DBT-RISE-TGC/src/iss/arch/riscv_hart_m_p.h

1307 lines
56 KiB
C
Raw Normal View History

2017-08-27 12:10:38 +02:00
/*******************************************************************************
* Copyright (C) 2019 - 2023 MINRES Technologies GmbH
2017-08-27 12:10:38 +02:00
* All rights reserved.
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
2017-09-22 11:23:23 +02:00
*
2017-08-27 12:10:38 +02:00
* Contributors:
2017-11-27 00:14:41 +01:00
* eyck@minres.com - initial implementation
2017-08-27 12:10:38 +02:00
******************************************************************************/
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
2017-08-27 12:10:38 +02:00
#include "riscv_hart_common.h"
#include "iss/arch/traits.h"
2018-11-08 13:31:28 +01:00
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
2019-07-14 16:51:14 +02:00
#ifndef FMT_HEADER_ONLY
2019-04-11 07:40:02 +02:00
#define FMT_HEADER_ONLY
2019-07-14 16:51:14 +02:00
#endif
2018-11-08 13:31:28 +01:00
#include <array>
2017-08-27 12:10:38 +02:00
#include <elfio/elfio.hpp>
2020-09-04 15:37:21 +02:00
#include <fmt/format.h>
2017-09-22 11:23:23 +02:00
#include <iomanip>
2017-08-27 12:10:38 +02:00
#include <sstream>
2018-11-08 13:31:28 +01:00
#include <type_traits>
#include <unordered_map>
2021-03-06 08:17:42 +01:00
#include <functional>
2018-11-08 13:31:28 +01:00
#include <util/bit_field.h>
2017-09-22 11:23:23 +02:00
#include <util/ities.h>
#include <util/sparse_array.h>
2017-08-27 12:10:38 +02:00
2018-11-08 13:31:28 +01:00
#if defined(__GNUC__)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
2017-08-27 12:10:38 +02:00
namespace iss {
namespace arch {
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT=FEAT_NONE> class riscv_hart_m_p : public BASE {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char *, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char *, 12> irq_str = {
{"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
public:
using core = BASE;
2021-11-02 11:13:29 +01:00
using this_class = riscv_hart_m_p<BASE, FEAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
2017-08-27 12:10:38 +02:00
2022-03-27 15:38:18 +02:00
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t *const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const *const);
2017-08-27 12:10:38 +02:00
// primary template
2018-11-08 13:31:28 +01:00
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
2018-11-08 13:31:28 +01:00
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
2017-10-12 22:41:37 +02:00
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
2021-07-09 07:37:12 +02:00
static const reg_t mstatus_reset_val = 0x1800;
void write_mstatus(T val) {
2021-07-09 07:37:12 +02:00
auto mask = get_mask() &0xff; // MPP is hardcode as 0x3
2021-03-01 07:36:27 +01:00
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
2018-11-08 13:31:28 +01:00
mstatus = new_val;
}
static constexpr uint32_t get_mask() {
2021-07-06 21:19:36 +02:00
//return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported
// +-SD
// | +-TSR
// | |+-TW
// | ||+-TVM
// | |||+-MXR
// | ||||+-SUM
// | |||||+-MPRV
// | |||||| +-XS
// | |||||| | +-FS
// | |||||| | | +-MPP
// | |||||| | | | +-SPP
// | |||||| | | | |+-MPIE
// | ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
}
};
2023-03-23 07:47:21 +01:00
// specialization 64bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
2023-03-25 09:14:56 +01:00
static const reg_t mstatus_reset_val = 0x1800;
2023-03-23 07:47:21 +01:00
void write_mstatus(T val) {
auto mask = get_mask() &0xff; // MPP is hardcode as 0x3
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
static constexpr T get_mask() {
2023-03-25 09:14:56 +01:00
//return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
//
// +-TSR
// |+-TW
// ||+-TVM
// |||+-MXR
// ||||+-SUM
// |||||+-MPRV
// |||||| +-XS
// |||||| | +-FS
// |||||| | | +-MPP
// |||||| | | | +-SPP
// |||||| | | | |+-MPIE
// ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
2023-03-23 07:47:21 +01:00
}
};
using hart_state_type = hart_state<reg_t>;
2017-08-27 12:10:38 +02:00
constexpr reg_t get_irq_mask() {
2021-07-06 21:19:36 +02:00
return 0b100010001000; // only machine mode is supported
2017-08-27 12:10:38 +02:00
}
2023-03-27 12:04:43 +02:00
constexpr bool has_compressed() {
return traits<BASE>::MISA_VAL&0b0100;
}
2021-07-07 11:30:00 +02:00
constexpr reg_t get_pc_mask() {
2023-05-01 22:23:35 +02:00
return has_compressed()?(reg_t)~1:(reg_t)~3;
2021-07-07 11:30:00 +02:00
}
2022-10-05 08:58:57 +02:00
riscv_hart_m_p(feature_config cfg = feature_config{});
virtual ~riscv_hart_m_p() = default;
2017-08-27 12:10:38 +02:00
void reset(uint64_t address) override;
2018-11-08 13:31:28 +01:00
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
2017-08-27 12:10:38 +02:00
iss::status read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) override;
2017-08-27 12:10:38 +02:00
2022-10-05 08:58:57 +02:00
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
2017-08-27 12:10:38 +02:00
2020-09-04 15:37:21 +02:00
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount + cycle_offset);
2017-08-27 12:10:38 +02:00
};
2018-11-08 13:31:28 +01:00
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
2021-03-06 08:17:42 +01:00
void set_csr(unsigned addr, reg_t val){
csr[addr & csr.page_addr_mask] = val;
}
2023-03-11 12:47:10 +01:00
void set_irq_num(unsigned i) {
mcause_max_irq=1<<util::ilog2(i);
}
2017-08-27 12:10:38 +02:00
protected:
2018-11-08 13:31:28 +01:00
struct riscv_instrumentation_if : public iss::instrumentation_if {
2021-11-02 11:13:29 +01:00
riscv_instrumentation_if(riscv_hart_m_p<BASE, FEAT> &arch)
2018-11-08 13:31:28 +01:00
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
2018-11-08 13:31:28 +01:00
const std::string core_type_name() const override { return traits<BASE>::core_type; }
2022-04-25 14:18:19 +02:00
uint64_t get_pc() override { return arch.reg.PC; };
2022-04-25 14:18:19 +02:00
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; };
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; };
bool is_branch_taken() override { return arch.reg.last_branch; };
2021-11-02 11:13:29 +01:00
riscv_hart_m_p<BASE, FEAT> &arch;
};
friend struct riscv_instrumentation_if;
2017-09-22 11:23:23 +02:00
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
2017-08-27 12:10:38 +02:00
2021-11-02 11:13:29 +01:00
iss::status read_clic(uint64_t addr, unsigned length, uint8_t *const data);
iss::status write_clic(uint64_t addr, unsigned length, const uint8_t *const data);
2017-09-22 11:23:23 +02:00
virtual iss::status read_csr(unsigned addr, reg_t &val);
virtual iss::status write_csr(unsigned addr, reg_t val);
2017-08-27 12:10:38 +02:00
hart_state_type state;
int64_t cycle_offset{0};
uint64_t mcycle_csr{0};
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
2017-08-27 12:10:38 +02:00
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
unsigned to_host_wr_cnt = 0;
riscv_instrumentation_if instr_if;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
2017-08-27 12:10:38 +02:00
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
2021-11-02 11:13:29 +01:00
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
struct{
uint8_t ip;
uint8_t ie;
uint8_t attr;
uint8_t ctl;
};
uint32_t raw;
};
std::vector<clic_int_reg_t> clic_int_reg;
2023-03-17 09:09:09 +01:00
uint8_t clic_mprev_lvl{0};
uint8_t clic_mact_lvl{0};
2017-08-27 12:10:38 +02:00
2022-03-27 15:38:18 +02:00
std::vector<uint8_t> tcm;
2021-11-02 11:13:29 +01:00
iss::status read_csr_reg(unsigned addr, reg_t &val);
iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t &val);
iss::status write_null(unsigned addr, reg_t val){return iss::status::Ok;}
2017-09-22 11:23:23 +02:00
iss::status read_cycle(unsigned addr, reg_t &val);
iss::status write_cycle(unsigned addr, reg_t val);
iss::status read_instret(unsigned addr, reg_t &val);
iss::status write_instret(unsigned addr, reg_t val);
iss::status read_tvec(unsigned addr, reg_t &val);
2017-10-25 22:05:31 +02:00
iss::status read_time(unsigned addr, reg_t &val);
2017-09-22 11:23:23 +02:00
iss::status read_status(unsigned addr, reg_t &val);
2017-08-27 12:10:38 +02:00
iss::status write_status(unsigned addr, reg_t val);
2023-03-15 12:27:39 +01:00
iss::status read_cause(unsigned addr, reg_t &val);
2021-07-28 09:09:08 +02:00
iss::status write_cause(unsigned addr, reg_t val);
2017-09-22 11:23:23 +02:00
iss::status read_ie(unsigned addr, reg_t &val);
2017-08-27 12:10:38 +02:00
iss::status write_ie(unsigned addr, reg_t val);
2017-09-22 11:23:23 +02:00
iss::status read_ip(unsigned addr, reg_t &val);
2020-09-04 15:37:21 +02:00
iss::status read_hartid(unsigned addr, reg_t &val);
iss::status write_epc(unsigned addr, reg_t val);
2023-03-17 10:23:05 +01:00
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
2023-03-11 14:03:03 +01:00
iss::status write_xtvt(unsigned addr, reg_t val);
iss::status write_dcsr_dcsr(unsigned addr, reg_t val);
iss::status read_dcsr_reg(unsigned addr, reg_t &val);
iss::status write_dcsr_reg(unsigned addr, reg_t val);
iss::status read_dpc_reg(unsigned addr, reg_t &val);
iss::status write_dpc_reg(unsigned addr, reg_t val);
2022-03-25 11:33:44 +01:00
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t &val) {return iss::status::Err;};
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) {return iss::status::Err;};
void register_custom_csr_rd(unsigned addr){
csr_rd_cb[addr] = &this_class::read_custom_csr_reg;
}
void register_custom_csr_wr(unsigned addr){
csr_wr_cb[addr] = &this_class::write_custom_csr_reg;
}
2021-03-11 17:12:28 +01:00
reg_t mhartid_reg{0x0};
2018-11-08 13:31:28 +01:00
2017-08-27 12:10:38 +02:00
void check_interrupt();
2021-11-02 11:13:29 +01:00
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
2022-03-27 15:38:18 +02:00
std::vector<std::tuple<uint64_t, uint64_t>> memfn_range;
std::vector<std::function<mem_read_f>> memfn_read;
std::vector<std::function<mem_write_f>> memfn_write;
void insert_mem_range(uint64_t, uint64_t, std::function<mem_read_f>, std::function<mem_write_f>);
2022-10-05 08:58:57 +02:00
feature_config cfg;
2023-06-11 18:29:48 +02:00
uint64_t mcause_max_irq{(FEAT&features_e::FEAT_CLIC)?4096:16};
inline bool debug_mode_active() {return this->reg.PRIV&0x4;}
2023-04-27 12:20:30 +02:00
std::pair<std::function<mem_read_f>, std::function<mem_write_f>>
replace_mem_access(std::function<mem_read_f> rd, std::function<mem_write_f> wr){
std::pair<std::function<mem_read_f>, std::function<mem_write_f>> ret{hart_mem_rd_delegate, hart_mem_wr_delegate};
hart_mem_rd_delegate = rd;
hart_mem_wr_delegate = wr;
return ret;
}
std::function<mem_read_f> hart_mem_rd_delegate;
std::function<mem_write_f> hart_mem_wr_delegate;
2017-08-27 12:10:38 +02:00
};
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT>
2022-10-05 08:58:57 +02:00
riscv_hart_m_p<BASE, FEAT>::riscv_hart_m_p(feature_config cfg)
2018-11-08 13:31:28 +01:00
: state()
2022-10-05 08:58:57 +02:00
, instr_if(*this)
, cfg(cfg) {
2021-07-06 21:19:36 +02:00
// reset values
2021-04-09 11:20:51 +02:00
csr[misa] = traits<BASE>::MISA_VAL;
2021-07-06 21:19:36 +02:00
csr[mvendorid] = 0x669;
2021-09-30 19:27:03 +02:00
csr[marchid] = traits<BASE>::MARCHID_VAL;
2021-07-06 21:19:36 +02:00
csr[mimpid] = 1;
2017-08-27 12:10:38 +02:00
uart_buf.str("");
for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
2021-11-02 11:13:29 +01:00
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
2023-03-27 12:04:43 +02:00
if(traits<BASE>::XLEN==32) for (unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
2021-11-02 11:13:29 +01:00
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for (unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
2021-11-02 11:13:29 +01:00
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
2021-07-07 11:30:00 +02:00
for (unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
}
2023-03-27 12:04:43 +02:00
if(traits<BASE>::XLEN==32) for (unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr){
csr_rd_cb[addr] = &this_class::read_null;
2021-11-02 11:13:29 +01:00
//csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// common regs
2023-04-04 09:23:08 +02:00
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr: roaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_null;
}
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr: rwaddrs) {
2021-11-02 11:13:29 +01:00
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
2023-05-01 22:23:35 +02:00
if(traits<BASE>::XLEN==32) csr_rd_cb[timeh] = &this_class::read_time;
2021-07-07 11:30:00 +02:00
csr_rd_cb[cycle] = &this_class::read_cycle;
2023-05-01 22:23:35 +02:00
if(traits<BASE>::XLEN==32) csr_rd_cb[cycleh] = &this_class::read_cycle;
2021-07-07 11:30:00 +02:00
csr_rd_cb[instret] = &this_class::read_instret;
2023-05-01 22:23:35 +02:00
if(traits<BASE>::XLEN==32) csr_rd_cb[instreth] = &this_class::read_instret;
2021-07-07 11:30:00 +02:00
csr_rd_cb[mcycle] = &this_class::read_cycle;
csr_wr_cb[mcycle] = &this_class::write_cycle;
2023-03-27 12:04:43 +02:00
if(traits<BASE>::XLEN==32) csr_rd_cb[mcycleh] = &this_class::read_cycle;
if(traits<BASE>::XLEN==32) csr_wr_cb[mcycleh] = &this_class::write_cycle;
csr_rd_cb[minstret] = &this_class::read_instret;
csr_wr_cb[minstret] = &this_class::write_instret;
2023-03-27 12:04:43 +02:00
if(traits<BASE>::XLEN==32) csr_rd_cb[minstreth] = &this_class::read_instret;
if(traits<BASE>::XLEN==32) csr_wr_cb[minstreth] = &this_class::write_instret;
csr_rd_cb[mstatus] = &this_class::read_status;
csr_wr_cb[mstatus] = &this_class::write_status;
2023-03-15 12:27:39 +01:00
csr_rd_cb[mcause] = &this_class::read_cause;
2021-07-28 09:09:08 +02:00
csr_wr_cb[mcause] = &this_class::write_cause;
csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip;
2022-03-31 20:33:12 +02:00
csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid;
csr_wr_cb[misa] = &this_class::write_null;
2021-07-06 21:19:36 +02:00
csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
2022-03-27 15:38:18 +02:00
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_csr_reg;
2023-03-11 14:03:03 +01:00
csr_wr_cb[mtvt] = &this_class::write_xtvt;
2023-03-15 12:27:39 +01:00
// csr_rd_cb[mxnti] = &this_class::read_csr_reg;
// csr_wr_cb[mxnti] = &this_class::write_csr_reg;
2023-03-17 10:23:05 +01:00
csr_rd_cb[mintstatus] = &this_class::read_intstatus;
2022-03-27 15:38:18 +02:00
csr_wr_cb[mintstatus] = &this_class::write_null;
2023-03-15 09:07:00 +01:00
// csr_rd_cb[mscratchcsw] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
// csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
2022-03-27 15:38:18 +02:00
csr_rd_cb[mintthresh] = &this_class::read_csr_reg;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
2022-10-05 08:58:57 +02:00
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw=0});
2022-03-27 15:38:18 +02:00
clic_cfg_reg=0x20;
2023-03-17 09:09:09 +01:00
clic_mact_lvl = clic_mprev_lvl = (1<<(cfg.clic_int_ctl_bits)) - 1;
csr[mintthresh] = (1<<(cfg.clic_int_ctl_bits)) - 1;
2022-10-05 08:58:57 +02:00
insert_mem_range(cfg.clic_base, 0x5000UL,
2022-03-27 15:38:18 +02:00
[this](phys_addr_t addr, unsigned length, uint8_t * const data) { return read_clic(addr.val, length, data);},
[this](phys_addr_t addr, unsigned length, uint8_t const * const data) {return write_clic(addr.val, length, data);});
}
if(FEAT & FEAT_TCM) {
2022-10-05 08:58:57 +02:00
tcm.resize(cfg.tcm_size);
2022-03-27 15:38:18 +02:00
std::function<mem_read_f> read_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t * const data) {
2022-10-05 08:58:57 +02:00
auto offset=addr.val-this->cfg.tcm_base;
2022-03-27 15:38:18 +02:00
std::copy(tcm.data() + offset, tcm.data() + offset + length, data);
return iss::Ok;
};
std::function<mem_write_f> write_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t const * const data) {
2022-10-05 08:58:57 +02:00
auto offset=addr.val-this->cfg.tcm_base;
2022-03-27 15:38:18 +02:00
std::copy(data, data + length, tcm.data() + offset);
return iss::Ok;
};
2022-10-05 08:58:57 +02:00
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
2022-03-27 15:38:18 +02:00
}
2021-11-02 11:13:29 +01:00
if(FEAT & FEAT_DEBUG){
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch1] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch1] = &this_class::read_dcsr_reg;
csr_wr_cb[dpc] = &this_class::write_dpc_reg;
csr_rd_cb[dpc] = &this_class::read_dpc_reg;
csr_wr_cb[dcsr] = &this_class::write_dcsr_dcsr;
csr_rd_cb[dcsr] = &this_class::read_dcsr_reg;
2021-11-02 11:13:29 +01:00
}
2023-04-27 12:20:30 +02:00
hart_mem_rd_delegate = [this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status {
return this->read_mem(a, l, d);
};
hart_mem_wr_delegate = [this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status {
return this->write_mem(a, l, d);
};
2017-08-27 12:10:38 +02:00
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> std::pair<uint64_t, bool> riscv_hart_m_p<BASE, FEAT>::load_file(std::string name, int type) {
2017-09-22 11:23:23 +02:00
FILE *fp = fopen(name.c_str(), "r");
if (fp) {
2018-11-08 13:31:28 +01:00
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
2022-07-23 13:48:55 +02:00
fclose(fp);
2017-09-22 11:23:23 +02:00
if (n != 4) throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
2018-11-08 13:31:28 +01:00
if (strcmp(buf.data() + 1, "ELF") == 0) {
2017-09-22 11:23:23 +02:00
// Create elfio reader
2017-08-27 12:10:38 +02:00
ELFIO::elfio reader;
// Load ELF data
2017-09-22 11:23:23 +02:00
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
2017-08-27 12:10:38 +02:00
// check elf properties
2018-11-08 13:31:28 +01:00
if (reader.get_class() != ELFCLASS32)
if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
2017-09-22 11:23:23 +02:00
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
2018-11-08 13:31:28 +01:00
if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
2017-09-22 11:23:23 +02:00
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if (fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE,
traits<BASE>::MEM, pseg->get_physical_address(),
fsize, reinterpret_cast<const uint8_t *const>(seg_data));
2017-10-04 10:31:11 +02:00
if (res != iss::Ok)
2021-10-10 19:06:41 +02:00
LOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex
2017-10-04 10:31:11 +02:00
<< pseg->get_physical_address();
2017-08-27 12:10:38 +02:00
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".symtab") {
if ( SHT_SYMTAB == sec->get_type() ||
SHT_DYNSYM == sec->get_type() ) {
ELFIO::symbol_section_accessor symbols( reader, sec );
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for ( auto i = 0U; i < sym_no; ++i ) {
symbols.get_symbol( i, name, value, size, bind, type, section, other );
if(name=="tohost") {
tohost = value;
} else if(name=="fromhost") {
fromhost = value;
}
}
}
} else if (sec->get_name() == ".tohost") {
2017-09-22 11:23:23 +02:00
tohost = sec->get_address();
fromhost = tohost + 0x40;
2017-08-27 12:10:38 +02:00
}
}
return std::make_pair(entry, true);
2017-08-27 12:10:38 +02:00
}
2023-06-05 15:17:16 +02:00
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file",name));
2017-08-27 12:10:38 +02:00
}
2023-06-05 15:17:16 +02:00
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
2017-08-27 12:10:38 +02:00
}
2022-03-27 15:38:18 +02:00
template<typename BASE, features_e FEAT>
inline void riscv_hart_m_p<BASE, FEAT>::insert_mem_range(uint64_t base, uint64_t size, std::function<mem_read_f> rd_f,
std::function<mem_write_f> wr_fn) {
std::tuple<uint64_t, uint64_t> entry{base, size};
auto it = std::upper_bound( memfn_range.begin(), memfn_range.end(), entry,
[](std::tuple<uint64_t, uint64_t> const& a, std::tuple<uint64_t, uint64_t> const& b){
return std::get<0>(a)<std::get<0>(b);
});
auto idx = std::distance(memfn_range.begin(), it);
memfn_range.insert(it, entry);
memfn_read.insert(std::begin(memfn_read)+idx, rd_f);
memfn_write.insert(std::begin(memfn_write)+idx, wr_fn);
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) {
2017-08-27 12:10:38 +02:00
#ifndef NDEBUG
if (access && iss::access_type::DEBUG) {
2020-05-29 08:52:55 +02:00
LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH){
LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
2017-08-27 12:10:38 +02:00
} else {
2020-01-12 18:19:48 +01:00
LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
2020-05-29 08:52:55 +02:00
}
2017-08-27 12:10:38 +02:00
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
2023-03-27 12:04:43 +02:00
auto alignment = is_fetch(access)? (has_compressed()? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr;
if (is_debug(access)) throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
2017-08-27 12:10:38 +02:00
}
try {
if(!is_debug(access) && (addr&(alignment-1))){
this->reg.trap_state = (1UL << 31) | 4<<16;
2021-07-06 21:19:36 +02:00
fault_data=addr;
return iss::Err;
}
2022-03-27 15:38:18 +02:00
auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
auto res = iss::Err;
2022-10-05 08:58:57 +02:00
if(access != access_type::FETCH && memfn_range.size()){
2022-03-27 15:38:18 +02:00
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_read[idx](phys_addr, length, data);
} else
2023-04-27 12:20:30 +02:00
res = hart_mem_rd_delegate( phys_addr, length, data);
2022-03-27 15:38:18 +02:00
} else {
2023-04-27 12:20:30 +02:00
res = hart_mem_rd_delegate( phys_addr, length, data);
2022-03-27 15:38:18 +02:00
}
2021-07-06 21:19:36 +02:00
if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault
2021-07-06 21:19:36 +02:00
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
2021-07-06 21:19:36 +02:00
fault_data=ta.addr;
2017-08-27 12:10:38 +02:00
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t *const>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if (it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
2017-08-27 12:10:38 +02:00
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
2021-07-06 21:19:36 +02:00
fault_data=ta.addr;
return iss::Err;
2017-08-27 12:10:38 +02:00
}
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) {
2017-08-27 12:10:38 +02:00
#ifndef NDEBUG
const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
2017-09-22 11:23:23 +02:00
switch (length) {
2017-08-27 12:10:38 +02:00
case 8:
2018-11-08 13:31:28 +01:00
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec
2020-01-12 18:19:48 +01:00
<< ") @addr 0x" << std::hex << addr;
2017-08-27 12:10:38 +02:00
break;
case 4:
2018-11-08 13:31:28 +01:00
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec
2020-01-12 18:19:48 +01:00
<< ") @addr 0x" << std::hex << addr;
2017-08-27 12:10:38 +02:00
break;
case 2:
2018-11-08 13:31:28 +01:00
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec
2020-01-12 18:19:48 +01:00
<< ") @addr 0x" << std::hex << addr;
2017-08-27 12:10:38 +02:00
break;
case 1:
2018-11-08 13:31:28 +01:00
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec
2020-01-12 18:19:48 +01:00
<< ") @addr 0x" << std::hex << addr;
2017-08-27 12:10:38 +02:00
break;
default:
2018-11-08 13:31:28 +01:00
LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
2017-08-27 12:10:38 +02:00
}
#endif
try {
switch (space) {
2017-09-22 11:23:23 +02:00
case traits<BASE>::MEM: {
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
2017-10-04 10:31:11 +02:00
return iss::Err;
}
try {
2022-03-27 15:38:18 +02:00
if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){
this->reg.trap_state = (1UL << 31) | 6<<16;
2021-07-06 21:19:36 +02:00
fault_data=addr;
return iss::Err;
}
2022-03-27 15:38:18 +02:00
auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()){
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_write[idx]( phys_addr, length, data);
} else
res = write_mem( phys_addr, length, data);
} else {
res = write_mem( phys_addr, length, data);
}
2021-07-06 21:19:36 +02:00
if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1UL << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
2021-07-06 21:19:36 +02:00
fault_data=addr;
}
2017-10-04 10:31:11 +02:00
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
2021-07-06 21:19:36 +02:00
fault_data=ta.addr;
2017-10-04 10:31:11 +02:00
return iss::Err;
}
phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr});
2017-09-22 11:23:23 +02:00
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
2017-08-27 12:10:38 +02:00
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
2017-09-22 11:23:23 +02:00
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
2017-08-27 12:10:38 +02:00
uart_buf.str("");
}
return iss::Ok;
2017-09-22 11:23:23 +02:00
case 0x10008000: { // HFROSC base, hfrosccfg reg
2017-10-04 10:31:11 +02:00
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
2017-09-22 11:23:23 +02:00
std::copy(data, data + length, p.data() + offs);
2017-10-04 10:31:11 +02:00
auto &x = *(p.data() + offs + 3);
2017-09-22 11:23:23 +02:00
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
2017-08-27 12:10:38 +02:00
return iss::Ok;
}
2017-09-22 11:23:23 +02:00
case 0x10008008: { // HFROSC base, pllcfg reg
2017-10-04 10:31:11 +02:00
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
2017-09-22 11:23:23 +02:00
std::copy(data, data + length, p.data() + offs);
2017-10-04 10:31:11 +02:00
auto &x = *(p.data() + offs + 3);
2017-09-22 11:23:23 +02:00
x |= 0x80; // set pll lock upon writing
2017-08-27 12:10:38 +02:00
return iss::Ok;
2017-09-22 11:23:23 +02:00
} break;
2017-10-04 10:31:11 +02:00
default: {}
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t *>(data));
2017-09-22 11:23:23 +02:00
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
switch (addr) {
2017-08-27 12:10:38 +02:00
case 2:
2017-09-22 11:23:23 +02:00
case 3: {
2017-08-27 12:10:38 +02:00
ptw.clear();
auto tvm = state.mstatus.TVM;
2017-08-27 12:10:38 +02:00
return iss::Ok;
}
}
2017-09-22 11:23:23 +02:00
} break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
2017-09-22 11:23:23 +02:00
} break;
2017-08-27 12:10:38 +02:00
default:
return iss::Err;
}
return iss::Ok;
2017-09-22 11:23:23 +02:00
} catch (trap_access &ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
2021-07-06 21:19:36 +02:00
fault_data=ta.addr;
2017-08-27 12:10:38 +02:00
return iss::Err;
}
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_csr(unsigned addr, reg_t &val) {
2017-09-22 11:23:23 +02:00
if (addr >= csr.size()) return iss::Err;
2020-05-31 16:41:04 +02:00
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
2017-08-27 12:10:38 +02:00
auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
2017-08-27 12:10:38 +02:00
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_csr(unsigned addr, reg_t val) {
2017-09-22 11:23:23 +02:00
if (addr >= csr.size()) return iss::Err;
2020-05-31 16:41:04 +02:00
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
2020-05-31 16:41:04 +02:00
throw illegal_instruction_fault(this->fault_data);
if((addr&0xc00)==0xc00) // writing to read-only region
2020-05-31 16:41:04 +02:00
throw illegal_instruction_fault(this->fault_data);
2017-08-27 12:10:38 +02:00
auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_csr_reg(unsigned addr, reg_t &val) {
val = csr[addr];
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_null(unsigned addr, reg_t &val) {
val = 0;
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_csr_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
2017-08-27 12:10:38 +02:00
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
2017-09-22 11:23:23 +02:00
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
2017-09-22 11:23:23 +02:00
} else if (addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
2017-08-27 12:10:38 +02:00
}
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_cycle(unsigned addr, reg_t val) {
if (sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if (addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) {
2021-07-07 11:30:00 +02:00
if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret);
2021-07-07 11:30:00 +02:00
} else if ((addr&0xff) == (minstreth&0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_instret(unsigned addr, reg_t val) {
if (sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
2021-07-07 11:30:00 +02:00
if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
2017-10-25 22:05:31 +02:00
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_tvec(unsigned addr, reg_t &val) {
2023-03-10 20:40:21 +01:00
val = FEAT & features_e::FEAT_CLIC? csr[addr] : csr[addr] & ~2;
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_status(unsigned addr, reg_t &val) {
val = state.mstatus & hart_state_type::get_mask();
2017-08-27 12:10:38 +02:00
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_status(unsigned addr, reg_t val) {
state.write_mstatus(val);
2017-08-27 12:10:38 +02:00
check_interrupt();
return iss::Ok;
}
2023-03-15 12:27:39 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cause(unsigned addr, reg_t &val) {
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec]&0x3)==3) {
2023-03-17 09:09:09 +01:00
val = csr[addr] & ((1UL<<(traits<BASE>::XLEN-1)) | (mcause_max_irq-1) | (0xfUL<<16));
val |= clic_mprev_lvl<<16;
val |= state.mstatus.MPIE<<27;
val |= state.mstatus.MPP<<28;
} else
2023-06-12 17:38:56 +02:00
val = csr[addr] & ((1UL<<(traits<BASE>::XLEN-1)) | (mcause_max_irq-1));
2023-03-15 12:27:39 +01:00
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_cause(unsigned addr, reg_t val) {
2023-03-15 12:27:39 +01:00
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec]&0x3)==3) {
2023-03-17 09:09:09 +01:00
auto mask = ((1UL<<(traits<BASE>::XLEN-1)) | (mcause_max_irq-1) | (0xfUL<<16));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
clic_mprev_lvl = ((val>>16)&0xff) | (1<<(8-cfg. clic_int_ctl_bits)) - 1;
2023-03-15 12:27:39 +01:00
state.mstatus.MPIE=(val>>27)&0x1;
state.mstatus.MPP=(val>>28)&0x3;
2023-03-17 09:09:09 +01:00
} else {
auto mask = ((1UL<<(traits<BASE>::XLEN-1)) | (mcause_max_irq-1));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
2023-03-15 12:27:39 +01:00
}
2021-07-28 09:09:08 +02:00
return iss::Ok;
}
2021-11-09 19:47:34 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_hartid(unsigned addr, reg_t &val) {
val = mhartid_reg;
2017-08-27 12:10:38 +02:00
return iss::Ok;
}
2021-11-09 19:47:34 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_ie(unsigned addr, reg_t &val) {
auto mask = get_irq_mask();
val = csr[mie] & mask;
2020-09-04 15:37:21 +02:00
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
2017-08-27 12:10:38 +02:00
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_ip(unsigned addr, reg_t &val) {
2021-11-09 19:47:34 +01:00
auto mask = get_irq_mask();
val = csr[mip] & mask;
2017-08-27 12:10:38 +02:00
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_epc(unsigned addr, reg_t val) {
2021-07-09 13:01:22 +02:00
csr[addr] = val & get_pc_mask();
2021-07-07 11:30:00 +02:00
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dcsr_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
2021-11-02 11:13:29 +01:00
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_dcsr_reg(unsigned addr, reg_t &val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dcsr_reg(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_dpc_reg(unsigned addr, reg_t &val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dpc_reg(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
2023-03-17 10:23:05 +01:00
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_intstatus(unsigned addr, reg_t& val) {
2023-03-17 10:51:39 +01:00
val = (clic_mact_lvl&0xff) <<24;
2023-03-17 10:23:05 +01:00
return iss::Ok;
}
2022-03-27 15:38:18 +02:00
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_intthresh(unsigned addr, reg_t val) {
2023-03-17 09:09:09 +01:00
csr[addr]= (val &0xff) | (1<<(cfg.clic_int_ctl_bits)) - 1;
2022-03-27 15:38:18 +02:00
return iss::Ok;
}
2023-03-11 14:03:03 +01:00
template<typename BASE, features_e FEAT>
2023-03-12 07:42:09 +01:00
iss::status riscv_hart_m_p<BASE, FEAT>::write_xtvt(unsigned addr, reg_t val) {
2023-03-11 14:03:03 +01:00
csr[addr]= val & ~0x3fULL;
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
2017-10-04 10:31:11 +02:00
switch (paddr.val) {
default: {
for(auto offs=0U; offs<length; ++offs) {
*(data + offs)=mem[(paddr.val+offs)%mem.size()];
}
2017-10-04 10:31:11 +02:00
}
}
return iss::Ok;
2017-08-27 12:10:38 +02:00
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) {
2017-10-04 10:31:11 +02:00
switch (paddr.val) {
case 0xFFFF0000: // UART0 base, TXFIFO reg
2017-10-04 10:31:11 +02:00
if (((char)data[0]) == '\n' || data[0] == 0) {
LOG(INFO)<<"UART"<<((paddr.val>>12)&0x3)<<" send '"<<uart_buf.str()<<"'";
2017-10-04 10:31:11 +02:00
uart_buf.str("");
} else if(((char)data[0]) != '\r')
uart_buf << (char)data[0];
break;
2017-10-04 10:31:11 +02:00
default: {
mem_type::page_type &p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if (paddr.access && iss::access_type::FUNC) {
2021-07-07 11:30:00 +02:00
auto tohost_upper = (traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) ||
(traits<BASE>::XLEN == 64 && paddr.val == tohost);
2017-10-04 10:31:11 +02:00
auto tohost_lower =
2021-07-07 11:30:00 +02:00
(traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
2017-10-04 10:31:11 +02:00
if (tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask));
if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch (hostvar >> 48) {
case 0:
2018-11-08 13:31:28 +01:00
if (hostvar != 0x1) {
2017-10-04 10:31:11 +02:00
LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
2018-11-08 13:31:28 +01:00
} else {
2017-10-04 10:31:11 +02:00
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
2017-11-23 14:48:18 +01:00
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
2020-04-17 19:23:43 +02:00
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
2017-10-04 10:31:11 +02:00
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if (c == '\n' || c == 0) {
LOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
to_host_wr_cnt = 0;
} break;
default:
break;
}
} else if (tohost_lower)
to_host_wr_cnt++;
2021-07-07 11:30:00 +02:00
} else if ((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) ||
(traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
2017-10-04 10:31:11 +02:00
uint64_t fhostvar = *reinterpret_cast<uint64_t *>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
2017-08-27 12:10:38 +02:00
}
return iss::Ok;
2017-08-27 12:10:38 +02:00
}
2022-03-27 15:38:18 +02:00
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned length, uint8_t *const data) {
2022-10-05 08:58:57 +02:00
if(addr==cfg.clic_base) { // cliccfg
2022-03-27 15:38:18 +02:00
*data=clic_cfg_reg;
for(auto i=1; i<length; ++i) *(data+i)=0;
2022-10-05 08:58:57 +02:00
} else if(addr>=(cfg.clic_base+0x40) && (addr+length)<=(cfg.clic_base+0x40+cfg.clic_num_trigger*4)){ // clicinttrig
2022-03-27 15:38:18 +02:00
auto offset = ((addr&0x7fff)-0x40)/4;
read_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
2022-10-05 08:58:57 +02:00
} else if(addr>=(cfg.clic_base+0x1000) && (addr+length)<=(cfg.clic_base+0x1000+cfg.clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
2022-03-27 15:38:18 +02:00
auto offset = ((addr&0x7fff)-0x1000)/4;
read_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
} else {
for(auto i = 0U; i<length; ++i) *(data+i)=0;
}
return iss::Ok;
}
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_clic(uint64_t addr, unsigned length, const uint8_t *const data) {
2022-10-05 08:58:57 +02:00
if(addr==cfg.clic_base) { // cliccfg
2023-03-11 08:48:03 +01:00
clic_cfg_reg = (clic_cfg_reg&~0x1e) | (*data&0x1e);
2022-10-05 08:58:57 +02:00
} else if(addr>=(cfg.clic_base+0x40) && (addr+length)<=(cfg.clic_base+0x40+cfg.clic_num_trigger*4)){ // clicinttrig
2022-03-27 15:38:18 +02:00
auto offset = ((addr&0x7fff)-0x40)/4;
write_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
2022-10-05 08:58:57 +02:00
} else if(addr>=(cfg.clic_base+0x1000) && (addr+length)<=(cfg.clic_base+0x1000+cfg.clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
2022-03-27 15:38:18 +02:00
auto offset = ((addr&0x7fff)-0x1000)/4;
write_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
2022-10-05 08:58:57 +02:00
clic_int_reg[offset].raw &= 0xf0c70101; // clicIntCtlBits->0xf0, clicintattr->0xc7, clicintie->0x1, clicintip->0x1
2022-03-27 15:38:18 +02:00
}
return iss::Ok;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> inline void riscv_hart_m_p<BASE, FEAT>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state_type::mstatus_reset_val;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> void riscv_hart_m_p<BASE, FEAT>::check_interrupt() {
2023-03-17 09:09:09 +01:00
//TODO: Implement CLIC functionality
2021-07-06 21:19:36 +02:00
//auto ideleg = csr[mideleg];
2017-09-22 11:23:23 +02:00
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
2017-08-27 12:10:38 +02:00
2022-10-05 08:58:57 +02:00
bool mstatus_mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie;
2021-07-07 11:30:00 +02:00
auto enabled_interrupts = m_enabled ? ena_irq : 0;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
if (enabled_interrupts != 0) {
2017-08-27 12:10:38 +02:00
int res = 0;
while ((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
2017-08-27 12:10:38 +02:00
}
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
2017-08-27 12:10:38 +02:00
// calculate and write mcause val
2023-03-10 20:40:21 +01:00
auto const trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
2017-08-27 12:10:38 +02:00
// calculate effective privilege level
2022-04-13 11:41:01 +02:00
unsigned new_priv = PRIV_M;
2017-09-22 11:23:23 +02:00
if (trap_id == 0) { // exception
2021-11-02 11:13:29 +01:00
if (cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
2017-08-27 12:10:38 +02:00
// store ret addr in xepc register
2021-07-09 13:01:22 +02:00
csr[mepc] = static_cast<reg_t>(addr) & get_pc_mask(); // store actual address instruction of exception
2021-11-02 15:10:20 +01:00
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
* or store address-misaligned,
* access, or page-fault exception occurs, mtval is written with the
* faulting effective address.
*/
2021-09-23 21:09:36 +02:00
switch(cause){
case 0:
2021-11-02 15:10:20 +01:00
csr[mtval] = static_cast<reg_t>(addr);
2021-09-23 21:09:36 +02:00
break;
case 2:
2023-03-27 12:04:43 +02:00
csr[mtval] = (!has_compressed() || (instr & 0x3)==3)?instr:instr&0xffff;
2021-09-23 21:09:36 +02:00
break;
2021-11-02 11:13:29 +01:00
case 3:
2022-04-13 11:41:01 +02:00
if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[mtval] = addr;
}
2021-11-02 11:13:29 +01:00
break;
2021-11-02 15:10:20 +01:00
case 4:
case 6:
2021-09-23 21:09:36 +02:00
csr[mtval] = fault_data;
2021-11-02 15:10:20 +01:00
break;
default:
csr[mtval] = 0;
2021-09-23 21:09:36 +02:00
}
2017-09-22 11:23:23 +02:00
fault_data = 0;
} else {
2021-07-09 13:01:22 +02:00
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
2017-08-27 12:10:38 +02:00
}
2021-12-01 12:56:36 +01:00
csr[mcause] = (trap_id << (traits<BASE>::XLEN-1)) + cause;
2017-08-27 12:10:38 +02:00
// update mstatus
2017-09-22 11:23:23 +02:00
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
2017-08-27 12:10:38 +02:00
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
state.mstatus.MPP = PRIV_M;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
2017-08-27 12:10:38 +02:00
// get trap vector
2023-03-10 20:40:21 +01:00
auto xtvec = csr[mtvec];
// calculate adds// set NEXT_PC to trap addressess to jump to based on MODE
if((FEAT & features_e::FEAT_CLIC) && trap_id!=0 && (xtvec & 0x3UL)==3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else {
// bits in mtvec
this->reg.NEXT_PC = xtvec & ~0x3UL;
if ((xtvec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
}
2017-08-27 12:10:38 +02:00
// reset trap state
2022-04-13 11:41:01 +02:00
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
2018-11-08 13:31:28 +01:00
std::array<char, 32> buffer;
2021-10-10 19:06:41 +02:00
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
2018-11-08 13:31:28 +01:00
sprintf(buffer.data(), "0x%016lx", addr);
2021-10-10 19:06:41 +02:00
#endif
2020-04-17 19:23:43 +02:00
if((flags&0xffffffff) != 0xffffffff)
2018-11-08 13:31:28 +01:00
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
2020-05-29 08:52:55 +02:00
<< (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
2017-08-27 12:10:38 +02:00
return this->reg.NEXT_PC;
}
2021-11-02 11:13:29 +01:00
template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::leave_trap(uint64_t flags) {
state.mstatus.MIE = state.mstatus.MPIE;
2021-07-06 21:19:36 +02:00
state.mstatus.MPIE = 1;
2017-08-27 12:10:38 +02:00
// sets the pc to the value stored in the x epc register.
2021-07-07 11:30:00 +02:00
this->reg.NEXT_PC = csr[mepc] & get_pc_mask();
CLOG(INFO, disass) << "Executing xRET";
2021-07-06 21:19:36 +02:00
check_interrupt();
this->reg.trap_state = this->reg.pending_trap;
2017-08-27 12:10:38 +02:00
return this->reg.NEXT_PC;
}
2020-09-04 15:37:21 +02:00
} // namespace arch
} // namespace iss
2017-08-27 12:10:38 +02:00
#endif /* _RISCV_HART_M_P_H */