103 Révisions

Auteur SHA1 Message Date
8f5d666b7d corrects mistake from rebasing, adds newly generated templates 2025-03-31 12:50:05 +02:00
cc123939ce configures logger in main 2025-03-31 10:19:16 +02:00
a2e5405e25 small changes regarding vector template 2025-03-31 10:19:16 +02:00
cd3ec0b79d removes conversion functions in favor of more explicit conversions 2025-03-31 10:19:16 +02:00
0e35a2a8c9 adds complete Zfh support, small rework regarding floating point interface 2025-03-31 10:19:16 +02:00
8220c00a3d small correction for floating point h 2025-03-31 10:19:16 +02:00
ec5fb1e87e increases verbosity for file loading errors 2025-03-31 10:19:16 +02:00
453407568c removes carry_t, moves functionality to own functions 2025-03-31 10:19:16 +02:00
0fe9e6ebc8 corrects error for narrowing fp dispatch 2025-03-31 10:19:16 +02:00
484d9dbe08 removes rounding mode lookup as it is not needes 2025-03-31 10:19:15 +02:00
7a7035f267 adds support for half precision float 2025-03-31 10:19:15 +02:00
d9f1e5d31b small refactor 2025-03-31 10:19:15 +02:00
7b35f45a48 changes to make correct oversighst for XLEN=64 in Vector functions 2025-03-31 10:19:15 +02:00
ece6f7290f small bugfixes, adds some half point functionality 2025-03-31 10:19:15 +02:00
2166a6d81e makes widenning function types more explicit 2025-03-31 10:19:15 +02:00
fe9f2a5455 corrects vectorslide, changes all loop index type 2025-03-31 10:19:15 +02:00
42bf6ee380 corrects errors w.r.t. floating point dispatch 2025-03-31 10:19:15 +02:00
f0b582df6c corrects ambiguity in frsqrt 2025-03-31 10:19:15 +02:00
6fcb3dbb66 adds missing floating point instructions 2025-03-31 10:19:15 +02:00
c01eb39a76 reworks merge instrs, adds fp comparisons 2025-03-31 10:19:15 +02:00
08280a094f allows assigning to mask_view elements 2025-03-31 10:19:15 +02:00
ae90adc854 adds most fp functions 2025-03-31 10:19:15 +02:00
cd358198ad expands floating point functions 2025-03-31 10:19:14 +02:00
8746003d3e adds floating point reduction instrs, widening are untested 2025-03-31 10:19:14 +02:00
60d2b45a81 adds floating point Permutation Instructions 2025-03-31 10:19:14 +02:00
0264c5d66f small cleanup 2025-03-31 10:19:14 +02:00
528c2536af removes unused declarations 2025-03-31 10:19:14 +02:00
19e38ec898 corrects bug 2025-03-31 10:19:14 +02:00
fd11ce18c4 changes order of arguments to reflect assembly 2025-03-31 10:19:14 +02:00
9b7a9fa273 updates indexed load to use vreg_views 2025-03-31 10:19:14 +02:00
e24c1874c4 Changes load_store to use vreg_views aswell 2025-03-31 10:19:14 +02:00
221d2ee38c adds whole register moves 2025-03-31 10:19:14 +02:00
877cad27ba adds gather instructions 2025-03-31 10:19:14 +02:00
a26505cb5c adds more functions, up to slide 2025-03-31 10:19:13 +02:00
c1277b6528 adds mask_mask logical instructions 2025-03-31 10:19:13 +02:00
63889b02e7 adds widening reductions 2025-03-31 10:19:13 +02:00
f049d8cbb3 adds Integer Reduction Instructions 2025-03-31 10:19:13 +02:00
28ac169cfe adds narrowing fixed point instructions 2025-03-31 10:19:13 +02:00
a6f24db83a adds vssrl and vssra 2025-03-31 10:19:13 +02:00
e1911bc450 adds vsmul, widens functions parameters for sat_vector operations 2025-03-31 10:19:13 +02:00
75d96bf18d small cleanup, adds first fixed point instrs 2025-03-31 10:19:13 +02:00
e59458aa0e adds the missing vector csrs to the architectural state 2025-03-31 10:18:51 +02:00
77807fec01 adds merge and move instructions 2025-03-31 10:18:10 +02:00
6852d1d299 adds Vector Widening Integer Multiply-Add Instructions 2025-03-31 10:18:10 +02:00
ac1322d66b changes to ternary functions for Multiply-Add Instructions 2025-03-31 10:18:10 +02:00
9ba9d2432c adds Vector Widening Integer Multiply Instructions 2025-03-31 10:18:10 +02:00
c9b7962cd3 adds Vector Integer Divide Instructions 2025-03-31 10:18:10 +02:00
ab31fd27c9 adds single width integer instructins, also small cleanup 2025-03-31 10:18:10 +02:00
b3f189145f adds funct3 to vector functions 2025-03-31 10:18:10 +02:00
dd4416ab15 adds min/max instructions 2025-03-31 10:18:10 +02:00
0027946f90 renames mask operations to distinguish from vector integer compare instructions 2025-03-31 10:18:09 +02:00
feaff8c4a5 adds support for narrowing shifts 2025-03-31 10:18:09 +02:00
af3e76cc98 adds integer extension and add/substract with carry vector instructions 2025-03-31 10:18:09 +02:00
b1ceac2c2a small correction for vector_functions 2025-03-31 10:18:09 +02:00
b5862039e7 changes order of operands to more closely resemble assembly 2025-03-31 10:18:09 +02:00
51f3802394 adds vector_imm instructions to vector_functions, makes size of all involved registers a template parameter 2025-03-31 10:18:09 +02:00
6ce0d97e81 general improvements to vector_functions, adds functions to process arithmetic instructions (working add) 2025-03-31 10:18:09 +02:00
69c8fda5d2 corrects oversight in vector_functions 2025-03-31 10:18:09 +02:00
c1f9328528 corrects vector_functions 2025-03-31 10:18:09 +02:00
2b85748279 adds load_store_index to vector_functions 2025-03-31 10:18:09 +02:00
f7aa51b12e adds small optimization, clarifies variables in vector_functions 2025-03-31 10:18:09 +02:00
3428745a00 small corrections in vector functions 2025-03-31 10:18:09 +02:00
512b79a3e7 makes elem_count an explicit parameter for the softvector functions rather than calculating it from vtype 2025-03-31 10:18:08 +02:00
7a048f8b93 changes wording of returned index to better reflect what it means, cleans up a bit 2025-03-31 10:18:08 +02:00
6f4daf91ed adds explicit RFS to assertions 2025-03-31 10:18:08 +02:00
947d353bbf adds working vector (unit) stride (segmented) loads and stores 2025-03-31 10:18:08 +02:00
b95f518c91 updates templates for interp to make extension specific includes conditonal 2025-03-31 10:18:08 +02:00
4cef0f57c1 updates templates and adds newly generated files 2025-03-31 10:18:05 +02:00
28af695592 adds vector support to m and mu priv wrapper 2025-03-31 10:16:01 +02:00
f6cdd9d07c adds vector csr to riscv_common 2025-03-31 09:54:26 +02:00
9e390971d4 corrects include guard comment for fp_functions 2025-03-31 09:54:26 +02:00
2bb2e56310 adds dependencies for K ISA (Cryptography) 2025-03-31 09:54:26 +02:00
a0eeae7dd6 corrects template for new arch_if changes 2025-03-30 19:12:22 +02:00
8f491ef36b adds superflous exception throwing 2025-03-21 20:28:37 +01:00
cbe4c2d62f adds comment to indicate purpose of arch state members 2025-03-19 12:03:12 +01:00
31c6bb55f4 applies clang format 2025-03-16 14:38:45 +01:00
63d0162119 adds license header 2025-03-16 13:33:01 +01:00
3b294d9da0 fixes sc_core_adapter wrt refactored memory hierarchy 2025-03-16 12:29:03 +01:00
54233b448d moves mmu related code into mmu unit 2025-03-16 08:50:01 +01:00
e238369e18 cleansup htif call 2025-03-15 06:54:21 +01:00
cfc980a069 Merge branch 'feature/privilege_refactor' into develop 2025-03-14 20:00:07 +01:00
502f3e8df9 fixes htif behavior and instrumentation interface 2025-03-14 19:43:20 +01:00
88475bfa55 changes the io_buf 2025-03-14 12:14:20 +01:00
71260a3ef4 Merge remote-tracking branch 'origin/feature/htif' into develop 2025-03-14 11:32:36 +01:00
23842742a6 factors clic & pmp into separate units 2025-03-13 12:13:41 +01:00
a13b7ac6d3 separates functional memory into separate unit 2025-03-12 09:26:51 +01:00
aaebeaf023 changes the io_buf 2025-03-11 12:00:31 +01:00
fb0f6255e9 replaces virtual functions with memory pointers (kind of) 2025-03-11 08:31:25 +01:00
57d5ea92be moves common functionality to base class 2025-03-10 16:00:26 +01:00
383d762abc applies clang-format and updates SystemC HTIF implementation 2025-03-06 12:10:12 +01:00
03cbd305c6 replaces literal constant with symbolic definition 2025-02-28 19:34:07 +01:00
9f5326c110 extends htif for 32bit systems 2025-02-13 13:39:47 +01:00
f4718c6de3 Merge remote-tracking branch 'origin/feature/htif' into develop 2025-02-13 09:34:31 +01:00
53de21eef9 adds generator changed output 2025-02-12 20:45:04 +01:00
d443c89c87 removes llvm from dbt-rise-tgc build system as it is handled in dbt-rise-core 2024-12-28 13:10:49 +01:00
9a2df32d57 updates templates 2024-12-28 13:07:07 +01:00
be0f783af8 adds cycle increment to tcc 2024-12-28 13:06:46 +01:00
1089800682 updates vm_impls and core.h to work with new vm_base 2024-12-28 08:24:09 +01:00
d907dc7f54 corrects tohost functionality and minor cleanup 2024-11-22 17:35:12 +01:00
75e81ce236 copies new tohost implemenation from hart_m_p 2024-11-14 16:51:26 +01:00
82a70efdb8 small reorder to make tohost output more readable 2024-11-14 16:51:26 +01:00
978c3db06e minor improvements to readability 2024-11-14 16:51:26 +01:00
0e88664ff7 adds better tohost writing implementation, allowing the standard riscv-isa-test benchmarks to run 2024-11-14 16:51:26 +01:00
39 fichiers modifiés avec 7262 ajouts et 3721 suppressions

Voir le fichier

@@ -18,8 +18,10 @@ add_subdirectory(softfloat)
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/iss/mem/memory_if.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/vm/vector_functions.cpp
src/iss/debugger/csr_names.cpp
src/iss/semihosting/semihosting.cpp
)
@@ -109,16 +111,6 @@ if(TARGET yaml-cpp::yaml-cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE

Voir le fichier

@@ -20,7 +20,7 @@ RVI:
mask: 0b00000000000000000000000001111111
size: 32
branch: true
delay: 1
delay: [1,1]
JALR:
index: 3
encoding: 0b00000000000000000000000001100111

Voir le fichier

@@ -30,11 +30,21 @@
*
*******************************************************************************/
<%
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
def nativeSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
if(size<=128) return 128;
if(size<=256) return 256;
if(size<=512) return 512;
if(size<=1024) return 1024;
if(size<=2048) return 2048;
if(size<=4096) return 4096;
throw new IllegalArgumentException("Unsupported size in nativeSize in CORENAME.h.gtl");
}
def getRegisterSizes(){
def regs = registers.collect{nativeTypeSize(it.size)}
def regs = registers.collect{nativeSize(it.size)}
regs+=[32,32, 64, 64, 64, 32, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
return regs
}
@@ -47,13 +57,7 @@ def getRegisterOffsets(){
}
return offsets
}
def byteSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
return 128;
}
def getCString(def val){
return val.toString()+'ULL'
}
@@ -84,6 +88,8 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
enum constants {${constants.collect{c -> c.name+"="+getCString(c.value)}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
constexpr static unsigned V_REGS_SIZE = ${constants.find {it.name=='VLEN'}?.value?:0};
enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS, TRAP_STATE=NUM_REGS, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
@@ -131,8 +137,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
@@ -141,20 +145,20 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%
registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
registers.each { reg -> if(reg.size>64) {%>
uint8_t ${reg.name}[${reg.size/8}] = {0};<%
}else if(reg.size>0) {%>
uint${nativeSize(reg.size)}_t ${reg.name} = 0;<%
}}%>
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
uint64_t icount = 0; // counts number of instructions undisturbed
uint64_t cycle = 0; // counts number of cycles, in functional mode equals icount
uint64_t instret = 0; // counts number of instructions, can be reset via CSR write
uint32_t instruction = 0; // holds op code of currently executed instruction
uint32_t last_branch = 0; // indicates if last branch was taken
} reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode;
@@ -168,6 +172,31 @@ if(fcsr != null) {%>
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}
def vstart = registers.find {it.name=='vstart'}
def vl = registers.find {it.name=='vl'}
def vtype = registers.find {it.name=='vtype'}
def vxsat = registers.find {it.name=='vxsat'}
def vxrm = registers.find {it.name=='vxrm'}
if(vtype != null) {%>
uint${vstart.size}_t get_vstart(){return reg.vstart;}
void set_vstart(uint${vstart.size}_t val){reg.vstart = val;}
uint${vl.size}_t get_vl(){return reg.vl;}
uint${vtype.size}_t get_vtype(){return reg.vtype;}
uint${vxsat.size}_t get_vxsat(){return reg.vxsat;}
void set_vxsat(uint${vxsat.size}_t val){reg.vxsat = val;}
uint${vxrm.size}_t get_vxrm(){return reg.vxrm;}
void set_vxrm(uint${vxrm.size}_t val){reg.vxrm = val;}
<%} else { %>
uint32_t get_vstart(){return 0;}
void set_vstart(uint32_t val){}
uint32_t get_vl(){return 0;}
uint32_t get_vtype(){return 0;}
uint32_t get_vxsat(){return 0;}
void set_vxsat(uint32_t val){}
uint32_t get_vxrm(){return 0;}
void set_vxrm(uint32_t val){}
<%}%>
};

Voir le fichier

@@ -96,7 +96,7 @@ protected:
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
continuation_e gen_single_inst_behavior(virt_addr_t&, jit_holder&) override;
enum globals_e {TVAL = 0, GLOBALS_SIZE};
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
@@ -221,7 +221,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
@@ -233,7 +233,6 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())

Voir le fichier

@@ -30,6 +30,9 @@
*
*******************************************************************************/
<%
def floating_point = registers.find {it.name=='FCSR'}
def vector = registers.find {it.name=='vtype'}
def aes = functions.find { it.contains('aes') }
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
@@ -41,7 +44,16 @@ def nativeTypeSize(int size){
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
<%
if(floating_point != null) {%>
#include <vm/fp_functions.h>
<%}
if(vector != null) {%>
#include <vm/vector_functions.h>
<%}
if(aes != null) {%>
#include <vm/aes_sbox.h>
<%}%>
#include <util/logging.h>
#include <boost/coroutine2/all.hpp>
#include <functional>
@@ -101,10 +113,48 @@ protected:
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
<%
if(floating_point != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}
if(vector != null) {%>
inline const char* vname(size_t index) { return index < 32 ? name(index + traits::V0) : "illegal"; }
inline const char* sew_name(size_t bits) {
switch(bits) {
case 0b000:
return "e8";
case 0b001:
return "e16";
case 0b010:
return "e32";
case 0b011:
return "e64";
default:
return "illegal";
}
}
inline const char* lmul_name(size_t bits) {
switch(bits) {
case 0b101:
return "mf8";
case 0b110:
return "mf4";
case 0b111:
return "mf2";
case 0b000:
return "m1";
case 0b001:
return "m2";
case 0b010:
return "m4";
case 0b011:
return "m8";
default:
return "illegal";
}
}
inline const char* ma_name(bool ma) { return ma ? "ma" : "mu"; }
inline const char* ta_name(bool ta) { return ta ? "ta" : "tu"; }
<%}%>
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
@@ -127,7 +177,792 @@ if(fcsr != null) {%>
inline void set_tval(uint64_t new_tval){
tval = new_tval;
}
<%if(vector != null) {
def xlen = constants.find { it.name == 'XLEN' }?.value ?: 0
def vlen = constants.find { it.name == 'VLEN' }?.value ?: 0 %>
inline void lower(){
this->core.reg.trap_state = 0;
}
uint64_t vlseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vsseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vlsseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size, int64_t stride){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vssseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size, int64_t stride){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
using indexed_load_store_t = std::function<uint64_t(void*, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)>, uint8_t*, uint64_t, uint64_t, softvector::vtype_t, bool, uint8_t, uint64_t, uint8_t, uint8_t)>;
template <typename T1, typename T2> indexed_load_store_t getFunction() {
return [this](void* core, std::function<uint64_t(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V, uint64_t vl,
uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t vs2, uint8_t segment_size) {
return softvector::vector_load_store_index<${xlen}, ${vlen}, T1, T2>(core, load_store_fn, V, vl, vstart, vtype, vm, vd, rs1, vs2, segment_size);
};
}
const std::array<std::array<indexed_load_store_t, 4>, 4> functionTable = {{
{getFunction<uint8_t, uint8_t>(), getFunction<uint8_t, uint16_t>(), getFunction<uint8_t, uint32_t>(), getFunction<uint8_t, uint64_t>()},
{getFunction<uint16_t, uint8_t>(), getFunction<uint16_t, uint16_t>(), getFunction<uint16_t, uint32_t>(), getFunction<uint16_t, uint64_t>()},
{getFunction<uint32_t, uint8_t>(), getFunction<uint32_t, uint16_t>(), getFunction<uint32_t, uint32_t>(), getFunction<uint32_t, uint64_t>()},
{getFunction<uint64_t, uint8_t>(), getFunction<uint64_t, uint16_t>(), getFunction<uint64_t, uint32_t>(), getFunction<uint64_t, uint64_t>()}
}};
const size_t map_index_size[9] = { 0, 0, 1, 0, 2, 0, 0, 0, 3 }; // translate number of bytes to index in functionTable
uint64_t vlxseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t vs2, uint8_t segment_size, uint8_t index_byte_size, uint8_t data_byte_size, bool ordered){
return functionTable[map_index_size[index_byte_size]][data_byte_size](this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, vs2, segment_size);
}
uint64_t vsxseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vs3, uint64_t rs1_val, uint8_t vs2, uint8_t segment_size, uint8_t index_byte_size, uint8_t data_byte_size, bool ordered){
return functionTable[map_index_size[index_byte_size]][data_byte_size](this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vs3, rs1_val, vs2, segment_size);
}
void vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint16_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint16_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_extend(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t target_sew_pow, uint8_t frac_pow){
switch(target_sew_pow){
case 4: // uint16_t target
if(frac_pow != 1) throw new std::runtime_error("Unsupported frac_pow");
return softvector::vector_unary_op<${vlen}, uint16_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 5: // uint32_t target
switch(frac_pow){
case 1:
return softvector::vector_unary_op<${vlen}, uint32_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 2:
return softvector::vector_unary_op<${vlen}, uint32_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported frac_pow");
}
case 6: // uint64_t target
switch(frac_pow){
case 1:
return softvector::vector_unary_op<${vlen}, uint64_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 2:
return softvector::vector_unary_op<${vlen}, uint64_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 3:
return softvector::vector_unary_op<${vlen}, uint64_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported frac_pow");
}
default:
throw new std::runtime_error("Unsupported target_sew_pow");
}
}
void vector_vector_carry(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val, int8_t carry){
switch(sew_val){
case 0b000:
return softvector::vector_vector_carry<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b001:
return softvector::vector_vector_carry<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b010:
return softvector::vector_vector_carry<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b011:
return softvector::vector_vector_carry<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
default:
throw new std::runtime_error("Unsupported sew bit value");
} }
void vector_imm_carry(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val, int8_t carry){
switch(sew_val){
case 0b000:
return softvector::vector_imm_carry<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b001:
return softvector::vector_imm_carry<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b010:
return softvector::vector_imm_carry<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b011:
return softvector::vector_imm_carry<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void carry_vector_vector_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::carry_vector_vector_op<${vlen}, uint8_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::carry_vector_vector_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::carry_vector_vector_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::carry_vector_vector_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void carry_vector_imm_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::carry_vector_imm_op<${vlen}, uint8_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::carry_vector_imm_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::carry_vector_imm_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::carry_vector_imm_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_vector_vector_op(uint8_t* V, unsigned funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::mask_vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::mask_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::mask_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::mask_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_vector_imm_op(uint8_t* V, unsigned funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::mask_vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::mask_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::mask_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::mask_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint8_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint16_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint32_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint8_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint16_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint32_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_merge<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_merge<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_merge<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_merge<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_merge<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_merge<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_merge<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_merge<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b001:
return softvector::sat_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b010:
return softvector::sat_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b011:
return softvector::sat_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b001:
return softvector::sat_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b010:
return softvector::sat_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b011:
return softvector::sat_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_vector_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_vector_op<${vlen}, uint8_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b001:
return softvector::sat_vector_vector_op<${vlen}, uint16_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b010:
return softvector::sat_vector_vector_op<${vlen}, uint32_t, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_imm_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_imm_op<${vlen}, uint8_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b001:
return softvector::sat_vector_imm_op<${vlen}, uint16_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b010:
return softvector::sat_vector_imm_op<${vlen}, uint32_t, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_red_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_red_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_red_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_red_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_red_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_red_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_red_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_red_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_red_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_mask_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, unsigned vd, unsigned vs2, unsigned vs1){
return softvector::mask_mask_op<${vlen}>(V, funct6, funct3, vl, vstart, vd, vs2, vs1);
}
uint64_t vcpop(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2){
return softvector::vcpop<${vlen}>(V, vl, vstart, vm, vs2);
}
int64_t vfirst(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2){
return softvector::vfirst<${vlen}>(V, vl, vstart, vm, vs2);
}
void mask_set_op(uint8_t* V, unsigned enc, uint64_t vl, uint64_t vstart, bool vm, unsigned vd, unsigned vs2){
return softvector::mask_set_op<${vlen}>(V, enc, vl, vstart, vm, vd, vs2);
}
void viota(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::viota<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b001:
return softvector::viota<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b010:
return softvector::viota<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b011:
return softvector::viota<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vid(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vid<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd);
case 0b001:
return softvector::vid<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd);
case 0b010:
return softvector::vid<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd);
case 0b011:
return softvector::vid<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void scalar_to_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint64_t val, uint8_t sew_val){
switch(sew_val){
case 0b000:
softvector::scalar_move<${vlen}, uint8_t>(V, vtype, vd, val, true);
break;
case 0b001:
softvector::scalar_move<${vlen}, uint16_t>(V, vtype, vd, val, true);
break;
case 0b010:
softvector::scalar_move<${vlen}, uint32_t>(V, vtype, vd, val, true);
break;
case 0b011:
softvector::scalar_move<${vlen}, uint64_t>(V, vtype, vd, val, true);
break;
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
uint64_t scalar_from_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::scalar_move<${vlen}, uint8_t>(V, vtype, vd, 0, false);
case 0b001:
return softvector::scalar_move<${vlen}, uint16_t>(V, vtype, vd, 0, false);
case 0b010:
return softvector::scalar_move<${vlen}, uint32_t>(V, vtype, vd, 0, false);
case 0b011:
return softvector::scalar_move<${vlen}, uint64_t>(V, vtype, vd, 0, false);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slideup(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slideup<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slideup<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slideup<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slideup<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slidedown(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slidedown<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slidedown<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slidedown<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slidedown<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slide1up<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slide1up<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slide1up<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slide1up<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slide1down<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slide1down<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slide1down<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slide1down<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_gather(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_gather<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_gather<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_gather<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_gather<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_gatherei16(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_gather<${vlen}, uint8_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_gather<${vlen}, uint16_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_gather<${vlen}, uint32_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_gather<${vlen}, uint64_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_gather(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_gather<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_gather<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_gather<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_gather<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_compress(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_compress<${vlen}, uint8_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b001:
return softvector::vector_compress<${vlen}, uint16_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b010:
return softvector::vector_compress<${vlen}, uint32_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b011:
return softvector::vector_compress<${vlen}, uint64_t>(V, vl, vstart, vtype, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_whole_move(uint8_t* V, uint8_t vd, uint8_t vs2, uint8_t count){
return softvector::vector_whole_move<${vlen}>(V, vd, vs2, count);
}
uint64_t fp_scalar_from_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint8_t sew_val){
return scalar_from_vector(V, vtype, vd, sew_val);
}
void fp_vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
return vector_slide1up(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
return vector_slide1down(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_red_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_red_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_red_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::fp_vector_red_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_red_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_red_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b001:
return softvector::fp_vector_red_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_red_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::fp_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011:
return softvector::fp_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint32_t, uint16_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint64_t, uint32_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_unary_op(uint8_t* V, uint8_t encoding_space, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_unary_op<${vlen}, uint16_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_op<${vlen}, uint32_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011:
return softvector::fp_vector_unary_op<${vlen}, uint64_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_fp_vector_vector_op(uint8_t* V, uint8_t funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::mask_fp_vector_vector_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::mask_fp_vector_vector_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::mask_fp_vector_vector_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_fp_vector_imm_op(uint8_t* V, uint8_t funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::mask_fp_vector_imm_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::mask_fp_vector_imm_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011:
return softvector::mask_fp_vector_imm_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t sew_val){
vector_imm_merge(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_unary_w(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_unary_w<${vlen}, uint16_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b001:
return softvector::fp_vector_unary_w<${vlen}, uint32_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_w<${vlen}, uint64_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_unary_n(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_unary_n<${vlen}, uint8_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b001:
return softvector::fp_vector_unary_n<${vlen}, uint16_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_n<${vlen}, uint32_t, uint64_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011: // would require 128 bit value to narrow
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
<%}%>
uint64_t fetch_count{0};
uint64_t tval{0};
@@ -175,22 +1010,8 @@ private:
decoder instr_decoder;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
if(this->core.has_mmu()) {
auto phys_pc = this->core.virt2phys(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok)
// return iss::Err;
// } else {
if (this->core.read(phys_pc, 4, data) != iss::Ok)
return iss::Err;
// }
} else {
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
if (this->core.read(iss::address_type::PHYSICAL, pc.access, pc.space, pc.val, 4, data) != iss::Ok)
return iss::Err;
return iss::Ok;
}
};
@@ -199,9 +1020,6 @@ template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__
@@ -288,8 +1106,8 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);<%}}%>
// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
${it}<%}%>

Voir le fichier

@@ -101,7 +101,7 @@ protected:
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
@@ -244,7 +244,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@@ -256,9 +256,10 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
if (instr == 0x0000006f || (instr&0xffff)==0xa001){
this->builder.CreateBr(this->leave_blk);
return std::make_tuple(JUMP_TO_SELF, nullptr);
++inst_cnt;
}
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@@ -340,6 +341,10 @@ void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* icount_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::ICOUNT), get_reg_ptr(arch::traits<ARCH>::ICOUNT)), this->gen_const(64U, 1));
this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits<ARCH>::ICOUNT), false);
//increment cyclecount
auto* cycle_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::CYCLE), get_reg_ptr(arch::traits<ARCH>::CYCLE)), this->gen_const(64U, 1));
this->builder.CreateStore(cycle_val, get_reg_ptr(arch::traits<ARCH>::CYCLE), false);
}
} // namespace ${coreDef.name.toLowerCase()}

Voir le fichier

@@ -83,21 +83,21 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
using compile_ret_t = continuation_e;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
void add_prologue(tu_builder& tu) override;
<%}%>
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@@ -176,6 +176,7 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
<%instr.behavior.eachLine{%>${it}
@@ -225,8 +226,8 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@@ -238,7 +239,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@@ -273,10 +273,12 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("return *next_pc;");
}
<%
if(fcsr != null) {%>
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
<%if(fcsr != null) {%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
@@ -303,9 +305,9 @@ template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
os << "uint64_t (*fcvt_32_64)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_32_64 << ";\\n";
os << "uint32_t (*fcvt_64_32)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_64_32 << ";\\n";
os << "uint32_t (*unbox_s)(uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
<%}%>
tu.add_prologue(os.str());
}
<%}%>
} // namespace ${coreDef.name.toLowerCase()}

Voir le fichier

@@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifdef _MSC_VER
#define _SCL_SECURE_NO_WARNINGS
#define ELFIO_NO_INTTYPES
@@ -32,4 +66,4 @@ int main(int argc, char** argv) {
dump::segment_datas(std::cout, reader);
return 0;
}
}

233
src/iss/arch/mstatus.h Fichier normal
Voir le fichier

@@ -0,0 +1,233 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MSTATUS_TYPE
#define _MSTATUS_TYPE
#include <cstdint>
#include <type_traits>
#include <util/bit_field.h>
#include <util/ities.h>
namespace iss {
namespace arch {
template <class T, class Enable = void> struct status {};
// specialization 32bit
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); }
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); };
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
// specialization 64bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
} // namespace arch
} // namespace iss
#endif // _MSTATUS_TYPE

Voir le fichier

@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018, 2021 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -35,15 +35,24 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/vm_types.h"
#include "mstatus.h"
#include "util/delegate.h"
#include <array>
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/mem/memory_if.h>
#include <iss/semihosting/semihosting.h>
#include <iss/vm_types.h>
#include <limits>
#include <sstream>
#include <string>
#include <unordered_map>
#include <util/logging.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) ::__builtin_expect(!!(x), 1)
@@ -56,9 +65,7 @@
namespace iss {
namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e { FEAT_NONE, FEAT_PMP = 1, FEAT_EXT_N = 2, FEAT_CLIC = 4, FEAT_DEBUG = 8, FEAT_TCM = 16 };
enum features_e { FEAT_NONE, FEAT_EXT_N = 1, FEAT_DEBUG = 2 };
enum riscv_csr {
/* user-level CSR */
@@ -187,26 +194,19 @@ enum riscv_csr {
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch0 = 0x7B2,
dscratch1 = 0x7B3
dscratch1 = 0x7B3,
// vector CSR
// URW
vstart = 0x008,
vxsat = 0x009,
vxrm = 0x00A,
vcsr = 0x00F,
// URO
vl = 0xC20,
vtype = 0xC21,
vlenb = 0xC22,
};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4 };
enum {
@@ -225,25 +225,6 @@ enum {
ISA_U = 1 << 20
};
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
struct feature_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
@@ -270,64 +251,171 @@ public:
: trap_access(15 << 16, badaddr) {}
};
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
template <typename WORD_TYPE> struct priv_if {
using rd_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE)>;
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
std::function<iss::status(unsigned, WORD_TYPE&)> read_csr;
std::function<iss::status(unsigned, WORD_TYPE)> write_csr;
std::function<iss::status(uint8_t const*)> exec_htif;
std::function<void(uint16_t, uint16_t, WORD_TYPE)> raise_trap; // trap_id, cause, fault_data
std::unordered_map<unsigned, rd_csr_f>& csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f>& csr_wr_cb;
hart_state<WORD_TYPE>& state;
uint8_t& PRIV;
WORD_TYPE& PC;
uint64_t& tohost;
uint64_t& fromhost;
unsigned& max_irq;
};
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE, public mem::memory_elem {
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
constexpr static unsigned MEM = traits<BASE>::MEM;
using core = BASE;
using this_class = riscv_hart_common<BASE, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = std::function<iss::status(unsigned addr, reg_t&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, reg_t)>;
#define MK_CSR_RD_CB(FCT) [this](unsigned a, reg_t& r) -> iss::status { return this->FCT(a, r); };
#define MK_CSR_WR_CB(FCT) [this](unsigned a, reg_t r) -> iss::status { return this->FCT(a, r); };
riscv_hart_common()
: state()
, instr_if(*this) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fcsr] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[fflags] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fflags] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[frm] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[frm] = MK_CSR_WR_CB(write_fcsr);
}
if(traits<BASE>::V_REGS_SIZE > 0) {
csr_rd_cb[vstart] = MK_CSR_RD_CB(read_vstart);
csr_wr_cb[vstart] = MK_CSR_WR_CB(write_vstart);
csr_rd_cb[vxsat] = MK_CSR_RD_CB(read_vxsat);
csr_wr_cb[vxsat] = MK_CSR_WR_CB(write_vxsat);
csr_rd_cb[vxrm] = MK_CSR_RD_CB(read_vxrm);
csr_wr_cb[vxrm] = MK_CSR_WR_CB(write_vxrm);
csr_rd_cb[vcsr] = MK_CSR_RD_CB(read_vcsr);
csr_wr_cb[vcsr] = MK_CSR_WR_CB(write_vcsr);
csr_rd_cb[vl] = MK_CSR_RD_CB(read_vl);
csr_rd_cb[vtype] = MK_CSR_RD_CB(read_vtype);
csr_rd_cb[vlenb] = MK_CSR_RD_CB(read_vlenb);
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_null);
}
// special handling & overrides
csr_rd_cb[time] = MK_CSR_RD_CB(read_time);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = MK_CSR_RD_CB(read_time);
csr_rd_cb[cycle] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = MK_CSR_RD_CB(read_cycle);
csr_rd_cb[instret] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = MK_CSR_RD_CB(read_instret);
csr_rd_cb[mcycle] = MK_CSR_RD_CB(read_cycle);
csr_wr_cb[mcycle] = MK_CSR_WR_CB(write_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = MK_CSR_WR_CB(write_cycle);
csr_rd_cb[minstret] = MK_CSR_RD_CB(read_instret);
csr_wr_cb[minstret] = MK_CSR_WR_CB(write_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = MK_CSR_WR_CB(write_instret);
csr_rd_cb[mhartid] = MK_CSR_RD_CB(read_hartid);
};
~riscv_hart_common() {
if(io_buf.str().length()) {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
}
}
}
struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
std::unordered_map<std::string, uint64_t> symbol_table;
uint64_t entry_address{0};
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
uint64_t tohost = std::numeric_limits<uint64_t>::max();
uint64_t fromhost = std::numeric_limits<uint64_t>::max();
std::stringstream io_buf;
bool read_elf_file(std::string name, uint8_t expected_elf_class,
std::function<iss::status(uint64_t, uint64_t, const uint8_t* const)> cb) {
void set_semihosting_callback(semihosting_cb_t<reg_t> cb) { semihosting_cb = cb; };
std::pair<uint64_t, bool> load_file(std::string name, int type) {
return std::make_pair(entry_address, read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64));
}
bool read_elf_file(std::string name, uint8_t expected_elf_class) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(reader.load(name)) {
// check elf properties
if(reader.get_class() != expected_elf_class)
if(reader.get_class() != expected_elf_class) {
CPPLOG(ERR) << "ISA missmatch, selected XLEN does not match supplied file ";
return false;
}
if(reader.get_type() != ELFIO::ET_EXEC)
return false;
if(reader.get_machine() != ELFIO::EM_RISCV)
@@ -337,8 +425,9 @@ struct riscv_hart_common {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == 1 && fsize > 0) {
auto res = cb(pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(type == ELFIO::PT_LOAD && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
@@ -363,20 +452,459 @@ struct riscv_hart_common {
#endif
}
}
try {
tohost = symbol_table.at("tohost");
try {
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
fromhost = tohost + 0x40;
}
} catch(std::out_of_range& e) {
}
auto to_it = symbol_table.find("tohost");
if(to_it != std::end(symbol_table))
tohost = to_it->second;
auto from_it = symbol_table.find("tohost");
if(from_it != std::end(symbol_table))
tohost = from_it->second;
}
return true;
}
return false;
};
iss::status execute_sys_write(arch_if* aif, const std::array<uint64_t, 8>& loaded_payload, unsigned mem_type) {
uint64_t fd = loaded_payload[1];
uint64_t buf_ptr = loaded_payload[2];
uint64_t len = loaded_payload[3];
std::vector<char> buf(len);
if(aif->read(address_type::PHYSICAL, access_type::DEBUG_READ, mem_type, buf_ptr, len, reinterpret_cast<uint8_t*>(buf.data()))) {
CPPLOG(ERR) << "SYS_WRITE buffer read went wrong";
return iss::Err;
}
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n' || buf[i] == '\0') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
} else
io_buf << buf[i];
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
if(fromhost != std::numeric_limits<uint64_t>::max())
if(aif->write(address_type::PHYSICAL, access_type::DEBUG_WRITE, mem_type, fromhost, 1, &ret_val)) {
CPPLOG(ERR) << "Fromhost write went wrong";
return iss::Err;
}
return iss::Ok;
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
void disass_output(uint64_t pc, const std::string instr) override {
// NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV],
// (reg_t)state.mstatus,
// this->reg.cycle + cycle_offset);
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};c:{}]", pc, instr, lvl[this->reg.PRIV],
this->reg.cycle + cycle_offset);
};
void register_csr(unsigned addr, rd_csr_f f) { csr_rd_cb[addr] = f; }
void register_csr(unsigned addr, wr_csr_f f) { csr_wr_cb[addr] = f; }
void register_csr(unsigned addr, rd_csr_f rdf, wr_csr_f wrf) {
csr_rd_cb[addr] = rdf;
csr_wr_cb[addr] = wrf;
}
void unregister_csr_rd(unsigned addr) { csr_rd_cb.erase(addr); }
void unregister_csr_wr(unsigned addr) { csr_wr_cb.erase(addr); }
bool debug_mode_active() { return this->reg.PRIV & 0x4; }
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
iss::status read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
iss::status read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
iss::status write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
iss::status read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
iss::status write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
iss::status read_tvec(unsigned addr, reg_t& val) {
val = csr[addr] & ~2;
return iss::Ok;
}
iss::status read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
iss::status write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
iss::status write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
iss::status read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
iss::status write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
iss::status read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
iss::status write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
iss::status read_fcsr(unsigned addr, reg_t& val) {
switch(addr) {
case 1: // fflags, 4:0
val = bit_sub<0, 5>(this->get_fcsr());
break;
case 2: // frm, 7:5
val = bit_sub<5, 3>(this->get_fcsr());
break;
case 3: // fcsr
val = this->get_fcsr();
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status write_fcsr(unsigned addr, reg_t val) {
switch(addr) {
case 1: // fflags, 4:0
this->set_fcsr((this->get_fcsr() & 0xffffffe0) | (val & 0x1f));
break;
case 2: // frm, 7:5
this->set_fcsr((this->get_fcsr() & 0xffffff1f) | ((val & 0x7) << 5));
break;
case 3: // fcsr
this->set_fcsr(val & 0xff);
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status read_vstart(unsigned addr, reg_t& val) {
val = this->get_vstart();
return iss::Ok;
}
iss::status write_vstart(unsigned addr, reg_t val) {
this->set_vstart(val);
return iss::Ok;
}
iss::status read_vxsat(unsigned addr, reg_t& val) {
val = this->get_vxsat();
return iss::Ok;
}
iss::status write_vxsat(unsigned addr, reg_t val) {
this->set_vxsat(val & 1);
csr[vcsr] = (~1ULL & csr[vcsr]) | (val & 1);
return iss::Ok;
}
iss::status read_vxrm(unsigned addr, reg_t& val) {
val = this->get_vxrm();
return iss::Ok;
}
iss::status write_vxrm(unsigned addr, reg_t val) {
this->set_vxrm(val & 0b11);
csr[vcsr] = (~0b110ULL & csr[vcsr]) | ((val & 0b11) << 1);
return iss::Ok;
}
iss::status read_vcsr(unsigned addr, reg_t& val) {
val = csr[vcsr];
return iss::Ok;
}
iss::status write_vcsr(unsigned addr, reg_t val) {
csr[vcsr] = val;
return iss::Ok;
}
iss::status read_vl(unsigned addr, reg_t& val) {
val = this->get_vl();
return iss::Ok;
}
iss::status read_vtype(unsigned addr, reg_t& val) {
val = this->get_vtype();
return iss::Ok;
}
iss::status read_vlenb(unsigned addr, reg_t& val) {
val = csr[vlenb];
return iss::Ok;
}
priv_if<reg_t> get_priv_if() {
return priv_if<reg_t>{.read_csr = [this](unsigned addr, reg_t& val) -> iss::status { return read_csr(addr, val); },
.write_csr = [this](unsigned addr, reg_t val) -> iss::status { return write_csr(addr, val); },
.exec_htif = [this](uint8_t const* data) -> iss::status { return execute_htif(data); },
.raise_trap =
[this](uint16_t trap_id, uint16_t cause, reg_t fault_data) {
this->reg.trap_state = 0x80ULL << 24 | (cause << 16) | trap_id;
this->fault_data = fault_data;
},
.csr_rd_cb{this->csr_rd_cb},
.csr_wr_cb{csr_wr_cb},
.state{this->state},
.PRIV{this->reg.PRIV},
.PC{this->reg.PC},
.tohost{this->tohost},
.fromhost{this->fromhost},
.max_irq{mcause_max_irq}};
}
iss::status execute_htif(uint8_t const* data) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
CPPLOG(FATAL) << "this->tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
} else if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
if(memory.rd_mem(access_type::DEBUG_READ, payload_addr, 8 * sizeof(uint64_t),
reinterpret_cast<uint8_t*>(loaded_payload.data())) == iss::Err)
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "this->tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "this->tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
}
mem::memory_hierarchy memories;
mem::memory_if get_mem_if() override {
assert(false || "This function should never be called");
return mem::memory_if{};
}
void set_next(mem::memory_if mem_if) override { memory = mem_if; };
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
protected:
hart_state<reg_t> state;
static constexpr reg_t get_mstatus_mask_t(unsigned priv_lvl = PRIV_M) {
if(sizeof(reg_t) == 4) {
return priv_lvl == PRIV_U ? 0x80000011UL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x800de133UL // 0b0...0 0001 1000 1001 1001;
: 0x807ff9ddUL;
} else {
return priv_lvl == PRIV_U ? 0x011ULL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x000de133ULL
: 0x007ff9ddULL;
}
}
mem::memory_if memory;
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_common<BASE, LOGCAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_common<BASE, LOGCAT>& arch;
};
friend struct riscv_instrumentation_if;
riscv_instrumentation_if instr_if;
instrumentation_if* get_instrumentation_if() override { return &instr_if; };
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
csr_type csr;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
reg_t mhartid_reg{0x0};
uint64_t mcycle_csr{0};
uint64_t minstret_csr{0};
reg_t fault_data;
int64_t cycle_offset{0};
int64_t instret_offset{0};
semihosting_cb_t<reg_t> semihosting_cb;
unsigned mcause_max_irq{16U};
};
} // namespace arch

Fichier diff supprimé car celui-ci est trop grand Voir la Diff

Fichier diff supprimé car celui-ci est trop grand Voir la Diff

Fichier diff supprimé car celui-ci est trop grand Voir la Diff

Diff de fichier supprimé car une ou plusieurs lignes sont trop longues

Voir le fichier

@@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _ISS_ARCH_TGC_MAPPER_H
#define _ISS_ARCH_TGC_MAPPER_H
@@ -23,35 +57,29 @@ using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arc
#ifdef CORE_TGC5D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type =
iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
using tgc5d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac(iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_NN
#include "hwl.h"
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type =
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC5E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#endif

Voir le fichier

@@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include <array>
// generated from:
// * /scratch/eyck/workarea/Other/riscv-opcodes/csrs.csv

285
src/iss/mem/clic.h Fichier normal
Voir le fichier

@@ -0,0 +1,285 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct clic : public memory_elem {
using this_class = clic<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
clic(arch::priv_if<WORD_TYPE> hart_if, clic_config cfg)
: hart_if(hart_if)
, cfg(cfg) {
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x30;
clic_mact_lvl = clic_mprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
clic_uact_lvl = clic_uprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr_rd_cb[arch::mtvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mtvt] = MK_CSR_WR_CB(write_xtvt);
// hart_if.csr_rd_cb[mxnti] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mxnti] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::mintstatus] = MK_CSR_WR_CB(write_null);
// hart_if.csr_rd_cb[mscratchcsw] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcsw] = MK_CSR_WR_CB(write_plain(a,r);};
// hart_if.csr_rd_cb[mscratchcswl] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcswl] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mintthresh] = MK_CSR_WR_CB(write_intthresh);
if(cfg.nmode) {
hart_if.csr_rd_cb[arch::utvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::utvt] = MK_CSR_WR_CB(write_xtvt);
hart_if.csr_rd_cb[arch::uintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::uintstatus] = MK_CSR_WR_CB(write_null);
hart_if.csr_rd_cb[arch::uintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::uintthresh] = MK_CSR_WR_CB(write_intthresh);
}
hart_if.csr[arch::mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr[arch::uintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
}
~clic() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
std::tuple<uint64_t, uint64_t> get_range() override { return {cfg.clic_base, cfg.clic_base + 0x7fff}; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return read_clic(addr, length, data);
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return write_clic(addr, length, data);
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_clic(uint64_t addr, unsigned length, uint8_t* data);
iss::status write_clic(uint64_t addr, unsigned length, uint8_t const* data);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_xtvt(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & ~0x3fULL;
return iss::Ok;
}
iss::status read_cause(unsigned addr, reg_t& val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
clic_config cfg;
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
struct {
uint8_t ip;
uint8_t ie;
uint8_t attr;
uint8_t ctl;
};
uint32_t raw;
};
std::vector<clic_int_reg_t> clic_int_reg;
uint8_t clic_mprev_lvl{0}, clic_uprev_lvl{0};
uint8_t clic_mact_lvl{0}, clic_uact_lvl{0};
};
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_clic(uint64_t addr, unsigned length, uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
*data = clic_cfg_reg;
for(auto i = 1; i < length; ++i)
*(data + i) = 0;
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
read_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
read_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
} else {
for(auto i = 0U; i < length; ++i)
*(data + i) = 0;
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_clic(uint64_t addr, unsigned length, const uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
clic_cfg_reg = (clic_cfg_reg & ~0x1e) | (*data & 0x1e);
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
write_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
write_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
clic_int_reg[offset].raw &= 0xf0c70101; // clicIntCtlBits->0xf0, clicintattr->0xc7, clicintie->0x1, clicintip->0x1
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_cause(unsigned addr, reg_t& val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
val = hart_if.csr[addr] & (1UL << (sizeof(reg_t) * 8) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
val |= clic_uprev_lvl << 16;
val |= hart_if.state.mstatus.UPIE << 27;
break;
default:
val |= clic_mprev_lvl << 16;
val |= hart_if.state.mstatus.MPIE << 27;
val |= hart_if.state.mstatus.MPP << 28;
break;
}
} else
val = hart_if.csr[addr] & ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_cause(unsigned addr, reg_t val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
clic_uprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.state.mstatus.UPIE = (val >> 27) & 0x1;
break;
default:
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.state.mstatus.MPIE = (val >> 27) & 0x1;
hart_if.state.mstatus.MPP = (val >> 28) & 0x3;
break;
}
} else {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_intstatus(unsigned addr, reg_t& val) {
auto mode = (addr >> 8) & 0x3;
val = clic_uact_lvl & 0xff;
if(mode == 0x3)
val += (clic_mact_lvl & 0xff) << 24;
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_intthresh(unsigned addr, reg_t val) {
hart_if.csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
} // namespace mem
} // namespace iss

101
src/iss/mem/memory_if.cpp Fichier normal
Voir le fichier

@@ -0,0 +1,101 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include <algorithm>
namespace iss {
namespace mem {
void memory_hierarchy::root(memory_elem& e) {
hierarchy.push_front(&e);
root_set = true;
update_chain();
}
void memory_hierarchy::prepend(memory_elem& e) {
if(root_set)
hierarchy.insert(hierarchy.begin() + 1, &e);
else
hierarchy.push_front(&e);
update_chain();
}
void memory_hierarchy::append(memory_elem& e) {
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::insert_before(memory_elem&) {}
void memory_hierarchy::insert_after(memory_elem&) {}
void memory_hierarchy::replace_last(memory_elem& e) {
auto old = hierarchy.back();
auto it = std::find_if(std::begin(owned_elems), std::end(owned_elems),
[old](std::unique_ptr<memory_elem> const& p) { return p.get() == old; });
hierarchy.pop_back();
if(it != std::end(owned_elems))
owned_elems.erase(it);
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::update_chain() {
bool tail = false;
for(size_t i = 1; i < hierarchy.size(); ++i) {
hierarchy[i - 1]->set_next(hierarchy[i]->get_mem_if());
}
}
void memory_hierarchy::prepend(std::unique_ptr<memory_elem>&& p) {
prepend(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::append(std::unique_ptr<memory_elem>&& p) {
append(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_before(std::unique_ptr<memory_elem>&& p) {
insert_before(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_after(std::unique_ptr<memory_elem>&& p) {
insert_after(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::replace_last(std::unique_ptr<memory_elem>&& p) {
replace_last(*p);
owned_elems.push_back(std::move(p));
}
} // namespace mem
} // namespace iss

86
src/iss/mem/memory_if.h Fichier normal
Voir le fichier

@@ -0,0 +1,86 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_MEMORY_IF_
#define _MEMORY_MEMORY_IF_
#include "iss/vm_types.h"
#include <deque>
#include <functional>
#include <limits>
#include <memory>
#include <util/delegate.h>
#include <vector>
namespace iss {
namespace mem {
using rd_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t*);
using wr_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t const*);
struct memory_if {
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t*)> rd_mem;
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t const*)> wr_mem;
};
struct memory_elem {
virtual ~memory_elem() = default;
virtual memory_if get_mem_if() = 0;
virtual void set_next(memory_if) = 0;
virtual std::tuple<uint64_t, uint64_t> get_range() { return {0, std::numeric_limits<uint64_t>::max()}; }
};
struct memory_hierarchy {
void root(memory_elem&);
void prepend(memory_elem&);
void append(memory_elem&);
void insert_before(memory_elem&);
void insert_after(memory_elem&);
void replace_last(memory_elem&);
void prepend(std::unique_ptr<memory_elem>&&);
void append(std::unique_ptr<memory_elem>&&);
void insert_before(std::unique_ptr<memory_elem>&&);
void insert_after(std::unique_ptr<memory_elem>&&);
void replace_last(std::unique_ptr<memory_elem>&&);
protected:
void update_chain();
std::deque<memory_elem*> hierarchy;
std::vector<std::unique_ptr<memory_elem>> owned_elems;
bool root_set{false};
};
} // namespace mem
} // namespace iss
#endif

90
src/iss/mem/memory_with_htif.h Fichier normal
Voir le fichier

@@ -0,0 +1,90 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_WITH_HTIF_
#define _MEMORY_WITH_HTIF_
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
#include <util/sparse_array.h>
namespace iss {
namespace mem {
template <typename WORD_TYPE> struct memory_with_htif : public memory_elem {
using this_class = memory_with_htif<WORD_TYPE>;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
memory_with_htif(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {}
~memory_with_htif() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if) override {
// intenrionally left empty, leaf element
}
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
for(auto offs = 0U; offs < length; ++offs) {
*(data + offs) = mem[(addr + offs) % mem.size()];
}
return iss::Ok;
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
mem_type::page_type& p = mem(addr / mem.page_size);
std::copy(data, data + length, p.data() + (addr & mem.page_addr_mask));
// this->tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(access && iss::access_type::FUNC && addr == hart_if.tohost) {
return hart_if.exec_htif(data);
}
return iss::Ok;
}
protected:
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
mem_type mem;
arch::priv_if<WORD_TYPE> hart_if;
};
} // namespace mem
} // namespace iss
#endif // _MEMORY_WITH_HTIF_

353
src/iss/mem/mmu.h Fichier normal
Voir le fichier

@@ -0,0 +1,353 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
// TODO: update vminfo on trap enter and leave as well as mstatus write, reset
template <typename WORD_TYPE> struct mmu : public memory_elem {
using this_class = mmu<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
constexpr static reg_t PGSIZE = 1 << PGSHIFT;
constexpr static reg_t PGMASK = PGSIZE - 1;
mmu(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
hart_if.csr_rd_cb[satp] = MK_CSR_RD_CB(read_satp);
hart_if.csr_wr_cb[satp] = MK_CSR_WR_CB(write_satp);
}
virtual ~mmu() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.rd_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.rd_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.wr_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.wr_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.wr_mem(access, virt2phys(access, addr), length, data);
}
void update_vm_info();
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status read_satp(unsigned addr, reg_t& val) {
auto tvm = bit_sub<20, 1>(hart_if.state.mstatus());
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
val = satp;
return iss::Ok;
}
iss::status write_satp(unsigned addr, reg_t val) {
reg_t tvm = hart_if.state.mstatus.TVM;
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
satp = val;
update_vm_info();
return iss::Ok;
}
uint64_t virt2phys(iss::access_type access, uint64_t addr);
static inline vm_info decode_vm_info(uint32_t state, uint32_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<31, 1>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 1:
return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
static inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<60, 4>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 8:
return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV39
case 9:
return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV48
case 10:
return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV57
case 11:
return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV64
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
protected:
reg_t satp;
std::unordered_map<reg_t, uint64_t> ptw;
std::array<vm_info, 2> vmt;
std::array<address_type, 4> addr_mode;
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> uint64_t mmu<WORD_TYPE>::virt2phys(iss::access_type access, uint64_t addr) {
const auto type = access & iss::access_type::FUNC;
auto it = ptw.find(addr >> PGSHIFT);
if(it != ptw.end()) {
const reg_t pte = it->second;
const reg_t ad = PTE_A | (type == iss::access_type::WRITE) * PTE_D;
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) == ad)
return {(pte & (~PGMASK)) | (addr & PGMASK)};
else
ptw.erase(it); // throw an exception
#endif
} else {
uint32_t mode = type != iss::access_type::FETCH && hart_if.state.mstatus.MPRV ? // MPRV
hart_if.state.mstatus.MPP
: hart_if.PRIV;
const vm_info& vm = vmt[static_cast<uint16_t>(type) / 2];
const bool s_mode = mode == arch::PRIV_S;
const bool sum = hart_if.state.mstatus.SUM;
const bool mxr = hart_if.state.mstatus.MXR;
// verify bits xlen-1:va_bits-1 are all equal
const int va_bits = PGSHIFT + vm.levels * vm.idxbits;
const reg_t mask = (reg_t(1) << (sizeof(reg_t) * 8 - (va_bits - 1))) - 1;
const reg_t masked_msbs = (addr >> (va_bits - 1)) & mask;
const int levels = (masked_msbs != 0 && masked_msbs != mask) ? 0 : vm.levels;
reg_t base = vm.ptbase;
for(int i = levels - 1; i >= 0; i--) {
const int ptshift = i * vm.idxbits;
const reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
reg_t pte = 0;
const uint8_t res = down_stream_mem.rd_mem(iss::access_type::READ, base + idx * vm.ptesize, vm.ptesize, (uint8_t*)&pte);
if(res != 0)
throw arch::trap_load_access_fault(addr);
const reg_t ppn = pte >> PTE_PPN_SHIFT;
if(PTE_TABLE(pte)) { // next level of page table
base = ppn << PGSHIFT;
} else if((pte & PTE_U) ? s_mode && (type == iss::access_type::FETCH || !sum) : !s_mode) {
break;
} else if(!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if(type == (type == iss::access_type::FETCH ? !(pte & PTE_X)
: type == iss::access_type::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W)))) {
break;
} else if((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
const reg_t ad = PTE_A | ((type == iss::access_type::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) != ad)
break;
#endif
// for superpage mappings, make a fake leaf PTE for the TLB's benefit.
const reg_t vpn = addr >> PGSHIFT;
const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
const reg_t offset = addr & PGMASK;
ptw[vpn] = value | (pte & 0xff);
return value | offset;
}
}
}
switch(type) {
case access_type::FETCH:
hart_if.raise_trap(12, 0, addr);
throw arch::trap_instruction_page_fault(addr);
case access_type::READ:
hart_if.raise_trap(13, 0, addr);
throw arch::trap_load_page_fault(addr);
case access_type::WRITE:
hart_if.raise_trap(15, 0, addr);
throw arch::trap_store_page_fault(addr);
default:
abort();
}
}
template <typename WORD_TYPE> inline void mmu<WORD_TYPE>::update_vm_info() {
vmt[1] = decode_vm_info(hart_if.PRIV, satp);
addr_mode[3] = addr_mode[2] = vmt[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
if(hart_if.state.mstatus.MPRV)
vmt[0] = decode_vm_info(hart_if.state.mstatus.MPP, satp);
else
vmt[0] = vmt[1];
addr_mode[1] = addr_mode[0] = vmt[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
ptw.clear();
}
} // namespace mem
} // namespace iss

244
src/iss/mem/pmp.h Fichier normal
Voir le fichier

@@ -0,0 +1,244 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct pmp : public memory_elem {
using this_class = pmp<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
pmp(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
for(size_t i = arch::pmpaddr0; i <= arch::pmpaddr15; ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_plain);
}
for(size_t i = arch::pmpcfg0; i < arch::pmpcfg0 + 16 / sizeof(reg_t); ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_pmpcfg);
}
}
virtual ~pmp() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | ((access == access_type::FETCH ? 1 : 5) << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | (7 << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status write_pmpcfg(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & 0x9f9f9f9f;
return iss::Ok;
}
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> bool pmp<WORD_TYPE>::pmp_check(const access_type type, const uint64_t addr, const unsigned len) {
constexpr auto PMP_SHIFT = 2U;
constexpr auto PMP_R = 0x1U;
constexpr auto PMP_W = 0x2U;
constexpr auto PMP_X = 0x4U;
constexpr auto PMP_A = 0x18U;
constexpr auto PMP_L = 0x80U;
constexpr auto PMP_TOR = 0x1U;
constexpr auto PMP_NA4 = 0x2U;
constexpr auto PMP_NAPOT = 0x3U;
reg_t base = 0;
auto any_active = false;
auto const cfg_reg_size = sizeof(reg_t);
for(size_t i = 0; i < 16; i++) {
reg_t tor = hart_if.csr[arch::pmpaddr0 + i] << PMP_SHIFT;
uint8_t cfg = hart_if.csr[arch::pmpcfg0 + (i / cfg_reg_size)] >> (i % cfg_reg_size);
if(cfg & PMP_A) {
any_active = true;
auto pmp_a = (cfg & PMP_A) >> 3;
auto is_tor = pmp_a == PMP_TOR;
auto is_na4 = pmp_a == PMP_NA4;
reg_t mask = (hart_if.csr[arch::pmpaddr0 + i] << 1) | (!is_na4);
mask = ~(mask & ~(mask + 1)) << PMP_SHIFT;
// Check each 4-byte sector of the access
auto any_match = false;
auto all_match = true;
for(reg_t offset = 0; offset < len; offset += 1 << PMP_SHIFT) {
reg_t cur_addr = addr + offset;
auto napot_match = ((cur_addr ^ tor) & mask) == 0;
auto tor_match = base <= (cur_addr + len - 1) && cur_addr < tor;
auto match = is_tor ? tor_match : napot_match;
any_match |= match;
all_match &= match;
}
if(any_match) {
// If the PMP matches only a strict subset of the access, fail it
if(!all_match)
return false;
return (hart_if.reg.PRIV == arch::PRIV_M && !(cfg & PMP_L)) || (type == access_type::READ && (cfg & PMP_R)) ||
(type == access_type::WRITE && (cfg & PMP_W)) || (type == access_type::FETCH && (cfg & PMP_X));
}
}
base = tor;
}
// constexpr auto pmp_num_regs = 16;
// reg_t tor_base = 0;
// auto any_active = false;
// auto lower_addr = addr >>2;
// auto upper_addr = (addr+len-1)>>2;
// for (size_t i = 0; i < pmp_num_regs; i++) {
// uint8_t cfg = csr[pmpcfg0+(i/4)]>>(i%4);
// uint8_t cfg_next = i==(pmp_num_regs-1)? 0 : csr[pmpcfg0+((i+1)/4)]>>((i+1)%4);
// auto pmpaddr = csr[pmpaddr0+i];
// if (cfg & PMP_A) {
// any_active=true;
// auto is_tor = bit_sub<3, 2>(cfg) == PMP_TOR;
// auto is_napot = bit_sub<4, 1>(cfg) && bit_sub<3, 2>(cfg_next)!= PMP_TOR;
// if(is_napot) {
// reg_t mask = bit_sub<3, 1>(cfg)?~( pmpaddr & ~(pmpaddr + 1)): 0x3fffffff;
// auto mpmpaddr = pmpaddr & mask;
// if((lower_addr&mask) == mpmpaddr && (upper_addr&mask)==mpmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// } else if(is_tor) {
// if(lower_addr>=tor_base && upper_addr<=pmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// }
// }
// tor_base = pmpaddr;
// }
return !any_active || hart_if.reg.PRIV == arch::PRIV_M;
}
} // namespace mem
} // namespace iss

Voir le fichier

@@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "semihosting.h"
#include <chrono>
#include <cstdint>

Voir le fichier

@@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SEMIHOSTING_H_
#define _SEMIHOSTING_H_
#include <chrono>
@@ -58,4 +92,4 @@ template <typename T> struct semihosting_callback {
};
template <typename T> using semihosting_cb_t = std::function<void(iss::arch_if*, T*, T*)>;
#endif
#endif

Voir le fichier

@@ -40,6 +40,7 @@
#include <vector>
#include "iss/arch/tgc_mapper.h"
#include "util/logging.h"
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#ifdef WITH_LLVM
@@ -258,6 +259,7 @@ int main(int argc, char* argv[]) {
LOG(ERR) << "Error opening file " << filename << std::endl;
return 1;
}
LOGGER(DEFAULT)::reporting_level() = logging::ERR;
for(auto addr = start_addr; addr < end_addr; addr += data.size()) {
vm->get_arch()->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0 /*MEM*/, addr, data.size(),
data.data()); // FIXME: get space from iss::arch::traits<ARCH>::mem_type_e::MEM

Voir le fichier

@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -387,7 +387,7 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::run() {
quantum_keeper.reset();
cpu->set_interrupt_execution(false);
cpu->start(dump_ir);
} while(cpu->get_interrupt_execution());
} while(!cpu->get_interrupt_execution());
sc_stop();
}
@@ -419,7 +419,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t
gp.set_extension(preExt);
}
auto pre_delay = delay;
dbus->b_transport(gp, delay);
sckt->b_transport(gp, delay);
if(pre_delay > delay) {
quantum_keeper.reset();
} else {

Voir le fichier

@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017-2021 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

Voir le fichier

@@ -1,9 +1,36 @@
/*
* sc_core_adapter.h
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Created on: Jul 5, 2023
* Author: eyck
*/
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SYSC_SC_CORE_ADAPTER_H_
#define _SYSC_SC_CORE_ADAPTER_H_
@@ -11,6 +38,7 @@
#include "sc_core_adapter_if.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/mem/memory_if.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
@@ -18,11 +46,16 @@
namespace sysc {
template <typename PLAT> class sc_core_adapter : public PLAT, public sc_core_adapter_if {
public:
using this_class = sc_core_adapter<PLAT>;
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex_if* owner)
: owner(owner) {}
: owner(owner) {
this->csr_rd_cb[iss::arch::time] = MK_CSR_RD_CB(read_time);
if(sizeof(reg_t) == 4)
this->csr_rd_cb[iss::arch::timeh] = MK_CSR_RD_CB(read_time);
this->memories.replace_last(*this);
}
iss::arch_if* get_arch_if() override { return this; }
@@ -60,79 +93,87 @@ public:
}
};
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
iss::mem::memory_if get_mem_if() override {
return iss::mem::memory_if{.rd_mem{util::delegate<iss::mem::rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<iss::mem::wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
else {
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? iss::Ok : iss::Err;
return owner->read_mem(addr, length, data, is_fetch(access)) ? iss::Ok : iss::Err;
}
}
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
auto tohost_upper = (sizeof(reg_t) == 4 && addr.val == (this->tohost + 4)) || (sizeof(reg_t) == 8 && addr.val == this->tohost);
auto tohost_lower = (sizeof(reg_t) == 4 && addr.val == this->tohost) || (sizeof(reg_t) == 64 && addr.val == this->tohost);
if(tohost_lower || tohost_upper) {
if(tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
default:
break;
}
} else if(tohost_lower)
to_host_wr_cnt++;
return iss::Ok;
} else {
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
if(addr == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = sizeof(reg_t) == 4 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = sizeof(reg_t) == 4 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL; // 24bits
if(payload_addr & 1) {
if(payload_addr != 0x1) {
SCCERR(owner->hier_name()) << "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
} else {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr << "), stopping simulation";
}
return res;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
auto res = owner->read_mem(payload_addr, 8 * sizeof(uint64_t), reinterpret_cast<uint8_t*>(loaded_payload.data()), false)
? iss::Ok
: iss::Err;
if(res == iss::Err) {
SCCERR(owner->hier_name()) << "Syscall read went wrong";
return iss::Ok;
}
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, PLAT::MEM);
SCCERR(owner->hier_name()) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
SCCERR(owner->hier_name()) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
auto res = owner->write_mem(addr, length, data) ? iss::Ok : iss::Err;
return res;
}
iss::status read_csr(unsigned addr, reg_t& val) override {
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
} else {
return PLAT::read_csr(addr, val);
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->hier_name()) << "Sleeping until interrupt";
PLAT::wait_until(flags);
while(this->reg.pending_trap == 0 && (this->csr[iss::arch::mip] & this->csr[iss::arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) override {
@@ -165,7 +206,6 @@ public:
private:
sysc::tgfs::core_complex_if* const owner{nullptr};
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;
bool first{true};
};

Voir le fichier

@@ -1,9 +1,36 @@
/*
* sc_core_adapter.h
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Created on: Jul 5, 2023
* Author: eyck
*/
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SYSC_SC_CORE_ADAPTER_IF_H_
#define _SYSC_SC_CORE_ADAPTER_IF_H_

69
src/vm/aes_sbox.h Fichier normal
Voir le fichier

@@ -0,0 +1,69 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// ales@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#ifndef _VM_AES_SBOX_H_
#define _VM_AES_SBOX_H_
#include <cstdint>
const uint8_t AES_ENC_SBOX[] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59,
0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1,
0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83,
0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C,
0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE,
0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6,
0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9,
0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1,
0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16};
uint8_t inline aes_sbox_fwd(uint8_t index) { return AES_ENC_SBOX[index]; }
const uint8_t AES_DEC_SBOX[] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F,
0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B,
0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8,
0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3,
0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9,
0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07,
0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F,
0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B,
0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D};
uint8_t inline aes_sbox_inv(uint8_t index) { return AES_DEC_SBOX[index]; }
#endif /* _VM_AES_SBOX_H_ */

Voir le fichier

@@ -94,7 +94,7 @@ protected:
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
continuation_e gen_single_inst_behavior(virt_addr_t&, jit_holder&) override;
enum globals_e {TVAL = 0, GLOBALS_SIZE};
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
@@ -4780,19 +4780,16 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@@ -4927,4 +4924,4 @@ volatile std::array<bool, 2> dummy = {
};
}
}
// clang-format on
// clang-format on

Voir le fichier

@@ -33,7 +33,9 @@
////////////////////////////////////////////////////////////////////////////////
#include "fp_functions.h"
#include "softfloat_types.h"
#include <array>
#include <cstdint>
extern "C" {
#include "internals.h"
@@ -44,21 +46,375 @@ extern "C" {
#include <limits>
using this_t = uint8_t*;
// this does not inlcude any reserved rm or the DYN rm, as DYN rm should be taken care of in the vm_impl
const std::array<uint8_t, 5> rmm_map = {
softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/,
softfloat_round_near_maxMag /*RMM*/
};
template <typename T> T constexpr defaultNaN();
template <> uint16_t constexpr defaultNaN<uint16_t>() { return defaultNaNF16UI; }
template <> uint32_t constexpr defaultNaN<uint32_t>() { return defaultNaNF32UI; }
template <> uint64_t constexpr defaultNaN<uint64_t>() { return defaultNaNF64UI; }
template <typename T> T constexpr posInf();
template <> uint16_t constexpr posInf<uint16_t>() { return 0x7C00; }
template <> uint32_t constexpr posInf<uint32_t>() { return 0x7F800000; }
template <> uint64_t constexpr posInf<uint64_t>() { return 0x7FF0000000000000; }
template <typename T> T constexpr negInf();
template <> uint16_t constexpr negInf<uint16_t>() { return 0xFC00; }
template <> uint32_t constexpr negInf<uint32_t>() { return 0xFF800000; }
template <> uint64_t constexpr negInf<uint64_t>() { return 0xFFF0000000000000; }
template <typename T> T constexpr negZero();
template <> uint16_t constexpr negZero<uint16_t>() { return 0x8000; }
template <> uint32_t constexpr negZero<uint32_t>() { return 0x80000000; }
template <> uint64_t constexpr negZero<uint64_t>() { return 0x8000000000000000; }
const uint32_t quiet_nan32 = 0x7fC00000;
template <typename T> bool rsqrt_check(T fclass_val, bool& subnormal, T& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0002: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0020: {
subnormal = true;
}
default:
return false;
}
}
static constexpr std::array<std::array<uint64_t, 64>, 2> rsqrt_table{
{{
52, 51, 50, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20,
19, 19, 18, 17, 16, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 7, 7, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0,
},
{127, 125, 123, 121, 119, 118, 116, 114, 113, 111, 109, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93,
92, 91, 90, 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 70,
69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 53}}};
uint64_t constexpr frsqrt7_general(const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal) {
int64_t normalized_exp = exp;
uint64_t normalized_sig = sig;
if(subnormal) {
signed nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
normalized_exp = -nr_leadingzeros;
normalized_sig = (sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1);
}
unsigned exp_idx = normalized_exp & 1;
unsigned sig_idx = (normalized_sig >> (s - 6)) & 0x3f;
// The output of the table becomes the seven high bits of the result significand (after the leading one); the remainder of the
// result significand is zero.
uint64_t out_sig = rsqrt_table[exp_idx][sig_idx] << (s - 7);
// The output exponent equals floor((3*B - 1 - the normalized input exponent) / 2), where B is the exponent bias.
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t out_exp = (3 * bias - 1 - normalized_exp) / 2;
// The output sign equals the input sign.
return (sign << (s + e)) | (out_exp << s) | out_sig;
}
template <typename T> bool recip_check(T fclass_val, bool& subnormal, uint64_t& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
ret_val = negZero<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
subnormal = true;
return false;
}
case 0x0020: {
subnormal = true;
return false;
}
default: {
subnormal = false;
return false;
}
}
}
static constexpr std::array<uint64_t, 128> rec_table{
{127, 125, 123, 121, 119, 117, 116, 114, 112, 110, 109, 107, 105, 104, 102, 100, 99, 97, 96, 94, 93, 91, 90, 88, 87, 85,
84, 83, 81, 80, 79, 77, 76, 75, 74, 72, 71, 70, 69, 68, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, 32, 31,
31, 30, 29, 28, 28, 27, 26, 25, 25, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 14,
13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0}};
bool frec_general(uint64_t& res, const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal, uint8_t mode) {
int nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
int64_t normalized_exp = subnormal ? -nr_leadingzeros : exp;
uint64_t normalized_sig = subnormal ? ((sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1)) : sig;
unsigned idx = (normalized_sig >> (s - 7)) & 0x7f;
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t mid_exp = 2 * (bias)-1 - normalized_exp;
uint64_t mid_sig = rec_table[idx] << (s - 7);
uint64_t out_exp = mid_exp;
uint64_t out_sig = mid_sig;
if(mid_exp == 0) {
out_exp = mid_exp;
out_sig = (mid_sig >> 1) | (1ULL << (s - 1));
} else if(mid_exp == (1ULL << e) - 1) {
out_exp = 0;
out_sig = (mid_sig >> 2) | (1ULL << (s - 2));
}
if(subnormal && nr_leadingzeros > 1) {
if((mode == 0b001) || (mode == 0b010 && sign == 0b0) || (mode == 0b011 && sign == 0b1)) {
res = (sign << (s + e)) | ((1ULL << (e - 1)) - 1) << s | ((1ULL << s) - 1);
return true;
} else {
res = (sign << (s + e)) | ((1ULL << e) - 1) << s;
return true;
}
}
res = (sign << (s + e)) | (out_exp << s) | out_sig;
return false;
}
extern "C" {
uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; }
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_add(v1f, v2f);
return r.v;
}
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sub(v1f, v2f);
return r.v;
}
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_mul(v1f, v2f);
return r.v;
}
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_div(v1f, v2f);
return r.v;
}
uint16_t fsqrt_h(uint16_t v1, uint8_t mode) {
float16_t v1f{v1};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sqrt(v1f);
return r.v;
}
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op) {
float16_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = v1 == defaultNaNF16UI || v2 & defaultNaNF16UI;
bool snan = softfloat_isSigNaNF16UI(v1) || softfloat_isSigNaNF16UI(v2);
switch(op) {
case 0:
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_eq(v1f, v2f) ? 1 : 0;
case 1:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_le(v1f, v2f) ? 1 : 0;
case 2:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_lt(v1f, v2f) ? 1 : 0;
default:
break;
}
return -1;
}
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode) {
uint16_t F16_SIGN = 1UL << 15;
switch(op) {
case 0: // FMADD_S
break;
case 1: // FMSUB_S
v3 ^= F16_SIGN;
break;
case 2: // FNMADD_S
v1 ^= F16_SIGN;
v3 ^= F16_SIGN;
break;
case 3: // FNMSUB_S
v1 ^= F16_SIGN;
break;
}
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t res = softfloat_mulAddF16(v1, v2, v3, 0);
return res.v;
}
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op) {
softfloat_exceptionFlags = 0;
bool v1_nan = (v1 & defaultNaNF16UI) == defaultNaNF16UI;
bool v2_nan = (v2 & defaultNaNF16UI) == defaultNaNF16UI;
bool v1_snan = softfloat_isSigNaNF16UI(v1);
bool v2_snan = softfloat_isSigNaNF16UI(v2);
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF16UI : v2;
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & 0x7fff) == 0 && (v2 & 0x7fff) == 0) {
return op == 0 ? ((v1 & 0x8000) ? v1 : v2) : ((v1 & 0x8000) ? v2 : v1);
} else {
float16_t v1f{v1}, v2f{v2};
return op == 0 ? (f16_lt(v1f, v2f) ? v1 : v2) : (f16_lt(v1f, v2f) ? v2 : v1);
}
}
}
uint16_t fclass_h(uint16_t v1) {
float16_t a{v1};
union ui16_f16 uA;
uint_fast16_t uiA;
uA.f = a;
uiA = uA.ui;
bool infOrNaN = expF16UI(uiA) == 0x1F;
bool subnormalOrZero = expF16UI(uiA) == 0;
bool sign = signF16UI(uiA);
bool fracZero = fracF16UI(uiA) == 0;
bool isNaN = isNaNF16UI(uiA);
bool isSNaN = softfloat_isSigNaNF16UI(uiA);
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint16_t frsqrt7_h(uint16_t v) {
bool subnormal = false;
uint16_t ret_val = 0;
if(rsqrt_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF64UI(v);
int16_t exp = expF64UI(v);
uint16_t sign = signF64UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint16_t frec7_h(uint16_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF16UI(v);
int exp = expF16UI(v);
uint16_t sign = signF16UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint16_t unbox_h(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
mask = std::numeric_limits<uint32_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
return defaultNaNF16UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_add(v1f, v2f);
return r.v;
@@ -66,7 +422,7 @@ uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_sub(v1f, v2f);
return r.v;
@@ -74,7 +430,7 @@ uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_mul(v1f, v2f);
return r.v;
@@ -82,7 +438,7 @@ uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_div(v1f, v2f);
return r.v;
@@ -90,7 +446,7 @@ uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
float32_t v1f{v1};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_sqrt(v1f);
return r.v;
@@ -99,7 +455,7 @@ uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
float32_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32;
bool nan = v1 == defaultNaNF32UI || v2 == defaultNaNF32UI;
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
switch(op) {
case 0:
@@ -127,29 +483,6 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
return -1;
}
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float32_t r;
switch(op) {
case 0: { // FCVT__W__S
uint_fast32_t res = f32_to_i32(v1f, rmm_map.at(mode), true);
return (uint32_t)res;
}
case 1: { // FCVT__WU__S
uint_fast32_t res = f32_to_ui32(v1f, rmm_map.at(mode), true);
return (uint32_t)res;
}
case 2: // FCVT__S__W
r = i32_to_f32((int32_t)v1);
return r.v;
case 3: // FCVT__S__WU
r = ui32_to_f32(v1);
return r.v;
}
return 0;
}
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
uint32_t F32_SIGN = 1UL << 31;
switch(op) {
@@ -166,7 +499,7 @@ uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mod
v1 ^= F32_SIGN;
break;
}
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, 0);
return res.v;
@@ -216,37 +549,60 @@ uint32_t fclass_s(uint32_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
bool isNan = isNaNF64UI(v1);
bool isSNaN = softfloat_isSigNaNF64UI(v1);
softfloat_roundingMode = rmm_map.at(mode);
softfloat_exceptionFlags = 0;
if(isNan) {
if(isSNaN)
softfloat_raiseFlags(softfloat_flag_invalid);
return defaultNaNF32UI;
} else {
float32_t res = f64_to_f32(float64_t{v1});
return res.v;
uint32_t frsqrt7_s(uint32_t v) {
bool subnormal = false;
uint32_t ret_val = 0;
if(rsqrt_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool infOrNaN = expF32UI(v1) == 0xFF;
bool subnormalOrZero = expF32UI(v1) == 0;
if(infOrNaN || subnormalOrZero) {
return defaultNaNF64UI;
} else {
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
uint32_t frec7_s(uint32_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint32_t unbox_s(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
return v;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
return defaultNaNF32UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32;
bool nan = v1 == defaultNaNF32UI;
bool snan = softfloat_isSigNaNF32UI(v1);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_add(v1f, v2f);
return r.v;
@@ -254,7 +610,7 @@ uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_sub(v1f, v2f);
return r.v;
@@ -262,7 +618,7 @@ uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_mul(v1f, v2f);
return r.v;
@@ -270,7 +626,7 @@ uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_div(v1f, v2f);
return r.v;
@@ -278,7 +634,7 @@ uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
float64_t v1f{v1};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_sqrt(v1f);
return r.v;
@@ -287,7 +643,7 @@ uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
float64_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32;
bool nan = v1 == defaultNaNF64UI || v2 == defaultNaNF64UI;
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
switch(op) {
case 0:
@@ -315,30 +671,6 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
return -1;
}
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: { // l from d
int64_t res = f64_to_i64(v1f, rmm_map.at(mode), true);
return (uint64_t)res;
}
case 1: { // lu from d
uint64_t res = f64_to_ui64(v1f, rmm_map.at(mode), true);
return res;
}
case 2: // d from l
r = i64_to_f64(v1);
return r.v;
case 3: // d from lu
r = ui64_to_f64(v1);
return r.v;
}
return 0;
}
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
uint64_t F64_SIGN = 1ULL << 63;
switch(op) {
@@ -355,7 +687,7 @@ uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mod
v1 ^= F64_SIGN;
break;
}
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, 0);
return res.v;
@@ -406,52 +738,211 @@ uint64_t fclass_d(uint64_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: // l->s, fp to int32
return f32_to_i64(v1f, rmm_map.at(mode), true);
case 1: // wu->s
return f32_to_ui64(v1f, rmm_map.at(mode), true);
case 2: // s->w
r = i32_to_f64(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f64(v1);
return r.v;
uint64_t frsqrt7_d(uint64_t v) {
bool subnormal = false;
uint64_t ret_val = 0;
if(rsqrt_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
}
return 0;
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) {
softfloat_exceptionFlags = 0;
float32_t r;
switch(op) {
case 0: { // wu->s
int32_t r = f64_to_i32(float64_t{v1}, rmm_map.at(mode), true);
return r;
uint64_t frec7_d(uint64_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
}
case 1: { // wu->s
uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map.at(mode), true);
return r;
}
case 2: // l->s, fp to int32
r = i64_to_f32(v1);
return r.v;
case 3: // wu->s
r = ui64_to_f32(v1);
return r.v;
}
return 0;
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint32_t unbox_s(uint64_t v) {
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
uint64_t unbox_d(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 64: {
return v;
break;
}
default:
break;
}
if((v & mask) != mask)
return 0x7fc00000;
return defaultNaNF64UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f32(float16_t{val}).v;
}
uint64_t f16tof64(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f64(float16_t{val}).v;
}
uint16_t f32tof16(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f16(float32_t{val}).v;
}
uint64_t f32tof64(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f64(float32_t{val}).v;
}
uint16_t f64tof16(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f16(float64_t{val}).v;
}
uint32_t f64tof32(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f32(float64_t{val}).v;
}
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui32(float16_t{v}, rm, true);
}
uint64_t f16toui64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui64(float16_t{v}, rm, true);
}
uint32_t f32toui32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui32(float32_t{v}, rm, true);
}
uint64_t f32toui64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui64(float32_t{v}, rm, true);
}
uint32_t f64toui32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui32(float64_t{v}, rm, true);
}
uint64_t f64toui64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui64(float64_t{v}, rm, true);
}
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i32(float16_t{v}, rm, true);
}
uint64_t f16toi64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i64(float16_t{v}, rm, true);
}
uint32_t f32toi32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i32(float32_t{v}, rm, true);
}
uint64_t f32toi64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i64(float32_t{v}, rm, true);
}
uint32_t f64toi32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i32(float64_t{v}, rm, true);
}
uint64_t f64toi64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i64(float64_t{v}, rm, true);
}
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f16(v).v;
}
uint16_t ui64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f16(v).v;
}
uint32_t ui32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f32(v).v;
}
uint32_t ui64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f32(v).v;
}
uint64_t ui32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f64(v).v;
}
uint64_t ui64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f64(v).v;
}
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f16(v).v;
}
uint16_t i64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f16(v).v;
}
uint32_t i32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f32(v).v;
}
uint32_t i64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f32(v).v;
}
uint64_t i32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f64(v).v;
}
uint64_t i64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f64(v).v;
}
}

Voir le fichier

@@ -39,30 +39,88 @@
extern "C" {
uint32_t fget_flags();
// half precision
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsqrt_h(uint16_t v1, uint8_t mode);
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode);
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fsqrt_h(uint16_t v1, uint8_t mode);
uint16_t fclass_h(uint16_t v1);
uint16_t frsqrt7_h(uint16_t v);
uint16_t frec7_h(uint16_t v, uint8_t mode);
uint16_t unbox_h(uint8_t FLEN, uint64_t v);
// single precision
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsqrt_s(uint32_t v1, uint8_t mode);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode);
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fclass_s(uint32_t v1);
uint32_t fconv_d2f(uint64_t v1, uint8_t mode);
uint64_t fconv_f2d(uint32_t v1, uint8_t mode);
uint32_t frsqrt7_s(uint32_t v);
uint32_t frec7_s(uint32_t v, uint8_t mode);
uint32_t unbox_s(uint8_t FLEN, uint64_t v);
// double precision
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsqrt_d(uint64_t v1, uint8_t mode);
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode);
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fclass_d(uint64_t v1);
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode);
uint32_t unbox_s(uint64_t v);
uint64_t frsqrt7_d(uint64_t v);
uint64_t frec7_d(uint64_t v, uint8_t mode);
uint64_t unbox_d(uint8_t FLEN, uint64_t v);
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm);
uint64_t f16tof64(uint16_t val, uint8_t rm);
uint16_t f32tof16(uint32_t val, uint8_t rm);
uint64_t f32tof64(uint32_t val, uint8_t rm);
uint16_t f64tof16(uint64_t val, uint8_t rm);
uint32_t f64tof32(uint64_t val, uint8_t rm);
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm);
uint64_t f16toui64(uint16_t v, uint8_t rm);
uint32_t f32toui32(uint32_t v, uint8_t rm);
uint64_t f32toui64(uint32_t v, uint8_t rm);
uint32_t f64toui32(uint64_t v, uint8_t rm);
uint64_t f64toui64(uint64_t v, uint8_t rm);
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm);
uint64_t f16toi64(uint16_t v, uint8_t rm);
uint32_t f32toi32(uint32_t v, uint8_t rm);
uint64_t f32toi64(uint32_t v, uint8_t rm);
uint32_t f64toi32(uint64_t v, uint8_t rm);
uint64_t f64toi64(uint64_t v, uint8_t rm);
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm);
uint16_t ui64tof16(uint64_t v, uint8_t rm);
uint32_t ui32tof32(uint32_t v, uint8_t rm);
uint32_t ui64tof32(uint64_t v, uint8_t rm);
uint64_t ui32tof64(uint32_t v, uint8_t rm);
uint64_t ui64tof64(uint64_t v, uint8_t rm);
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm);
uint16_t i64tof16(uint64_t v, uint8_t rm);
uint32_t i32tof32(uint32_t v, uint8_t rm);
uint32_t i64tof32(uint64_t v, uint8_t rm);
uint64_t i32tof64(uint32_t v, uint8_t rm);
uint64_t i64tof64(uint64_t v, uint8_t rm);
}
#endif /* RISCV_SRC_VM_FP_FUNCTIONS_H_ */
#endif /* _VM_FP_FUNCTIONS_H_ */

Fichier diff supprimé car celui-ci est trop grand Voir la Diff

Voir le fichier

@@ -97,7 +97,7 @@ protected:
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
@@ -4937,21 +4937,20 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
if (instr == 0x0000006f || (instr&0xffff)==0xa001){
this->builder.CreateBr(this->leave_blk);
return std::make_tuple(JUMP_TO_SELF, nullptr);
++inst_cnt;
}
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@@ -5033,6 +5032,10 @@ void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* icount_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::ICOUNT), get_reg_ptr(arch::traits<ARCH>::ICOUNT)), this->gen_const(64U, 1));
this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits<ARCH>::ICOUNT), false);
//increment cyclecount
auto* cycle_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::CYCLE), get_reg_ptr(arch::traits<ARCH>::CYCLE)), this->gen_const(64U, 1));
this->builder.CreateStore(cycle_val, get_reg_ptr(arch::traits<ARCH>::CYCLE), false);
}
} // namespace tgc5c

Fichier diff supprimé car celui-ci est trop grand Voir la Diff

101
src/vm/vector_functions.cpp Fichier normal
Voir le fichier

@@ -0,0 +1,101 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// alex@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#include "vector_functions.h"
#include "iss/vm_types.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <math.h>
#include <stdexcept>
#include <vector>
namespace softvector {
bool softvec_read(void* core, uint64_t addr, uint64_t length, uint8_t* data) {
// Read length bytes from addr into *data
iss::status status = static_cast<iss::arch_if*>(core)->read(iss::address_type::PHYSICAL, iss::access_type::READ,
0 /*traits<ARCH>::MEM*/, addr, length, data);
return status == iss::Ok;
}
bool softvec_write(void* core, uint64_t addr, uint64_t length, uint8_t* data) {
// Write length bytes from addr into *data
iss::status status = static_cast<iss::arch_if*>(core)->write(iss::address_type::PHYSICAL, iss::access_type::READ,
0 /*traits<ARCH>::MEM*/, addr, length, data);
return status == iss::Ok;
}
vtype_t::vtype_t(uint32_t vtype_val) { underlying = (vtype_val & 0x8000) << 32 | (vtype_val & ~0x8000); }
vtype_t::vtype_t(uint64_t vtype_val) { underlying = vtype_val; }
bool vtype_t::vill() { return underlying >> 63; }
bool vtype_t::vma() { return (underlying >> 7) & 1; }
bool vtype_t::vta() { return (underlying >> 6) & 1; }
unsigned vtype_t::sew() {
uint8_t vsew = (underlying >> 3) & 0b111;
// pow(2, 3 + vsew);
return 1 << (3 + vsew);
}
double vtype_t::lmul() {
uint8_t vlmul = underlying & 0b111;
assert(vlmul != 0b100); // reserved encoding
int8_t signed_vlmul = (vlmul >> 2) ? 0b11111000 | vlmul : vlmul;
return pow(2, signed_vlmul);
}
mask_bit_reference& mask_bit_reference::operator=(const bool new_value) {
*start = *start & ~(1U << pos) | static_cast<unsigned>(new_value) << pos;
return *this;
}
mask_bit_reference::mask_bit_reference(uint8_t* start, uint8_t pos)
: start(start)
, pos(pos) {
assert(pos < 8 && "Bit reference can only be initialized for bytes");
};
mask_bit_reference::operator bool() const { return *(start) & (1U << (pos)); }
mask_bit_reference vmask_view::operator[](size_t idx) const {
assert(idx < elem_count);
return {start + idx / 8, static_cast<uint8_t>(idx % 8)};
}
vmask_view read_vmask(uint8_t* V, uint16_t VLEN, uint16_t elem_count, uint8_t reg_idx) {
uint8_t* mask_start = V + VLEN / 8 * reg_idx;
assert(mask_start + elem_count / 8 <= V + VLEN * RFS / 8);
return {mask_start, elem_count};
}
} // namespace softvector

172
src/vm/vector_functions.h Fichier normal
Voir le fichier

@@ -0,0 +1,172 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// alex@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#ifndef _VM_VECTOR_FUNCTIONS_H_
#define _VM_VECTOR_FUNCTIONS_H_
#include "iss/arch_if.h"
#include "iss/vm_types.h"
#include <cstdint>
#include <functional>
#include <stdint.h>
namespace softvector {
const unsigned RFS = 32;
struct vtype_t {
uint64_t underlying;
vtype_t(uint32_t vtype_val);
vtype_t(uint64_t vtype_val);
unsigned sew();
double lmul();
bool vill();
bool vma();
bool vta();
};
class mask_bit_reference {
uint8_t* start;
uint8_t pos;
public:
mask_bit_reference& operator=(const bool new_value);
mask_bit_reference(uint8_t* start, uint8_t pos);
operator bool() const;
};
struct vmask_view {
uint8_t* start;
size_t elem_count;
mask_bit_reference operator[](size_t) const;
};
vmask_view read_vmask(uint8_t* V, uint16_t VLEN, uint16_t elem_count, uint8_t reg_idx = 0);
template <unsigned VLEN> vmask_view read_vmask(uint8_t* V, uint16_t elem_count, uint8_t reg_idx = 0);
bool softvec_read(void* core, uint64_t addr, uint64_t length, uint8_t* data);
bool softvec_write(void* core, uint64_t addr, uint64_t length, uint8_t* data);
template <unsigned VLEN, typename eew_t>
uint64_t vector_load_store(void* core, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V, uint64_t vl,
uint64_t vstart, vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t segment_size, int64_t stride = 0,
bool use_stride = false);
template <unsigned XLEN, unsigned VLEN, typename eew_t, typename sew_t>
uint64_t vector_load_store_index(void* core, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V,
uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t vs2,
uint8_t segment_size);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, typename std::make_signed<src1_elem_t>::type imm);
template <unsigned VLEN, typename elem_t>
void vector_vector_carry(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd,
unsigned vs2, unsigned vs1, signed carry);
template <unsigned VLEN, typename elem_t>
void vector_imm_carry(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd, unsigned vs2,
typename std::make_signed<elem_t>::type imm, signed carry);
template <unsigned VLEN, typename scr_elem_t>
void vector_vector_merge(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename scr_elem_t>
void vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t>
void vector_unary_op(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename elem_t>
void mask_vector_vector_op(uint8_t* V, unsigned funct, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename elem_t>
void mask_vector_imm_op(uint8_t* V, unsigned funct, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, typename std::make_signed<elem_t>::type imm);
void carry_vector_vector_op(uint8_t* V, unsigned funct, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
unsigned vs1);
template <unsigned VLEN, typename elem_t>
void carry_vector_imm_op(uint8_t* V, unsigned funct, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
typename std::make_signed<elem_t>::type imm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = dest_elem_t>
bool sat_vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, int64_t vxrm, bool vm,
unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = dest_elem_t>
bool sat_vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, int64_t vxrm, bool vm,
unsigned vd, unsigned vs2, typename std::make_signed<src1_elem_t>::type imm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t = dest_elem_t>
void vector_red_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN>
void mask_mask_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN> uint64_t vcpop(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2);
template <unsigned VLEN> uint64_t vfirst(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2);
template <unsigned VLEN> void mask_set_op(uint8_t* V, unsigned enc, uint64_t vl, uint64_t vstart, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename src_elem_t>
void viota(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename src_elem_t> void vid(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd);
template <unsigned VLEN, typename src_elem_t> uint64_t scalar_move(uint8_t* V, vtype_t vtype, unsigned vd, uint64_t val, bool to_vector);
template <unsigned VLEN, typename src_elem_t>
void vector_slideup(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slidedown(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename dest_elem_t, typename scr_elem_t = dest_elem_t>
void vector_vector_gather(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename scr_elem_t>
void vector_imm_gather(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename scr_elem_t>
void vector_compress(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN> void vector_whole_move(uint8_t* V, unsigned vd, unsigned vs2, unsigned count);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t = dest_elem_t>
void fp_vector_red_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void fp_vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void fp_vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, src1_elem_t imm, uint8_t rm);
template <unsigned VLEN, typename elem_t>
void fp_vector_unary_op(uint8_t* V, unsigned encoding_space, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm,
unsigned vd, unsigned vs2, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t>
void fp_vector_unary_w(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t>
void fp_vector_unary_n(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
uint8_t rm);
template <unsigned VLEN, typename elem_t>
void mask_fp_vector_vector_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename elem_t>
void mask_fp_vector_imm_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
elem_t imm, uint8_t rm);
} // namespace softvector
#include "vm/vector_functions.hpp"
#endif /* _VM_VECTOR_FUNCTIONS_H_ */

1942
src/vm/vector_functions.hpp Fichier normal

Fichier diff supprimé car celui-ci est trop grand Voir la Diff