moves common functionality to base class

This commit is contained in:
Eyck Jentzsch 2025-03-10 15:50:46 +01:00
parent 383d762abc
commit 57d5ea92be
5 changed files with 761 additions and 1474 deletions

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018, 2021 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -35,6 +35,8 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/arch/traits.h"
#include "iss/log_categories.h"
#include "iss/vm_types.h"
#include <array>
#include <cstdint>
@ -42,11 +44,14 @@
#include <fmt/format.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/semihosting/semihosting.h>
#include <limits>
#include <sstream>
#include <string>
#include <unordered_map>
#include <util/ities.h>
#include <util/logging.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) ::__builtin_expect(!!(x), 1)
@ -312,16 +317,120 @@ inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const
break;
}
}
struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE {
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
constexpr static unsigned MEM = traits<BASE>::MEM;
using core = BASE;
using this_class = riscv_hart_common<BASE, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
#define MK_CSR_RD_CB(FCT) [this](unsigned a, reg_t& r) -> iss::status { return this->FCT(a, r); };
#define MK_CSR_WR_CB(FCT) [this](unsigned a, reg_t r) -> iss::status { return this->FCT(a, r); };
riscv_hart_common()
: instr_if(*this) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fcsr] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[fflags] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fflags] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[frm] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[frm] = MK_CSR_WR_CB(write_fcsr);
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_null);
}
// special handling & overrides
csr_rd_cb[time] = MK_CSR_RD_CB(read_time);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = MK_CSR_RD_CB(read_time);
csr_rd_cb[cycle] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = MK_CSR_RD_CB(read_cycle);
csr_rd_cb[instret] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = MK_CSR_RD_CB(read_instret);
csr_rd_cb[mcycle] = MK_CSR_RD_CB(read_cycle);
csr_wr_cb[mcycle] = MK_CSR_WR_CB(write_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = MK_CSR_WR_CB(write_cycle);
csr_rd_cb[minstret] = MK_CSR_RD_CB(read_instret);
csr_wr_cb[minstret] = MK_CSR_WR_CB(write_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = MK_CSR_WR_CB(write_instret);
csr_rd_cb[mhartid] = MK_CSR_RD_CB(read_hartid);
};
~riscv_hart_common() {};
std::unordered_map<std::string, uint64_t> symbol_table;
uint64_t entry_address{0};
uint64_t tohost = std::numeric_limits<uint64_t>::max();
uint64_t fromhost = std::numeric_limits<uint64_t>::max();
bool read_elf_file(std::string name, uint8_t expected_elf_class,
std::function<iss::status(uint64_t, uint64_t, const uint8_t* const)> cb) {
void set_semihosting_callback(semihosting_cb_t<reg_t> cb) { semihosting_cb = cb; };
std::pair<uint64_t, bool> load_file(std::string name, int type) {
return std::make_pair(entry_address, read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64));
}
bool read_elf_file(std::string name, uint8_t expected_elf_class) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
@ -339,7 +448,8 @@ struct riscv_hart_common {
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == ELFIO::PT_LOAD && fsize > 0) {
auto res = cb(pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
@ -407,6 +517,280 @@ struct riscv_hart_common {
}
return iss::Ok;
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
void disass_output(uint64_t pc, const std::string instr) override {
// NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV],
// (reg_t)state.mstatus,
// this->reg.cycle + cycle_offset);
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};c:{}]", pc, instr, lvl[this->reg.PRIV],
this->reg.cycle + cycle_offset);
};
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr; }
bool debug_mode_active() { return this->reg.PRIV & 0x4; }
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
iss::status read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
iss::status read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
iss::status write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
iss::status read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
iss::status write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
iss::status read_tvec(unsigned addr, reg_t& val) {
val = csr[addr] & ~2;
return iss::Ok;
}
iss::status read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
iss::status write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
iss::status write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
iss::status read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
iss::status write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
iss::status read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
iss::status write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
iss::status read_fcsr(unsigned addr, reg_t& val) {
switch(addr) {
case 1: // fflags, 4:0
val = bit_sub<0, 5>(this->get_fcsr());
break;
case 2: // frm, 7:5
val = bit_sub<5, 3>(this->get_fcsr());
break;
case 3: // fcsr
val = this->get_fcsr();
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status write_fcsr(unsigned addr, reg_t val) {
switch(addr) {
case 1: // fflags, 4:0
this->set_fcsr((this->get_fcsr() & 0xffffffe0) | (val & 0x1f));
break;
case 2: // frm, 7:5
this->set_fcsr((this->get_fcsr() & 0xffffff1f) | ((val & 0x7) << 5));
break;
case 3: // fcsr
this->set_fcsr(val & 0xff);
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status write_xtvt(unsigned addr, reg_t val) {
csr[addr] = val & ~0x3fULL;
return iss::Ok;
}
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_common<BASE, LOGCAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_common<BASE, LOGCAT>& arch;
};
friend struct riscv_instrumentation_if;
riscv_instrumentation_if instr_if;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
csr_type csr;
using rd_csr_f = std::function<iss::status(unsigned addr, reg_t&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, reg_t)>;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
reg_t mhartid_reg{0x0};
uint64_t mcycle_csr{0};
uint64_t minstret_csr{0};
reg_t fault_data;
int64_t cycle_offset{0};
int64_t instret_offset{0};
semihosting_cb_t<reg_t> semihosting_cb;
std::array<vm_info, 2> vm;
};
} // namespace arch

View File

@ -35,9 +35,7 @@
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
#include "iss/arch/traits.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
@ -59,54 +57,20 @@
#include <type_traits>
#include <unordered_map>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#include <iss/semihosting/semihosting.h>
namespace iss {
namespace arch {
template <typename BASE, features_e FEAT = FEAT_NONE, typename LOGCAT = logging::disass>
class riscv_hart_m_p : public BASE, public riscv_hart_common {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
class riscv_hart_m_p : public riscv_hart_common<BASE> {
public:
using core = BASE;
using base = riscv_hart_common<BASE>;
using this_class = riscv_hart_m_p<BASE, FEAT, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t&);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
constexpr static unsigned MEM = traits<BASE>::MEM;
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
@ -261,108 +225,41 @@ public:
return 0b100010001000; // only machine mode is supported
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
riscv_hart_m_p(feature_config cfg = feature_config{});
virtual ~riscv_hart_m_p() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
uint8_t* const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
const uint8_t* const data) override;
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); }
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, this->fault_data, this->fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", pc, instr, (reg_t)state.mstatus,
this->reg.cycle + cycle_offset);
};
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
void set_csr(unsigned addr, reg_t val) { csr[addr & csr.page_addr_mask] = val; }
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
void set_semihosting_callback(semihosting_cb_t<reg_t> cb) { semihosting_cb = cb; };
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_m_p<BASE, FEAT, LOGCAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_m_p<BASE, FEAT, LOGCAT>& arch;
};
friend struct riscv_instrumentation_if;
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data);
iss::status read_clic(uint64_t addr, unsigned length, uint8_t* const data);
iss::status write_clic(uint64_t addr, unsigned length, const uint8_t* const data);
virtual iss::status read_csr(unsigned addr, reg_t& val);
virtual iss::status write_csr(unsigned addr, reg_t val);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
hart_state_type state;
int64_t cycle_offset{0};
uint64_t mcycle_csr{0};
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
riscv_instrumentation_if instr_if;
semihosting_cb_t<reg_t> semihosting_cb;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
@ -380,16 +277,6 @@ protected:
std::vector<uint8_t> tcm;
iss::status read_plain(unsigned addr, reg_t& val);
iss::status write_plain(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t& val);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_cycle(unsigned addr, reg_t& val);
iss::status write_cycle(unsigned addr, reg_t val);
iss::status read_instret(unsigned addr, reg_t& val);
iss::status write_instret(unsigned addr, reg_t val);
iss::status read_tvec(unsigned addr, reg_t& val);
iss::status read_time(unsigned addr, reg_t& val);
iss::status read_status(unsigned addr, reg_t& val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_cause(unsigned addr, reg_t& val);
@ -397,8 +284,6 @@ protected:
iss::status read_ie(unsigned addr, reg_t& val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t& val);
iss::status read_hartid(unsigned addr, reg_t& val);
iss::status write_epc(unsigned addr, reg_t val);
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
iss::status write_xtvt(unsigned addr, reg_t val);
@ -407,26 +292,14 @@ protected:
iss::status write_dscratch(unsigned addr, reg_t val);
iss::status read_dpc(unsigned addr, reg_t& val);
iss::status write_dpc(unsigned addr, reg_t val);
iss::status read_fcsr(unsigned addr, reg_t& val);
iss::status write_fcsr(unsigned addr, reg_t val);
virtual iss::status read_custom_csr(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr; }
reg_t mhartid_reg{0x0};
void check_interrupt();
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
std::vector<std::tuple<uint64_t, uint64_t>> memfn_range;
std::vector<std::function<mem_read_f>> memfn_read;
std::vector<std::function<mem_write_f>> memfn_write;
void insert_mem_range(uint64_t, uint64_t, std::function<mem_read_f>, std::function<mem_write_f>);
feature_config cfg;
unsigned mcause_max_irq{(FEAT & features_e::FEAT_CLIC) ? std::max(16U, static_cast<unsigned>(traits<BASE>::CLIC_NUM_IRQ)) : 16U};
inline bool debug_mode_active() { return this->reg.PRIV & 0x4; }
std::pair<std::function<mem_read_f>, std::function<mem_write_f>> replace_mem_access(std::function<mem_read_f> rd,
std::function<mem_write_f> wr) {
@ -442,104 +315,45 @@ protected:
template <typename BASE, features_e FEAT, typename LOGCAT>
riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
: state()
, instr_if(*this)
, cfg(cfg) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_plain;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_null;
}
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr : rwaddrs) {
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_plain;
this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
// MK_CSR_RD_CB(read_plain(a,r);};
this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = &this_class::read_time;
csr_rd_cb[cycle] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = &this_class::read_cycle;
csr_rd_cb[instret] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = &this_class::read_instret;
this->csr_rd_cb[mstatus] = MK_CSR_RD_CB(read_status);
this->csr_wr_cb[mstatus] = MK_CSR_WR_CB(write_status);
this->csr_rd_cb[mcause] = MK_CSR_RD_CB(read_cause);
this->csr_wr_cb[mcause] = MK_CSR_WR_CB(write_cause);
this->csr_rd_cb[mtvec] = MK_CSR_RD_CB(read_tvec);
this->csr_wr_cb[mepc] = MK_CSR_WR_CB(write_epc);
this->csr_rd_cb[mip] = MK_CSR_RD_CB(read_ip);
this->csr_wr_cb[mip] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[mie] = MK_CSR_RD_CB(read_ie);
this->csr_wr_cb[mie] = MK_CSR_WR_CB(write_ie);
this->csr_wr_cb[misa] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mvendorid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[marchid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mimpid] = MK_CSR_WR_CB(write_null);
csr_rd_cb[mcycle] = &this_class::read_cycle;
csr_wr_cb[mcycle] = &this_class::write_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = &this_class::write_cycle;
csr_rd_cb[minstret] = &this_class::read_instret;
csr_wr_cb[minstret] = &this_class::write_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = &this_class::write_instret;
csr_rd_cb[mstatus] = &this_class::read_status;
csr_wr_cb[mstatus] = &this_class::write_status;
csr_rd_cb[mcause] = &this_class::read_cause;
csr_wr_cb[mcause] = &this_class::write_cause;
csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid;
csr_wr_cb[misa] = &this_class::write_null;
csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_plain;
csr_wr_cb[mtvt] = &this_class::write_xtvt;
// csr_rd_cb[mxnti] = &this_class::read_csr_reg;
// csr_wr_cb[mxnti] = &this_class::write_csr_reg;
csr_rd_cb[mintstatus] = &this_class::read_intstatus;
csr_wr_cb[mintstatus] = &this_class::write_null;
// csr_rd_cb[mscratchcsw] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
// csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_plain;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
this->csr_rd_cb[mtvt] = MK_CSR_RD_CB(read_plain);
this->csr_wr_cb[mtvt] = MK_CSR_WR_CB(write_xtvt);
// this->csr_rd_cb[mxnti] = MK_CSR_RD_CB(read_plain(a,r);};
// this->csr_wr_cb[mxnti] = MK_CSR_WR_CB(write_plain(a,r);};
this->csr_rd_cb[mintstatus] = MK_CSR_RD_CB(read_intstatus);
this->csr_wr_cb[mintstatus] = MK_CSR_WR_CB(write_null);
// this->csr_rd_cb[mscratchcsw] = MK_CSR_RD_CB(read_plain(a,r);};
// this->csr_wr_cb[mscratchcsw] = MK_CSR_WR_CB(write_plain(a,r);};
// this->csr_rd_cb[mscratchcswl] = MK_CSR_RD_CB(read_plain(a,r);};
// this->csr_wr_cb[mscratchcswl] = MK_CSR_WR_CB(write_plain(a,r);};
this->csr_rd_cb[mintthresh] = MK_CSR_RD_CB(read_plain);
this->csr_wr_cb[mintthresh] = MK_CSR_WR_CB(write_intthresh);
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x20;
clic_mact_lvl = clic_mprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
csr[mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
this->csr[mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
insert_mem_range(
cfg.clic_base, 0x5000UL,
[this](phys_addr_t addr, unsigned length, uint8_t* const data) { return read_clic(addr.val, length, data); },
@ -560,31 +374,19 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
}
if(FEAT & FEAT_DEBUG) {
csr_wr_cb[dscratch0] = &this_class::write_dscratch;
csr_rd_cb[dscratch0] = &this_class::read_debug;
csr_wr_cb[dscratch1] = &this_class::write_dscratch;
csr_rd_cb[dscratch1] = &this_class::read_debug;
csr_wr_cb[dpc] = &this_class::write_dpc;
csr_rd_cb[dpc] = &this_class::read_dpc;
csr_wr_cb[dcsr] = &this_class::write_dcsr;
csr_rd_cb[dcsr] = &this_class::read_debug;
this->csr_wr_cb[dscratch0] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch0] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dscratch1] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch1] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dpc] = MK_CSR_WR_CB(write_dpc);
this->csr_rd_cb[dpc] = MK_CSR_RD_CB(read_dpc);
this->csr_wr_cb[dcsr] = MK_CSR_WR_CB(write_dcsr);
this->csr_rd_cb[dcsr] = MK_CSR_RD_CB(read_debug);
}
hart_mem_rd_delegate = [this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return this->read_mem(a, l, d); };
hart_mem_wr_delegate = [this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return this->write_mem(a, l, d); };
}
template <typename BASE, features_e FEAT, typename LOGCAT>
std::pair<uint64_t, bool> riscv_hart_m_p<BASE, FEAT, LOGCAT>::load_file(std::string name, int type) {
if(read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64,
[this](uint64_t addr, uint64_t size, const uint8_t* const data) -> iss::status {
return this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM, addr, size,
data);
})) {
return std::make_pair(entry_address, true);
}
return std::make_pair(entry_address, false);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
inline void riscv_hart_m_p<BASE, FEAT, LOGCAT>::insert_mem_range(uint64_t base, uint64_t size, std::function<mem_read_f> rd_f,
std::function<mem_write_f> wr_fn) {
@ -613,9 +415,9 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
try {
switch(space) {
case traits<BASE>::MEM: {
auto alignment = is_fetch(access) ? (has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
auto alignment = is_fetch(access) ? (this->has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) {
fault_data = addr;
this->fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
@ -624,7 +426,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
try {
if(!is_debug(access) && (addr & (alignment - 1))) {
this->reg.trap_state = (1UL << 31) | 4 << 16;
fault_data = addr;
this->fault_data = addr;
return iss::Err;
}
phys_addr_t phys_addr{access, space, addr};
@ -644,13 +446,13 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
}
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data = addr;
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
@ -658,7 +460,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t* const>(data));
return this->read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
@ -680,7 +482,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
@ -716,7 +518,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
@ -726,7 +528,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
auto alignment = std::min<unsigned>(length, sizeof(reg_t));
if(length > 1 && (addr & (alignment - 1)) && !is_debug(access)) {
this->reg.trap_state = (1UL << 31) | 6 << 16;
fault_data = addr;
this->fault_data = addr;
return iss::Err;
}
phys_addr_t phys_addr{access, space, addr};
@ -746,19 +548,19 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
}
if(unlikely(res != iss::Ok && !is_debug(access))) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
fault_data = addr;
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t*>(data));
return this->write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
@ -782,128 +584,12 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_tvec(unsigned addr, reg_t& val) {
val = FEAT & features_e::FEAT_CLIC ? csr[addr] : csr[addr] & ~2;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_status(unsigned addr, reg_t& val) {
val = state.mstatus & hart_state_type::get_mask();
@ -919,48 +605,42 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_status(unsigned addr, reg_
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_cause(unsigned addr, reg_t& val) {
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec] & 0x3) == 3) {
val = csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1) | (0xfUL << 16));
if((FEAT & features_e::FEAT_CLIC) && (this->csr[mtvec] & 0x3) == 3) {
val = this->csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1) | (0xfUL << 16));
val |= clic_mprev_lvl << 16;
val |= state.mstatus.MPIE << 27;
val |= state.mstatus.MPP << 28;
} else
val = csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1));
val = this->csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1));
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_cause(unsigned addr, reg_t val) {
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec] & 0x3) == 3) {
if((FEAT & features_e::FEAT_CLIC) && (this->csr[mtvec] & 0x3) == 3) {
auto mask = ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1) | (0xfUL << 16));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
this->csr[addr] = (val & mask) | (this->csr[addr] & ~mask);
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
state.mstatus.MPIE = (val >> 27) & 0x1;
state.mstatus.MPP = (val >> 28) & 0x3;
} else {
auto mask = ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
this->csr[addr] = (val & mask) | (this->csr[addr] & ~mask);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_ie(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = csr[mie] & mask;
val = this->csr[mie] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
csr[mie] = (csr[mie] & ~mask) | (val & mask);
this->csr[mie] = (this->csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
@ -968,57 +648,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_ie(unsigned addr, reg_t va
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_ip(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = csr[mip] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
val = this->csr[mip] & mask;
return iss::Ok;
}
@ -1028,27 +658,9 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_intstatus(unsigned addr, re
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_fcsr(unsigned addr, reg_t& val) {
val = this->get_fcsr();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_fcsr(unsigned addr, reg_t val) {
this->set_fcsr(val);
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_intthresh(unsigned addr, reg_t val) {
csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_xtvt(unsigned addr, reg_t val) {
csr[addr] = val & ~0x3fULL;
this->csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
@ -1068,21 +680,23 @@ template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
// this->tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == tohost) {
if(paddr.val == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32 ? *reinterpret_cast<uint32_t*>(p.data() + ((tohost + 4) & mem.page_addr_mask)) >> 24
: (cur_data >> 56) & 0xFF;
uint8_t device = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 24
: (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32 ? *reinterpret_cast<uint32_t*>(p.data() + ((tohost + 4) & mem.page_addr_mask)) >> 16
: (cur_data >> 48) & 0xFF;
uint8_t command = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 16
: (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
CPPLOG(FATAL) << "this->tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
@ -1094,24 +708,24 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_mem(phys_addr_t paddr, uns
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
CPPLOG(ERR) << "this->tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "tohost functionality not implemented for device " << device << " and command " << command;
CPPLOG(ERR) << "this->tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
if((traits<BASE>::XLEN == 32 && paddr.val == this->fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == this->fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (this->fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (this->tohost & mem.page_addr_mask)) = fhostvar;
}
}
return iss::Ok;
@ -1165,7 +779,7 @@ template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_m_p<B
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
auto ena_irq = this->csr[mip] & this->csr[mie];
bool mstatus_mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie;
@ -1193,7 +807,7 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
if(cause == 11)
cause = 0x8 + PRIV_M; // adjust environment call cause
// store ret addr in xepc register
csr[mepc] = static_cast<reg_t>(addr) & get_pc_mask(); // store actual address instruction of exception
this->csr[mepc] = static_cast<reg_t>(addr) & this->get_pc_mask(); // store actual address instruction of exception
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
@ -1203,20 +817,20 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
*/
switch(cause) {
case 0:
csr[mtval] = static_cast<reg_t>(tval);
this->csr[mtval] = static_cast<reg_t>(tval);
break;
case 2:
csr[mtval] = (!has_compressed() || (tval & 0x3) == 3) ? tval : tval & 0xffff;
this->csr[mtval] = (!this->has_compressed() || (tval & 0x3) == 3) ? tval : tval & 0xffff;
break;
case 3:
if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
if((FEAT & FEAT_DEBUG) && (this->csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi)
this->csr[dcsr] = (this->csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[mtval] = addr;
this->csr[mtval] = addr;
}
if(semihosting_cb) {
if(this->semihosting_cb) {
// Check for semihosting call
phys_addr_t p_addr(access_type::DEBUG_READ, traits<BASE>::MEM, addr - 4);
std::array<uint8_t, 8> data;
@ -1237,24 +851,24 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
#endif
NSCLOG(INFO, LOGCAT) << "Semihosting call at address " << buffer.data() << " occurred ";
semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
return this->reg.NEXT_PC;
}
}
break;
case 4:
case 6:
csr[mtval] = fault_data;
this->csr[mtval] = this->fault_data;
break;
default:
csr[mtval] = 0;
this->csr[mtval] = 0;
}
fault_data = 0;
this->fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->csr[mepc] = this->reg.NEXT_PC & this->get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
}
csr[mcause] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
this->csr[mcause] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
@ -1267,11 +881,11 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
state.mstatus.MIE = false;
// get trap vector
auto xtvec = csr[mtvec];
auto xtvec = this->csr[mtvec];
// calculate adds// set NEXT_PC to trap addressess to jump to based on MODE
if((FEAT & features_e::FEAT_CLIC) && trap_id != 0 && (xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
auto ret = read(address_type::LOGICAL, access_type::READ, 0, this->csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
@ -1291,8 +905,8 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags & 0xffffffff) != 0xffffffff)
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause]) << "' ("
<< cause << ")"
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
@ -1301,7 +915,7 @@ template <typename BASE, features_e FEAT, typename LOGCAT> uint64_t riscv_hart_m
state.mstatus.MIE = state.mstatus.MPIE;
state.mstatus.MPIE = 1;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc] & get_pc_mask();
this->reg.NEXT_PC = this->csr[mepc] & this->get_pc_mask();
NSCLOG(INFO, LOGCAT) << "Executing xRET";
check_interrupt();
this->reg.trap_state = this->reg.pending_trap;

View File

@ -35,9 +35,7 @@
#ifndef _RISCV_HART_MSU_VP_H
#define _RISCV_HART_MSU_VP_H
#include "iss/arch/traits.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
@ -59,52 +57,19 @@
#include <type_traits>
#include <unordered_map>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#include <iss/semihosting/semihosting.h>
namespace iss {
namespace arch {
template <typename BASE> class riscv_hart_msu_vp : public BASE, public riscv_hart_common {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
template <typename BASE> class riscv_hart_msu_vp : public riscv_hart_common<BASE> {
public:
using core = BASE;
using base = riscv_hart_common<BASE>;
using this_class = riscv_hart_msu_vp<BASE>;
using virt_addr_t = typename core::virt_addr_t;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t&);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
constexpr static unsigned MEM = traits<BASE>::MEM;
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
@ -155,7 +120,7 @@ public:
void write_mstatus(T val, unsigned priv_lvl) {
auto mask = get_mask(priv_lvl);
auto new_val = (mstatus.st.value & ~mask) | (val & mask);
auto new_val = (static_cast<T>(mstatus) & ~mask) | (val & mask);
mstatus = new_val;
}
@ -314,13 +279,12 @@ public:
return m[mode];
}
riscv_hart_msu_vp(feature_config cfg = feature_config{});
riscv_hart_msu_vp();
virtual ~riscv_hart_msu_vp() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
phys_addr_t virt2phys(const iss::addr_t& addr) override;
iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
@ -328,105 +292,29 @@ public:
iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
const uint8_t* const data) override;
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_msu_vp::enter_trap(flags, fault_data, fault_data); }
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_msu_vp::enter_trap(flags, this->fault_data, this->fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
void wait_until(uint64_t flags) override;
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus,
this->reg.cycle + cycle_offset);
};
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
void set_csr(unsigned addr, reg_t val) { csr[addr & csr.page_addr_mask] = val; }
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
void set_semihosting_callback(std::function<void(arch_if*, reg_t, reg_t)>& cb) { semihosting_cb = cb; };
void set_irq_num(unsigned i) { this->mcause_max_irq = 1 << util::ilog2(i); }
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_msu_vp<BASE>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_msu_vp<BASE>& arch;
};
friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data);
virtual iss::status read_csr(unsigned addr, reg_t& val);
virtual iss::status write_csr(unsigned addr, reg_t val);
hart_state_type state;
int64_t cycle_offset{0};
uint64_t mcycle_csr{0};
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
std::array<vm_info, 2> vm;
riscv_instrumentation_if instr_if;
std::function<void(arch_if*, reg_t, reg_t)> semihosting_cb;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
void update_vm_info();
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t& val);
iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t& val);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_cycle(unsigned addr, reg_t& val);
iss::status write_cycle(unsigned addr, reg_t val);
iss::status read_instret(unsigned addr, reg_t& val);
iss::status write_instret(unsigned addr, reg_t val);
iss::status read_tvec(unsigned addr, reg_t& val);
iss::status read_time(unsigned addr, reg_t& val);
iss::status read_status(unsigned addr, reg_t& val);
iss::status write_status(unsigned addr, reg_t val);
iss::status write_cause(unsigned addr, reg_t val);
@ -435,18 +323,14 @@ protected:
iss::status read_ip(unsigned addr, reg_t& val);
iss::status write_ideleg(unsigned addr, reg_t val);
iss::status write_edeleg(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t& val);
iss::status write_epc(unsigned addr, reg_t val);
iss::status read_satp(unsigned addr, reg_t& val);
iss::status write_satp(unsigned addr, reg_t val);
iss::status read_fcsr(unsigned addr, reg_t& val);
iss::status write_fcsr(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr_reg; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr_reg; }
void register_custom_csr_rd(unsigned addr) { this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_custom_csr_reg); }
void register_custom_csr_wr(unsigned addr) { this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_custom_csr_reg); }
reg_t mhartid_reg{0x0};
@ -455,118 +339,48 @@ protected:
template <typename BASE>
riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
: state()
, instr_if(*this) {
this->_has_mmu = true;
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
}
for(unsigned addr = cycleh; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
// csr_wr_cb[addr] = &this_class::write_csr_reg;
}
: state() {
this->mmu = true;
// common regs
const std::array<unsigned, 22> addrs{{misa, mvendorid, marchid, mimpid, mepc, mtvec, mscratch, mcause,
mtval, mscratch, sepc, stvec, sscratch, scause, stval, sscratch,
uepc, utvec, uscratch, ucause, utval, uscratch}};
for(auto addr : addrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_csr_reg;
const std::array<unsigned, 17> rwaddrs{{mepc, mtvec, mscratch, mtval, mscratch, sepc, stvec, sscratch, scause, stval, sscratch, uepc,
utvec, uscratch, ucause, utval, uscratch}};
for(auto addr : rwaddrs) {
this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = &this_class::read_time;
csr_rd_cb[cycle] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = &this_class::read_cycle;
csr_rd_cb[instret] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = &this_class::read_instret;
csr_rd_cb[mcycle] = &this_class::read_cycle;
csr_wr_cb[mcycle] = &this_class::write_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = &this_class::write_cycle;
csr_rd_cb[minstret] = &this_class::read_instret;
csr_wr_cb[minstret] = &this_class::write_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = &this_class::write_instret;
csr_rd_cb[mstatus] = &this_class::read_status;
csr_wr_cb[mstatus] = &this_class::write_status;
csr_wr_cb[mcause] = &this_class::write_cause;
csr_rd_cb[sstatus] = &this_class::read_status;
csr_wr_cb[sstatus] = &this_class::write_status;
csr_wr_cb[scause] = &this_class::write_cause;
csr_rd_cb[ustatus] = &this_class::read_status;
csr_wr_cb[ustatus] = &this_class::write_status;
csr_wr_cb[ucause] = &this_class::write_cause;
csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_rd_cb[stvec] = &this_class::read_tvec;
csr_rd_cb[utvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc;
csr_wr_cb[sepc] = &this_class::write_epc;
csr_wr_cb[uepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[sip] = &this_class::read_ip;
csr_wr_cb[sip] = &this_class::write_null;
csr_rd_cb[uip] = &this_class::read_ip;
csr_wr_cb[uip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[sie] = &this_class::read_ie;
csr_wr_cb[sie] = &this_class::write_ie;
csr_rd_cb[uie] = &this_class::read_ie;
csr_wr_cb[uie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid;
csr_rd_cb[mcounteren] = &this_class::read_null;
csr_wr_cb[mcounteren] = &this_class::write_null;
csr_wr_cb[misa] = &this_class::write_null;
csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
csr_rd_cb[satp] = &this_class::read_satp;
csr_wr_cb[satp] = &this_class::write_satp;
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
csr_rd_cb[fflags] = &this_class::read_fcsr;
csr_wr_cb[fflags] = &this_class::write_fcsr;
csr_rd_cb[frm] = &this_class::read_fcsr;
csr_wr_cb[frm] = &this_class::write_fcsr;
}
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_msu_vp<BASE>::load_file(std::string name, int type) {
if(read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64,
[this](uint64_t addr, uint64_t size, const uint8_t* const data) -> iss::status {
return this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM, addr, size,
data);
})) {
return std::make_pair(entry_address, true);
}
return std::make_pair(entry_address, false);
this->csr_rd_cb[mstatus] = MK_CSR_RD_CB(read_status);
this->csr_wr_cb[mstatus] = MK_CSR_WR_CB(write_status);
this->csr_wr_cb[mcause] = MK_CSR_WR_CB(write_cause);
this->csr_rd_cb[sstatus] = MK_CSR_RD_CB(read_status);
this->csr_wr_cb[sstatus] = MK_CSR_WR_CB(write_status);
this->csr_wr_cb[scause] = MK_CSR_WR_CB(write_cause);
this->csr_rd_cb[ustatus] = MK_CSR_RD_CB(read_status);
this->csr_wr_cb[ustatus] = MK_CSR_WR_CB(write_status);
this->csr_wr_cb[ucause] = MK_CSR_WR_CB(write_cause);
this->csr_rd_cb[mtvec] = MK_CSR_RD_CB(read_tvec);
this->csr_rd_cb[stvec] = MK_CSR_RD_CB(read_tvec);
this->csr_rd_cb[utvec] = MK_CSR_RD_CB(read_tvec);
this->csr_rd_cb[mip] = MK_CSR_RD_CB(read_ip);
this->csr_wr_cb[mip] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[sip] = MK_CSR_RD_CB(read_ip);
this->csr_wr_cb[sip] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[uip] = MK_CSR_RD_CB(read_ip);
this->csr_wr_cb[uip] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[mie] = MK_CSR_RD_CB(read_ie);
this->csr_wr_cb[mie] = MK_CSR_WR_CB(write_ie);
this->csr_rd_cb[sie] = MK_CSR_RD_CB(read_ie);
this->csr_wr_cb[sie] = MK_CSR_WR_CB(write_ie);
this->csr_rd_cb[uie] = MK_CSR_RD_CB(read_ie);
this->csr_wr_cb[uie] = MK_CSR_WR_CB(write_ie);
this->csr_rd_cb[mcounteren] = MK_CSR_RD_CB(read_null);
this->csr_wr_cb[mcounteren] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[misa] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mvendorid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[marchid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mimpid] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[satp] = MK_CSR_RD_CB(read_satp);
this->csr_wr_cb[satp] = MK_CSR_WR_CB(write_satp);
}
template <typename BASE>
@ -584,9 +398,9 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
try {
switch(space) {
case traits<BASE>::MEM: {
auto alignment = is_fetch(access) ? (has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
auto alignment = is_fetch(access) ? (this->has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) {
fault_data = addr;
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
@ -595,7 +409,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
try {
if(!is_debug(access) && (addr & (alignment - 1))) {
this->reg.trap_state = 1 << 31 | 4 << 16;
fault_data = addr;
this->fault_data = addr;
return iss::Err;
}
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
@ -609,16 +423,16 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
return res;
}
}
auto res = read_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
auto res = read_mem(virt2phys(iss::addr_t{access, type, space, addr}), length, data);
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data = addr;
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
@ -626,7 +440,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t* const>(data));
return this->read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
@ -659,7 +473,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
@ -695,13 +509,13 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr});
phys_addr_t paddr = virt2phys(iss::addr_t{access, type, space, addr});
try {
// TODO: There is no check for alignment
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
@ -718,19 +532,19 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
auto res = write_mem(paddr, length, data);
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
fault_data = addr;
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t*>(data));
return this->write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
@ -759,119 +573,12 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
this->fault_data = ta.addr;
}
return iss::Err;
}
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_reg(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_tvec(unsigned addr, reg_t& val) {
val = csr[addr] & ~2;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_status(unsigned addr, reg_t& val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
val = state.mstatus & hart_state_type::get_mask(req_priv_lvl);
@ -887,43 +594,33 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_status(unsig
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_cause(unsigned addr, reg_t val) {
csr[addr] = val & ((1UL << (traits<BASE>::XLEN - 1)) | 0xf); // TODO: make exception code size configurable
this->csr[addr] = val & ((1UL << (traits<BASE>::XLEN - 1)) | 0xf); // TODO: make exception code size configurable
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ie(unsigned addr, reg_t& val) {
val = csr[mie];
val = this->csr[mie];
if(addr < mie)
val &= csr[mideleg];
val &= this->csr[mideleg];
if(addr < sie)
val &= csr[sideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
val &= this->csr[sideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ie(unsigned addr, reg_t val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
auto mask = get_irq_mask(req_priv_lvl);
csr[mie] = (csr[mie] & ~mask) | (val & mask);
this->csr[mie] = (this->csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned addr, reg_t& val) {
val = csr[mip];
val = this->csr[mip];
if(addr < mip)
val &= csr[mideleg];
val &= this->csr[mideleg];
if(addr < sip)
val &= csr[sideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
val &= this->csr[sideleg];
return iss::Ok;
}
@ -949,40 +646,6 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigne
update_vm_info();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_fcsr(unsigned addr, reg_t& val) {
switch(addr) {
case 1: // fflags, 4:0
val = bit_sub<0, 5>(this->get_fcsr());
break;
case 2: // frm, 7:5
val = bit_sub<5, 3>(this->get_fcsr());
break;
case 3: // fcsr
val = this->get_fcsr();
break;
default:
return iss::Err;
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_fcsr(unsigned addr, reg_t val) {
switch(addr) {
case 1: // fflags, 4:0
this->set_fcsr((this->get_fcsr() & 0xffffffe0) | (val & 0x1f));
break;
case 2: // frm, 7:5
this->set_fcsr((this->get_fcsr() & 0xffffff1f) | ((val & 0x7) << 5));
break;
case 3: // fcsr
this->set_fcsr(val & 0xff);
break;
default:
return iss::Err;
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t* const data) {
switch(paddr.val) {
default: {
@ -1000,14 +663,16 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_add
// tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == tohost) {
if(paddr.val == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32 ? *reinterpret_cast<uint32_t*>(p.data() + ((tohost + 4) & mem.page_addr_mask)) >> 24
: (cur_data >> 56) & 0xFF;
uint8_t device = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 24
: (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32 ? *reinterpret_cast<uint32_t*>(p.data() + ((tohost + 4) & mem.page_addr_mask)) >> 16
: (cur_data >> 48) & 0xFF;
uint8_t command = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 16
: (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
@ -1023,7 +688,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_add
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
@ -1038,9 +703,9 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_add
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
if((traits<BASE>::XLEN == 32 && paddr.val == this->fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == this->fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (this->fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (this->tohost & mem.page_addr_mask)) = fhostvar;
}
}
return iss::Ok;
@ -1053,21 +718,21 @@ template <typename BASE> inline void riscv_hart_msu_vp<BASE>::reset(uint64_t add
}
template <typename BASE> inline void riscv_hart_msu_vp<BASE>::update_vm_info() {
vm[1] = hart_state_type::decode_vm_info(this->reg.PRIV, state.satp);
BASE::addr_mode[3] = BASE::addr_mode[2] = vm[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
this->vm[1] = hart_state_type::decode_vm_info(this->reg.PRIV, state.satp);
BASE::addr_mode[3] = BASE::addr_mode[2] = this->vm[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
if(state.mstatus.MPRV)
vm[0] = hart_state_type::decode_vm_info(state.mstatus.MPP, state.satp);
this->vm[0] = hart_state_type::decode_vm_info(state.mstatus.MPP, state.satp);
else
vm[0] = vm[1];
BASE::addr_mode[1] = BASE::addr_mode[0] = vm[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
this->vm[0] = this->vm[1];
BASE::addr_mode[1] = BASE::addr_mode[0] = this->vm[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
ptw.clear();
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
auto status = state.mstatus;
auto ip = csr[mip];
auto ie = csr[mie];
auto ideleg = csr[mideleg];
auto ip = this->csr[mip];
auto ie = this->csr[mie];
auto ideleg = this->csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
@ -1144,7 +809,7 @@ template <typename BASE> typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_har
break;
} else if(!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if(type == (iss::access_type::FETCH ? !(pte & PTE_X)
} else if(type == (type == iss::access_type::FETCH ? !(pte & PTE_X)
: type == iss::access_type::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W)))) {
break;
@ -1197,10 +862,10 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
// calculate effective privilege level
auto new_priv = PRIV_M;
if(trap_id == 0) { // exception
if(cur_priv != PRIV_M && ((csr[medeleg] >> cause) & 0x1) != 0)
new_priv = (csr[sedeleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
if(cur_priv != PRIV_M && ((this->csr[medeleg] >> cause) & 0x1) != 0)
new_priv = (this->csr[sedeleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
// store ret addr in xepc register
csr[uepc | (new_priv << 8)] = static_cast<reg_t>(addr); // store actual address instruction of exception
this->csr[uepc | (new_priv << 8)] = static_cast<reg_t>(addr); // store actual address instruction of exception
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
@ -1210,17 +875,17 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
*/
switch(cause) {
case 0:
csr[utval | (new_priv << 8)] = static_cast<reg_t>(addr);
this->csr[utval | (new_priv << 8)] = static_cast<reg_t>(addr);
break;
case 2:
csr[utval | (new_priv << 8)] = (instr & 0x3) == 3 ? instr : instr & 0xffff;
this->csr[utval | (new_priv << 8)] = (instr & 0x3) == 3 ? instr : instr & 0xffff;
break;
case 3:
// TODO: implement debug mode behavior
// csr[dpc] = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
csr[utval | (new_priv << 8)] = addr;
if(semihosting_cb) {
this->csr[utval | (new_priv << 8)] = addr;
if(this->semihosting_cb) {
// Check for semihosting call
phys_addr_t p_addr(access_type::DEBUG_READ, traits<BASE>::MEM, addr - 4);
std::array<uint8_t, 8> data;
@ -1241,7 +906,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
#endif
CLOG(INFO, disass) << "Semihosting call at address " << buffer.data() << " occurred ";
semihosting_callback(this, this->reg.X10 /*a0*/, this->reg.X11 /*a1*/);
this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
return this->reg.NEXT_PC;
}
}
@ -1249,20 +914,20 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
case 4:
case 6:
case 7:
csr[utval | (new_priv << 8)] = fault_data;
this->csr[utval | (new_priv << 8)] = this->fault_data;
break;
default:
csr[utval | (new_priv << 8)] = 0;
this->csr[utval | (new_priv << 8)] = 0;
}
fault_data = 0;
this->fault_data = 0;
} else {
if(cur_priv != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
if(cur_priv != PRIV_M && ((this->csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (this->csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
this->csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
}
size_t adr = ucause | (new_priv << 8);
csr[adr] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
this->csr[adr] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
@ -1290,7 +955,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
}
// get trap vector
auto ivec = csr[utvec | (new_priv << 8)];
auto ivec = this->csr[utvec | (new_priv << 8)];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x3UL;
@ -1299,10 +964,10 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
std::array<char, 32> buffer;
sprintf(buffer.data(), "0x%016lx", addr);
if((flags & 0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause]) << "' ("
<< cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << lvl[cur_priv] << " to "
<< lvl[new_priv];
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << this->lvl[cur_priv]
<< " to " << this->lvl[new_priv];
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
@ -1344,8 +1009,8 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t f
break;
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[uepc | inst_priv << 8];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << lvl[cur_priv] << " to " << lvl[this->reg.PRIV];
this->reg.NEXT_PC = this->csr[uepc | inst_priv << 8];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << this->lvl[cur_priv] << " to " << this->lvl[this->reg.PRIV];
update_vm_info();
check_interrupt();
return this->reg.NEXT_PC;

File diff suppressed because it is too large Load Diff

View File

@ -2695,11 +2695,12 @@ std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short por
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_msu_vp.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
volatile std::array<bool, 3> dummy = {
core_factory::instance().register_creator("tgc5c|m_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
@ -2719,6 +2720,16 @@ volatile std::array<bool, 2> dummy = {
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc5c|mus_vp|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_msu_vp<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::tgc5c>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}