const float128_t*, const float128_t*, float128_t*);
void f128M_sqrt(const float128_t*, float128_t*);
bool f128M_eq(const float128_t*, const float128_t*);
bool f128M_le(const float128_t*, const float128_t*);
bool f128M_lt(const float128_t*, const float128_t*);
bool f128M_eq_signaling(const float128_t*, const float128_t*);
bool f128M_le_quiet(const float128_t*, const float128_t*);
bool f128M_lt_quiet(const float128_t*, const float128_t*);
bool f128M_isSignalingNaN(const float128_t*);
#endif

View File

@ -47,10 +47,18 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| the types below may, if desired, be defined as aliases for the native types
| (typically 'float' and 'double', and possibly 'long double').
*----------------------------------------------------------------------------*/
typedef struct { uint16_t v; } float16_t;
typedef struct { uint32_t v; } float32_t;
typedef struct { uint64_t v; } float64_t;
typedef struct { uint64_t v[2]; } float128_t;
typedef struct {
uint16_t v;
} float16_t;
typedef struct {
uint32_t v;
} float32_t;
typedef struct {
uint64_t v;
} float64_t;
typedef struct {
uint64_t v[2];
} float128_t;
/*----------------------------------------------------------------------------
| The format of an 80-bit extended floating-point number in memory. This
@ -58,9 +66,15 @@ typedef struct { uint64_t v[2]; } float128_t;
| named 'signif'.
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
struct extFloat80M { uint64_t signif; uint16_t signExp; };
struct extFloat80M {
uint64_t signif;
uint16_t signExp;
};
#else
struct extFloat80M { uint16_t signExp; uint64_t signif; };
struct extFloat80M {
uint16_t signExp;
uint64_t signif;
};
#endif
/*----------------------------------------------------------------------------
@ -78,4 +92,3 @@ struct extFloat80M { uint16_t signExp; uint64_t signif; };
typedef struct extFloat80M extFloat80_t;
#endif

3
src-gen/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/iss
/vm
/sysc

122
src/iss/arch/hwl.h Normal file
View File

@ -0,0 +1,122 @@
/*******************************************************************************
* Copyright (C) 2022 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_HWL_H
#define _RISCV_HART_M_P_HWL_H
#include "riscv_hart_common.h"
#include <iss/vm_types.h>
namespace iss {
namespace arch {
template <typename BASE> class hwl : public BASE {
public:
using base_class = BASE;
using this_class = hwl<BASE>;
using reg_t = typename BASE::reg_t;
hwl(feature_config cfg = feature_config{});
virtual ~hwl() = default;
protected:
iss::status read_custom_csr_reg(unsigned addr, reg_t& val) override;
iss::status write_custom_csr_reg(unsigned addr, reg_t val) override;
};
template <typename BASE>
inline hwl<BASE>::hwl(feature_config cfg)
: BASE(cfg) {
for(unsigned addr = 0x800; addr < 0x803; ++addr) {
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
for(unsigned addr = 0x804; addr < 0x807; ++addr) {
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t& val) {
switch(addr) {
case 0x800:
val = this->reg.lpstart0;
break;
case 0x801:
val = this->reg.lpend0;
break;
case 0x802:
val = this->reg.lpcount0;
break;
case 0x804:
val = this->reg.lpstart1;
break;
case 0x805:
val = this->reg.lpend1;
break;
case 0x806:
val = this->reg.lpcount1;
break;
}
return iss::Ok;
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
switch(addr) {
case 0x800:
this->reg.lpstart0 = val;
break;
case 0x801:
this->reg.lpend0 = val;
break;
case 0x802:
this->reg.lpcount0 = val;
break;
case 0x804:
this->reg.lpstart1 = val;
break;
case 0x805:
this->reg.lpend1 = val;
break;
case 0x806:
this->reg.lpcount1 = val;
break;
}
return iss::Ok;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */

View File

@ -35,26 +35,40 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/arch_if.h"
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <string>
#include <unordered_map>
#include <util/logging.h>
namespace iss {
namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e { FEAT_NONE, FEAT_PMP = 1, FEAT_EXT_N = 2, FEAT_CLIC = 4, FEAT_DEBUG = 8, FEAT_TCM = 16 };
enum riscv_csr {
/* user-level CSR */
// User Trap Setup
ustatus = 0x000,
uie = 0x004,
utvec = 0x005,
utvt = 0x007, // CLIC
// User Trap Handling
uscratch = 0x040,
uepc = 0x041,
ucause = 0x042,
utval = 0x043,
uip = 0x044,
uxnti = 0x045, // CLIC
uintstatus = 0xCB1, // MRW Current interrupt levels (CLIC) - addr subject to change
uintthresh = 0x047, // MRW Interrupt-level threshold (CLIC) - addr subject to change
uscratchcsw = 0x048, // MRW Conditional scratch swap on priv mode change (CLIC)
uscratchcswl = 0x049, // MRW Conditional scratch swap on level change (CLIC)
// User Floating-Point CSRs
fflags = 0x001,
frm = 0x002,
@ -104,19 +118,18 @@ enum riscv_csr {
mie = 0x304,
mtvec = 0x305,
mcounteren = 0x306,
mtvt = 0x307, //CLIC
mtvt = 0x307, // CLIC
// Machine Trap Handling
mscratch = 0x340,
mepc = 0x341,
mcause = 0x342,
mtval = 0x343,
mip = 0x344,
mxnti = 0x345, //CLIC
mintstatus = 0x346, // MRW Current interrupt levels (CLIC) - addr subject to change
mscratchcsw = 0x348, // MRW Conditional scratch swap on priv mode change (CLIC)
mxnti = 0x345, // CLIC
mintstatus = 0xFB1, // MRW Current interrupt levels (CLIC) - addr subject to change
mintthresh = 0x347, // MRW Interrupt-level threshold (CLIC) - addr subject to change
mscratchcsw = 0x348, // MRW Conditional scratch swap on priv mode change (CLIC)
mscratchcswl = 0x349, // MRW Conditional scratch swap on level change (CLIC)
mintthresh = 0x350, // MRW Interrupt-level threshold (CLIC) - addr subject to change
mclicbase = 0x351, // MRW Base address for CLIC memory mapped registers (CLIC) - addr subject to change
// Physical Memory Protection
pmpcfg0 = 0x3A0,
pmpcfg1 = 0x3A1,
@ -164,10 +177,10 @@ enum riscv_csr {
// Debug Mode Registers
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch = 0x7B2
dscratch0 = 0x7B2,
dscratch1 = 0x7B3
};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
@ -185,7 +198,7 @@ enum {
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3 };
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4 };
enum {
ISA_A = 1,
@ -211,6 +224,17 @@ struct vm_info {
bool is_active() { return levels; }
};
struct feature_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
@ -236,7 +260,105 @@ public:
trap_store_page_fault(uint64_t badaddr)
: trap_access(15 << 16, badaddr) {}
};
}
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
std::unordered_map<std::string, uint64_t> symbol_table;
std::unordered_map<std::string, uint64_t> get_sym_table(std::string name) {
if(!symbol_table.empty())
return symbol_table;
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
const auto sym_sec = reader.sections[".symtab"];
if(SHT_SYMTAB == sym_sec->get_type() || SHT_DYNSYM == sym_sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sym_sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name != "") {
this->symbol_table[name] = value;
#ifndef NDEBUG
CPPLOG(DEBUG) << "Found Symbol " << name;
#endif
}
}
}
return symbol_table;
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
} else
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
};
};
} // namespace arch
} // namespace iss
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -30,28 +30,29 @@
*
*******************************************************************************/
// clang-format off
#include "tgc5c.h"
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/tgc_c.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, 35> iss::arch::traits<iss::arch::tgc_c>::reg_names;
constexpr std::array<const char*, 35> iss::arch::traits<iss::arch::tgc_c>::reg_aliases;
constexpr std::array<const uint32_t, 40> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 40> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_aliases;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_bit_widths;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_byte_offsets;
tgc_c::tgc_c() {
reg.icount = 0;
}
tgc5c::tgc5c() = default;
tgc_c::~tgc_c() = default;
tgc5c::~tgc5c() = default;
void tgc_c::reset(uint64_t address) {
for(size_t i=0; i<traits<tgc_c>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<tgc_c>::reg_t),0));
void tgc5c::reset(uint64_t address) {
auto base_ptr = reinterpret_cast<traits<tgc5c>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<tgc5c>::NUM_REGS; ++i)
*(base_ptr+i)=0;
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.PRIV=0x3;
@ -59,11 +60,11 @@ void tgc_c::reset(uint64_t address) {
reg.icount=0;
}
uint8_t *tgc_c::get_regs_base_ptr() {
uint8_t *tgc5c::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
tgc_c::phys_addr_t tgc_c::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
tgc5c::phys_addr_t tgc5c::virt2phys(const iss::addr_t &addr) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc5c>::addr_mask);
}
// clang-format on

263
src/iss/arch/tgc5c.h Normal file

File diff suppressed because one or more lines are too long

57
src/iss/arch/tgc_mapper.h Normal file
View File

@ -0,0 +1,57 @@
#ifndef _ISS_ARCH_TGC_MAPPER_H
#define _ISS_ARCH_TGC_MAPPER_H
#include "riscv_hart_m_p.h"
#include "tgc5c.h"
using tgc5c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5c>;
#ifdef CORE_TGC5A
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5a.h>
using tgc5a_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5a>;
#endif
#ifdef CORE_TGC5B
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5b.h>
using tgc5b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5b>;
#endif
#ifdef CORE_TGC5C_XRB_NN
#include "hwl.h"
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5c_xrb_nn.h>
using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arch::tgc5c_xrb_nn>>;
#endif
#ifdef CORE_TGC5D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type =
iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_NN
#include "hwl.h"
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type =
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC5E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#endif
#endif

171
src/iss/arch/wt_cache.h Normal file
View File

@ -0,0 +1,171 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_WT_CACHE_H
#define _RISCV_HART_M_P_WT_CACHE_H
#include <iss/vm_types.h>
#include <map>
#include <memory>
#include <util/ities.h>
#include <vector>
namespace iss {
namespace arch {
namespace cache {
enum class state { INVALID, VALID };
struct line {
uint64_t tag_addr{0};
state st{state::INVALID};
std::vector<uint8_t> data;
line(unsigned line_sz)
: data(line_sz) {}
};
struct set {
std::vector<line> ways;
set(unsigned ways_count, line const& l)
: ways(ways_count, l) {}
};
struct cache {
std::vector<set> sets;
cache(unsigned size, unsigned line_sz, unsigned ways) {
line const ref_line{line_sz};
set const ref_set{ways, ref_line};
sets.resize(size / (ways * line_sz), ref_set);
}
};
struct wt_policy {
bool is_cacheline_hit(cache& c);
};
} // namespace cache
// write thru, allocate on read, direct mapped or set-associative with round-robin replacement policy
template <typename BASE> class wt_cache : public BASE {
public:
using base_class = BASE;
using this_class = wt_cache<BASE>;
using reg_t = typename BASE::reg_t;
using mem_read_f = typename BASE::mem_read_f;
using mem_write_f = typename BASE::mem_write_f;
using phys_addr_t = typename BASE::phys_addr_t;
wt_cache(feature_config cfg = feature_config{});
virtual ~wt_cache() = default;
unsigned size{4096};
unsigned line_sz{32};
unsigned ways{1};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
protected:
iss::status read_cache(phys_addr_t addr, unsigned, uint8_t* const);
iss::status write_cache(phys_addr_t addr, unsigned, uint8_t const* const);
std::function<mem_read_f> cache_mem_rd_delegate;
std::function<mem_write_f> cache_mem_wr_delegate;
std::unique_ptr<cache::cache> dcache_ptr;
std::unique_ptr<cache::cache> icache_ptr;
size_t get_way_select() { return 0; }
};
template <typename BASE>
inline wt_cache<BASE>::wt_cache(feature_config cfg)
: BASE(cfg)
, io_address{cfg.io_address}
, io_addr_mask{cfg.io_addr_mask} {
auto cb = base_class::replace_mem_access(
[this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return read_cache(a, l, d); },
[this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return write_cache(a, l, d); });
cache_mem_rd_delegate = cb.first;
cache_mem_wr_delegate = cb.second;
}
template <typename BASE> iss::status iss::arch::wt_cache<BASE>::read_cache(phys_addr_t a, unsigned l, uint8_t* const d) {
if(!icache_ptr) {
icache_ptr.reset(new cache::cache(size, line_sz, ways));
dcache_ptr.reset(new cache::cache(size, line_sz, ways));
}
if((a.val & io_addr_mask) != io_address) {
auto set_addr = (a.val & (size - 1)) >> util::ilog2(line_sz * ways);
auto tag_addr = a.val >> util::ilog2(line_sz);
auto& set = (is_fetch(a.access) ? icache_ptr : dcache_ptr)->sets[set_addr];
for(auto& cl : set.ways) {
if(cl.st == cache::state::VALID && cl.tag_addr == tag_addr) {
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
d[i] = cl.data[start_addr + i];
return iss::Ok;
}
}
auto& cl = set.ways[get_way_select()];
phys_addr_t cl_addr{a};
cl_addr.val = tag_addr << util::ilog2(line_sz);
cache_mem_rd_delegate(cl_addr, line_sz, cl.data.data());
cl.tag_addr = tag_addr;
cl.st = cache::state::VALID;
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
d[i] = cl.data[start_addr + i];
return iss::Ok;
} else
return cache_mem_rd_delegate(a, l, d);
}
template <typename BASE> iss::status iss::arch::wt_cache<BASE>::write_cache(phys_addr_t a, unsigned l, const uint8_t* const d) {
if(!dcache_ptr)
dcache_ptr.reset(new cache::cache(size, line_sz, ways));
auto res = cache_mem_wr_delegate(a, l, d);
if(res == iss::Ok && ((a.val & io_addr_mask) != io_address)) {
auto set_addr = (a.val & (size - 1)) >> util::ilog2(line_sz * ways);
auto tag_addr = a.val >> util::ilog2(line_sz);
auto& set = dcache_ptr->sets[set_addr];
for(auto& cl : set.ways) {
if(cl.st == cache::state::VALID && cl.tag_addr == tag_addr) {
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
cl.data[start_addr + i] = d[i];
break;
}
}
}
return res;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */

View File

@ -53,20 +53,20 @@ using namespace iss::debugger;
template <typename ARCH> class riscv_target_adapter : public target_adapter_base {
public:
riscv_target_adapter(server_if *srv, iss::arch_if *core)
riscv_target_adapter(server_if* srv, iss::arch_if* core)
: target_adapter_base(srv)
, core(core) {}
/*============== Thread Control ===============================*/
/* Set generic thread */
status set_gen_thread(rp_thread_ref &thread) override;
status set_gen_thread(rp_thread_ref& thread) override;
/* Set control thread */
status set_ctrl_thread(rp_thread_ref &thread) override;
status set_ctrl_thread(rp_thread_ref& thread) override;
/* Get thread status */
status is_thread_alive(rp_thread_ref &thread, bool &alive) override;
status is_thread_alive(rp_thread_ref& thread, bool& alive) override;
/*============= Register Access ================================*/
@ -74,79 +74,77 @@ public:
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) override;
status read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) override;
/* Write all registers. buf is 4-byte aligned and it is in target
byte order */
status write_registers(const std::vector<uint8_t> &data) override;
status write_registers(const std::vector<uint8_t>& data) override;
/* Read one register. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_single_register(unsigned int reg_no, std::vector<uint8_t> &buf,
std::vector<uint8_t> &avail_buf) override;
status read_single_register(unsigned int reg_no, std::vector<uint8_t>& buf, std::vector<uint8_t>& avail_buf) override;
/* Write one register. buf is 4-byte aligned and it is in target byte
order */
status write_single_register(unsigned int reg_no, const std::vector<uint8_t> &buf) override;
status write_single_register(unsigned int reg_no, const std::vector<uint8_t>& buf) override;
/*=================== Memory Access =====================*/
/* Read memory, buf is 4-bytes aligned and it is in target
byte order */
status read_mem(uint64_t addr, std::vector<uint8_t> &buf) override;
status read_mem(uint64_t addr, std::vector<uint8_t>& buf) override;
/* Write memory, buf is 4-bytes aligned and it is in target
byte order */
status write_mem(uint64_t addr, const std::vector<uint8_t> &buf) override;
status write_mem(uint64_t addr, const std::vector<uint8_t>& buf) override;
status process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) override;
status process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) override;
status thread_list_query(int first, const rp_thread_ref &arg, std::vector<rp_thread_ref> &result, size_t max_num,
size_t &num, bool &done) override;
status thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num, size_t& num,
bool& done) override;
status current_thread_query(rp_thread_ref &thread) override;
status current_thread_query(rp_thread_ref& thread) override;
status offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) override;
status offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) override;
status crc_query(uint64_t addr, size_t len, uint32_t &val) override;
status crc_query(uint64_t addr, size_t len, uint32_t& val) override;
status raw_query(std::string in_buf, std::string &out_buf) override;
status raw_query(std::string in_buf, std::string& out_buf) override;
status threadinfo_query(int first, std::string &out_buf) override;
status threadinfo_query(int first, std::string& out_buf) override;
status threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) override;
status threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) override;
status packetsize_query(std::string &out_buf) override;
status packetsize_query(std::string& out_buf) override;
status add_break(int type, uint64_t addr, unsigned int length) override;
status add_break(break_type type, uint64_t addr, unsigned int length) override;
status remove_break(int type, uint64_t addr, unsigned int length) override;
status remove_break(break_type type, uint64_t addr, unsigned int length) override;
status resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread,
std::function<void(unsigned)> stop_callback) override;
status resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread, std::function<void(unsigned)> stop_callback) override;
status target_xml_query(std::string &out_buf) override;
status target_xml_query(std::string& out_buf) override;
protected:
static inline constexpr addr_t map_addr(const addr_t &i) { return i; }
static inline constexpr addr_t map_addr(const addr_t& i) { return i; }
iss::arch_if *core;
iss::arch_if* core;
rp_thread_ref thread_idx;
};
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref &thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) {
thread_idx = thread;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref &thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref& thread) {
thread_idx = thread;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_thread_ref &thread, bool &alive) {
template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_thread_ref& thread, bool& alive) {
alive = 1;
return Ok;
}
@ -158,10 +156,9 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_t
* set if all threads are processed.
*/
template <typename ARCH>
status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref &arg,
std::vector<rp_thread_ref> &result, size_t max_num, size_t &num,
bool &done) {
if (first == 0) {
status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result,
size_t max_num, size_t& num, bool& done) {
if(first == 0) {
result.clear();
result.push_back(thread_idx);
num = 1;
@ -171,66 +168,78 @@ status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query(rp_thread_ref &thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query(rp_thread_ref& thread) {
thread = thread_idx;
return Ok;
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) {
LOG(TRACE) << "reading target registers";
template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
CPPLOG(TRACE) << "reading target registers";
// return idx<0?:;
data.clear();
avail.clear();
const uint8_t *reg_base = core->get_regs_base_ptr();
auto start_reg=arch::traits<ARCH>::X0;
for (size_t reg_no = start_reg; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
const uint8_t* reg_base = core->get_regs_base_ptr();
auto start_reg = arch::traits<ARCH>::X0;
for(size_t reg_no = start_reg; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for (size_t j = 0; j < reg_width; ++j) {
for(size_t j = 0; j < reg_width; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
}
}
// work around fill with F type registers
// if (arch::traits<ARCH>::NUM_REGS < 65) {
// auto reg_width = sizeof(typename arch::traits<ARCH>::reg_t);
// for (size_t reg_no = 0; reg_no < 33; ++reg_no) {
// for (size_t j = 0; j < reg_width; ++j) {
// data.push_back(0x0);
// avail.push_back(0x00);
// }
// // if(arch::traits<ARCH>::XLEN < 64)
// // for(unsigned j=0; j<4; ++j){
// // data.push_back(0x0);
// // avail.push_back(0x00);
// // }
// }
// }
// if (arch::traits<ARCH>::NUM_REGS < 65) {
// auto reg_width = sizeof(typename arch::traits<ARCH>::reg_t);
// for (size_t reg_no = 0; reg_no < 33; ++reg_no) {
// for (size_t j = 0; j < reg_width; ++j) {
// data.push_back(0x0);
// avail.push_back(0x00);
// }
// // if(arch::traits<ARCH>::XLEN < 64)
// // for(unsigned j=0; j<4; ++j){
// // data.push_back(0x0);
// // avail.push_back(0x00);
// // }
// }
// }
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(const std::vector<uint8_t> &data) {
auto start_reg=arch::traits<ARCH>::X0;
auto *reg_base = core->get_regs_base_ptr();
template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(const std::vector<uint8_t>& data) {
auto start_reg = arch::traits<ARCH>::X0;
auto* reg_base = core->get_regs_base_ptr();
auto iter = data.data();
for (size_t reg_no = 0; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(iter, iter + reg_width, reg_base);
iter += 4;
reg_base += offset;
bool e_ext = arch::traits<ARCH>::PC < 32;
for(size_t reg_no = 0; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
if(e_ext && reg_no > 15) {
if(reg_no == 32) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
std::copy(iter, iter + reg_width, reg_base);
} else {
const uint64_t zero_val = 0;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[15] / 8;
auto iter = (uint8_t*)&zero_val;
std::copy(iter, iter + reg_width, reg_base);
}
} else {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(iter, iter + reg_width, reg_base);
iter += 4;
reg_base += offset;
}
}
return Ok;
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t> &data,
std::vector<uint8_t> &avail) {
if (reg_no < 65) {
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
if(reg_no < 65) {
// auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename
// arch::traits<ARCH>::reg_e>(reg_no))/8;
auto *reg_base = core->get_regs_base_ptr();
auto* reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
data.resize(reg_width);
avail.resize(reg_width);
@ -247,10 +256,9 @@ status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std
return data.size() > 0 ? Ok : Err;
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t> &data) {
if (reg_no < 65) {
auto *reg_base = core->get_regs_base_ptr();
template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) {
if(reg_no < 65) {
auto* reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[static_cast<typename arch::traits<ARCH>::reg_e>(reg_no)] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(data.begin(), data.begin() + reg_width, reg_base + offset);
@ -261,41 +269,36 @@ status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, co
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t> &data) {
template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t>& data) {
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->read(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t> &data) {
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) {
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->write(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) {
status riscv_target_adapter<ARCH>::process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) {
return NotSupported;
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) {
template <typename ARCH> status riscv_target_adapter<ARCH>::offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) {
text = 0;
data = 0;
bss = 0;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t &val) {
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t& val) { return NotSupported; }
template <typename ARCH> status riscv_target_adapter<ARCH>::raw_query(std::string in_buf, std::string &out_buf) {
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::raw_query(std::string in_buf, std::string& out_buf) { return NotSupported; }
template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int first, std::string &out_buf) {
if (first) {
template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int first, std::string& out_buf) {
if(first) {
out_buf = fmt::format("m{:x}", thread_idx.val);
} else {
out_buf = "l";
@ -303,8 +306,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int
return Ok;
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) {
template <typename ARCH> status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) {
std::array<char, 20> buf;
memset(buf.data(), 0, 20);
sprintf(buf.data(), "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0);
@ -312,48 +314,61 @@ status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref &th
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::packetsize_query(std::string &out_buf) {
template <typename ARCH> status riscv_target_adapter<ARCH>::packetsize_query(std::string& out_buf) {
out_buf = "PacketSize=1000";
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::add_break(int type, uint64_t addr, unsigned int length) {
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
auto eaddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr + length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val);
LOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex
<< saddr.val << std::dec;
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(int type, uint64_t addr, unsigned int length) {
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val);
if (handle) {
LOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val
<< std::dec;
// TODO: check length of addr range
target_adapter_base::bp_lut.removeEntry(handle);
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
template <typename ARCH> status riscv_target_adapter<ARCH>::add_break(break_type type, uint64_t addr, unsigned int length) {
switch(type) {
default:
return Err;
case SW_EXEC:
case HW_EXEC: {
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
auto eaddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr + length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val);
CPPLOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val
<< std::dec;
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Err;
}
}
template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(break_type type, uint64_t addr, unsigned int length) {
switch(type) {
default:
return Err;
case SW_EXEC:
case HW_EXEC: {
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val);
if(handle) {
CPPLOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec;
// TODO: check length of addr range
target_adapter_base::bp_lut.removeEntry(handle);
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Err;
}
}
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread,
std::function<void(unsigned)> stop_callback) {
auto *reg_base = core->get_regs_base_ptr();
auto* reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
const uint8_t *iter = reinterpret_cast<const uint8_t *>(&addr);
const uint8_t* iter = reinterpret_cast<const uint8_t*>(&addr);
std::copy(iter, iter + reg_width, reg_base);
return resume_from_current(step, sig, thread, stop_callback);
}
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string &out_buf) {
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string& out_buf) {
const std::string res{"<?xml version=\"1.0\"?><!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target><architecture>riscv:rv32</architecture>"
//" <feature name=\"org.gnu.gdb.riscv.rv32i\">\n"
@ -440,7 +455,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std
</target>
*/
}
}
} // namespace debugger
} // namespace iss
#endif /* _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */

View File

@ -33,15 +33,20 @@
#ifndef _ISS_FACTORY_H_
#define _ISS_FACTORY_H_
#include <algorithm>
#include <functional>
#include <iss/iss.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
namespace iss {
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr= std::unique_ptr<iss::vm_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
template<typename PLAT>
std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string const& backend, unsigned gdb_port){
template <typename PLAT> std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string const& backend, unsigned gdb_port) {
using core_type = typename PLAT::core;
core_type* lcpu = new PLAT();
if(backend == "interp")
@ -50,13 +55,52 @@ std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string const& backend, unsigned gdb_
if(backend == "llvm")
return {cpu_ptr{lcpu}, vm_ptr{iss::llvm::create(lcpu, gdb_port)}};
#endif
#ifdef WITH_LLVM
#ifdef WITH_TCC
if(backend == "tcc")
return {cpu_ptr{lcpu}, vm_ptr{iss::tcc::create(lcpu, gdb_port)}};
#endif
return {nullptr, nullptr};
}
}
class core_factory {
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
using base_t = std::tuple<cpu_ptr, vm_ptr>;
using create_fn = std::function<base_t(unsigned, void*)>;
using registry_t = std::unordered_map<std::string, create_fn>;
registry_t registry;
core_factory() = default;
core_factory(const core_factory&) = delete;
core_factory& operator=(const core_factory&) = delete;
public:
static core_factory& instance() {
static core_factory bf;
return bf;
}
bool register_creator(const std::string& className, create_fn const& fn) {
registry[className] = fn;
return true;
}
base_t create(std::string const& className, unsigned gdb_port = 0, void* init_data = nullptr) const {
registry_t::const_iterator regEntry = registry.find(className);
if(regEntry != registry.end())
return regEntry->second(gdb_port, init_data);
return {nullptr, nullptr};
}
std::vector<std::string> get_names() {
std::vector<std::string> keys{registry.size()};
std::transform(std::begin(registry), std::end(registry), std::begin(keys),
[](std::pair<std::string, create_fn> const& p) { return p.first; });
return keys;
}
};
} // namespace iss
#endif /* _ISS_FACTORY_H_ */

8
src/iss/plugin/README.md Normal file
View File

@ -0,0 +1,8 @@
# pctrace
Trace functionality to allow visualizing coverage in lcov and cachegrind tools. Use environment variables NOCOMPRES and REGDUMP to toggle functionality.
- NOCOMPRES: any value turns off the LZ4 compression
- REGDUMP: any value switches to tracing the registers instead. Also turns off compression.
Known Bugs:
- currently does not work correctly with jit backends, the plugin cant tell if instructions are compressed. Additionaly the cost of instrs that raise a trap is not known. It takes the cost of the instrid -1 (0 at the moment).

View File

@ -0,0 +1,114 @@
/*******************************************************************************
* Copyright (C) 2017 - 2023, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial API and implementation
******************************************************************************/
#include "cycle_estimate.h"
#include <iss/plugin/calculator.h>
#include <yaml-cpp/yaml.h>
#include <fstream>
#include <iss/arch_if.h>
#include <util/logging.h>
using namespace std;
iss::plugin::cycle_estimate::cycle_estimate(string const& config_file_name)
: instr_if(nullptr)
, config_file_name(config_file_name) {}
iss::plugin::cycle_estimate::~cycle_estimate() = default;
bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) {
instr_if = vm.get_arch()->get_instrumentation_if();
assert(instr_if && "No instrumentation interface available but callback executed");
reg_base_ptr = reinterpret_cast<uint32_t*>(vm.get_arch()->get_regs_base_ptr());
if(!instr_if)
return false;
const string core_name = instr_if->core_type_name();
if(config_file_name.length() > 0) {
std::ifstream is(config_file_name);
if(is.is_open()) {
try {
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many root nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
auto instructions = p.second;
for(auto const& instr : instructions) {
auto idx = instr.second["index"].as<unsigned>();
if(delays.size() <= idx)
delays.resize(idx + 1);
auto& res = delays[idx];
res.is_branch = instr.second["branch"].as<bool>();
auto delay = instr.second["delay"];
if(delay.IsSequence()) {
res.not_taken = delay[0].as<uint64_t>();
res.taken = delay[1].as<uint64_t>();
} else {
try {
res.not_taken = delay.as<uint64_t>();
res.taken = res.not_taken;
} catch(const YAML::BadConversion& e) {
res.f = iss::plugin::calculator(reg_base_ptr, delay.as<std::string>());
}
}
}
}
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
return false;
}
} else {
CPPLOG(ERR) << "Could not open input file " << config_file_name;
return false;
}
}
return true;
}
void iss::plugin::cycle_estimate::callback(instr_info_t instr_info) {
size_t instr_id = instr_info.instr_id;
auto& entry = instr_id < delays.size() ? delays[instr_id] : illegal_desc;
if(instr_info.phase_id == PRE_SYNC) {
if(entry.f)
current_delay = entry.f(instr_if->get_instr_word());
} else {
if(!entry.f)
current_delay = instr_if->is_branch_taken() ? entry.taken : entry.not_taken;
if(current_delay > 1)
instr_if->update_last_instr_cycles(current_delay);
current_delay = 1;
}
}

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018, MINRES Technologies GmbH
* Copyright (C) 2017 - 2023, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -37,60 +37,61 @@
#include "iss/instrumentation_if.h"
#include "iss/vm_plugin.h"
#include <json/json.h>
#include <functional>
#include <string>
#include <unordered_map>
#include <vector>
namespace iss {
namespace plugin {
class cycle_estimate: public iss::vm_plugin {
BEGIN_BF_DECL(instr_desc, uint32_t)
BF_FIELD(taken, 24, 8)
BF_FIELD(not_taken, 16, 8)
BF_FIELD(size, 0, 16)
instr_desc(uint32_t size, uint32_t taken, uint32_t not_taken): instr_desc() {
this->size=size;
this->taken=taken;
this->not_taken=not_taken;
}
END_BF_DECL();
class cycle_estimate : public vm_plugin {
struct instr_desc {
size_t size{0};
bool is_branch{false};
unsigned not_taken{1};
unsigned taken{1};
std::function<unsigned(uint64_t)> f;
};
public:
cycle_estimate() = delete;
cycle_estimate(const cycle_estimate &) = delete;
cycle_estimate(const cycle_estimate&) = delete;
cycle_estimate(const cycle_estimate &&) = delete;
cycle_estimate(const cycle_estimate&&) = delete;
cycle_estimate(std::string config_file_name);
cycle_estimate(std::string const& config_file_name);
virtual ~cycle_estimate();
cycle_estimate &operator=(const cycle_estimate &) = delete;
cycle_estimate& operator=(const cycle_estimate&) = delete;
cycle_estimate &operator=(const cycle_estimate &&) = delete;
cycle_estimate& operator=(const cycle_estimate&&) = delete;
bool registration(const char *const version, vm_if &arch) override;
bool registration(const char* const version, vm_if& arch) override;
sync_type get_sync() override { return POST_SYNC; };
sync_type get_sync() override { return ALL_SYNC; };
void callback(instr_info_t instr_info, exec_info const&) override;
void callback(instr_info_t instr_info) override;
private:
iss::instrumentation_if *arch_instr;
iss::instrumentation_if* instr_if{nullptr};
uint32_t* reg_base_ptr{nullptr};
instr_desc illegal_desc{};
std::vector<instr_desc> delays;
unsigned current_delay{0};
struct pair_hash {
size_t operator()(const std::pair<uint64_t, uint64_t> &p) const {
size_t operator()(const std::pair<uint64_t, uint64_t>& p) const {
std::hash<uint64_t> hash;
return hash(p.first) + hash(p.second);
}
};
std::unordered_map<std::pair<uint64_t, uint64_t>, uint64_t, pair_hash> blocks;
Json::Value root;
std::string config_file_name;
};
}
}
} // namespace plugin
} // namespace iss
#endif /* _ISS_PLUGIN_CYCLE_ESTIMATE_H_ */

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, MINRES Technologies GmbH
* Copyright (C) 2017 - 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -32,64 +32,65 @@
* eyck@minres.com - initial API and implementation
******************************************************************************/
#include "iss/plugin/instruction_count.h"
#include "iss/instrumentation_if.h"
#include "instruction_count.h"
#include <iss/instrumentation_if.h>
#include <yaml-cpp/yaml.h>
#include <fstream>
#include <iss/arch_if.h>
#include <util/logging.h>
#include <fstream>
iss::plugin::instruction_count::instruction_count(std::string config_file_name) {
if (config_file_name.length() > 0) {
if(config_file_name.length() > 0) {
std::ifstream is(config_file_name);
if (is.is_open()) {
if(is.is_open()) {
try {
is >> root;
} catch (Json::RuntimeError &e) {
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many rro nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
auto instructions = p.second;
for(auto const& instr : instructions) {
instr_delay res;
res.instr_name = instr.first.as<std::string>();
res.size = instr.second["encoding"].as<std::string>().size() - 2; // not counting 0b
auto delay = instr.second["delay"];
if(delay.IsSequence()) {
res.not_taken_delay = delay[0].as<uint64_t>();
res.taken_delay = delay[1].as<uint64_t>();
} else {
res.not_taken_delay = delay.as<uint64_t>();
res.taken_delay = res.not_taken_delay;
}
delays.push_back(std::move(res));
}
}
rep_counts.resize(delays.size());
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
}
} else {
LOG(ERR) << "Could not open input file " << config_file_name;
CPPLOG(ERR) << "Could not open input file " << config_file_name;
}
}
}
iss::plugin::instruction_count::~instruction_count() {
size_t idx=0;
for(auto it:delays){
if(rep_counts[idx]>0)
LOG(INFO)<<it.instr_name<<";"<<rep_counts[idx];
idx++;
}
size_t idx = 0;
for(auto it : delays) {
if(rep_counts[idx] > 0 && it.instr_name.find("__" != 0))
CPPLOG(INFO) << it.instr_name << ";" << rep_counts[idx];
idx++;
}
}
bool iss::plugin::instruction_count::registration(const char* const version, vm_if& vm) {
auto instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if) return false;
const std::string core_name = instr_if->core_type_name();
Json::Value &val = root[core_name];
if(!val.isNull() && val.isArray()){
delays.reserve(val.size());
for(auto it:val){
auto name = it["name"];
auto size = it["size"];
auto delay = it["delay"];
if(!name.isString() || !size.isUInt() || !(delay.isUInt() || delay.isArray())) throw std::runtime_error("JSON parse error");
if(delay.isUInt()){
const instr_delay entry{name.asCString(), size.asUInt(), delay.asUInt(), 0};
delays.push_back(entry);
} else {
const instr_delay entry{name.asCString(), size.asUInt(), delay[0].asUInt(), delay[1].asUInt()};
delays.push_back(entry);
}
}
rep_counts.resize(delays.size());
} else {
LOG(ERR)<<"plugin instruction_count: could not find an entry for "<<core_name<<" in JSON file"<<std::endl;
}
return true;
if(!instr_if)
return false;
return true;
}
void iss::plugin::instruction_count::callback(instr_info_t instr_info, exec_info const&) {
rep_counts[instr_info.instr_id]++;
}
void iss::plugin::instruction_count::callback(instr_info_t instr_info) { rep_counts[instr_info.instr_id]++; }

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018, MINRES Technologies GmbH
* Copyright (C) 2017 - 2023, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -36,8 +36,8 @@
#define _ISS_PLUGIN_INSTRUCTION_COUNTER_H_
#include <iss/vm_plugin.h>
#include <json/json.h>
#include <string>
#include <vector>
namespace iss {
namespace plugin {
@ -53,30 +53,29 @@ class instruction_count : public iss::vm_plugin {
public:
instruction_count() = delete;
instruction_count(const instruction_count &) = delete;
instruction_count(const instruction_count&) = delete;
instruction_count(const instruction_count &&) = delete;
instruction_count(const instruction_count&&) = delete;
instruction_count(std::string config_file_name);
virtual ~instruction_count();
instruction_count &operator=(const instruction_count &) = delete;
instruction_count& operator=(const instruction_count&) = delete;
instruction_count &operator=(const instruction_count &&) = delete;
instruction_count& operator=(const instruction_count&&) = delete;
bool registration(const char *const version, vm_if &arch) override;
bool registration(const char* const version, vm_if& arch) override;
sync_type get_sync() override { return POST_SYNC; };
void callback(instr_info_t, exec_info const&) override;
void callback(instr_info_t) override;
private:
Json::Value root;
std::vector<instr_delay> delays;
std::vector<uint64_t> rep_counts;
};
}
}
} // namespace plugin
} // namespace iss
#endif /* _ISS_PLUGIN_INSTRUCTION_COUNTER_H_ */

View File

@ -0,0 +1,297 @@
#include "semihosting.h"
#include <chrono>
#include <cstdint>
#include <iss/vm_types.h>
#include <map>
#include <stdexcept>
// explanation of syscalls can be found at https://github.com/SpinalHDL/openocd_riscv/blob/riscv_spinal/src/target/semihosting_common.h
const char* SYS_OPEN_MODES_STRS[] = {"r", "rb", "r+", "r+b", "w", "wb", "w+", "w+b", "a", "ab", "a+", "a+b"};
template <typename T> T sh_read_field(iss::arch_if* arch_if_ptr, T addr, int len = 4) {
uint8_t bytes[4];
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr, 4, &bytes[0]);
// auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok) {
return 0; // TODO THROW ERROR
} else
return static_cast<T>(bytes[0]) | (static_cast<T>(bytes[1]) << 8) | (static_cast<T>(bytes[2]) << 16) |
(static_cast<T>(bytes[3]) << 24);
}
template <typename T> std::string sh_read_string(iss::arch_if* arch_if_ptr, T addr, T str_len) {
std::vector<uint8_t> buffer(str_len);
for(int i = 0; i < str_len; i++) {
buffer[i] = sh_read_field(arch_if_ptr, addr + i, 1);
}
std::string str(buffer.begin(), buffer.end());
return str;
}
template <typename T> void semihosting_callback<T>::operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter) {
static std::map<T, FILE*> openFiles;
static T file_count = 3;
static T semihostingErrno;
switch(static_cast<semihosting_syscalls>(*call_number)) {
case semihosting_syscalls::SYS_CLOCK: {
auto end = std::chrono::high_resolution_clock::now(); // end measurement
auto elapsed = end - timeVar;
auto millis = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();
*call_number = millis; // TODO get time now
break;
}
case semihosting_syscalls::SYS_CLOSE: {
T file_handle = *parameter;
if(openFiles.size() <= file_handle && file_handle < 0) {
semihostingErrno = EBADF;
return;
}
auto file = openFiles[file_handle];
openFiles.erase(file_handle);
if(!(file == stdin || file == stdout || file == stderr)) {
int i = fclose(file);
*call_number = i;
} else {
*call_number = -1;
semihostingErrno = EINTR;
}
break;
}
case semihosting_syscalls::SYS_ELAPSED: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ERRNO: {
*call_number = semihostingErrno;
break;
}
case semihosting_syscalls::SYS_EXIT: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT");
break;
}
case semihosting_syscalls::SYS_EXIT_EXTENDED: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT_EXTENDED");
break;
}
case semihosting_syscalls::SYS_FLEN: {
T file_handle = *parameter;
auto file = openFiles[file_handle];
size_t currentPos = ftell(file);
if(currentPos < 0)
throw std::runtime_error("SYS_FLEN negative value");
fseek(file, 0, SEEK_END);
size_t length = ftell(file);
fseek(file, currentPos, SEEK_SET);
*call_number = (T)length;
break;
}
case semihosting_syscalls::SYS_GET_CMDLINE: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_HEAPINFO: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ISERROR: {
T value = *parameter;
*call_number = (value != 0);
break;
}
case semihosting_syscalls::SYS_ISTTY: {
T file_handle = *parameter;
*call_number = (file_handle == 0 || file_handle == 1 || file_handle == 2);
break;
}
case semihosting_syscalls::SYS_OPEN: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T mode = sh_read_field<T>(arch_if_ptr, 4 + (*parameter));
T path_len = sh_read_field<T>(arch_if_ptr, 8 + (*parameter));
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
// TODO LOG INFO
if(mode >= 12) {
// TODO throw ERROR
return;
}
FILE* file = nullptr;
if(path_str == ":tt") {
if(mode < 4)
file = stdin;
else if(mode < 8)
file = stdout;
else
file = stderr;
} else {
file = fopen(path_str.c_str(), SYS_OPEN_MODES_STRS[mode]);
if(file == nullptr) {
// TODO throw error
return;
}
}
T file_handle = file_count++;
openFiles[file_handle] = file;
*call_number = file_handle;
break;
}
case semihosting_syscalls::SYS_READ: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::vector<uint8_t> buffer(count);
size_t num_read = 0;
if(file == stdin) {
// when reading from stdin: mimic behaviour from read syscall
// and return on newline.
while(num_read < count) {
char c = fgetc(file);
buffer[num_read] = c;
num_read++;
if(c == '\n')
break;
}
} else {
num_read = fread(buffer.data(), 1, count, file);
}
buffer.resize(num_read);
for(int i = 0; i < num_read; i++) {
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr + i, 1, &buffer[i]);
if(res != iss::Ok)
return;
}
*call_number = count - num_read;
break;
}
case semihosting_syscalls::SYS_READC: {
uint8_t character = getchar();
// character = getchar();
/*if(character != iss::Ok)
std::cout << "Not OK";
return;*/
*call_number = character;
break;
}
case semihosting_syscalls::SYS_REMOVE: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
if(remove(path_str.c_str()) < 0)
*call_number = -1;
break;
}
case semihosting_syscalls::SYS_RENAME: {
T path_str_addr_old = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len_old = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T path_str_addr_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
T path_len_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 12);
std::string path_str_old = sh_read_string<T>(arch_if_ptr, path_str_addr_old, path_len_old);
std::string path_str_new = sh_read_string<T>(arch_if_ptr, path_str_addr_new, path_len_new);
rename(path_str_old.c_str(), path_str_new.c_str());
break;
}
case semihosting_syscalls::SYS_SEEK: {
T file_handle = sh_read_field<T>(arch_if_ptr, *parameter);
T pos = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
auto file = openFiles[file_handle];
int retval = fseek(file, pos, SEEK_SET);
if(retval < 0)
throw std::runtime_error("SYS_SEEK negative return value");
break;
}
case semihosting_syscalls::SYS_SYSTEM: {
T cmd_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T cmd_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
std::string cmd = sh_read_string<T>(arch_if_ptr, cmd_addr, cmd_len);
system(cmd.c_str());
break;
}
case semihosting_syscalls::SYS_TICKFREQ: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_TIME: {
// returns time in seconds scince 01.01.1970 00:00
*call_number = time(NULL);
break;
}
case semihosting_syscalls::SYS_TMPNAM: {
T buffer_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T identifier = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
T buffer_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 2);
if(identifier > 255) {
*call_number = -1;
return;
}
std::stringstream ss;
ss << "tmp/file-" << std::setfill('0') << std::setw(3) << identifier;
std::string filename = ss.str();
for(int i = 0; i < buffer_len; i++) {
uint8_t character = filename[i];
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, (*parameter) + i, 1, &character);
if(res != iss::Ok)
return;
}
break;
}
case semihosting_syscalls::SYS_WRITE: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::string str = sh_read_string<T>(arch_if_ptr, addr, count);
fwrite(&str[0], 1, count, file);
break;
}
case semihosting_syscalls::SYS_WRITEC: {
uint8_t character;
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
putchar(character);
break;
}
case semihosting_syscalls::SYS_WRITE0: {
uint8_t character;
while(1) {
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
if(character == 0)
break;
putchar(character);
(*parameter)++;
}
break;
}
case semihosting_syscalls::USER_CMD_0x100: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::USER_CMD_0x1FF: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
default:
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
}
template class semihosting_callback<uint32_t>;
template class semihosting_callback<uint64_t>;

View File

@ -0,0 +1,61 @@
#ifndef _SEMIHOSTING_H_
#define _SEMIHOSTING_H_
#include <chrono>
#include <functional>
#include <iss/arch_if.h>
/*
* According to:
* "Semihosting for AArch32 and AArch64, Release 2.0"
* https://static.docs.arm.com/100863/0200/semihosting.pdf
* from ARM Ltd.
*
* The available semihosting operation numbers passed in A0 are allocated
* as follows:
* - 0x00-0x31 Used by ARM.
* - 0x32-0xFF Reserved for future use by ARM.
* - 0x100-0x1FF Reserved for user applications. These are not used by ARM.
* However, if you are writing your own SVC operations, you are advised
* to use a different SVC number rather than using the semihosted
* SVC number and these operation type numbers.
* - 0x200-0xFFFFFFFF Undefined and currently unused. It is recommended
* that you do not use these.
*/
enum class semihosting_syscalls {
SYS_OPEN = 0x01,
SYS_CLOSE = 0x02,
SYS_WRITEC = 0x03,
SYS_WRITE0 = 0x04,
SYS_WRITE = 0x05,
SYS_READ = 0x06,
SYS_READC = 0x07,
SYS_ISERROR = 0x08,
SYS_ISTTY = 0x09,
SYS_SEEK = 0x0A,
SYS_FLEN = 0x0C,
SYS_TMPNAM = 0x0D,
SYS_REMOVE = 0x0E,
SYS_RENAME = 0x0F,
SYS_CLOCK = 0x10,
SYS_TIME = 0x11,
SYS_SYSTEM = 0x12,
SYS_ERRNO = 0x13,
SYS_GET_CMDLINE = 0x15,
SYS_HEAPINFO = 0x16,
SYS_EXIT = 0x18,
SYS_EXIT_EXTENDED = 0x20,
SYS_ELAPSED = 0x30,
SYS_TICKFREQ = 0x31,
USER_CMD_0x100 = 0x100,
USER_CMD_0x1FF = 0x1FF,
};
template <typename T> struct semihosting_callback {
std::chrono::high_resolution_clock::time_point timeVar;
semihosting_callback()
: timeVar(std::chrono::high_resolution_clock::now()) {}
void operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter);
};
template <typename T> using semihosting_cb_t = std::function<void(iss::arch_if*, T*, T*)>;
#endif

View File

@ -30,35 +30,33 @@
*
*******************************************************************************/
#include <array>
#include <cstdint>
#include <iostream>
#include <iss/factory.h>
#include <iss/semihosting/semihosting.h>
#include <string>
#include <unordered_map>
#include <vector>
#include "iss/arch/tgc_mapper.h"
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <iss/arch/riscv_hart_m_p.h>
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_B
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_b.h"
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#endif
#ifdef CORE_TGC_D
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d.h"
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef WITH_LLVM
#include <iss/llvm/jit_helper.h>
#include <iss/llvm/jit_init.h>
#endif
#include "iss/plugin/cycle_estimate.h"
#include "iss/plugin/instruction_count.h"
#include <iss/log_categories.h>
#include <iss/plugin/cycle_estimate.h>
#include <iss/plugin/instruction_count.h>
#ifndef WIN32
#include <iss/plugin/loader.h>
#endif
#if defined(HAS_LUA)
#include <iss/plugin/lua.h>
#endif
namespace po = boost::program_options;
int main(int argc, char *argv[]) {
int main(int argc, char* argv[]) {
/*
* Define and parse the program options
*/
@ -67,29 +65,29 @@ int main(int argc, char *argv[]) {
// clang-format off
desc.add_options()
("help,h", "Print help message")
("verbose,v", po::value<int>()->implicit_value(0), "Sets logging verbosity")
("logfile,f", po::value<std::string>(), "Sets default log file.")
("verbose,v", po::value<int>()->default_value(4), "Sets logging verbosity")
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the memory input file")
("isa", po::value<std::string>()->default_value("tgc_c"), "isa to use for simulation");
("backend", po::value<std::string>()->default_value("interp"), "the ISS backend to use, options are: interp, llvm, tcc, asmjit")
("isa", po::value<std::string>()->default_value("tgc5c"), "core or isa name to use for simulation, use '?' to get list");
// clang-format on
auto parsed = po::command_line_parser(argc, argv).options(desc).allow_unregistered().run();
try {
po::store(parsed, clim); // can throw
// --help option
if (clim.count("help")) {
std::cout << "DBT-RISE-RiscV simulator for RISC-V" << std::endl << desc << std::endl;
if(clim.count("help")) {
std::cout << "DBT-RISE-TGC simulator for TGC RISC-V cores" << std::endl << desc << std::endl;
return 0;
}
po::notify(clim); // throws on error, so do after help in case
} catch (po::error &e) {
} catch(po::error& e) {
// there are problems
std::cerr << "ERROR: " << e.what() << std::endl << std::endl;
std::cerr << desc << std::endl;
@ -99,19 +97,17 @@ int main(int argc, char *argv[]) {
LOGGER(DEFAULT)::print_time() = false;
LOGGER(connection)::print_time() = false;
if (clim.count("verbose")) {
auto l = logging::as_log_level(clim["verbose"].as<int>());
LOGGER(DEFAULT)::reporting_level() = l;
LOGGER(connection)::reporting_level() = l;
}
if (clim.count("logfile")) {
auto l = logging::as_log_level(clim["verbose"].as<int>());
LOGGER(DEFAULT)::reporting_level() = l;
LOGGER(connection)::reporting_level() = l;
if(clim.count("logfile")) {
// configure the connection logger
auto f = fopen(clim["logfile"].as<std::string>().c_str(), "w");
LOG_OUTPUT(DEFAULT)::stream() = f;
LOG_OUTPUT(connection)::stream() = f;
}
std::vector<iss::vm_plugin *> plugin_list;
std::vector<iss::vm_plugin*> plugin_list;
auto res = 0;
try {
#ifdef WITH_LLVM
@ -119,89 +115,145 @@ int main(int argc, char *argv[]) {
iss::init_jit_debug(argc, argv);
#endif
bool dump = clim.count("dump-ir");
auto& f = iss::core_factory::instance();
// instantiate the simulator
iss::vm_ptr vm{nullptr};
iss::cpu_ptr cpu{nullptr};
semihosting_callback<uint32_t> cb{};
semihosting_cb_t<uint32_t> semihosting_cb = [&cb](iss::arch_if* i, uint32_t* a0, uint32_t* a1) { cb(i, a0, a1); };
std::string isa_opt(clim["isa"].as<std::string>());
if (isa_opt == "tgc_c") {
if(isa_opt.size() == 0 || isa_opt == "?") {
auto list = f.get_names();
std::sort(std::begin(list), std::end(list));
std::cout << "Available implementations (core|platform|backend):\n - " << util::join(list, "\n - ") << std::endl;
return 0;
} else if(isa_opt.find('|') != std::string::npos) {
std::tie(cpu, vm) =
iss::create_cpu<tgc_c_plat_type>(clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>());
} else
#ifdef CORE_TGC_B
if (isa_opt == "tgc_b") {
std::tie(cpu, vm) =
iss::create_cpu<tgc_b_plat_type>(clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>());
} else
#endif
#ifdef CORE_TGC_D
if (isa_opt == "tgc_d") {
std::tie(cpu, vm) =
iss::create_cpu<tgc_d_plat_type>(clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>());
} else
#endif
{
LOG(ERR) << "Illegal argument value for '--isa': " << clim["isa"].as<std::string>() << std::endl;
f.create(isa_opt + "|" + clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>(), &semihosting_cb);
} else {
auto base_isa = isa_opt.substr(0, 5);
if(base_isa == "tgc5d" || base_isa == "tgc5e") {
isa_opt += "|mu_p_clic_pmp|" + clim["backend"].as<std::string>();
} else {
isa_opt += "|m_p|" + clim["backend"].as<std::string>();
}
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>(), &semihosting_cb);
}
if(!cpu) {
CPPLOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if (clim.count("plugin")) {
for (std::string const& opt_val : clim["plugin"].as<std::vector<std::string>>()) {
std::string plugin_name=opt_val;
std::string filename{"cycles.txt"};
if(!vm) {
CPPLOG(ERR) << "Could not create vm for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if(clim.count("plugin")) {
for(std::string const& opt_val : clim["plugin"].as<std::vector<std::string>>()) {
std::string plugin_name = opt_val;
std::string arg{""};
std::size_t found = opt_val.find('=');
if (found != std::string::npos) {
if(found != std::string::npos) {
plugin_name = opt_val.substr(0, found);
filename = opt_val.substr(found + 1, opt_val.size());
arg = opt_val.substr(found + 1, opt_val.size());
}
if (plugin_name == "ic") {
auto *ic_plugin = new iss::plugin::instruction_count(filename);
#if defined(WITH_PLUGINS)
if(plugin_name == "ic") {
auto* ic_plugin = new iss::plugin::instruction_count(arg);
vm->register_plugin(*ic_plugin);
plugin_list.push_back(ic_plugin);
} else if (plugin_name == "ce") {
auto *ce_plugin = new iss::plugin::cycle_estimate(filename);
} else if(plugin_name == "ce") {
auto* ce_plugin = new iss::plugin::cycle_estimate(arg);
vm->register_plugin(*ce_plugin);
plugin_list.push_back(ce_plugin);
} else {
LOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
return 127;
} else
#endif
{
#if !defined(WIN32)
std::vector<char const*> a{};
if(arg.length())
a.push_back({arg.c_str()});
iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());
if(plugin) {
vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else
#endif
{
CPPLOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
return 127;
}
}
}
}
if (clim.count("disass")) {
if(clim.count("disass")) {
vm->setDisassEnabled(true);
LOGGER(disass)::reporting_level() = logging::INFO;
LOGGER(disass)::print_time() = false;
auto file_name = clim["disass"].as<std::string>();
if (file_name.length() > 0) {
if(file_name.length() > 0) {
LOG_OUTPUT(disass)::stream() = fopen(file_name.c_str(), "w");
LOGGER(disass)::print_severity() = false;
}
}
uint64_t start_address = 0;
if (clim.count("mem"))
if(clim.count("mem"))
vm->get_arch()->load_file(clim["mem"].as<std::string>());
if (clim.count("elf"))
for (std::string input : clim["elf"].as<std::vector<std::string>>()) {
if(clim.count("elf"))
for(std::string input : clim["elf"].as<std::vector<std::string>>()) {
auto start_addr = vm->get_arch()->load_file(input);
if (start_addr.second) start_address = start_addr.first;
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
start_address = start_addr.first;
}
for (std::string input : args) {
for(std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if (start_addr.second) start_address = start_addr.first;
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
start_address = start_addr.first;
}
if (clim.count("reset")) {
if(clim.count("reset")) {
auto str = clim["reset"].as<std::string>();
start_address = str.find("0x") == 0 ? std::stoull(str.substr(2), nullptr, 16) : std::stoull(str, nullptr, 10);
}
vm->reset(start_address);
auto cycles = clim["instructions"].as<uint64_t>();
res = vm->start(cycles, dump);
} catch (std::exception &e) {
LOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit"
<< std::endl;
auto instr_if = vm->get_arch()->get_instrumentation_if();
// this assumes a single input file
std::unordered_map<std::string, uint64_t> sym_table;
if(args.empty())
sym_table = instr_if->get_symbol_table(clim["elf"].as<std::vector<std::string>>()[0]);
else
sym_table = instr_if->get_symbol_table(args[0]);
if(sym_table.find("begin_signature") != std::end(sym_table) && sym_table.find("end_signature") != std::end(sym_table)) {
auto start_addr = sym_table["begin_signature"];
auto end_addr = sym_table["end_signature"];
std::array<uint8_t, 4> data;
std::ofstream file;
std::string filename = fmt::format("{}.signature", isa_opt);
std::replace(std::begin(filename), std::end(filename), '|', '_');
// default riscof requires this filename
filename = "DUT-tgc.signature";
file.open(filename, std::ios::out);
if(!file.is_open()) {
LOG(ERR) << "Error opening file " << filename << std::endl;
return 1;
}
for(auto addr = start_addr; addr < end_addr; addr += data.size()) {
vm->get_arch()->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0 /*MEM*/, addr, data.size(),
data.data()); // FIXME: get space from iss::arch::traits<ARCH>::mem_type_e::MEM
// TODO : obey Target endianess
uint32_t to_print = (data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
file << std::hex << fmt::format("{:08x}", to_print) << std::dec << std::endl;
}
}
} catch(std::exception& e) {
CPPLOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit" << std::endl;
res = 2;
}
// cleanup to let plugins report of needed
for (auto *p : plugin_list) {
// cleanup to let plugins report if needed
for(auto* p : plugin_list) {
delete p;
}
return res;

View File

@ -1,821 +0,0 @@
//===- GCOV.cpp - LLVM coverage tool --------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// GCOV implements the interface to read and write coverage files that use
// 'gcov' format.
//
//===----------------------------------------------------------------------===//
#include "GCOV.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <system_error>
using namespace llvm;
//===----------------------------------------------------------------------===//
// GCOVFile implementation.
/// readGCNO - Read GCNO buffer.
bool GCOVFile::readGCNO(GCOVBuffer &Buffer) {
if (!Buffer.readGCNOFormat())
return false;
if (!Buffer.readGCOVVersion(Version))
return false;
if (!Buffer.readInt(Checksum))
return false;
while (true) {
if (!Buffer.readFunctionTag())
break;
auto GFun = make_unique<GCOVFunction>(*this);
if (!GFun->readGCNO(Buffer, Version))
return false;
Functions.push_back(std::move(GFun));
}
GCNOInitialized = true;
return true;
}
/// readGCDA - Read GCDA buffer. It is required that readGCDA() can only be
/// called after readGCNO().
bool GCOVFile::readGCDA(GCOVBuffer &Buffer) {
assert(GCNOInitialized && "readGCDA() can only be called after readGCNO()");
if (!Buffer.readGCDAFormat())
return false;
GCOV::GCOVVersion GCDAVersion;
if (!Buffer.readGCOVVersion(GCDAVersion))
return false;
if (Version != GCDAVersion) {
errs() << "GCOV versions do not match.\n";
return false;
}
uint32_t GCDAChecksum;
if (!Buffer.readInt(GCDAChecksum))
return false;
if (Checksum != GCDAChecksum) {
errs() << "File checksums do not match: " << Checksum
<< " != " << GCDAChecksum << ".\n";
return false;
}
for (size_t i = 0, e = Functions.size(); i < e; ++i) {
if (!Buffer.readFunctionTag()) {
errs() << "Unexpected number of functions.\n";
return false;
}
if (!Functions[i]->readGCDA(Buffer, Version))
return false;
}
if (Buffer.readObjectTag()) {
uint32_t Length;
uint32_t Dummy;
if (!Buffer.readInt(Length))
return false;
if (!Buffer.readInt(Dummy))
return false; // checksum
if (!Buffer.readInt(Dummy))
return false; // num
if (!Buffer.readInt(RunCount))
return false;
Buffer.advanceCursor(Length - 3);
}
while (Buffer.readProgramTag()) {
uint32_t Length;
if (!Buffer.readInt(Length))
return false;
Buffer.advanceCursor(Length);
++ProgramCount;
}
return true;
}
void GCOVFile::print(raw_ostream &OS) const {
for (const auto &FPtr : Functions)
FPtr->print(OS);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dump - Dump GCOVFile content to dbgs() for debugging purposes.
LLVM_DUMP_METHOD void GCOVFile::dump() const {
print(dbgs());
}
#endif
/// collectLineCounts - Collect line counts. This must be used after
/// reading .gcno and .gcda files.
void GCOVFile::collectLineCounts(FileInfo &FI) {
for (const auto &FPtr : Functions)
FPtr->collectLineCounts(FI);
FI.setRunCount(RunCount);
FI.setProgramCount(ProgramCount);
}
//===----------------------------------------------------------------------===//
// GCOVFunction implementation.
/// readGCNO - Read a function from the GCNO buffer. Return false if an error
/// occurs.
bool GCOVFunction::readGCNO(GCOVBuffer &Buff, GCOV::GCOVVersion Version) {
uint32_t Dummy;
if (!Buff.readInt(Dummy))
return false; // Function header length
if (!Buff.readInt(Ident))
return false;
if (!Buff.readInt(Checksum))
return false;
if (Version != GCOV::V402) {
uint32_t CfgChecksum;
if (!Buff.readInt(CfgChecksum))
return false;
if (Parent.getChecksum() != CfgChecksum) {
errs() << "File checksums do not match: " << Parent.getChecksum()
<< " != " << CfgChecksum << " in (" << Name << ").\n";
return false;
}
}
if (!Buff.readString(Name))
return false;
if (!Buff.readString(Filename))
return false;
if (!Buff.readInt(LineNumber))
return false;
// read blocks.
if (!Buff.readBlockTag()) {
errs() << "Block tag not found.\n";
return false;
}
uint32_t BlockCount;
if (!Buff.readInt(BlockCount))
return false;
for (uint32_t i = 0, e = BlockCount; i != e; ++i) {
if (!Buff.readInt(Dummy))
return false; // Block flags;
Blocks.push_back(make_unique<GCOVBlock>(*this, i));
}
// read edges.
while (Buff.readEdgeTag()) {
uint32_t EdgeCount;
if (!Buff.readInt(EdgeCount))
return false;
EdgeCount = (EdgeCount - 1) / 2;
uint32_t BlockNo;
if (!Buff.readInt(BlockNo))
return false;
if (BlockNo >= BlockCount) {
errs() << "Unexpected block number: " << BlockNo << " (in " << Name
<< ").\n";
return false;
}
for (uint32_t i = 0, e = EdgeCount; i != e; ++i) {
uint32_t Dst;
if (!Buff.readInt(Dst))
return false;
Edges.push_back(make_unique<GCOVEdge>(*Blocks[BlockNo], *Blocks[Dst]));
GCOVEdge *Edge = Edges.back().get();
Blocks[BlockNo]->addDstEdge(Edge);
Blocks[Dst]->addSrcEdge(Edge);
if (!Buff.readInt(Dummy))
return false; // Edge flag
}
}
// read line table.
while (Buff.readLineTag()) {
uint32_t LineTableLength;
// Read the length of this line table.
if (!Buff.readInt(LineTableLength))
return false;
uint32_t EndPos = Buff.getCursor() + LineTableLength * 4;
uint32_t BlockNo;
// Read the block number this table is associated with.
if (!Buff.readInt(BlockNo))
return false;
if (BlockNo >= BlockCount) {
errs() << "Unexpected block number: " << BlockNo << " (in " << Name
<< ").\n";
return false;
}
GCOVBlock &Block = *Blocks[BlockNo];
// Read the word that pads the beginning of the line table. This may be a
// flag of some sort, but seems to always be zero.
if (!Buff.readInt(Dummy))
return false;
// Line information starts here and continues up until the last word.
if (Buff.getCursor() != (EndPos - sizeof(uint32_t))) {
StringRef F;
// Read the source file name.
if (!Buff.readString(F))
return false;
if (Filename != F) {
errs() << "Multiple sources for a single basic block: " << Filename
<< " != " << F << " (in " << Name << ").\n";
return false;
}
// Read lines up to, but not including, the null terminator.
while (Buff.getCursor() < (EndPos - 2 * sizeof(uint32_t))) {
uint32_t Line;
if (!Buff.readInt(Line))
return false;
// Line 0 means this instruction was injected by the compiler. Skip it.
if (!Line)
continue;
Block.addLine(Line);
}
// Read the null terminator.
if (!Buff.readInt(Dummy))
return false;
}
// The last word is either a flag or padding, it isn't clear which. Skip
// over it.
if (!Buff.readInt(Dummy))
return false;
}
return true;
}
/// readGCDA - Read a function from the GCDA buffer. Return false if an error
/// occurs.
bool GCOVFunction::readGCDA(GCOVBuffer &Buff, GCOV::GCOVVersion Version) {
uint32_t HeaderLength;
if (!Buff.readInt(HeaderLength))
return false; // Function header length
uint64_t EndPos = Buff.getCursor() + HeaderLength * sizeof(uint32_t);
uint32_t GCDAIdent;
if (!Buff.readInt(GCDAIdent))
return false;
if (Ident != GCDAIdent) {
errs() << "Function identifiers do not match: " << Ident
<< " != " << GCDAIdent << " (in " << Name << ").\n";
return false;
}
uint32_t GCDAChecksum;
if (!Buff.readInt(GCDAChecksum))
return false;
if (Checksum != GCDAChecksum) {
errs() << "Function checksums do not match: " << Checksum
<< " != " << GCDAChecksum << " (in " << Name << ").\n";
return false;
}
uint32_t CfgChecksum;
if (Version != GCOV::V402) {
if (!Buff.readInt(CfgChecksum))
return false;
if (Parent.getChecksum() != CfgChecksum) {
errs() << "File checksums do not match: " << Parent.getChecksum()
<< " != " << CfgChecksum << " (in " << Name << ").\n";
return false;
}
}
if (Buff.getCursor() < EndPos) {
StringRef GCDAName;
if (!Buff.readString(GCDAName))
return false;
if (Name != GCDAName) {
errs() << "Function names do not match: " << Name << " != " << GCDAName
<< ".\n";
return false;
}
}
if (!Buff.readArcTag()) {
errs() << "Arc tag not found (in " << Name << ").\n";
return false;
}
uint32_t Count;
if (!Buff.readInt(Count))
return false;
Count /= 2;
// This for loop adds the counts for each block. A second nested loop is
// required to combine the edge counts that are contained in the GCDA file.
for (uint32_t BlockNo = 0; Count > 0; ++BlockNo) {
// The last block is always reserved for exit block
if (BlockNo >= Blocks.size()) {
errs() << "Unexpected number of edges (in " << Name << ").\n";
return false;
}
if (BlockNo == Blocks.size() - 1)
errs() << "(" << Name << ") has arcs from exit block.\n";
GCOVBlock &Block = *Blocks[BlockNo];
for (size_t EdgeNo = 0, End = Block.getNumDstEdges(); EdgeNo < End;
++EdgeNo) {
if (Count == 0) {
errs() << "Unexpected number of edges (in " << Name << ").\n";
return false;
}
uint64_t ArcCount;
if (!Buff.readInt64(ArcCount))
return false;
Block.addCount(EdgeNo, ArcCount);
--Count;
}
Block.sortDstEdges();
}
return true;
}
/// getEntryCount - Get the number of times the function was called by
/// retrieving the entry block's count.
uint64_t GCOVFunction::getEntryCount() const {
return Blocks.front()->getCount();
}
/// getExitCount - Get the number of times the function returned by retrieving
/// the exit block's count.
uint64_t GCOVFunction::getExitCount() const {
return Blocks.back()->getCount();
}
void GCOVFunction::print(raw_ostream &OS) const {
OS << "===== " << Name << " (" << Ident << ") @ " << Filename << ":"
<< LineNumber << "\n";
for (const auto &Block : Blocks)
Block->print(OS);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dump - Dump GCOVFunction content to dbgs() for debugging purposes.
LLVM_DUMP_METHOD void GCOVFunction::dump() const {
print(dbgs());
}
#endif
/// collectLineCounts - Collect line counts. This must be used after
/// reading .gcno and .gcda files.
void GCOVFunction::collectLineCounts(FileInfo &FI) {
// If the line number is zero, this is a function that doesn't actually appear
// in the source file, so there isn't anything we can do with it.
if (LineNumber == 0)
return;
for (const auto &Block : Blocks)
Block->collectLineCounts(FI);
FI.addFunctionLine(Filename, LineNumber, this);
}
//===----------------------------------------------------------------------===//
// GCOVBlock implementation.
/// ~GCOVBlock - Delete GCOVBlock and its content.
GCOVBlock::~GCOVBlock() {
SrcEdges.clear();
DstEdges.clear();
Lines.clear();
}
/// addCount - Add to block counter while storing the edge count. If the
/// destination has no outgoing edges, also update that block's count too.
void GCOVBlock::addCount(size_t DstEdgeNo, uint64_t N) {
assert(DstEdgeNo < DstEdges.size()); // up to caller to ensure EdgeNo is valid
DstEdges[DstEdgeNo]->Count = N;
Counter += N;
if (!DstEdges[DstEdgeNo]->Dst.getNumDstEdges())
DstEdges[DstEdgeNo]->Dst.Counter += N;
}
/// sortDstEdges - Sort destination edges by block number, nop if already
/// sorted. This is required for printing branch info in the correct order.
void GCOVBlock::sortDstEdges() {
if (!DstEdgesAreSorted) {
SortDstEdgesFunctor SortEdges;
std::stable_sort(DstEdges.begin(), DstEdges.end(), SortEdges);
}
}
/// collectLineCounts - Collect line counts. This must be used after
/// reading .gcno and .gcda files.
void GCOVBlock::collectLineCounts(FileInfo &FI) {
for (uint32_t N : Lines)
FI.addBlockLine(Parent.getFilename(), N, this);
}
void GCOVBlock::print(raw_ostream &OS) const {
OS << "Block : " << Number << " Counter : " << Counter << "\n";
if (!SrcEdges.empty()) {
OS << "\tSource Edges : ";
for (const GCOVEdge *Edge : SrcEdges)
OS << Edge->Src.Number << " (" << Edge->Count << "), ";
OS << "\n";
}
if (!DstEdges.empty()) {
OS << "\tDestination Edges : ";
for (const GCOVEdge *Edge : DstEdges)
OS << Edge->Dst.Number << " (" << Edge->Count << "), ";
OS << "\n";
}
if (!Lines.empty()) {
OS << "\tLines : ";
for (uint32_t N : Lines)
OS << (N) << ",";
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dump - Dump GCOVBlock content to dbgs() for debugging purposes.
LLVM_DUMP_METHOD void GCOVBlock::dump() const {
print(dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// FileInfo implementation.
// Safe integer division, returns 0 if numerator is 0.
static uint32_t safeDiv(uint64_t Numerator, uint64_t Divisor) {
if (!Numerator)
return 0;
return Numerator / Divisor;
}
// This custom division function mimics gcov's branch ouputs:
// - Round to closest whole number
// - Only output 0% or 100% if it's exactly that value
static uint32_t branchDiv(uint64_t Numerator, uint64_t Divisor) {
if (!Numerator)
return 0;
if (Numerator == Divisor)
return 100;
uint8_t Res = (Numerator * 100 + Divisor / 2) / Divisor;
if (Res == 0)
return 1;
if (Res == 100)
return 99;
return Res;
}
namespace {
struct formatBranchInfo {
formatBranchInfo(const GCOV::Options &Options, uint64_t Count, uint64_t Total)
: Options(Options), Count(Count), Total(Total) {}
void print(raw_ostream &OS) const {
if (!Total)
OS << "never executed";
else if (Options.BranchCount)
OS << "taken " << Count;
else
OS << "taken " << branchDiv(Count, Total) << "%";
}
const GCOV::Options &Options;
uint64_t Count;
uint64_t Total;
};
static raw_ostream &operator<<(raw_ostream &OS, const formatBranchInfo &FBI) {
FBI.print(OS);
return OS;
}
class LineConsumer {
std::unique_ptr<MemoryBuffer> Buffer;
StringRef Remaining;
public:
LineConsumer(StringRef Filename) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = BufferOrErr.getError()) {
errs() << Filename << ": " << EC.message() << "\n";
Remaining = "";
} else {
Buffer = std::move(BufferOrErr.get());
Remaining = Buffer->getBuffer();
}
}
bool empty() { return Remaining.empty(); }
void printNext(raw_ostream &OS, uint32_t LineNum) {
StringRef Line;
if (empty())
Line = "/*EOF*/";
else
std::tie(Line, Remaining) = Remaining.split("\n");
OS << format("%5u:", LineNum) << Line << "\n";
}
};
} // end anonymous namespace
/// Convert a path to a gcov filename. If PreservePaths is true, this
/// translates "/" to "#", ".." to "^", and drops ".", to match gcov.
static std::string mangleCoveragePath(StringRef Filename, bool PreservePaths) {
if (!PreservePaths)
return sys::path::filename(Filename).str();
// This behaviour is defined by gcov in terms of text replacements, so it's
// not likely to do anything useful on filesystems with different textual
// conventions.
llvm::SmallString<256> Result("");
StringRef::iterator I, S, E;
for (I = S = Filename.begin(), E = Filename.end(); I != E; ++I) {
if (*I != '/')
continue;
if (I - S == 1 && *S == '.') {
// ".", the current directory, is skipped.
} else if (I - S == 2 && *S == '.' && *(S + 1) == '.') {
// "..", the parent directory, is replaced with "^".
Result.append("^#");
} else {
if (S < I)
// Leave other components intact,
Result.append(S, I);
// And separate with "#".
Result.push_back('#');
}
S = I + 1;
}
if (S < I)
Result.append(S, I);
return Result.str();
}
std::string FileInfo::getCoveragePath(StringRef Filename,
StringRef MainFilename) {
if (Options.NoOutput)
// This is probably a bug in gcov, but when -n is specified, paths aren't
// mangled at all, and the -l and -p options are ignored. Here, we do the
// same.
return Filename;
std::string CoveragePath;
if (Options.LongFileNames && !Filename.equals(MainFilename))
CoveragePath =
mangleCoveragePath(MainFilename, Options.PreservePaths) + "##";
CoveragePath += mangleCoveragePath(Filename, Options.PreservePaths) + ".gcov";
return CoveragePath;
}
std::unique_ptr<raw_ostream>
FileInfo::openCoveragePath(StringRef CoveragePath) {
if (Options.NoOutput)
return llvm::make_unique<raw_null_ostream>();
std::error_code EC;
auto OS = llvm::make_unique<raw_fd_ostream>(CoveragePath, EC,
sys::fs::F_Text);
if (EC) {
errs() << EC.message() << "\n";
return llvm::make_unique<raw_null_ostream>();
}
return std::move(OS);
}
/// print - Print source files with collected line count information.
void FileInfo::print(raw_ostream &InfoOS, StringRef MainFilename,
StringRef GCNOFile, StringRef GCDAFile) {
SmallVector<StringRef, 4> Filenames;
for (const auto &LI : LineInfo)
Filenames.push_back(LI.first());
std::sort(Filenames.begin(), Filenames.end());
for (StringRef Filename : Filenames) {
auto AllLines = LineConsumer(Filename);
std::string CoveragePath = getCoveragePath(Filename, MainFilename);
std::unique_ptr<raw_ostream> CovStream = openCoveragePath(CoveragePath);
raw_ostream &CovOS = *CovStream;
CovOS << " -: 0:Source:" << Filename << "\n";
CovOS << " -: 0:Graph:" << GCNOFile << "\n";
CovOS << " -: 0:Data:" << GCDAFile << "\n";
CovOS << " -: 0:Runs:" << RunCount << "\n";
CovOS << " -: 0:Programs:" << ProgramCount << "\n";
const LineData &Line = LineInfo[Filename];
GCOVCoverage FileCoverage(Filename);
for (uint32_t LineIndex = 0; LineIndex < Line.LastLine || !AllLines.empty();
++LineIndex) {
if (Options.BranchInfo) {
FunctionLines::const_iterator FuncsIt = Line.Functions.find(LineIndex);
if (FuncsIt != Line.Functions.end())
printFunctionSummary(CovOS, FuncsIt->second);
}
BlockLines::const_iterator BlocksIt = Line.Blocks.find(LineIndex);
if (BlocksIt == Line.Blocks.end()) {
// No basic blocks are on this line. Not an executable line of code.
CovOS << " -:";
AllLines.printNext(CovOS, LineIndex + 1);
} else {
const BlockVector &Blocks = BlocksIt->second;
// Add up the block counts to form line counts.
DenseMap<const GCOVFunction *, bool> LineExecs;
uint64_t LineCount = 0;
for (const GCOVBlock *Block : Blocks) {
if (Options.AllBlocks) {
// Only take the highest block count for that line.
uint64_t BlockCount = Block->getCount();
LineCount = LineCount > BlockCount ? LineCount : BlockCount;
} else {
// Sum up all of the block counts.
LineCount += Block->getCount();
}
if (Options.FuncCoverage) {
// This is a slightly convoluted way to most accurately gather line
// statistics for functions. Basically what is happening is that we
// don't want to count a single line with multiple blocks more than
// once. However, we also don't simply want to give the total line
// count to every function that starts on the line. Thus, what is
// happening here are two things:
// 1) Ensure that the number of logical lines is only incremented
// once per function.
// 2) If there are multiple blocks on the same line, ensure that the
// number of lines executed is incremented as long as at least
// one of the blocks are executed.
const GCOVFunction *Function = &Block->getParent();
if (FuncCoverages.find(Function) == FuncCoverages.end()) {
std::pair<const GCOVFunction *, GCOVCoverage> KeyValue(
Function, GCOVCoverage(Function->getName()));
FuncCoverages.insert(KeyValue);
}
GCOVCoverage &FuncCoverage = FuncCoverages.find(Function)->second;
if (LineExecs.find(Function) == LineExecs.end()) {
if (Block->getCount()) {
++FuncCoverage.LinesExec;
LineExecs[Function] = true;
} else {
LineExecs[Function] = false;
}
++FuncCoverage.LogicalLines;
} else if (!LineExecs[Function] && Block->getCount()) {
++FuncCoverage.LinesExec;
LineExecs[Function] = true;
}
}
}
if (LineCount == 0)
CovOS << " #####:";
else {
CovOS << format("%9" PRIu64 ":", LineCount);
++FileCoverage.LinesExec;
}
++FileCoverage.LogicalLines;
AllLines.printNext(CovOS, LineIndex + 1);
uint32_t BlockNo = 0;
uint32_t EdgeNo = 0;
for (const GCOVBlock *Block : Blocks) {
// Only print block and branch information at the end of the block.
if (Block->getLastLine() != LineIndex + 1)
continue;
if (Options.AllBlocks)
printBlockInfo(CovOS, *Block, LineIndex, BlockNo);
if (Options.BranchInfo) {
size_t NumEdges = Block->getNumDstEdges();
if (NumEdges > 1)
printBranchInfo(CovOS, *Block, FileCoverage, EdgeNo);
else if (Options.UncondBranch && NumEdges == 1)
printUncondBranchInfo(CovOS, EdgeNo,
(*Block->dst_begin())->Count);
}
}
}
}
FileCoverages.push_back(std::make_pair(CoveragePath, FileCoverage));
}
// FIXME: There is no way to detect calls given current instrumentation.
if (Options.FuncCoverage)
printFuncCoverage(InfoOS);
printFileCoverage(InfoOS);
}
/// printFunctionSummary - Print function and block summary.
void FileInfo::printFunctionSummary(raw_ostream &OS,
const FunctionVector &Funcs) const {
for (const GCOVFunction *Func : Funcs) {
uint64_t EntryCount = Func->getEntryCount();
uint32_t BlocksExec = 0;
for (const GCOVBlock &Block : Func->blocks())
if (Block.getNumDstEdges() && Block.getCount())
++BlocksExec;
OS << "function " << Func->getName() << " called " << EntryCount
<< " returned " << safeDiv(Func->getExitCount() * 100, EntryCount)
<< "% blocks executed "
<< safeDiv(BlocksExec * 100, Func->getNumBlocks() - 1) << "%\n";
}
}
/// printBlockInfo - Output counts for each block.
void FileInfo::printBlockInfo(raw_ostream &OS, const GCOVBlock &Block,
uint32_t LineIndex, uint32_t &BlockNo) const {
if (Block.getCount() == 0)
OS << " $$$$$:";
else
OS << format("%9" PRIu64 ":", Block.getCount());
OS << format("%5u-block %2u\n", LineIndex + 1, BlockNo++);
}
/// printBranchInfo - Print conditional branch probabilities.
void FileInfo::printBranchInfo(raw_ostream &OS, const GCOVBlock &Block,
GCOVCoverage &Coverage, uint32_t &EdgeNo) {
SmallVector<uint64_t, 16> BranchCounts;
uint64_t TotalCounts = 0;
for (const GCOVEdge *Edge : Block.dsts()) {
BranchCounts.push_back(Edge->Count);
TotalCounts += Edge->Count;
if (Block.getCount())
++Coverage.BranchesExec;
if (Edge->Count)
++Coverage.BranchesTaken;
++Coverage.Branches;
if (Options.FuncCoverage) {
const GCOVFunction *Function = &Block.getParent();
GCOVCoverage &FuncCoverage = FuncCoverages.find(Function)->second;
if (Block.getCount())
++FuncCoverage.BranchesExec;
if (Edge->Count)
++FuncCoverage.BranchesTaken;
++FuncCoverage.Branches;
}
}
for (uint64_t N : BranchCounts)
OS << format("branch %2u ", EdgeNo++)
<< formatBranchInfo(Options, N, TotalCounts) << "\n";
}
/// printUncondBranchInfo - Print unconditional branch probabilities.
void FileInfo::printUncondBranchInfo(raw_ostream &OS, uint32_t &EdgeNo,
uint64_t Count) const {
OS << format("unconditional %2u ", EdgeNo++)
<< formatBranchInfo(Options, Count, Count) << "\n";
}
// printCoverage - Print generic coverage info used by both printFuncCoverage
// and printFileCoverage.
void FileInfo::printCoverage(raw_ostream &OS,
const GCOVCoverage &Coverage) const {
OS << format("Lines executed:%.2f%% of %u\n",
double(Coverage.LinesExec) * 100 / Coverage.LogicalLines,
Coverage.LogicalLines);
if (Options.BranchInfo) {
if (Coverage.Branches) {
OS << format("Branches executed:%.2f%% of %u\n",
double(Coverage.BranchesExec) * 100 / Coverage.Branches,
Coverage.Branches);
OS << format("Taken at least once:%.2f%% of %u\n",
double(Coverage.BranchesTaken) * 100 / Coverage.Branches,
Coverage.Branches);
} else {
OS << "No branches\n";
}
OS << "No calls\n"; // to be consistent with gcov
}
}
// printFuncCoverage - Print per-function coverage info.
void FileInfo::printFuncCoverage(raw_ostream &OS) const {
for (const auto &FC : FuncCoverages) {
const GCOVCoverage &Coverage = FC.second;
OS << "Function '" << Coverage.Name << "'\n";
printCoverage(OS, Coverage);
OS << "\n";
}
}
// printFileCoverage - Print per-file coverage info.
void FileInfo::printFileCoverage(raw_ostream &OS) const {
for (const auto &FC : FileCoverages) {
const std::string &Filename = FC.first;
const GCOVCoverage &Coverage = FC.second;
OS << "File '" << Coverage.Name << "'\n";
printCoverage(OS, Coverage);
if (!Options.NoOutput)
OS << Coverage.Name << ":creating '" << Filename << "'\n";
OS << "\n";
}
}

View File

@ -1,460 +0,0 @@
//===- GCOV.h - LLVM coverage tool ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header provides the interface to read and write coverage files that
// use 'gcov' format.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_GCOV_H
#define LLVM_PROFILEDATA_GCOV_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
namespace llvm {
class GCOVFunction;
class GCOVBlock;
class FileInfo;
namespace GCOV {
enum GCOVVersion { V402, V404, V704 };
/// \brief A struct for passing gcov options between functions.
struct Options {
Options(bool A, bool B, bool C, bool F, bool P, bool U, bool L, bool N)
: AllBlocks(A), BranchInfo(B), BranchCount(C), FuncCoverage(F),
PreservePaths(P), UncondBranch(U), LongFileNames(L), NoOutput(N) {}
bool AllBlocks;
bool BranchInfo;
bool BranchCount;
bool FuncCoverage;
bool PreservePaths;
bool UncondBranch;
bool LongFileNames;
bool NoOutput;
};
} // end namespace GCOV
/// GCOVBuffer - A wrapper around MemoryBuffer to provide GCOV specific
/// read operations.
class GCOVBuffer {
public:
GCOVBuffer(MemoryBuffer *B) : Buffer(B) {}
/// readGCNOFormat - Check GCNO signature is valid at the beginning of buffer.
bool readGCNOFormat() {
StringRef File = Buffer->getBuffer().slice(0, 4);
if (File != "oncg") {
errs() << "Unexpected file type: " << File << ".\n";
return false;
}
Cursor = 4;
return true;
}
/// readGCDAFormat - Check GCDA signature is valid at the beginning of buffer.
bool readGCDAFormat() {
StringRef File = Buffer->getBuffer().slice(0, 4);
if (File != "adcg") {
errs() << "Unexpected file type: " << File << ".\n";
return false;
}
Cursor = 4;
return true;
}
/// readGCOVVersion - Read GCOV version.
bool readGCOVVersion(GCOV::GCOVVersion &Version) {
StringRef VersionStr = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (VersionStr == "*204") {
Cursor += 4;
Version = GCOV::V402;
return true;
}
if (VersionStr == "*404") {
Cursor += 4;
Version = GCOV::V404;
return true;
}
if (VersionStr == "*704") {
Cursor += 4;
Version = GCOV::V704;
return true;
}
errs() << "Unexpected version: " << VersionStr << ".\n";
return false;
}
/// readFunctionTag - If cursor points to a function tag then increment the
/// cursor and return true otherwise return false.
bool readFunctionTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\1') {
return false;
}
Cursor += 4;
return true;
}
/// readBlockTag - If cursor points to a block tag then increment the
/// cursor and return true otherwise return false.
bool readBlockTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x41' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readEdgeTag - If cursor points to an edge tag then increment the
/// cursor and return true otherwise return false.
bool readEdgeTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x43' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readLineTag - If cursor points to a line tag then increment the
/// cursor and return true otherwise return false.
bool readLineTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\x45' ||
Tag[3] != '\x01') {
return false;
}
Cursor += 4;
return true;
}
/// readArcTag - If cursor points to an gcda arc tag then increment the
/// cursor and return true otherwise return false.
bool readArcTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\xa1' ||
Tag[3] != '\1') {
return false;
}
Cursor += 4;
return true;
}
/// readObjectTag - If cursor points to an object summary tag then increment
/// the cursor and return true otherwise return false.
bool readObjectTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\xa1') {
return false;
}
Cursor += 4;
return true;
}
/// readProgramTag - If cursor points to a program summary tag then increment
/// the cursor and return true otherwise return false.
bool readProgramTag() {
StringRef Tag = Buffer->getBuffer().slice(Cursor, Cursor + 4);
if (Tag.empty() || Tag[0] != '\0' || Tag[1] != '\0' || Tag[2] != '\0' ||
Tag[3] != '\xa3') {
return false;
}
Cursor += 4;
return true;
}
bool readInt(uint32_t &Val) {
if (Buffer->getBuffer().size() < Cursor + 4) {
errs() << "Unexpected end of memory buffer: " << Cursor + 4 << ".\n";
return false;
}
StringRef Str = Buffer->getBuffer().slice(Cursor, Cursor + 4);
Cursor += 4;
Val = *(const uint32_t *)(Str.data());
return true;
}
bool readInt64(uint64_t &Val) {
uint32_t Lo, Hi;
if (!readInt(Lo) || !readInt(Hi))
return false;
Val = ((uint64_t)Hi << 32) | Lo;
return true;
}
bool readString(StringRef &Str) {
uint32_t Len = 0;
// Keep reading until we find a non-zero length. This emulates gcov's
// behaviour, which appears to do the same.
while (Len == 0)
if (!readInt(Len))
return false;
Len *= 4;
if (Buffer->getBuffer().size() < Cursor + Len) {
errs() << "Unexpected end of memory buffer: " << Cursor + Len << ".\n";
return false;
}
Str = Buffer->getBuffer().slice(Cursor, Cursor + Len).split('\0').first;
Cursor += Len;
return true;
}
uint64_t getCursor() const { return Cursor; }
void advanceCursor(uint32_t n) { Cursor += n * 4; }
private:
MemoryBuffer *Buffer;
uint64_t Cursor = 0;
};
/// GCOVFile - Collects coverage information for one pair of coverage file
/// (.gcno and .gcda).
class GCOVFile {
public:
GCOVFile() = default;
bool readGCNO(GCOVBuffer &Buffer);
bool readGCDA(GCOVBuffer &Buffer);
uint32_t getChecksum() const { return Checksum; }
void print(raw_ostream &OS) const;
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
bool GCNOInitialized = false;
GCOV::GCOVVersion Version;
uint32_t Checksum = 0;
SmallVector<std::unique_ptr<GCOVFunction>, 16> Functions;
uint32_t RunCount = 0;
uint32_t ProgramCount = 0;
};
/// GCOVEdge - Collects edge information.
struct GCOVEdge {
GCOVEdge(GCOVBlock &S, GCOVBlock &D) : Src(S), Dst(D) {}
GCOVBlock &Src;
GCOVBlock &Dst;
uint64_t Count = 0;
};
/// GCOVFunction - Collects function information.
class GCOVFunction {
public:
using BlockIterator = pointee_iterator<SmallVectorImpl<
std::unique_ptr<GCOVBlock>>::const_iterator>;
GCOVFunction(GCOVFile &P) : Parent(P) {}
bool readGCNO(GCOVBuffer &Buffer, GCOV::GCOVVersion Version);
bool readGCDA(GCOVBuffer &Buffer, GCOV::GCOVVersion Version);
StringRef getName() const { return Name; }
StringRef getFilename() const { return Filename; }
size_t getNumBlocks() const { return Blocks.size(); }
uint64_t getEntryCount() const;
uint64_t getExitCount() const;
BlockIterator block_begin() const { return Blocks.begin(); }
BlockIterator block_end() const { return Blocks.end(); }
iterator_range<BlockIterator> blocks() const {
return make_range(block_begin(), block_end());
}
void print(raw_ostream &OS) const;
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
GCOVFile &Parent;
uint32_t Ident = 0;
uint32_t Checksum;
uint32_t LineNumber = 0;
StringRef Name;
StringRef Filename;
SmallVector<std::unique_ptr<GCOVBlock>, 16> Blocks;
SmallVector<std::unique_ptr<GCOVEdge>, 16> Edges;
};
/// GCOVBlock - Collects block information.
class GCOVBlock {
struct EdgeWeight {
EdgeWeight(GCOVBlock *D) : Dst(D) {}
GCOVBlock *Dst;
uint64_t Count = 0;
};
struct SortDstEdgesFunctor {
bool operator()(const GCOVEdge *E1, const GCOVEdge *E2) {
return E1->Dst.Number < E2->Dst.Number;
}
};
public:
using EdgeIterator = SmallVectorImpl<GCOVEdge *>::const_iterator;
GCOVBlock(GCOVFunction &P, uint32_t N) : Parent(P), Number(N) {}
~GCOVBlock();
const GCOVFunction &getParent() const { return Parent; }
void addLine(uint32_t N) { Lines.push_back(N); }
uint32_t getLastLine() const { return Lines.back(); }
void addCount(size_t DstEdgeNo, uint64_t N);
uint64_t getCount() const { return Counter; }
void addSrcEdge(GCOVEdge *Edge) {
assert(&Edge->Dst == this); // up to caller to ensure edge is valid
SrcEdges.push_back(Edge);
}
void addDstEdge(GCOVEdge *Edge) {
assert(&Edge->Src == this); // up to caller to ensure edge is valid
// Check if adding this edge causes list to become unsorted.
if (DstEdges.size() && DstEdges.back()->Dst.Number > Edge->Dst.Number)
DstEdgesAreSorted = false;
DstEdges.push_back(Edge);
}
size_t getNumSrcEdges() const { return SrcEdges.size(); }
size_t getNumDstEdges() const { return DstEdges.size(); }
void sortDstEdges();
EdgeIterator src_begin() const { return SrcEdges.begin(); }
EdgeIterator src_end() const { return SrcEdges.end(); }
iterator_range<EdgeIterator> srcs() const {
return make_range(src_begin(), src_end());
}
EdgeIterator dst_begin() const { return DstEdges.begin(); }
EdgeIterator dst_end() const { return DstEdges.end(); }
iterator_range<EdgeIterator> dsts() const {
return make_range(dst_begin(), dst_end());
}
void print(raw_ostream &OS) const;
void dump() const;
void collectLineCounts(FileInfo &FI);
private:
GCOVFunction &Parent;
uint32_t Number;
uint64_t Counter = 0;
bool DstEdgesAreSorted = true;
SmallVector<GCOVEdge *, 16> SrcEdges;
SmallVector<GCOVEdge *, 16> DstEdges;
SmallVector<uint32_t, 16> Lines;
};
class FileInfo {
// It is unlikely--but possible--for multiple functions to be on the same
// line.
// Therefore this typedef allows LineData.Functions to store multiple
// functions
// per instance. This is rare, however, so optimize for the common case.
using FunctionVector = SmallVector<const GCOVFunction *, 1>;
using FunctionLines = DenseMap<uint32_t, FunctionVector>;
using BlockVector = SmallVector<const GCOVBlock *, 4>;
using BlockLines = DenseMap<uint32_t, BlockVector>;
struct LineData {
LineData() = default;
BlockLines Blocks;
FunctionLines Functions;
uint32_t LastLine = 0;
};
struct GCOVCoverage {
GCOVCoverage(StringRef Name) : Name(Name) {}
StringRef Name;
uint32_t LogicalLines = 0;
uint32_t LinesExec = 0;
uint32_t Branches = 0;
uint32_t BranchesExec = 0;
uint32_t BranchesTaken = 0;
};
public:
FileInfo(const GCOV::Options &Options) : Options(Options) {}
void addBlockLine(StringRef Filename, uint32_t Line, const GCOVBlock *Block) {
if (Line > LineInfo[Filename].LastLine)
LineInfo[Filename].LastLine = Line;
LineInfo[Filename].Blocks[Line - 1].push_back(Block);
}
void addFunctionLine(StringRef Filename, uint32_t Line,
const GCOVFunction *Function) {
if (Line > LineInfo[Filename].LastLine)
LineInfo[Filename].LastLine = Line;
LineInfo[Filename].Functions[Line - 1].push_back(Function);
}
void setRunCount(uint32_t Runs) { RunCount = Runs; }
void setProgramCount(uint32_t Programs) { ProgramCount = Programs; }
void print(raw_ostream &OS, StringRef MainFilename, StringRef GCNOFile,
StringRef GCDAFile);
private:
std::string getCoveragePath(StringRef Filename, StringRef MainFilename);
std::unique_ptr<raw_ostream> openCoveragePath(StringRef CoveragePath);
void printFunctionSummary(raw_ostream &OS, const FunctionVector &Funcs) const;
void printBlockInfo(raw_ostream &OS, const GCOVBlock &Block,
uint32_t LineIndex, uint32_t &BlockNo) const;
void printBranchInfo(raw_ostream &OS, const GCOVBlock &Block,
GCOVCoverage &Coverage, uint32_t &EdgeNo);
void printUncondBranchInfo(raw_ostream &OS, uint32_t &EdgeNo,
uint64_t Count) const;
void printCoverage(raw_ostream &OS, const GCOVCoverage &Coverage) const;
void printFuncCoverage(raw_ostream &OS) const;
void printFileCoverage(raw_ostream &OS) const;
const GCOV::Options &Options;
StringMap<LineData> LineInfo;
uint32_t RunCount = 0;
uint32_t ProgramCount = 0;
using FileCoverageList = SmallVector<std::pair<std::string, GCOVCoverage>, 4>;
using FuncCoverageMap = MapVector<const GCOVFunction *, GCOVCoverage>;
FileCoverageList FileCoverages;
FuncCoverageMap FuncCoverages;
};
} // end namespace llvm
#endif // LLVM_SUPPORT_GCOV_H

View File

@ -1,94 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial API and implementation
******************************************************************************/
#include "iss/plugin/cycle_estimate.h"
#include <iss/arch_if.h>
#include <util/logging.h>
#include <fstream>
iss::plugin::cycle_estimate::cycle_estimate(std::string config_file_name)
: arch_instr(nullptr)
{
if (config_file_name.length() > 0) {
std::ifstream is(config_file_name);
if (is.is_open()) {
try {
is >> root;
} catch (Json::RuntimeError &e) {
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
}
} else {
LOG(ERR) << "Could not open input file " << config_file_name;
}
}
}
iss::plugin::cycle_estimate::~cycle_estimate() {
}
bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) {
arch_instr = vm.get_arch()->get_instrumentation_if();
if(!arch_instr) return false;
const std::string core_name = arch_instr->core_type_name();
Json::Value &val = root[core_name];
if(!val.isNull() && val.isArray()){
delays.reserve(val.size());
for(auto it:val){
auto name = it["name"];
auto size = it["size"];
auto delay = it["delay"];
if(!name.isString() || !size.isUInt() || !(delay.isUInt() || delay.isArray())) throw std::runtime_error("JSON parse error");
if(delay.isUInt()){
delays.push_back(instr_desc{size.asUInt(), delay.asUInt(), 0});
} else {
delays.push_back(instr_desc{size.asUInt(), delay[0].asUInt(), delay[1].asUInt()});
}
}
} else {
LOG(ERR)<<"plugin cycle_estimate: could not find an entry for "<<core_name<<" in JSON file"<<std::endl;
}
return true;
}
void iss::plugin::cycle_estimate::callback(instr_info_t instr_info, exec_info const&) {
assert(arch_instr && "No instrumentation interface available but callback executed");
auto entry = delays[instr_info.instr_id];
bool taken = (arch_instr->get_next_pc()-arch_instr->get_pc()) != (entry.size/8);
if (taken && entry.taken > 1)
arch_instr->set_curr_instr_cycles(entry.taken);
else if (entry.not_taken > 1)
arch_instr->set_curr_instr_cycles(entry.not_taken);
}

View File

@ -30,38 +30,37 @@
*
*******************************************************************************/
// clang-format off
#include "iss/debugger/gdb_session.h"
#include "iss/debugger/encoderdecoder.h"
#include "iss/debugger/server.h"
#include "iss/debugger/target_adapter_if.h"
#include "iss/iss.h"
#include "iss/vm_types.h"
#include "sysc/core_complex.h"
#ifdef CORE_TGC_B
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_b.h"
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
// clang-format off
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/encoderdecoder.h>
#include <iss/debugger/server.h>
#include <iss/debugger/target_adapter_if.h>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include "iss_factory.h"
#ifndef WIN32
#include <iss/plugin/loader.h>
#endif
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_D
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d.h"
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, iss::arch::FEAT_PMP>;
#endif
#include "scc/report.h"
#include "sc_core_adapter_if.h"
#include <iss/arch/tgc_mapper.h>
#include <scc/report.h>
#include <util/ities.h>
#include <iostream>
#include <sstream>
#include <array>
// clang-format on
#include <numeric>
#include <iss/plugin/cycle_estimate.h>
#include <iss/plugin/instruction_count.h>
// clang-format on
#define STR(X) #X
#define CREATE_CORE(CN) \
if (type == STR(CN)) { std::tie(cpu, vm) = create_core<CN ## _plat_type>(backend, gdb_port, hart_id); } else
#define CREATE_CORE(CN) \
if(type == STR(CN)) { \
std::tie(cpu, vm) = create_core<CN##_plat_type>(backend, gdb_port, hart_id); \
} else
#ifdef WITH_SCV
#ifdef HAS_SCV
#include <scv.h>
#else
#include <scv-tr.h>
@ -74,12 +73,12 @@ using namespace scv_tr;
#define GET_PROP_VALUE(P) P.getValue()
#endif
#ifdef _MSC_VER
// not #if defined(_WIN32) || defined(_WIN64) because we have strncasecmp in mingw
#define strncasecmp _strnicmp
#define strcasecmp _stricmp
#endif
#ifdef _MSC_VER
// not #if defined(_WIN32) || defined(_WIN64) because we have strncasecmp in mingw
#define strncasecmp _strnicmp
#define strcasecmp _stricmp
#endif
namespace sysc {
namespace tgfs {
using namespace std;
@ -89,149 +88,23 @@ using namespace sc_core;
namespace {
iss::debugger::encoder_decoder encdec;
std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
}
} // namespace
template<typename PLAT>
class core_wrapper_t : public PLAT {
public:
using reg_t = typename arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
core_wrapper_t(core_complex *owner)
: owner(owner) { }
uint32_t get_mode() { return this->reg.PRIV; }
inline void set_interrupt_execution(bool v) { this->interrupt_sim = v?1:0; }
inline bool get_interrupt_execution() { return this->interrupt_sim; }
heart_state_t &get_state() { return this->state; }
void notify_phase(iss::arch_if::exec_phase p) override {
if (p == iss::arch_if::ISTART) owner->sync(this->reg.icount);
}
sync_type needed_sync() const override { return PRE_SYNC; }
void disass_output(uint64_t pc, const std::string instr) override {
if (!owner->disass_output(pc, instr)) {
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:" << this->reg.icount << "]";
SCCDEBUG(owner->name())<<"disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
};
status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
return owner->read_mem(addr.val, length, data, addr.access && access_type::FETCH) ? Ok : Err;
}
}
status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
auto res = owner->write_mem(addr.val, length, data) ? Ok : Err;
// clear MTIP on mtimecmp write
if (addr.val == 0x2004000) {
reg_t val;
this->read_csr(arch::mip, val);
if (val & (1ULL << 7)) this->write_csr(arch::mip, val & ~(1ULL << 7));
}
return res;
}
}
status read_csr(unsigned addr, reg_t &val) override {
#ifndef CWR_SYSTEMC
if((addr==arch::time || addr==arch::timeh) && owner->mtime_o.get_interface(0)){
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret?Ok:Err;
#else
if((addr==arch::time || addr==arch::timeh)){
uint64_t time_val = owner->mtime_i.read();
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return Ok;
#endif
} else {
return PLAT::read_csr(addr, val);
}
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
do {
sc_core::wait(wfi_evt);
} while (this->reg.pending_trap == 0);
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) {
reg_t mask = 0;
switch (id) {
case 16: // SW
mask = 1 << 3;
break;
case 17: // timer
mask = 1 << 7;
break;
case 18: // external
mask = 1 << 11;
break;
default:
/* do nothing*/
break;
}
if (value) {
this->csr[arch::mip] |= mask;
wfi_evt.notify();
} else
this->csr[arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
}
private:
core_complex *const owner;
sc_event wfi_evt;
};
int cmd_sysc(int argc, char *argv[], debugger::out_func of, debugger::data_func df,
debugger::target_adapter_if *tgt_adapter) {
if (argc > 1) {
if (strcasecmp(argv[1], "print_time") == 0) {
int cmd_sysc(int argc, char* argv[], debugger::out_func of, debugger::data_func df, debugger::target_adapter_if* tgt_adapter) {
if(argc > 1) {
if(strcasecmp(argv[1], "print_time") == 0) {
std::string t = sc_time_stamp().to_string();
of(t.c_str());
std::array<char, 64> buf;
encdec.enc_string(t.c_str(), buf.data(), 63);
df(buf.data());
return Ok;
} else if (strcasecmp(argv[1], "break") == 0) {
} else if(strcasecmp(argv[1], "break") == 0) {
sc_time t;
if (argc == 4) {
if(argc == 4) {
t = scc::parse_from_string(argv[2], argv[3]);
} else if (argc == 3) {
} else if(argc == 3) {
t = scc::parse_from_string(argv[2]);
} else
return Err;
@ -248,15 +121,19 @@ int cmd_sysc(int argc, char *argv[], debugger::out_func of, debugger::data_func
}
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr= std::unique_ptr<iss::vm_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
class core_wrapper {
public:
core_wrapper(core_complex *owner) : owner(owner) { }
core_wrapper(core_complex* owner)
: owner(owner) {}
void reset(uint64_t addr){vm->reset(addr);}
inline void start(){vm->start();}
inline std::pair<uint64_t, bool> load_file(std::string const& name){ return cpu->load_file(name);};
void reset(uint64_t addr) { vm->reset(addr); }
inline void start(bool dump = false) { vm->start(std::numeric_limits<uint64_t>::max(), dump); }
inline std::pair<uint64_t, bool> load_file(std::string const& name) {
iss::arch_if* cc = cpu->get_arch_if();
return cc->load_file(name);
};
std::function<unsigned(void)> get_mode;
std::function<uint64_t(void)> get_state;
@ -264,85 +141,88 @@ public:
std::function<void(bool)> set_interrupt_execution;
std::function<void(short, bool)> local_irq;
template<typename PLAT>
std::tuple<cpu_ptr, vm_ptr> create_core(std::string const& backend, unsigned gdb_port, uint32_t hart_id){
auto* lcpu = new core_wrapper_t<PLAT>(owner);
lcpu->set_mhartid(hart_id);
get_mode = [lcpu]() { return lcpu->get_mode(); };
get_state = [lcpu]() { return lcpu->get_state().mstatus.backing.val; };
get_interrupt_execution = [lcpu]() { return lcpu->get_interrupt_execution(); };
set_interrupt_execution = [lcpu](bool b) { return lcpu->set_interrupt_execution(b); };
local_irq = [lcpu](short s, bool b) { return lcpu->local_irq(s, b); };
if(backend == "interp")
return {cpu_ptr{lcpu}, vm_ptr{iss::interp::create(static_cast<typename PLAT::core*>(lcpu), gdb_port)}};
#ifdef WITH_LLVM
if(backend == "llvm")
return {cpu_ptr{lcpu}, vm_ptr{iss::llvm::create(lcpu, gdb_port)}};
#endif
#ifdef WITH_TCC
if(backend == "tcc")
s return {cpu_ptr{lcpu}, vm_ptr{iss::tcc::create(lcpu, gdb_port)}};
#endif
return {nullptr, nullptr};
}
void create_cpu(std::string const& type, std::string const& backend, unsigned gdb_port, uint32_t hart_id){
CREATE_CORE(tgc_c)
#ifdef CORE_TGC_B
CREATE_CORE(tgc_b)
#endif
#ifdef CORE_TGC_D
CREATE_CORE(tgc_d)
#endif
{
LOG(ERR) << "Illegal argument value for core type: " << type << std::endl;
void create_cpu(std::string const& type, std::string const& backend, unsigned gdb_port, uint32_t hart_id) {
auto& f = sysc::iss_factory::instance();
if(type.size() == 0 || type == "?") {
std::cout << "Available cores: " << util::join(f.get_names(), ", ") << std::endl;
sc_core::sc_stop();
} else if(type.find('|') != std::string::npos) {
std::tie(cpu, vm) = f.create(type + "|" + backend);
} else {
auto base_isa = type.substr(0, 5);
if(base_isa == "tgc5d" || base_isa == "tgc5e") {
std::tie(cpu, vm) = f.create(type + "|mu_p_clic_pmp|" + backend, gdb_port, owner);
} else {
std::tie(cpu, vm) = f.create(type + "|m_p|" + backend, gdb_port, owner);
}
}
auto *srv = debugger::server<debugger::gdb_session>::get();
if (srv) tgt_adapter = srv->get_target();
if (tgt_adapter)
tgt_adapter->add_custom_command(
{"sysc", [this](int argc, char *argv[], debugger::out_func of,
debugger::data_func df) -> int { return cmd_sysc(argc, argv, of, df, tgt_adapter); },
"SystemC sub-commands: break <time>, print_time"});
if(!cpu) {
SCCFATAL() << "Could not create cpu for isa " << type << " and backend " << backend;
}
if(!vm) {
SCCFATAL() << "Could not create vm for isa " << type << " and backend " << backend;
}
auto* sc_cpu_if = reinterpret_cast<sc_core_adapter_if*>(cpu.get());
sc_cpu_if->set_mhartid(hart_id);
get_mode = [sc_cpu_if]() { return sc_cpu_if->get_mode(); };
get_state = [sc_cpu_if]() { return sc_cpu_if->get_state(); };
get_interrupt_execution = [sc_cpu_if]() { return sc_cpu_if->get_interrupt_execution(); };
set_interrupt_execution = [sc_cpu_if](bool b) { return sc_cpu_if->set_interrupt_execution(b); };
local_irq = [sc_cpu_if](short s, bool b) { return sc_cpu_if->local_irq(s, b); };
auto* srv = debugger::server<debugger::gdb_session>::get();
if(srv)
tgt_adapter = srv->get_target();
if(tgt_adapter)
tgt_adapter->add_custom_command({"sysc",
[this](int argc, char* argv[], debugger::out_func of, debugger::data_func df) -> int {
return cmd_sysc(argc, argv, of, df, tgt_adapter);
},
"SystemC sub-commands: break <time>, print_time"});
}
core_complex * const owner;
core_complex* const owner;
vm_ptr vm{nullptr};
cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if *tgt_adapter{nullptr};
sc_cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if* tgt_adapter{nullptr};
};
struct core_trace {
//! transaction recording database
scv_tr_db *m_db{nullptr};
scv_tr_db* m_db{nullptr};
//! blocking transaction recording stream handle
scv_tr_stream *stream_handle{nullptr};
scv_tr_stream* stream_handle{nullptr};
//! transaction generator handle for blocking transactions
scv_tr_generator<_scv_tr_generator_default_data, _scv_tr_generator_default_data> *instr_tr_handle{nullptr};
scv_tr_generator<_scv_tr_generator_default_data, _scv_tr_generator_default_data>* instr_tr_handle{nullptr};
scv_tr_handle tr_handle;
};
SC_HAS_PROCESS(core_complex);// NOLINT
SC_HAS_PROCESS(core_complex); // NOLINT
#ifndef CWR_SYSTEMC
core_complex::core_complex(sc_module_name const& name)
: sc_module(name)
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
, write_lut(tlm_dmi_ext())
{
init();
, write_lut(tlm_dmi_ext()) {
init();
}
#endif
void core_complex::init(){
trc=new core_trace();
initiator.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
void core_complex::init() {
trc = new core_trace();
ibus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = fetch_lut.getEntry(start);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
fetch_lut.removeEntry(lut_entry);
}
});
dbus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = read_lut.getEntry(start);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
read_lut.removeEntry(lut_entry);
}
lut_entry = write_lut.getEntry(start);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
write_lut.removeEntry(lut_entry);
}
});
@ -354,54 +234,91 @@ void core_complex::init(){
sensitive << sw_irq_i;
SC_METHOD(timer_irq_cb);
sensitive << timer_irq_i;
SC_METHOD(global_irq_cb);
sensitive << global_irq_i;
trc->m_db=scv_tr_db::get_default_db();
SC_METHOD(ext_irq_cb);
sensitive << ext_irq_i;
SC_METHOD(local_irq_cb);
for(auto pin : local_irq_i)
sensitive << pin;
trc->m_db = scv_tr_db::get_default_db();
SC_METHOD(forward);
SC_METHOD(forward);
#ifndef CWR_SYSTEMC
sensitive<<clk_i;
sensitive << clk_i;
#else
sensitive<<curr_clk;
t2t.reset(new scc::tick2time{"t2t"});
t2t->clk_i(clk_i);
t2t->clk_o(curr_clk);
sensitive << curr_clk;
t2t.reset(new scc::tick2time{"t2t"});
t2t->clk_i(clk_i);
t2t->clk_o(curr_clk);
#endif
}
core_complex::~core_complex(){
core_complex::~core_complex() {
delete cpu;
delete trc;
for(auto* p : plugin_list)
delete p;
}
void core_complex::trace(sc_trace_file *trf) const {}
void core_complex::trace(sc_trace_file* trf) const {}
void core_complex::before_end_of_elaboration() {
SCCDEBUG(SCMOD)<<"instantiating iss::arch::tgf with "<<GET_PROP_VALUE(backend)<<" backend";
SCCDEBUG(SCMOD) << "instantiating iss::arch::tgf with " << GET_PROP_VALUE(backend) << " backend";
// cpu = scc::make_unique<core_wrapper>(this);
cpu = new core_wrapper(this);
cpu->create_cpu(GET_PROP_VALUE(core_type), GET_PROP_VALUE(backend), GET_PROP_VALUE(gdb_server_port), GET_PROP_VALUE(mhartid));
sc_assert(cpu->vm!=nullptr);
sc_assert(cpu->vm != nullptr);
cpu->vm->setDisassEnabled(GET_PROP_VALUE(enable_disass) || trc->m_db != nullptr);
if(GET_PROP_VALUE(plugins).length()) {
auto p = util::split(GET_PROP_VALUE(plugins), ';');
for(std::string const& opt_val : p) {
std::string plugin_name = opt_val;
std::string filename{"cycles.txt"};
std::size_t found = opt_val.find('=');
if(found != std::string::npos) {
plugin_name = opt_val.substr(0, found);
filename = opt_val.substr(found + 1, opt_val.size());
}
if(plugin_name == "ic") {
auto* plugin = new iss::plugin::instruction_count(filename);
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else if(plugin_name == "ce") {
auto* plugin = new iss::plugin::cycle_estimate(filename);
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else {
#ifndef WIN32
std::array<char const*, 1> a{{filename.c_str()}};
iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());
if(plugin) {
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else
#endif
SCCERR(SCMOD) << "Unknown plugin '" << plugin_name << "' or plugin not found";
}
}
}
}
void core_complex::start_of_simulation() {
quantum_keeper.reset();
if (GET_PROP_VALUE(elf_file).size() > 0) {
// quantum_keeper.reset();
if(GET_PROP_VALUE(elf_file).size() > 0) {
istringstream is(GET_PROP_VALUE(elf_file));
string s;
while (getline(is, s, ',')) {
while(getline(is, s, ',')) {
std::pair<uint64_t, bool> start_addr = cpu->load_file(s);
#ifndef CWR_SYSTEMC
if (reset_address.is_default_value() && start_addr.second == true)
if(reset_address.is_default_value() && start_addr.second == true)
reset_address.set_value(start_addr.first);
#else
if (start_addr.second == true)
reset_address=start_addr.first;
if(start_addr.second == true)
reset_address = start_addr.first;
#endif
}
}
if (trc->m_db != nullptr && trc->stream_handle == nullptr) {
if(trc->m_db != nullptr && trc->stream_handle == nullptr) {
string basename(this->name());
trc->stream_handle = new scv_tr_stream((basename + ".instr").c_str(), "TRANSACTOR", trc->m_db);
trc->instr_tr_handle = new scv_tr_generator<>("execute", *trc->stream_handle);
@ -409,8 +326,10 @@ void core_complex::start_of_simulation() {
}
bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
if (trc->m_db == nullptr) return false;
if (trc->tr_handle.is_active()) trc->tr_handle.end_transaction();
if(trc->m_db == nullptr)
return false;
if(trc->tr_handle.is_active())
trc->tr_handle.end_transaction();
trc->tr_handle = trc->instr_tr_handle->begin_transaction();
trc->tr_handle.record_attribute("PC", pc);
trc->tr_handle.record_attribute("INSTR", instr_str);
@ -422,96 +341,120 @@ bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
void core_complex::forward() {
#ifndef CWR_SYSTEMC
set_clock_period(clk_i.read());
set_clock_period(clk_i.read());
#else
set_clock_period(curr_clk.read());
set_clock_period(curr_clk.read());
#endif
}
void core_complex::set_clock_period(sc_core::sc_time period) {
curr_clk = period;
if (period == SC_ZERO_TIME) cpu->set_interrupt_execution(true);
curr_clk = period;
if(period == SC_ZERO_TIME)
cpu->set_interrupt_execution(true);
}
void core_complex::rst_cb() {
if (rst_i.read()) cpu->set_interrupt_execution(true);
if(rst_i.read())
cpu->set_interrupt_execution(true);
}
void core_complex::sw_irq_cb() { cpu->local_irq(16, sw_irq_i.read()); }
void core_complex::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
void core_complex::timer_irq_cb() { cpu->local_irq(17, timer_irq_i.read()); }
void core_complex::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
void core_complex::global_irq_cb() { cpu->local_irq(18, global_irq_i.read()); }
void core_complex::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
void core_complex::local_irq_cb() {
for(auto i = 0U; i < local_irq_i.size(); ++i) {
if(local_irq_i[i].event()) {
cpu->local_irq(16 + i, local_irq_i[i].read());
}
}
}
void core_complex::run() {
wait(SC_ZERO_TIME); // separate from elaboration phase
do {
if (rst_i.read()) {
wait(SC_ZERO_TIME);
if(rst_i.read()) {
cpu->reset(GET_PROP_VALUE(reset_address));
wait(rst_i.negedge_event());
}
while (curr_clk.read() == SC_ZERO_TIME) {
while(curr_clk.read() == SC_ZERO_TIME) {
wait(curr_clk.value_changed_event());
}
quantum_keeper.reset();
cpu->set_interrupt_execution(false);
cpu->start();
} while (cpu->get_interrupt_execution());
cpu->start(dump_ir);
} while(cpu->get_interrupt_execution());
sc_stop();
}
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t *const data, bool is_fetch) {
auto lut_entry = read_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
auto& dmi_lut = is_fetch ? fetch_lut : read_lut;
auto lut_entry = dmi_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(lut_entry.get_dmi_ptr() + offset, lut_entry.get_dmi_ptr() + offset + length, data);
quantum_keeper.inc(lut_entry.get_read_latency());
if(is_fetch)
ibus_inc += lut_entry.get_read_latency() / curr_clk;
else
dbus_inc += lut_entry.get_read_latency() / curr_clk;
return true;
} else {
auto& sckt = is_fetch ? ibus : dbus;
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay=quantum_keeper.get_local_time();
if (trc->m_db != nullptr && trc->tr_handle.is_valid()) {
if (is_fetch && trc->tr_handle.is_active()) {
sc_time delay = quantum_keeper.get_local_time();
if(trc->m_db != nullptr && trc->tr_handle.is_valid()) {
if(is_fetch && trc->tr_handle.is_active()) {
trc->tr_handle.end_transaction();
}
auto preExt = new tlm::scc::scv::tlm_recording_extension(trc->tr_handle, this);
gp.set_extension(preExt);
}
initiator->b_transport(gp, delay);
SCCTRACE(this->name()) << "read_mem(0x" << std::hex << addr << ") : " << data;
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
auto pre_delay = delay;
dbus->b_transport(gp, delay);
if(pre_delay > delay) {
quantum_keeper.reset();
} else {
auto incr = (delay - quantum_keeper.get_local_time()) / curr_clk;
if(is_fetch)
ibus_inc += incr;
else
dbus_inc += incr;
}
SCCTRACE(this->name()) << "[local time: " << delay << "]: finish read_mem(0x" << std::hex << addr << ") : 0x"
<< (length == 4 ? *(uint32_t*)data
: length == 2 ? *(uint16_t*)data
: (unsigned)*data);
if(gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if (gp.is_dmi_allowed()) {
if(gp.is_dmi_allowed() && !GET_PROP_VALUE(disable_dmi)) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if (initiator->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_read_allowed())
read_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if (dmi_data.is_write_allowed())
write_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if(sckt->get_direct_mem_ptr(gp, dmi_data)) {
if(dmi_data.is_read_allowed())
dmi_lut.addEntry(dmi_data, dmi_data.get_start_address(), dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
}
return true;
}
}
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t *const data) {
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
auto lut_entry = write_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(data, data + length, lut_entry.get_dmi_ptr() + offset);
quantum_keeper.inc(lut_entry.get_read_latency());
dbus_inc += lut_entry.get_write_latency() / curr_clk;
return true;
} else {
write_buf.resize(length);
@ -522,26 +465,30 @@ bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t *cons
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay=quantum_keeper.get_local_time();
if (trc->m_db != nullptr && trc->tr_handle.is_valid()) {
sc_time delay = quantum_keeper.get_local_time();
if(trc->m_db != nullptr && trc->tr_handle.is_valid()) {
auto preExt = new tlm::scc::scv::tlm_recording_extension(trc->tr_handle, this);
gp.set_extension(preExt);
}
initiator->b_transport(gp, delay);
quantum_keeper.set(delay);
SCCTRACE() << "write_mem(0x" << std::hex << addr << ") : " << data;
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
auto pre_delay = delay;
dbus->b_transport(gp, delay);
if(pre_delay > delay)
quantum_keeper.reset();
else
dbus_inc += (delay - quantum_keeper.get_local_time()) / curr_clk;
SCCTRACE() << "[local time: " << delay << "]: finish write_mem(0x" << std::hex << addr << ") : 0x"
<< (length == 4 ? *(uint32_t*)data
: length == 2 ? *(uint16_t*)data
: (unsigned)*data);
if(gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if (gp.is_dmi_allowed()) {
if(gp.is_dmi_allowed() && !GET_PROP_VALUE(disable_dmi)) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if (initiator->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_read_allowed())
read_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if (dmi_data.is_write_allowed())
if(dbus->get_direct_mem_ptr(gp, dmi_data)) {
if(dmi_data.is_write_allowed())
write_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
@ -550,44 +497,26 @@ bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t *cons
}
}
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t *const data) {
auto lut_entry = read_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(lut_entry.get_dmi_ptr() + offset, lut_entry.get_dmi_ptr() + offset + length, data);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
return initiator->transport_dbg(gp) == length;
}
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
return dbus->transport_dbg(gp) == length;
}
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t *const data) {
auto lut_entry = write_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(data, data + length, lut_entry.get_dmi_ptr() + offset);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
return initiator->transport_dbg(gp) == length;
}
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
return dbus->transport_dbg(gp) == length;
}
} /* namespace SiFive */
} /* namespace tgfs */
} /* namespace sysc */

View File

@ -33,31 +33,36 @@
#ifndef _SYSC_CORE_COMPLEX_H_
#define _SYSC_CORE_COMPLEX_H_
#include <tlm/scc/initiator_mixin.h>
#include <scc/traceable.h>
#include <scc/tick2time.h>
#include <scc/traceable.h>
#include <scc/utilities.h>
#include <tlm/scc/initiator_mixin.h>
#include <tlm/scc/scv/tlm_rec_initiator_socket.h>
#ifdef CWR_SYSTEMC
#include <scmlinc/scml_property.h>
#define SOCKET_WIDTH 32
#else
#include <cci_configuration>
#define SOCKET_WIDTH scc::LT
#endif
#include <memory>
#include <tlm>
#include <tlm_utils/tlm_quantumkeeper.h>
#include <util/range_lut.h>
#include <memory>
namespace iss {
class vm_plugin;
}
namespace sysc {
class tlm_dmi_ext : public tlm::tlm_dmi {
public:
bool operator==(const tlm_dmi_ext &o) const {
return this->get_granted_access() == o.get_granted_access() &&
this->get_start_address() == o.get_start_address() && this->get_end_address() == o.get_end_address();
bool operator==(const tlm_dmi_ext& o) const {
return this->get_granted_access() == o.get_granted_access() && this->get_start_address() == o.get_start_address() &&
this->get_end_address() == o.get_end_address();
}
bool operator!=(const tlm_dmi_ext &o) const { return !operator==(o); }
bool operator!=(const tlm_dmi_ext& o) const { return !operator==(o); }
};
namespace tgfs {
@ -66,11 +71,13 @@ struct core_trace;
class core_complex : public sc_core::sc_module, public scc::traceable {
public:
tlm::scc::initiator_mixin<tlm::scc::scv::tlm_rec_initiator_socket<32>> initiator{"intor"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> ibus{"ibus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> dbus{"dbus"};
sc_core::sc_in<bool> rst_i{"rst_i"};
sc_core::sc_in<bool> global_irq_i{"global_irq_i"};
sc_core::sc_in<bool> ext_irq_i{"ext_irq_i"};
sc_core::sc_in<bool> timer_irq_i{"timer_irq_i"};
@ -79,17 +86,19 @@ public:
sc_core::sc_vector<sc_core::sc_in<bool>> local_irq_i{"local_irq_i", 16};
#ifndef CWR_SYSTEMC
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_port<tlm::tlm_peek_if<uint64_t>, 1, sc_core::SC_ZERO_OR_MORE_BOUND> mtime_o;
sc_core::sc_port<tlm::tlm_peek_if<uint64_t>, 1, sc_core::SC_ZERO_OR_MORE_BOUND> mtime_o{"mtime_o"};
cci::cci_param<std::string> elf_file{"elf_file", ""};
cci::cci_param<bool> enable_disass{"enable_disass", false};
cci::cci_param<bool> disable_dmi{"disable_dmi", false};
cci::cci_param<uint64_t> reset_address{"reset_address", 0ULL};
cci::cci_param<std::string> core_type{"core_type", "tgc_c"};
cci::cci_param<std::string> core_type{"core_type", "tgc5c"};
cci::cci_param<std::string> backend{"backend", "interp"};
@ -99,20 +108,24 @@ public:
cci::cci_param<uint32_t> mhartid{"mhartid", 0};
cci::cci_param<std::string> plugins{"plugins", ""};
core_complex(sc_core::sc_module_name const& name);
#else
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<bool> enable_disass{"enable_disass", false};
scml_property<bool> disable_dmi{"disable_dmi", false};
scml_property<unsigned long long> reset_address{"reset_address", 0ULL};
scml_property<std::string> core_type{"core_type", "tgc_c"};
scml_property<std::string> core_type{"core_type", "tgc5c"};
scml_property<std::string> backend{"backend", "interp"};
@ -122,71 +135,85 @@ public:
scml_property<uint32_t> mhartid{"mhartid", 0};
scml_property<std::string> plugins{"plugins", ""};
core_complex(sc_core::sc_module_name const& name)
: sc_module(name)
, local_irq_i{"local_irq_i", 16}
, elf_file{"elf_file", ""}
, enable_disass{"enable_disass", false}
, reset_address{"reset_address", 0ULL}
, core_type{"core_type", "tgc_c"}
, core_type{"core_type", "tgc5c"}
, backend{"backend", "interp"}
, gdb_server_port{"gdb_server_port", 0}
, dump_ir{"dump_ir", false}
, mhartid{"mhartid", 0}
, plugins{"plugins", ""}
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
, write_lut(tlm_dmi_ext())
{
init();
, write_lut(tlm_dmi_ext()) {
init();
}
#endif
~core_complex();
inline unsigned get_last_bus_cycles() {
auto mem_incr = std::max(ibus_inc, dbus_inc);
ibus_inc = dbus_inc = 0;
return mem_incr > 1 ? mem_incr : 1;
}
inline void sync(uint64_t cycle) {
auto time = curr_clk * (cycle - last_sync_cycle);
quantum_keeper.inc(time);
if (quantum_keeper.need_sync()) {
auto core_inc = curr_clk * (cycle - last_sync_cycle);
quantum_keeper.inc(core_inc);
if(quantum_keeper.need_sync()) {
wait(quantum_keeper.get_local_time());
quantum_keeper.reset();
}
last_sync_cycle = cycle;
}
bool read_mem(uint64_t addr, unsigned length, uint8_t *const data, bool is_fetch);
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch);
bool write_mem(uint64_t addr, unsigned length, const uint8_t *const data);
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t *const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t *const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data);
void trace(sc_core::sc_trace_file *trf) const override;
void trace(sc_core::sc_trace_file* trf) const override;
bool disass_output(uint64_t pc, const std::string instr);
void set_clock_period(sc_core::sc_time period);
protected:
void before_end_of_elaboration() override;
void start_of_simulation() override;
void forward();
void forward();
void run();
void rst_cb();
void sw_irq_cb();
void timer_irq_cb();
void global_irq_cb();
void ext_irq_cb();
void local_irq_cb();
uint64_t last_sync_cycle = 0;
util::range_lut<tlm_dmi_ext> read_lut, write_lut;
util::range_lut<tlm_dmi_ext> fetch_lut, read_lut, write_lut;
tlm_utils::tlm_quantumkeeper quantum_keeper;
std::vector<uint8_t> write_buf;
core_wrapper* cpu{nullptr};
sc_core::sc_signal<sc_core::sc_time> curr_clk;
uint64_t ibus_inc{0}, dbus_inc{0};
core_trace* trc{nullptr};
std::unique_ptr<scc::tick2time> t2t;
private:
void init();
std::vector<iss::vm_plugin*> plugin_list;
};
} /* namespace SiFive */
} /* namespace tgfs */
} /* namespace sysc */
#endif /* _SYSC_CORE_COMPLEX_H_ */

90
src/sysc/iss_factory.h Normal file
View File

@ -0,0 +1,90 @@
/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#ifndef _ISS_FACTORY_H_
#define _ISS_FACTORY_H_
#include "sc_core_adapter_if.h"
#include <algorithm>
#include <functional>
#include <iss/iss.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
namespace sysc {
using sc_cpu_ptr = std::unique_ptr<sc_core_adapter_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
class iss_factory {
public:
using base_t = std::tuple<sc_cpu_ptr, vm_ptr>;
using create_fn = std::function<base_t(unsigned, void*)>;
using registry_t = std::unordered_map<std::string, create_fn>;
iss_factory() = default;
iss_factory(const iss_factory&) = delete;
iss_factory& operator=(const iss_factory&) = delete;
static iss_factory& instance() {
static iss_factory bf;
return bf;
}
bool register_creator(const std::string& className, create_fn const& fn) {
registry[className] = fn;
return true;
}
base_t create(std::string const& className, unsigned gdb_port = 0, void* init_data = nullptr) const {
registry_t::const_iterator regEntry = registry.find(className);
if(regEntry != registry.end())
return regEntry->second(gdb_port, init_data);
return {nullptr, nullptr};
}
std::vector<std::string> get_names() {
std::vector<std::string> keys{registry.size()};
std::transform(std::begin(registry), std::end(registry), std::begin(keys),
[](std::pair<std::string, create_fn> const& p) { return p.first; });
return keys;
}
private:
registry_t registry;
};
} // namespace sysc
#endif /* _ISS_FACTORY_H_ */

110
src/sysc/register_tgc_c.cpp Normal file
View File

@ -0,0 +1,110 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include "iss_factory.h"
#include <iss/arch/tgc5c.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include "sc_core_adapter.h"
#include "core_complex.h"
#include <array>
// clang-format on
namespace iss {
namespace interp {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|interp",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace interp
#if defined(WITH_LLVM)
namespace llvm {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|llvm",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace llvm
#endif
#if defined(WITH_TCC)
namespace tcc {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|tcc",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace tcc
#endif
#if defined(WITH_ASMJIT)
namespace asmjit {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|asmjit",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace asmjit
#endif
} // namespace iss

187
src/sysc/sc_core_adapter.h Normal file
View File

@ -0,0 +1,187 @@
/*
* sc_core_adapter.h
*
* Created on: Jul 5, 2023
* Author: eyck
*/
#ifndef _SYSC_SC_CORE_ADAPTER_H_
#define _SYSC_SC_CORE_ADAPTER_H_
#include "sc_core_adapter_if.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
namespace sysc {
template <typename PLAT> class sc_core_adapter : public PLAT, public sc_core_adapter_if {
public:
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex* owner)
: owner(owner) {}
iss::arch_if* get_arch_if() override { return this; }
void set_mhartid(unsigned id) override { PLAT::set_mhartid(id); }
uint32_t get_mode() override { return this->reg.PRIV; }
void set_interrupt_execution(bool v) override { this->interrupt_sim = v ? 1 : 0; }
bool get_interrupt_execution() override { return this->interrupt_sim; }
uint64_t get_state() override { return this->state.mstatus.backing.val; }
void notify_phase(iss::arch_if::exec_phase p) override {
if(p == iss::arch_if::ISTART && !first) {
auto cycle_incr = owner->get_last_bus_cycles();
if(cycle_incr > 1)
this->instr_if.update_last_instr_cycles(cycle_incr);
owner->sync(this->instr_if.get_total_cycles());
}
first = false;
}
iss::sync_type needed_sync() const override { return iss::PRE_SYNC; }
void disass_output(uint64_t pc, const std::string instr) override {
static constexpr std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
if(!owner->disass_output(pc, instr)) {
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0') << std::setw(sizeof(reg_t) * 2)
<< (reg_t)this->state.mstatus << std::dec << ";c:" << this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
};
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? iss::Ok : iss::Err;
}
}
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
auto tohost_upper = (sizeof(reg_t) == 4 && addr.val == (this->tohost + 4)) || (sizeof(reg_t) == 8 && addr.val == this->tohost);
auto tohost_lower = (sizeof(reg_t) == 4 && addr.val == this->tohost) || (sizeof(reg_t) == 64 && addr.val == this->tohost);
if(tohost_lower || tohost_upper) {
if(tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
default:
break;
}
} else if(tohost_lower)
to_host_wr_cnt++;
return iss::Ok;
} else {
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
return res;
}
}
}
iss::status read_csr(unsigned addr, reg_t& val) override {
#ifndef CWR_SYSTEMC
if((addr == iss::arch::time || addr == iss::arch::timeh) && owner->mtime_o.get_interface(0)) {
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret ? iss::Ok : iss::Err;
#else
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
uint64_t time_val = owner->mtime_i.read();
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
#endif
} else {
return PLAT::read_csr(addr, val);
}
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
while(this->reg.pending_trap == 0 && (this->csr[iss::arch::mip] & this->csr[iss::arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) override {
reg_t mask = 0;
switch(id) {
case 3: // SW
mask = 1 << 3;
break;
case 7: // timer
mask = 1 << 7;
break;
case 11: // external
mask = 1 << 11;
break;
default:
if(id > 15)
mask = 1 << id;
break;
}
if(value) {
this->csr[iss::arch::mip] |= mask;
wfi_evt.notify();
} else
this->csr[iss::arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
}
private:
sysc::tgfs::core_complex* const owner;
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;
bool first{true};
};
} // namespace sysc
#endif /* _SYSC_SC_CORE_ADAPTER_H_ */

View File

@ -0,0 +1,30 @@
/*
* sc_core_adapter.h
*
* Created on: Jul 5, 2023
* Author: eyck
*/
#ifndef _SYSC_SC_CORE_ADAPTER_IF_H_
#define _SYSC_SC_CORE_ADAPTER_IF_H_
#include "core_complex.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
namespace sysc {
struct sc_core_adapter_if {
virtual iss::arch_if* get_arch_if() = 0;
virtual void set_mhartid(unsigned) = 0;
virtual uint32_t get_mode() = 0;
virtual uint64_t get_state() = 0;
virtual bool get_interrupt_execution() = 0;
virtual void set_interrupt_execution(bool v) = 0;
virtual void local_irq(short id, bool value) = 0;
virtual ~sc_core_adapter_if() = default;
};
} // namespace sysc
#endif /* _SYSC_SC_CORE_ADAPTER_IF_H_ */

4805
src/vm/asmjit/vm_tgc5c.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -35,97 +35,90 @@
#include "fp_functions.h"
extern "C" {
#include <softfloat.h>
#include "internals.h"
#include "specialize.h"
#include <softfloat.h>
}
#include <limits>
using this_t = uint8_t *;
using this_t = uint8_t*;
const uint8_t rmm_map[] = {
softfloat_round_near_even /*RNE*/,
softfloat_round_minMag/*RTZ*/,
softfloat_round_min/*RDN*/,
softfloat_round_max/*RUP?*/,
softfloat_round_near_maxMag /*RMM*/,
softfloat_round_max/*RTZ*/,
softfloat_round_max/*RTZ*/,
softfloat_round_max/*RTZ*/,
softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/,
softfloat_round_near_maxMag /*RMM*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/,
};
const uint32_t quiet_nan32=0x7fC00000;
const uint32_t quiet_nan32 = 0x7fC00000;
extern "C" {
uint32_t fget_flags(){
return softfloat_exceptionFlags&0x1f;
}
uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; }
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r =f32_add(v1f, v2f);
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_add(v1f, v2f);
return r.v;
}
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_sub(v1f, v2f);
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sub(v1f, v2f);
return r.v;
}
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_mul(v1f, v2f);
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_mul(v1f, v2f);
return r.v;
}
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_div(v1f, v2f);
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_div(v1f, v2f);
return r.v;
}
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
float32_t v1f{v1};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_sqrt(v1f);
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sqrt(v1f);
return r.v;
}
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
float32_t v1f{v1},v2f{v2};
softfloat_exceptionFlags=0;
bool nan = (v1&defaultNaNF32UI)==quiet_nan32 || (v2&defaultNaNF32UI)==quiet_nan32;
float32_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
switch(op){
switch(op) {
case 0:
if(nan | snan){
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_eq(v1f,v2f )?1:0;
return f32_eq(v1f, v2f) ? 1 : 0;
case 1:
if(nan | snan){
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_le(v1f,v2f )?1:0;
return f32_le(v1f, v2f) ? 1 : 0;
case 2:
if(nan | snan){
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_lt(v1f,v2f )?1:0;
return f32_lt(v1f, v2f) ? 1 : 0;
default:
break;
}
@ -134,22 +127,22 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags=0;
softfloat_exceptionFlags = 0;
float32_t r;
switch(op){
case 0:{ //w->s, fp to int32
uint_fast32_t res = f32_to_i32(v1f,rmm_map[mode&0x7],true);
switch(op) {
case 0: { // w->s, fp to int32
uint_fast32_t res = f32_to_i32(v1f, rmm_map[mode & 0x7], true);
return (uint32_t)res;
}
case 1:{ //wu->s
uint_fast32_t res = f32_to_ui32(v1f,rmm_map[mode&0x7],true);
case 1: { // wu->s
uint_fast32_t res = f32_to_ui32(v1f, rmm_map[mode & 0x7], true);
return (uint32_t)res;
}
case 2: //s->w
r=i32_to_f32(v1);
case 2: // s->w
r = i32_to_f32(v1);
return r.v;
case 3: //s->wu
r=ui32_to_f32(v1);
case 3: // s->wu
r = ui32_to_f32(v1);
return r.v;
}
return 0;
@ -157,10 +150,11 @@ uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, op&0x1);
if(op>1) res.v ^= 1ULL<<31;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 31;
return res.v;
}
@ -170,23 +164,23 @@ uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op) {
bool v2_nan = (v2 & defaultNaNF32UI) == defaultNaNF32UI;
bool v1_snan = softfloat_isSigNaNF32UI(v1);
bool v2_snan = softfloat_isSigNaNF32UI(v2);
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
if (v1_nan || v1_snan)
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF32UI : v2;
else
if (v2_nan || v2_snan)
return v1;
else {
if ((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) {
return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1);
} else {
float32_t v1f{ v1 }, v2f{ v2 };
return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1);
}
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) {
return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1);
} else {
float32_t v1f{v1}, v2f{v2};
return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1);
}
}
}
uint32_t fclass_s( uint32_t v1 ){
uint32_t fclass_s(uint32_t v1) {
float32_t a{v1};
union ui32_f32 uA;
@ -195,30 +189,23 @@ uint32_t fclass_s( uint32_t v1 ){
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF32UI( uiA ) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI( uiA ) == 0;
bool sign = signF32UI( uiA );
bool fracZero = fracF32UI( uiA ) == 0;
bool isNaN = isNaNF32UI( uiA );
bool isSNaN = softfloat_isSigNaNF32UI( uiA );
uint_fast16_t infOrNaN = expF32UI(uiA) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI(uiA) == 0;
bool sign = signF32UI(uiA);
bool fracZero = fracF32UI(uiA) == 0;
bool isNaN = isNaNF32UI(uiA);
bool isSNaN = softfloat_isSigNaNF32UI(uiA);
return
( sign && infOrNaN && fracZero ) << 0 |
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
( sign && subnormalOrZero && !fracZero ) << 2 |
( sign && subnormalOrZero && fracZero ) << 3 |
( !sign && infOrNaN && fracZero ) << 7 |
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
( !sign && subnormalOrZero && !fracZero ) << 5 |
( !sign && subnormalOrZero && fracZero ) << 4 |
( isNaN && isSNaN ) << 8 |
( isNaN && !isSNaN ) << 9;
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint32_t fconv_d2f(uint64_t v1, uint8_t mode){
softfloat_roundingMode=rmm_map[mode&0x7];
bool nan = (v1 & defaultNaNF64UI)==defaultNaNF64UI;
if(nan){
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
softfloat_roundingMode = rmm_map[mode & 0x7];
bool nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI;
if(nan) {
return defaultNaNF32UI;
} else {
float32_t res = f64_to_f32(float64_t{v1});
@ -226,83 +213,84 @@ uint32_t fconv_d2f(uint64_t v1, uint8_t mode){
}
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode){
bool nan = (v1 & defaultNaNF32UI)==defaultNaNF32UI;
if(nan){
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI;
if(nan) {
return defaultNaNF64UI;
} else {
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_roundingMode = rmm_map[mode & 0x7];
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
}
}
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
bool nan = (v1&defaultNaNF32UI)==quiet_nan32;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1);
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r =f64_add(v1f, v2f);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_add(v1f, v2f);
return r.v;
}
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_sub(v1f, v2f);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sub(v1f, v2f);
return r.v;
}
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_mul(v1f, v2f);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_mul(v1f, v2f);
return r.v;
}
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_div(v1f, v2f);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_div(v1f, v2f);
return r.v;
}
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
float64_t v1f{v1};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_sqrt(v1f);
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sqrt(v1f);
return r.v;
}
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
float64_t v1f{v1},v2f{v2};
softfloat_exceptionFlags=0;
bool nan = (v1&defaultNaNF64UI)==quiet_nan32 || (v2&defaultNaNF64UI)==quiet_nan32;
float64_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
switch(op){
switch(op) {
case 0:
if(nan | snan){
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_eq(v1f,v2f )?1:0;
return f64_eq(v1f, v2f) ? 1 : 0;
case 1:
if(nan | snan){
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_le(v1f,v2f )?1:0;
return f64_le(v1f, v2f) ? 1 : 0;
case 2:
if(nan | snan){
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_lt(v1f,v2f )?1:0;
return f64_lt(v1f, v2f) ? 1 : 0;
default:
break;
}
@ -311,22 +299,22 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags=0;
softfloat_exceptionFlags = 0;
float64_t r;
switch(op){
case 0:{ //l->d, fp to int32
int64_t res = f64_to_i64(v1f,rmm_map[mode&0x7],true);
switch(op) {
case 0: { // l->d, fp to int32
int64_t res = f64_to_i64(v1f, rmm_map[mode & 0x7], true);
return (uint64_t)res;
}
case 1:{ //lu->s
uint64_t res = f64_to_ui64(v1f,rmm_map[mode&0x7],true);
case 1: { // lu->s
uint64_t res = f64_to_ui64(v1f, rmm_map[mode & 0x7], true);
return res;
}
case 2: //s->l
r=i64_to_f64(v1);
case 2: // s->l
r = i64_to_f64(v1);
return r.v;
case 3: //s->lu
r=ui64_to_f64(v1);
case 3: // s->lu
r = ui64_to_f64(v1);
return r.v;
}
return 0;
@ -334,10 +322,11 @@ uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op&0x1);
if(op>1) res.v ^= 1ULL<<63;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 63;
return res.v;
}
@ -347,27 +336,24 @@ uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) {
bool v2_nan = (v2 & defaultNaNF64UI) == defaultNaNF64UI;
bool v1_snan = softfloat_isSigNaNF64UI(v1);
bool v2_snan = softfloat_isSigNaNF64UI(v2);
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
if (v1_nan || v1_snan)
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF64UI : v2;
else
if (v2_nan || v2_snan)
return v1;
else {
if ((v1 & std::numeric_limits<int64_t>::max()) == 0 && (v2 & std::numeric_limits<int64_t>::max()) == 0) {
return op == 0 ?
((v1 & std::numeric_limits<int64_t>::min()) ? v1 : v2) :
((v1 & std::numeric_limits<int64_t>::min()) ? v2 : v1);
} else {
float64_t v1f{ v1 }, v2f{ v2 };
return op == 0 ?
(f64_lt(v1f, v2f) ? v1 : v2) :
(f64_lt(v1f, v2f) ? v2 : v1);
}
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & std::numeric_limits<int64_t>::max()) == 0 && (v2 & std::numeric_limits<int64_t>::max()) == 0) {
return op == 0 ? ((v1 & std::numeric_limits<int64_t>::min()) ? v1 : v2)
: ((v1 & std::numeric_limits<int64_t>::min()) ? v2 : v1);
} else {
float64_t v1f{v1}, v2f{v2};
return op == 0 ? (f64_lt(v1f, v2f) ? v1 : v2) : (f64_lt(v1f, v2f) ? v2 : v1);
}
}
}
uint64_t fclass_d(uint64_t v1 ){
uint64_t fclass_d(uint64_t v1) {
float64_t a{v1};
union ui64_f64 uA;
@ -376,68 +362,61 @@ uint64_t fclass_d(uint64_t v1 ){
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF64UI( uiA ) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI( uiA ) == 0;
bool sign = signF64UI( uiA );
bool fracZero = fracF64UI( uiA ) == 0;
bool isNaN = isNaNF64UI( uiA );
bool isSNaN = softfloat_isSigNaNF64UI( uiA );
uint_fast16_t infOrNaN = expF64UI(uiA) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI(uiA) == 0;
bool sign = signF64UI(uiA);
bool fracZero = fracF64UI(uiA) == 0;
bool isNaN = isNaNF64UI(uiA);
bool isSNaN = softfloat_isSigNaNF64UI(uiA);
return
( sign && infOrNaN && fracZero ) << 0 |
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
( sign && subnormalOrZero && !fracZero ) << 2 |
( sign && subnormalOrZero && fracZero ) << 3 |
( !sign && infOrNaN && fracZero ) << 7 |
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
( !sign && subnormalOrZero && !fracZero ) << 5 |
( !sign && subnormalOrZero && fracZero ) << 4 |
( isNaN && isSNaN ) << 8 |
( isNaN && !isSNaN ) << 9;
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags=0;
softfloat_exceptionFlags = 0;
float64_t r;
switch(op){
case 0: //l->s, fp to int32
return f32_to_i64(v1f,rmm_map[mode&0x7],true);
case 1: //wu->s
return f32_to_ui64(v1f,rmm_map[mode&0x7],true);
case 2: //s->w
r=i32_to_f64(v1);
switch(op) {
case 0: // l->s, fp to int32
return f32_to_i64(v1f, rmm_map[mode & 0x7], true);
case 1: // wu->s
return f32_to_ui64(v1f, rmm_map[mode & 0x7], true);
case 2: // s->w
r = i32_to_f64(v1);
return r.v;
case 3: //s->wu
r=ui32_to_f64(v1);
case 3: // s->wu
r = ui32_to_f64(v1);
return r.v;
}
return 0;
}
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) {
softfloat_exceptionFlags=0;
softfloat_exceptionFlags = 0;
float32_t r;
switch(op){
case 0:{ //wu->s
int32_t r=f64_to_i32(float64_t{v1}, rmm_map[mode&0x7],true);
switch(op) {
case 0: { // wu->s
int32_t r = f64_to_i32(float64_t{v1}, rmm_map[mode & 0x7], true);
return r;
}
case 1:{ //wu->s
uint32_t r=f64_to_ui32(float64_t{v1}, rmm_map[mode&0x7],true);
case 1: { // wu->s
uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map[mode & 0x7], true);
return r;
}
case 2: //l->s, fp to int32
r=i64_to_f32(v1);
case 2: // l->s, fp to int32
r = i64_to_f32(v1);
return r.v;
case 3: //wu->s
r=ui64_to_f32(v1);
case 3: // wu->s
r = ui64_to_f32(v1);
return r.v;
}
return 0;
}
uint32_t unbox_s(uint64_t v){
uint32_t unbox_s(uint64_t v) {
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
if((v & mask) != mask)
return 0x7fc00000;
@ -445,4 +424,3 @@ uint32_t unbox_s(uint64_t v){
return v & std::numeric_limits<uint32_t>::max();
}
}

View File

@ -44,11 +44,11 @@ uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsqrt_s(uint32_t v1, uint8_t mode);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) ;
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode);
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fclass_s( uint32_t v1 );
uint32_t fclass_s(uint32_t v1);
uint32_t fconv_d2f(uint64_t v1, uint8_t mode);
uint64_t fconv_f2d(uint32_t v1, uint8_t mode);
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode);
@ -59,8 +59,8 @@ uint64_t fsqrt_d(uint64_t v1, uint8_t mode);
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode);
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) ;
uint64_t fclass_d(uint64_t v1 );
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fclass_d(uint64_t v1);
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode);
uint32_t unbox_s(uint64_t v);

View File

@ -1 +0,0 @@
/vm_tgc_*.cpp

2730
src/vm/interp/vm_tgc5c.cpp Normal file

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More