44 Commits

Author SHA1 Message Date
7ea3a6261d checkin from eve 2024-12-27 19:17:37 +00:00
a6a6f51f0b adds clang-format fixes 2024-12-06 15:50:50 +01:00
21e1f791ad corrects sysc integration template and corresponding file 2024-12-06 09:49:02 +01:00
be6f5791fa adds update to cyclecount after each instr for asmjit 2024-11-26 20:26:18 +01:00
ac818f304d increases verbosity incase elf loading goes wrong 2024-10-21 16:42:58 +02:00
ad60449073 updates generated cores 2024-09-27 20:04:58 +02:00
b45b3589fa updates templates to immediately trap when gen_trap is called 2024-09-27 20:03:51 +02:00
1fb7e8fcea improves logging output 2024-09-24 08:39:34 +02:00
5f9d0beafb corrects softfloat to comply with RVD ACT 2024-09-23 22:22:57 +02:00
4c0d1c75aa adds addr formatting to logging 2024-09-23 12:21:43 +02:00
2f3abf2f76 adds namespaces for ELFIO 2024-09-23 11:55:18 +02:00
62768bf81e applies clang format 2024-09-23 10:05:33 +02:00
f6be8ec006 adds elfio test utility 2024-09-23 09:29:08 +02:00
a8f56b6e27 removes code dupication by unifying elf file read 2024-09-23 09:28:27 +02:00
76ea0db25d adds newest generated vm_impl 2024-08-17 23:19:51 +02:00
ec1b820c18 fixes target xml generation 2024-08-17 19:36:53 +02:00
64329cf0f6 fixes use of icount vs. cycle 2024-08-17 19:36:40 +02:00
9de0aed84d expands some error message 2024-08-17 16:55:49 +02:00
bb4e2766d1 applies clang-format 2024-08-17 16:12:57 +02:00
0996d15bd4 removes debug code 2024-08-17 12:48:48 +02:00
6305efa7c2 implements proper target XML generation incl. CSRs 2024-08-17 12:40:40 +02:00
de79adc50d updates debugger hook to stop before fetching instructions
this relates to https://github.com/Minres/DBT-RISE-RISCV/issues/8 :
Debugger loses control when trap vector fetch fails

and https://github.com/Minres/DBT-RISE-RISCV/issues/7 : Two debugger
single-steps are required at reset vector
2024-08-17 12:39:54 +02:00
0473aa5344 fixes SystemC wrapper wrt. templated core_complex 2024-08-17 12:34:17 +02:00
a45fcd28db updates fn calling generation 2024-08-17 08:22:04 +02:00
0f15032210 removes gen_wait as wait can be called like any other extern function 2024-08-14 15:25:06 +02:00
efc11d87a5 updates template with fcsr check, adds extra braces on If Statements 2024-08-14 14:32:58 +02:00
4a19e27926 adds changes due to generator being more inline with others 2024-08-14 13:52:08 +02:00
c15cdb0955 expands return values of jit creating functions to inhibit endless trapping 2024-08-14 11:49:59 +02:00
6609d12582 adds flimit that gets properly evaluated in interp 2024-08-13 15:22:34 +02:00
b5341700aa updates template and adds braces when using conditions 2024-08-13 08:55:14 +02:00
0b5062d21c adds fp_functions here to remove dependencies in dbt-rise-core 2024-08-09 11:56:32 +02:00
fbca690b3b replaces gen_wait, updates template to include fp_functions when necessary 2024-08-08 12:57:08 +02:00
235a7e6e24 updates template 2024-08-08 11:08:28 +02:00
62d21e1156 updates disass 2024-08-07 09:21:07 +02:00
9c51d6eade improves interp, only calls decode once per instr 2024-08-07 09:20:11 +02:00
2878dca6b5 updates templates 2024-08-06 08:32:05 +02:00
c28e8fd00c removes left-overs 2024-08-04 18:57:20 +02:00
b3cc9d2346 makes core_complex a template 2024-08-04 18:47:32 +02:00
933f08494c removes C++17 dependency from asmjit backend 2024-08-04 17:41:49 +02:00
21f8eab432 adds regenerated tgc5c 2024-08-02 19:18:28 +02:00
6ddb8da07f fixes missing rename 2024-08-02 11:58:51 +02:00
edf456c59f fixes missing braces 2024-08-02 10:33:15 +02:00
42efced1eb fixes FCSR behavior if no floating point is implemented 2024-08-02 08:59:22 +02:00
c376e34b2b applies clang format 2024-08-01 11:02:10 +02:00
37 changed files with 6720 additions and 2810 deletions

View File

@@ -20,6 +20,7 @@ set(LIB_SOURCES
src/iss/arch/tgc5c.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/iss/debugger/csr_names.cpp
src/iss/semihosting/semihosting.cpp
)
@@ -108,15 +109,14 @@ if(TARGET yaml-cpp::yaml-cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
# if(WITH_LLVM)
# target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
# target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
# if(BUILD_SHARED_LIBS)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
# endif()
# endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
@@ -261,3 +261,9 @@ if(TARGET scc-sysc)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
endif()
project(elfio-test)
find_package(Boost COMPONENTS program_options thread REQUIRED)
add_executable(${PROJECT_NAME} src/elfio.cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio)

View File

@@ -131,8 +131,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
@@ -141,8 +139,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%

View File

@@ -45,17 +45,17 @@ namespace interp {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@@ -66,17 +66,17 @@ namespace llvm {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@@ -88,17 +88,17 @@ namespace tcc {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@@ -110,17 +110,17 @@ namespace asmjit {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>

View File

@@ -38,7 +38,9 @@
#include <asmjit/asmjit.h>
#include <util/logging.h>
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@@ -88,7 +90,6 @@ protected:
using super::write_reg_to_mem;
using super::gen_read_mem;
using super::gen_write_mem;
using super::gen_wait;
using super::gen_leave;
using super::gen_sync;
@@ -100,11 +101,13 @@ protected:
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
void gen_instr_prologue(jit_holder& jh);
void gen_instr_epilogue(jit_holder& jh);
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause);
template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> void gen_set_tval(jit_holder& jh, T new_tval) ;
template <typename T, typename = typename std::enable_if<std::is_integral<T>::value>::type> void gen_set_tval(jit_holder& jh, T new_tval) ;
void gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) ;
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
@@ -113,6 +116,9 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
private:
/****************************************************************************
* start opcode definitions
@@ -195,7 +201,7 @@ private:
gen_raise(jh, 0, 2);
gen_sync(jh, POST_SYNC, instr_descr.size());
gen_instr_epilogue(jh);
return BRANCH;
return ILLEGAL_INSTR;
}
};
@@ -224,9 +230,9 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
@@ -257,6 +263,7 @@ void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
@@ -302,6 +309,7 @@ inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t
auto tmp1 = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
mov(cc, get_ptr_for(jh, traits::TRAP_STATE), tmp1);
cc.jmp(jh.trap_entry);
}
template <typename ARCH>
template <typename T, typename>
@@ -310,8 +318,8 @@ void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, T new_tval) {
}
template <typename ARCH>
void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) {
if(std::holds_alternative<x86::Gp>(_new_tval)) {
x86::Gp new_tval = std::get<x86::Gp>(_new_tval);
if(nonstd::holds_alternative<x86::Gp>(_new_tval)) {
x86::Gp new_tval = nonstd::get<x86::Gp>(_new_tval);
if(new_tval.size() < 8)
new_tval = gen_ext_Gp(jh.cc, new_tval, 64, false);
mov(jh.cc, jh.globals[TVAL], new_tval);

View File

@@ -257,17 +257,21 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
while(!this->core.should_stop() &&
!(is_icount_limit_enabled(cond) && icount >= count_limit) &&
!(is_fcount_limit_enabled(cond) && fetch_count >= count_limit)){
fetch_count++;
if(this->debugging_enabled())
this->tgt_adapter->check_continue(*PC);
pc.val=*PC;
if(fetch_ins(pc, data)!=iss::Ok){
this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0);
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, std::numeric_limits<unsigned>::max());
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(PRE_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(arch::traits<ARCH>::RV_CAUSE_FETCH_ACCESS<<16, pc.val, 0);
} else {
if (is_jump_to_self_enabled(cond) &&
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
uint32_t inst_index = instr_decoder.decode_instr(instr);
opcode_e inst_id = arch::traits<ARCH>::opcode_e::MAX_OPCODE;;
if(inst_index <instr_descr.size())
inst_id = instr_descr.at(instr_decoder.decode_instr(instr)).op;
inst_id = instr_descr[inst_index].op;
// pre execution stuff
this->core.reg.last_branch = 0;
@@ -279,6 +283,7 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
this->core.disass_output(pc.val, mnemonic);
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
@@ -310,11 +315,11 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
icount++;
instret++;
}
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC;
*PC = *NEXT_PC;
this->core.reg.trap_state = this->core.reg.pending_trap;
}
fetch_count++;
cycle++;
}
return pc;
}

View File

@@ -37,7 +37,9 @@
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@@ -83,7 +85,9 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
@@ -131,7 +135,9 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
private:
/****************************************************************************
* start opcode definitions
@@ -198,7 +204,7 @@ private:
};
this->builder.CreateCall(this->mod->getFunction("print_disass"), args);
}
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), true),
get_reg_ptr(traits::PC), true);
this->builder.CreateStore(
@@ -212,7 +218,7 @@ private:
bb = this->leave_blk;
this->gen_instr_epilogue(bb);
this->builder.CreateBr(bb);
return std::make_tuple(BRANCH, nullptr);
return std::make_tuple(ILLEGAL_INSTR, nullptr);
}
};
@@ -247,19 +253,11 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((instr & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return std::make_tuple(JUMP_TO_SELF, nullptr);
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
@@ -281,6 +279,7 @@ template <typename ARCH>
void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateBr(this->trap_blk);
}
template <typename ARCH>

View File

@@ -38,7 +38,9 @@
#include <util/logging.h>
#include <sstream>
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@@ -81,16 +83,21 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
using compile_ret_t = continuation_e;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@@ -98,8 +105,6 @@ protected:
void gen_leave_trap(tu_builder& tu, unsigned lvl);
void gen_wait(tu_builder& tu, unsigned type);
inline void gen_set_tval(tu_builder& tu, uint64_t new_tval);
inline void gen_set_tval(tu_builder& tu, value new_tval);
@@ -133,6 +138,9 @@ protected:
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
private:
/****************************************************************************
* start opcode definitions
@@ -163,6 +171,7 @@ private:
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
@@ -187,11 +196,11 @@ private:
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, std::string("illegal_instruction"));
}
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_raise_trap(tu, 0, 2); // illegal instruction trap
gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_set_tval(tu, instr);
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
return BRANCH;
return ILLEGAL_INSTR;
}
};
@@ -216,28 +225,19 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
if (res != iss::Ok)
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@@ -258,9 +258,6 @@ template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsi
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
}
template <typename ARCH> void vm_impl<ARCH>::gen_set_tval(tu_builder& tu, uint64_t new_tval) {
tu(fmt::format("tval = {};", new_tval));
}
@@ -275,6 +272,43 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("return *next_pc;");
}
<%
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE);
os << add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP);
if(fcsr != null) {%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
os << "uint32_t (*fmul_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fmul_s << ";\\n";
os << "uint32_t (*fdiv_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_s << ";\\n";
os << "uint32_t (*fsqrt_s)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_s << ";\\n";
os << "uint32_t (*fcmp_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fcmp_s << ";\\n";
os << "uint32_t (*fcvt_s)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_s << ";\\n";
os << "uint32_t (*fmadd_s)(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_s << ";\\n";
os << "uint32_t (*fsel_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fsel_s << ";\\n";
os << "uint32_t (*fclass_s)( uint32_t v1 )=" << (uintptr_t)&fclass_s << ";\\n";
os << "uint32_t (*fconv_d2f)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&fconv_d2f << ";\\n";
os << "uint64_t (*fconv_f2d)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&fconv_f2d << ";\\n";
os << "uint64_t (*fadd_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fadd_d << ";\\n";
os << "uint64_t (*fsub_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fsub_d << ";\\n";
os << "uint64_t (*fmul_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fmul_d << ";\\n";
os << "uint64_t (*fdiv_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_d << ";\\n";
os << "uint64_t (*fsqrt_d)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_d << ";\\n";
os << "uint64_t (*fcmp_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fcmp_d << ";\\n";
os << "uint64_t (*fcvt_d)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_d << ";\\n";
os << "uint64_t (*fmadd_d)(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_d << ";\\n";
os << "uint64_t (*fsel_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fsel_d << ";\\n";
os << "uint64_t (*fclass_d)(uint64_t v1 )=" << (uintptr_t)&fclass_d << ";\\n";
os << "uint64_t (*fcvt_32_64)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_32_64 << ";\\n";
os << "uint32_t (*fcvt_64_32)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_64_32 << ";\\n";
os << "uint32_t (*unbox_s)(uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
<%}%>
tu.add_prologue(os.str());
}
} // namespace ${coreDef.name.toLowerCase()}

View File

@@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@@ -114,15 +114,14 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| Returns true when 16-bit unsigned integer 'uiA' has the bit pattern of a
| 16-bit brain floating-point (BF16) signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNBF16UI( uiA ) ((((uiA) & 0x7FC0) == 0x7F80) && ((uiA) & 0x003F))
#define softfloat_isSigNaNBF16UI(uiA) ((((uiA)&0x7FC0) == 0x7F80) && ((uiA)&0x003F))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit BF16 floating-point NaN, converts
@@ -130,13 +129,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_bf16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_bf16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToBF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToBF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@@ -148,7 +147,7 @@ uint_fast16_t softfloat_commonNaNToBF16UI( const struct commonNaN *aPtr );
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@@ -156,13 +155,13 @@ uint_fast16_t softfloat_commonNaNToBF16UI( const struct commonNaN *aPtr );
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@@ -170,20 +169,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@@ -191,13 +190,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@@ -205,14 +204,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@@ -220,7 +218,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@@ -236,16 +235,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -256,19 +253,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@@ -276,7 +267,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@@ -285,15 +277,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -304,13 +294,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@@ -325,18 +309,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@@ -344,12 +324,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@@ -357,7 +332,7 @@ void
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@@ -367,8 +342,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@@ -376,8 +350,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@@ -387,11 +360,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@@ -53,27 +53,29 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN { char _unused; };
struct commonNaN {
char _unused;
};
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit floating-point NaN.
@@ -85,7 +87,7 @@ struct commonNaN { char _unused; };
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@@ -93,13 +95,15 @@ struct commonNaN { char _unused; };
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f16UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x0200) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0200)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF16UI( aPtr ) ((uint_fast16_t) defaultNaNF16UI)
#define softfloat_commonNaNToF16UI(aPtr) ((uint_fast16_t)defaultNaNF16UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@@ -107,8 +111,7 @@ struct commonNaN { char _unused; };
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@@ -120,7 +123,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@@ -128,13 +131,15 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f32UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x00400000) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f32UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x00400000)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF32UI( aPtr ) ((uint_fast32_t) defaultNaNF32UI)
#define softfloat_commonNaNToF32UI(aPtr) ((uint_fast32_t)defaultNaNF32UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@@ -142,20 +147,20 @@ uint_fast16_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@@ -163,13 +168,15 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f64UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & UINT64_C( 0x0008000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f64UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&UINT64_C(0x0008000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF64UI( aPtr ) ((uint_fast64_t) defaultNaNF64UI)
#define softfloat_commonNaNToF64UI(aPtr) ((uint_fast64_t)defaultNaNF64UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@@ -177,14 +184,13 @@ uint_fast32_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@@ -192,7 +198,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@@ -208,24 +215,25 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA0) & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA0)&UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80UI
#if defined INLINE && !defined softfloat_commonNaNToExtF80UI
INLINE
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
uiZ.v0 = defaultNaNExtF80UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
#endif
/*----------------------------------------------------------------------------
@@ -237,19 +245,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@@ -257,7 +259,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@@ -266,23 +269,24 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f128UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA64) & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA64)&UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128UI
#if defined INLINE && !defined softfloat_commonNaNToF128UI
INLINE
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
uiZ.v0 = defaultNaNF128UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
#endif
/*----------------------------------------------------------------------------
@@ -294,13 +298,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@@ -315,26 +313,23 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80MToCommonNaN( aSPtr, zPtr ) if ( ! ((aSPtr)->signif & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80MToCommonNaN(aSPtr, zPtr) \
if(!((aSPtr)->signif & UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80M
#if defined INLINE && !defined softfloat_commonNaNToExtF80M
INLINE
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr )
{
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr) {
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
zSPtr->signif = defaultNaNExtF80UI0;
}
#else
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
#endif
/*----------------------------------------------------------------------------
@@ -343,12 +338,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@@ -356,7 +346,7 @@ void
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@@ -366,7 +356,9 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#define softfloat_f128MToCommonNaN( aWPtr, zPtr ) if ( ! ((aWPtr)[indexWordHi( 4 )] & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128MToCommonNaN(aWPtr, zPtr) \
if(!((aWPtr)[indexWordHi(4)] & UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@@ -374,19 +366,16 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128M
#if defined INLINE && !defined softfloat_commonNaNToF128M
INLINE
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr )
{
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr) {
zWPtr[indexWord(4, 3)] = defaultNaNF128UI96;
zWPtr[indexWord(4, 2)] = defaultNaNF128UI64;
zWPtr[indexWord(4, 1)] = defaultNaNF128UI32;
zWPtr[indexWord(4, 0)] = defaultNaNF128UI0;
}
#else
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
#endif
/*----------------------------------------------------------------------------
@@ -397,11 +386,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@@ -114,8 +114,7 @@ uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@@ -127,7 +126,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@@ -135,13 +134,13 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@@ -149,20 +148,20 @@ uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@@ -170,13 +169,13 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@@ -184,14 +183,13 @@ uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@@ -199,7 +197,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@@ -215,16 +214,14 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -235,19 +232,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@@ -255,7 +246,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@@ -264,15 +256,13 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@@ -283,13 +273,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@@ -304,18 +288,14 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@@ -323,12 +303,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@@ -336,7 +311,7 @@ void
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@@ -346,8 +321,7 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@@ -355,8 +329,7 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@@ -366,11 +339,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@@ -53,27 +53,29 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0x7FFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0x7FFFFFFF
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN INT64_C( 0x7FFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN INT64_C(0x7FFFFFFFFFFFFFFF)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN { char _unused; };
struct commonNaN {
char _unused;
};
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit floating-point NaN.
@@ -85,14 +87,14 @@ struct commonNaN { char _unused; };
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Returns true when 16-bit unsigned integer 'uiA' has the bit pattern of a
| 16-bit brain floating-point (BF16) signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNBF16UI( uiA ) ((((uiA) & 0x7FC0) == 0x7F80) && ((uiA) & 0x003F))
#define softfloat_isSigNaNBF16UI(uiA) ((((uiA)&0x7FC0) == 0x7F80) && ((uiA)&0x003F))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@@ -100,7 +102,9 @@ struct commonNaN { char _unused; };
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f16UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x0200) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0200)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit BF16 floating-point NaN, converts
@@ -108,13 +112,15 @@ struct commonNaN { char _unused; };
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_bf16UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x0040) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_bf16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0040)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF16UI( aPtr ) ((uint_fast16_t) defaultNaNF16UI)
#define softfloat_commonNaNToF16UI(aPtr) ((uint_fast16_t)defaultNaNF16UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@@ -122,8 +128,7 @@ struct commonNaN { char _unused; };
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit BF16 floating-point NaN.
@@ -134,7 +139,7 @@ uint_fast16_t
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToBF16UI( aPtr ) ((uint_fast16_t) defaultNaNBF16UI)
#define softfloat_commonNaNToBF16UI(aPtr) ((uint_fast16_t)defaultNaNBF16UI)
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@@ -146,7 +151,7 @@ uint_fast16_t
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@@ -154,13 +159,15 @@ uint_fast16_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f32UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x00400000) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f32UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x00400000)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF32UI( aPtr ) ((uint_fast32_t) defaultNaNF32UI)
#define softfloat_commonNaNToF32UI(aPtr) ((uint_fast32_t)defaultNaNF32UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@@ -168,20 +175,20 @@ uint_fast16_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@@ -189,13 +196,15 @@ uint_fast32_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f64UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & UINT64_C( 0x0008000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f64UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&UINT64_C(0x0008000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF64UI( aPtr ) ((uint_fast64_t) defaultNaNF64UI)
#define softfloat_commonNaNToF64UI(aPtr) ((uint_fast64_t)defaultNaNF64UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@@ -203,14 +212,13 @@ uint_fast32_t
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@@ -218,7 +226,8 @@ uint_fast64_t
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
@@ -234,24 +243,25 @@ uint_fast64_t
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA0) & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA0)&UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80UI
#if defined INLINE && !defined softfloat_commonNaNToExtF80UI
INLINE
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
uiZ.v0 = defaultNaNExtF80UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
#endif
/*----------------------------------------------------------------------------
@@ -263,19 +273,13 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@@ -283,7 +287,8 @@ struct uint128
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@@ -292,23 +297,24 @@ struct uint128
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f128UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA64) & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA64)&UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128UI
#if defined INLINE && !defined softfloat_commonNaNToF128UI
INLINE
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN *aPtr )
{
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
uiZ.v0 = defaultNaNF128UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
#endif
/*----------------------------------------------------------------------------
@@ -320,13 +326,7 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
#else
@@ -341,26 +341,23 @@ struct uint128
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80MToCommonNaN( aSPtr, zPtr ) if ( ! ((aSPtr)->signif & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_extF80MToCommonNaN(aSPtr, zPtr) \
if(!((aSPtr)->signif & UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToExtF80M
#if defined INLINE && !defined softfloat_commonNaNToExtF80M
INLINE
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr )
{
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr) {
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
zSPtr->signif = defaultNaNExtF80UI0;
}
#else
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
#endif
/*----------------------------------------------------------------------------
@@ -369,12 +366,7 @@ void
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@@ -382,7 +374,7 @@ void
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@@ -392,7 +384,9 @@ void
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#define softfloat_f128MToCommonNaN( aWPtr, zPtr ) if ( ! ((aWPtr)[indexWordHi( 4 )] & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
#define softfloat_f128MToCommonNaN(aWPtr, zPtr) \
if(!((aWPtr)[indexWordHi(4)] & UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@@ -400,19 +394,16 @@ void
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#if defined INLINE && ! defined softfloat_commonNaNToF128M
#if defined INLINE && !defined softfloat_commonNaNToF128M
INLINE
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr )
{
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr) {
zWPtr[indexWord(4, 3)] = defaultNaNF128UI96;
zWPtr[indexWord(4, 2)] = defaultNaNF128UI64;
zWPtr[indexWord(4, 1)] = defaultNaNF128UI32;
zWPtr[indexWord(4, 0)] = defaultNaNF128UI0;
}
#else
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
#endif
/*----------------------------------------------------------------------------
@@ -423,11 +414,8 @@ void
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
#endif
#endif

View File

@@ -37,255 +37,221 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef internals_h
#define internals_h 1
#include <stdbool.h>
#include <stdint.h>
#include "primitives.h"
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
union ui16_f16 { uint16_t ui; float16_t f; };
union ui16_bf16 { uint16_t ui; bfloat16_t f; };
union ui32_f32 { uint32_t ui; float32_t f; };
union ui64_f64 { uint64_t ui; float64_t f; };
#ifdef SOFTFLOAT_FAST_INT64
union extF80M_extF80 { struct extFloat80M fM; extFloat80_t f; };
union ui128_f128 { struct uint128 ui; float128_t f; };
#endif
enum {
softfloat_mulAdd_subC = 1,
softfloat_mulAdd_subProd = 2
union ui16_f16 {
uint16_t ui;
float16_t f;
};
union ui16_bf16 {
uint16_t ui;
bfloat16_t f;
};
union ui32_f32 {
uint32_t ui;
float32_t f;
};
union ui64_f64 {
uint64_t ui;
float64_t f;
};
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32( bool, uint_fast64_t, uint_fast8_t, bool );
#ifdef SOFTFLOAT_FAST_INT64
uint_fast64_t
softfloat_roundToUI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
#else
uint_fast64_t softfloat_roundMToUI64( bool, uint32_t *, uint_fast8_t, bool );
union extF80M_extF80 {
struct extFloat80M fM;
extFloat80_t f;
};
union ui128_f128 {
struct uint128 ui;
float128_t f;
};
#endif
int_fast32_t softfloat_roundToI32( bool, uint_fast64_t, uint_fast8_t, bool );
enum { softfloat_mulAdd_subC = 1, softfloat_mulAdd_subProd = 2 };
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32(bool, uint_fast64_t, uint_fast8_t, bool);
#ifdef SOFTFLOAT_FAST_INT64
int_fast64_t
softfloat_roundToI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
uint_fast64_t softfloat_roundToUI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
#else
int_fast64_t softfloat_roundMToI64( bool, uint32_t *, uint_fast8_t, bool );
uint_fast64_t softfloat_roundMToUI64(bool, uint32_t*, uint_fast8_t, bool);
#endif
int_fast32_t softfloat_roundToI32(bool, uint_fast64_t, uint_fast8_t, bool);
#ifdef SOFTFLOAT_FAST_INT64
int_fast64_t softfloat_roundToI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
#else
int_fast64_t softfloat_roundMToI64(bool, uint32_t*, uint_fast8_t, bool);
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF16UI( a ) ((bool) ((uint16_t) (a)>>15))
#define expF16UI( a ) ((int_fast8_t) ((a)>>10) & 0x1F)
#define fracF16UI( a ) ((a) & 0x03FF)
#define packToF16UI( sign, exp, sig ) (((uint16_t) (sign)<<15) + ((uint16_t) (exp)<<10) + (sig))
*----------------------------------------------------------------------------*/
#define signF16UI(a) ((bool)((uint16_t)(a) >> 15))
#define expF16UI(a) ((int_fast8_t)((a) >> 10) & 0x1F)
#define fracF16UI(a) ((a)&0x03FF)
#define packToF16UI(sign, exp, sig) (((uint16_t)(sign) << 15) + ((uint16_t)(exp) << 10) + (sig))
#define isNaNF16UI( a ) (((~(a) & 0x7C00) == 0) && ((a) & 0x03FF))
#define isNaNF16UI(a) (((~(a)&0x7C00) == 0) && ((a)&0x03FF))
struct exp8_sig16 { int_fast8_t exp; uint_fast16_t sig; };
struct exp8_sig16 softfloat_normSubnormalF16Sig( uint_fast16_t );
struct exp8_sig16 {
int_fast8_t exp;
uint_fast16_t sig;
};
struct exp8_sig16 softfloat_normSubnormalF16Sig(uint_fast16_t);
float16_t softfloat_roundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_normRoundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_roundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_normRoundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_addMagsF16( uint_fast16_t, uint_fast16_t );
float16_t softfloat_subMagsF16( uint_fast16_t, uint_fast16_t );
float16_t
softfloat_mulAddF16(
uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t );
float16_t softfloat_addMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_subMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_mulAddF16(uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signBF16UI( a ) ((bool) ((uint16_t) (a)>>15))
#define expBF16UI( a ) ((int_fast16_t) ((a)>>7) & 0xFF)
#define fracBF16UI( a ) ((a) & 0x07F)
#define packToBF16UI( sign, exp, sig ) (((uint16_t) (sign)<<15) + ((uint16_t) (exp)<<7) + (sig))
*----------------------------------------------------------------------------*/
#define signBF16UI(a) ((bool)((uint16_t)(a) >> 15))
#define expBF16UI(a) ((int_fast16_t)((a) >> 7) & 0xFF)
#define fracBF16UI(a) ((a)&0x07F)
#define packToBF16UI(sign, exp, sig) (((uint16_t)(sign) << 15) + ((uint16_t)(exp) << 7) + (sig))
#define isNaNBF16UI( a ) (((~(a) & 0x7FC0) == 0) && ((a) & 0x07F))
#define isNaNBF16UI(a) (((~(a)&0x7FC0) == 0) && ((a)&0x07F))
bfloat16_t softfloat_roundPackToBF16( bool, int_fast16_t, uint_fast16_t );
struct exp8_sig16 softfloat_normSubnormalBF16Sig( uint_fast16_t );
bfloat16_t softfloat_roundPackToBF16(bool, int_fast16_t, uint_fast16_t);
struct exp8_sig16 softfloat_normSubnormalBF16Sig(uint_fast16_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF32UI( a ) ((bool) ((uint32_t) (a)>>31))
#define expF32UI( a ) ((int_fast16_t) ((a)>>23) & 0xFF)
#define fracF32UI( a ) ((a) & 0x007FFFFF)
#define packToF32UI( sign, exp, sig ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<23) + (sig))
*----------------------------------------------------------------------------*/
#define signF32UI(a) ((bool)((uint32_t)(a) >> 31))
#define expF32UI(a) ((int_fast16_t)((a) >> 23) & 0xFF)
#define fracF32UI(a) ((a)&0x007FFFFF)
#define packToF32UI(sign, exp, sig) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 23) + (sig))
#define isNaNF32UI( a ) (((~(a) & 0x7F800000) == 0) && ((a) & 0x007FFFFF))
#define isNaNF32UI(a) (((~(a)&0x7F800000) == 0) && ((a)&0x007FFFFF))
struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; };
struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t );
struct exp16_sig32 {
int_fast16_t exp;
uint_fast32_t sig;
};
struct exp16_sig32 softfloat_normSubnormalF32Sig(uint_fast32_t);
float32_t softfloat_roundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_normRoundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_roundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_normRoundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_addMagsF32( uint_fast32_t, uint_fast32_t );
float32_t softfloat_subMagsF32( uint_fast32_t, uint_fast32_t );
float32_t
softfloat_mulAddF32(
uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t );
float32_t softfloat_addMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_subMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_mulAddF32(uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF64UI( a ) ((bool) ((uint64_t) (a)>>63))
#define expF64UI( a ) ((int_fast16_t) ((a)>>52) & 0x7FF)
#define fracF64UI( a ) ((a) & UINT64_C( 0x000FFFFFFFFFFFFF ))
#define packToF64UI( sign, exp, sig ) ((uint64_t) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<52) + (sig)))
*----------------------------------------------------------------------------*/
#define signF64UI(a) ((bool)((uint64_t)(a) >> 63))
#define expF64UI(a) ((int_fast16_t)((a) >> 52) & 0x7FF)
#define fracF64UI(a) ((a)&UINT64_C(0x000FFFFFFFFFFFFF))
#define packToF64UI(sign, exp, sig) ((uint64_t)(((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 52) + (sig)))
#define isNaNF64UI( a ) (((~(a) & UINT64_C( 0x7FF0000000000000 )) == 0) && ((a) & UINT64_C( 0x000FFFFFFFFFFFFF )))
#define isNaNF64UI(a) (((~(a)&UINT64_C(0x7FF0000000000000)) == 0) && ((a)&UINT64_C(0x000FFFFFFFFFFFFF)))
struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; };
struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t );
struct exp16_sig64 {
int_fast16_t exp;
uint_fast64_t sig;
};
struct exp16_sig64 softfloat_normSubnormalF64Sig(uint_fast64_t);
float64_t softfloat_roundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_normRoundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_roundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_normRoundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_addMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t softfloat_subMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t
softfloat_mulAddF64(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
float64_t softfloat_addMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_subMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_mulAddF64(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signExtF80UI64( a64 ) ((bool) ((uint16_t) (a64)>>15))
#define expExtF80UI64( a64 ) ((a64) & 0x7FFF)
#define packToExtF80UI64( sign, exp ) ((uint_fast16_t) (sign)<<15 | (exp))
*----------------------------------------------------------------------------*/
#define signExtF80UI64(a64) ((bool)((uint16_t)(a64) >> 15))
#define expExtF80UI64(a64) ((a64)&0x7FFF)
#define packToExtF80UI64(sign, exp) ((uint_fast16_t)(sign) << 15 | (exp))
#define isNaNExtF80UI( a64, a0 ) ((((a64) & 0x7FFF) == 0x7FFF) && ((a0) & UINT64_C( 0x7FFFFFFFFFFFFFFF )))
#define isNaNExtF80UI(a64, a0) ((((a64)&0x7FFF) == 0x7FFF) && ((a0)&UINT64_C(0x7FFFFFFFFFFFFFFF)))
#ifdef SOFTFLOAT_FAST_INT64
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
struct exp32_sig64 { int_fast32_t exp; uint64_t sig; };
struct exp32_sig64 softfloat_normSubnormalExtF80Sig( uint_fast64_t );
struct exp32_sig64 {
int_fast32_t exp;
uint64_t sig;
};
struct exp32_sig64 softfloat_normSubnormalExtF80Sig(uint_fast64_t);
extFloat80_t
softfloat_roundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t
softfloat_normRoundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t softfloat_roundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t softfloat_normRoundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t
softfloat_addMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
extFloat80_t
softfloat_subMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
extFloat80_t softfloat_addMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
extFloat80_t softfloat_subMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI64( a64 ) ((bool) ((uint64_t) (a64)>>63))
#define expF128UI64( a64 ) ((int_fast32_t) ((a64)>>48) & 0x7FFF)
#define fracF128UI64( a64 ) ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))
#define packToF128UI64( sign, exp, sig64 ) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<48) + (sig64))
*----------------------------------------------------------------------------*/
#define signF128UI64(a64) ((bool)((uint64_t)(a64) >> 63))
#define expF128UI64(a64) ((int_fast32_t)((a64) >> 48) & 0x7FFF)
#define fracF128UI64(a64) ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))
#define packToF128UI64(sign, exp, sig64) (((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 48) + (sig64))
#define isNaNF128UI( a64, a0 ) (((~(a64) & UINT64_C( 0x7FFF000000000000 )) == 0) && (a0 || ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))))
#define isNaNF128UI(a64, a0) (((~(a64)&UINT64_C(0x7FFF000000000000)) == 0) && (a0 || ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))))
struct exp32_sig128 { int_fast32_t exp; struct uint128 sig; };
struct exp32_sig128
softfloat_normSubnormalF128Sig( uint_fast64_t, uint_fast64_t );
struct exp32_sig128 {
int_fast32_t exp;
struct uint128 sig;
};
struct exp32_sig128 softfloat_normSubnormalF128Sig(uint_fast64_t, uint_fast64_t);
float128_t
softfloat_roundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t );
float128_t
softfloat_normRoundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t );
float128_t softfloat_roundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t);
float128_t softfloat_normRoundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t);
float128_t
softfloat_addMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_subMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_mulAddF128(
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast8_t
);
float128_t softfloat_addMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_subMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_mulAddF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
#else
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
bool
softfloat_tryPropagateNaNExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *
);
void softfloat_invalidExtF80M( struct extFloat80M * );
bool softfloat_tryPropagateNaNExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*);
void softfloat_invalidExtF80M(struct extFloat80M*);
int softfloat_normExtF80SigM( uint64_t * );
int softfloat_normExtF80SigM(uint64_t*);
void
softfloat_roundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void
softfloat_normRoundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void softfloat_roundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void softfloat_normRoundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void
softfloat_addExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *,
bool
);
void softfloat_addExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*, bool);
int
softfloat_compareNonnormExtF80M(
const struct extFloat80M *, const struct extFloat80M * );
int softfloat_compareNonnormExtF80M(const struct extFloat80M*, const struct extFloat80M*);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI96( a96 ) ((bool) ((uint32_t) (a96)>>31))
#define expF128UI96( a96 ) ((int32_t) ((a96)>>16) & 0x7FFF)
#define fracF128UI96( a96 ) ((a96) & 0x0000FFFF)
#define packToF128UI96( sign, exp, sig96 ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<16) + (sig96))
*----------------------------------------------------------------------------*/
#define signF128UI96(a96) ((bool)((uint32_t)(a96) >> 31))
#define expF128UI96(a96) ((int32_t)((a96) >> 16) & 0x7FFF)
#define fracF128UI96(a96) ((a96)&0x0000FFFF)
#define packToF128UI96(sign, exp, sig96) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 16) + (sig96))
bool softfloat_isNaNF128M( const uint32_t * );
bool softfloat_isNaNF128M(const uint32_t*);
bool
softfloat_tryPropagateNaNF128M(
const uint32_t *, const uint32_t *, uint32_t * );
void softfloat_invalidF128M( uint32_t * );
bool softfloat_tryPropagateNaNF128M(const uint32_t*, const uint32_t*, uint32_t*);
void softfloat_invalidF128M(uint32_t*);
int softfloat_shiftNormSigF128M( const uint32_t *, uint_fast8_t, uint32_t * );
int softfloat_shiftNormSigF128M(const uint32_t*, uint_fast8_t, uint32_t*);
void softfloat_roundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_normRoundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_roundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void softfloat_normRoundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void
softfloat_addF128M( const uint32_t *, const uint32_t *, uint32_t *, bool );
void
softfloat_mulAddF128M(
const uint32_t *,
const uint32_t *,
const uint32_t *,
uint32_t *,
uint_fast8_t
);
void softfloat_addF128M(const uint32_t*, const uint32_t*, uint32_t*, bool);
void softfloat_mulAddF128M(const uint32_t*, const uint32_t*, const uint32_t*, uint32_t*, uint_fast8_t);
#endif
#endif

View File

@@ -42,13 +42,27 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef SOFTFLOAT_FAST_INT64
#ifdef LITTLEENDIAN
struct uint128 { uint64_t v0, v64; };
struct uint64_extra { uint64_t extra, v; };
struct uint128_extra { uint64_t extra; struct uint128 v; };
struct uint128 {
uint64_t v0, v64;
};
struct uint64_extra {
uint64_t extra, v;
};
struct uint128_extra {
uint64_t extra;
struct uint128 v;
};
#else
struct uint128 { uint64_t v64, v0; };
struct uint64_extra { uint64_t v, extra; };
struct uint128_extra { struct uint128 v; uint64_t extra; };
struct uint128 {
uint64_t v64, v0;
};
struct uint64_extra {
uint64_t v, extra;
};
struct uint128_extra {
struct uint128 v;
uint64_t extra;
};
#endif
#endif
@@ -59,27 +73,28 @@ struct uint128_extra { struct uint128 v; uint64_t extra; };
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
#define wordIncr 1
#define indexWord( total, n ) (n)
#define indexWordHi( total ) ((total) - 1)
#define indexWordLo( total ) 0
#define indexMultiword( total, m, n ) (n)
#define indexMultiwordHi( total, n ) ((total) - (n))
#define indexMultiwordLo( total, n ) 0
#define indexMultiwordHiBut( total, n ) (n)
#define indexMultiwordLoBut( total, n ) 0
#define INIT_UINTM4( v3, v2, v1, v0 ) { v0, v1, v2, v3 }
#define indexWord(total, n) (n)
#define indexWordHi(total) ((total)-1)
#define indexWordLo(total) 0
#define indexMultiword(total, m, n) (n)
#define indexMultiwordHi(total, n) ((total) - (n))
#define indexMultiwordLo(total, n) 0
#define indexMultiwordHiBut(total, n) (n)
#define indexMultiwordLoBut(total, n) 0
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v0, v1, v2, v3 }
#else
#define wordIncr -1
#define indexWord( total, n ) ((total) - 1 - (n))
#define indexWordHi( total ) 0
#define indexWordLo( total ) ((total) - 1)
#define indexMultiword( total, m, n ) ((total) - 1 - (m))
#define indexMultiwordHi( total, n ) 0
#define indexMultiwordLo( total, n ) ((total) - (n))
#define indexMultiwordHiBut( total, n ) 0
#define indexMultiwordLoBut( total, n ) (n)
#define INIT_UINTM4( v3, v2, v1, v0 ) { v3, v2, v1, v0 }
#define indexWord(total, n) ((total)-1 - (n))
#define indexWordHi(total) 0
#define indexWordLo(total) ((total)-1)
#define indexMultiword(total, m, n) ((total)-1 - (m))
#define indexMultiwordHi(total, n) 0
#define indexMultiwordLo(total, n) ((total) - (n))
#define indexMultiwordHiBut(total, n) 0
#define indexMultiwordLoBut(total, n) (n)
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v3, v2, v1, v0 }
#endif
#endif

View File

@@ -37,9 +37,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef primitives_h
#define primitives_h 1
#include "primitiveTypes.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#ifndef softfloat_shortShiftRightJam64
/*----------------------------------------------------------------------------
@@ -50,10 +50,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist )
{ return a>>dist | ((a & (((uint_fast64_t) 1<<dist) - 1)) != 0); }
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist) { return a >> dist | ((a & (((uint_fast64_t)1 << dist) - 1)) != 0); }
#else
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist );
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist);
#endif
#endif
@@ -68,13 +67,11 @@ uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist );
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist )
{
return
(dist < 31) ? a>>dist | ((uint32_t) (a<<(-dist & 31)) != 0) : (a != 0);
INLINE uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist) {
return (dist < 31) ? a >> dist | ((uint32_t)(a << (-dist & 31)) != 0) : (a != 0);
}
#else
uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist );
uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist);
#endif
#endif
@@ -89,13 +86,11 @@ uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist );
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist )
{
return
(dist < 63) ? a>>dist | ((uint64_t) (a<<(-dist & 63)) != 0) : (a != 0);
INLINE uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist) {
return (dist < 63) ? a >> dist | ((uint64_t)(a << (-dist & 63)) != 0) : (a != 0);
}
#else
uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist );
uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist);
#endif
#endif
@@ -112,10 +107,9 @@ extern const uint_least8_t softfloat_countLeadingZeros8[256];
| 'a'. If 'a' is zero, 16 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
{
INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) {
uint_fast8_t count = 8;
if ( 0x100 <= a ) {
if(0x100 <= a) {
count = 0;
a >>= 8;
}
@@ -123,7 +117,7 @@ INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros16( uint16_t a );
uint_fast8_t softfloat_countLeadingZeros16(uint16_t a);
#endif
#endif
@@ -133,22 +127,21 @@ uint_fast8_t softfloat_countLeadingZeros16( uint16_t a );
| 'a'. If 'a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{
INLINE uint_fast8_t softfloat_countLeadingZeros32(uint32_t a) {
uint_fast8_t count = 0;
if ( a < 0x10000 ) {
if(a < 0x10000) {
count = 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
if(a < 0x1000000) {
count += 8;
a <<= 8;
}
count += softfloat_countLeadingZeros8[a>>24];
count += softfloat_countLeadingZeros8[a >> 24];
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
uint_fast8_t softfloat_countLeadingZeros32(uint32_t a);
#endif
#endif
@@ -157,7 +150,7 @@ uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
| Returns the number of leading 0 bits before the most-significant 1 bit of
| 'a'. If 'a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_countLeadingZeros64( uint64_t a );
uint_fast8_t softfloat_countLeadingZeros64(uint64_t a);
#endif
extern const uint16_t softfloat_approxRecip_1k0s[16];
@@ -176,9 +169,9 @@ extern const uint16_t softfloat_approxRecip_1k1s[16];
| (units in the last place).
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_DIV64TO32
#define softfloat_approxRecip32_1( a ) ((uint32_t) (UINT64_C( 0x7FFFFFFFFFFFFFFF ) / (uint32_t) (a)))
#define softfloat_approxRecip32_1(a) ((uint32_t)(UINT64_C(0x7FFFFFFFFFFFFFFF) / (uint32_t)(a)))
#else
uint32_t softfloat_approxRecip32_1( uint32_t a );
uint32_t softfloat_approxRecip32_1(uint32_t a);
#endif
#endif
@@ -204,7 +197,7 @@ extern const uint16_t softfloat_approxRecipSqrt_1k1s[16];
| returned is also always within the range 0.5 to 1; thus, the most-
| significant bit of the result is always set.
*----------------------------------------------------------------------------*/
uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
uint32_t softfloat_approxRecipSqrt32_1(unsigned int oddExpA, uint32_t a);
#endif
#ifdef SOFTFLOAT_FAST_INT64
@@ -222,10 +215,9 @@ uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (1 <= INLINE_LEVEL)
INLINE
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 == b64) && (a0 == b0); }
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 == b64) && (a0 == b0); }
#else
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@@ -237,10 +229,9 @@ bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
#else
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@@ -252,10 +243,9 @@ bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
#else
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@@ -266,17 +256,14 @@ bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128 z;
z.v64 = a64<<dist | a0>>(-dist & 63);
z.v0 = a0<<dist;
z.v64 = a64 << dist | a0 >> (-dist & 63);
z.v0 = a0 << dist;
return z;
}
#else
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@@ -287,17 +274,14 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128 z;
z.v64 = a64>>dist;
z.v0 = a64<<(-dist & 63) | a0>>dist;
z.v64 = a64 >> dist;
z.v0 = a64 << (-dist & 63) | a0 >> dist;
return z;
}
#else
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@@ -308,19 +292,14 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist )
{
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist) {
struct uint64_extra z;
z.v = a>>dist;
z.extra = a<<(-dist & 63) | (extra != 0);
z.v = a >> dist;
z.extra = a << (-dist & 63) | (extra != 0);
return z;
}
#else
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist );
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist);
#endif
#endif
@@ -334,22 +313,15 @@ struct uint64_extra
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
uint_fast8_t negDist = -dist;
struct uint128 z;
z.v64 = a64>>dist;
z.v0 =
a64<<(negDist & 63) | a0>>dist
| ((uint64_t) (a0<<(negDist & 63)) != 0);
z.v64 = a64 >> dist;
z.v0 = a64 << (negDist & 63) | a0 >> dist | ((uint64_t)(a0 << (negDist & 63)) != 0);
return z;
}
#else
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist );
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
#endif
#endif
@@ -360,21 +332,16 @@ struct uint128
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist )
{
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist) {
uint_fast8_t negDist = -dist;
struct uint128_extra z;
z.v.v64 = a64>>dist;
z.v.v0 = a64<<(negDist & 63) | a0>>dist;
z.extra = a0<<(negDist & 63) | (extra != 0);
z.v.v64 = a64 >> dist;
z.v.v0 = a64 << (negDist & 63) | a0 >> dist;
z.extra = a0 << (negDist & 63) | (extra != 0);
return z;
}
#else
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist );
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist);
#endif
#endif
@@ -397,14 +364,11 @@ struct uint128_extra
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist )
{
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist) {
struct uint64_extra z;
if ( dist < 64 ) {
z.v = a>>dist;
z.extra = a<<(-dist & 63);
if(dist < 64) {
z.v = a >> dist;
z.extra = a << (-dist & 63);
} else {
z.v = 0;
z.extra = (dist == 64) ? a : (a != 0);
@@ -413,9 +377,7 @@ struct uint64_extra
return z;
}
#else
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist );
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist);
#endif
#endif
@@ -430,8 +392,7 @@ struct uint64_extra
| greater than 128, the result will be either 0 or 1, depending on whether the
| original 128 bits are all zeros.
*----------------------------------------------------------------------------*/
struct uint128
softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t dist );
struct uint128 softfloat_shiftRightJam128(uint64_t a64, uint64_t a0, uint_fast32_t dist);
#endif
#ifndef softfloat_shiftRightJam128Extra
@@ -452,9 +413,7 @@ struct uint128
| is modified as described above and returned in the 'extra' field of the
| result.)
*----------------------------------------------------------------------------*/
struct uint128_extra
softfloat_shiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist );
struct uint128_extra softfloat_shiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist);
#endif
#ifndef softfloat_shiftRightJam256M
@@ -470,9 +429,7 @@ struct uint128_extra
| is greater than 256, the stored result will be either 0 or 1, depending on
| whether the original 256 bits are all zeros.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightJam256M(
const uint64_t *aPtr, uint_fast32_t dist, uint64_t *zPtr );
void softfloat_shiftRightJam256M(const uint64_t* aPtr, uint_fast32_t dist, uint64_t* zPtr);
#endif
#ifndef softfloat_add128
@@ -483,17 +440,14 @@ void
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128 z;
z.v0 = a0 + b0;
z.v64 = a64 + b64 + (z.v0 < a0);
return z;
}
#else
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@@ -505,9 +459,7 @@ struct uint128
| an array of four 64-bit elements that concatenate in the platform's normal
| endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_add256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
void softfloat_add256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
#endif
#ifndef softfloat_sub128
@@ -518,9 +470,7 @@ void
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128 z;
z.v0 = a0 - b0;
z.v64 = a64 - b64;
@@ -528,8 +478,7 @@ struct uint128
return z;
}
#else
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
#endif
#endif
@@ -542,9 +491,7 @@ struct uint128
| 64-bit elements that concatenate in the platform's normal endian order to
| form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_sub256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
void softfloat_sub256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
#endif
#ifndef softfloat_mul64ByShifted32To128
@@ -552,17 +499,16 @@ void
| Returns the 128-bit product of 'a', 'b', and 2^32.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
INLINE struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b) {
uint_fast64_t mid;
struct uint128 z;
mid = (uint_fast64_t) (uint32_t) a * b;
z.v0 = mid<<32;
z.v64 = (uint_fast64_t) (uint32_t) (a>>32) * b + (mid>>32);
mid = (uint_fast64_t)(uint32_t)a * b;
z.v0 = mid << 32;
z.v64 = (uint_fast64_t)(uint32_t)(a >> 32) * b + (mid >> 32);
return z;
}
#else
struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b);
#endif
#endif
@@ -570,7 +516,7 @@ struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
/*----------------------------------------------------------------------------
| Returns the 128-bit product of 'a' and 'b'.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b);
#endif
#ifndef softfloat_mul128By32
@@ -581,19 +527,18 @@ struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b) {
struct uint128 z;
uint_fast64_t mid;
uint_fast32_t carry;
z.v0 = a0 * b;
mid = (uint_fast64_t) (uint32_t) (a0>>32) * b;
carry = (uint32_t) ((uint_fast32_t) (z.v0>>32) - (uint_fast32_t) mid);
z.v64 = a64 * b + (uint_fast32_t) ((mid + carry)>>32);
mid = (uint_fast64_t)(uint32_t)(a0 >> 32) * b;
carry = (uint32_t)((uint_fast32_t)(z.v0 >> 32) - (uint_fast32_t)mid);
z.v64 = a64 * b + (uint_fast32_t)((mid + carry) >> 32);
return z;
}
#else
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b);
#endif
#endif
@@ -605,9 +550,7 @@ struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
| Argument 'zPtr' points to an array of four 64-bit elements that concatenate
| in the platform's normal endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_mul128To256M(
uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr );
void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t* zPtr);
#endif
#else
@@ -626,7 +569,7 @@ void
| Each of 'aPtr' and 'bPtr' points to an array of three 32-bit elements that
| concatenate in the platform's normal endian order to form a 96-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
int_fast8_t softfloat_compare96M(const uint32_t* aPtr, const uint32_t* bPtr);
#endif
#ifndef softfloat_compare128M
@@ -638,8 +581,7 @@ int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
| Each of 'aPtr' and 'bPtr' points to an array of four 32-bit elements that
| concatenate in the platform's normal endian order to form a 128-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t
softfloat_compare128M( const uint32_t *aPtr, const uint32_t *bPtr );
int_fast8_t softfloat_compare128M(const uint32_t* aPtr, const uint32_t* bPtr);
#endif
#ifndef softfloat_shortShiftLeft64To96M
@@ -652,19 +594,14 @@ int_fast8_t
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr )
{
zPtr[indexWord( 3, 0 )] = (uint32_t) a<<dist;
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr) {
zPtr[indexWord(3, 0)] = (uint32_t)a << dist;
a >>= 32 - dist;
zPtr[indexWord( 3, 2 )] = a>>32;
zPtr[indexWord( 3, 1 )] = a;
zPtr[indexWord(3, 2)] = a >> 32;
zPtr[indexWord(3, 1)] = a;
}
#else
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr );
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr);
#endif
#endif
@@ -678,13 +615,7 @@ void
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shortShiftLeft96M
@@ -692,7 +623,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft96M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 3, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft96M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftLeft128M
@@ -700,7 +631,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft128M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 4, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft128M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftLeft160M
@@ -708,7 +639,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft160M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftLeft160M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeftM
@@ -722,13 +653,7 @@ void
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
softfloat_shiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftLeft96M
@@ -736,7 +661,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft96M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 3, aPtr, dist, zPtr )
#define softfloat_shiftLeft96M(aPtr, dist, zPtr) softfloat_shiftLeftM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeft128M
@@ -744,7 +669,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft128M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 4, aPtr, dist, zPtr )
#define softfloat_shiftLeft128M(aPtr, dist, zPtr) softfloat_shiftLeftM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftLeft160M
@@ -752,7 +677,7 @@ void
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft160M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 5, aPtr, dist, zPtr )
#define softfloat_shiftLeft160M(aPtr, dist, zPtr) softfloat_shiftLeftM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRightM
@@ -765,13 +690,7 @@ void
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shortShiftRight128M
@@ -779,7 +698,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight128M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 4, aPtr, dist, zPtr )
#define softfloat_shortShiftRight128M(aPtr, dist, zPtr) softfloat_shortShiftRightM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRight160M
@@ -787,7 +706,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight160M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftRight160M(aPtr, dist, zPtr) softfloat_shortShiftRightM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shortShiftRightJamM
@@ -801,9 +720,7 @@ void
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_shortShiftRightJamM(
uint_fast8_t, const uint32_t *, uint_fast8_t, uint32_t * );
void softfloat_shortShiftRightJamM(uint_fast8_t, const uint32_t*, uint_fast8_t, uint32_t*);
#endif
#ifndef softfloat_shortShiftRightJam160M
@@ -811,7 +728,7 @@ void
| This function or macro is the same as 'softfloat_shortShiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRightJam160M( aPtr, dist, zPtr ) softfloat_shortShiftRightJamM( 5, aPtr, dist, zPtr )
#define softfloat_shortShiftRightJam160M(aPtr, dist, zPtr) softfloat_shortShiftRightJamM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightM
@@ -825,13 +742,7 @@ void
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftRight96M
@@ -839,7 +750,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRight96M( aPtr, dist, zPtr ) softfloat_shiftRightM( 3, aPtr, dist, zPtr )
#define softfloat_shiftRight96M(aPtr, dist, zPtr) softfloat_shiftRightM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJamM
@@ -856,13 +767,7 @@ void
| is greater than N, the stored result will be either 0 or 1, depending on
| whether the original N bits are all zeros.
*----------------------------------------------------------------------------*/
void
softfloat_shiftRightJamM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
#endif
#ifndef softfloat_shiftRightJam96M
@@ -870,7 +775,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam96M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 3, aPtr, dist, zPtr )
#define softfloat_shiftRightJam96M(aPtr, dist, zPtr) softfloat_shiftRightJamM(3, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJam128M
@@ -878,7 +783,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam128M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 4, aPtr, dist, zPtr )
#define softfloat_shiftRightJam128M(aPtr, dist, zPtr) softfloat_shiftRightJamM(4, aPtr, dist, zPtr)
#endif
#ifndef softfloat_shiftRightJam160M
@@ -886,7 +791,7 @@ void
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam160M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 5, aPtr, dist, zPtr )
#define softfloat_shiftRightJam160M(aPtr, dist, zPtr) softfloat_shiftRightJamM(5, aPtr, dist, zPtr)
#endif
#ifndef softfloat_addM
@@ -898,13 +803,7 @@ void
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_addM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_add96M
@@ -912,7 +811,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_add96M( aPtr, bPtr, zPtr ) softfloat_addM( 3, aPtr, bPtr, zPtr )
#define softfloat_add96M(aPtr, bPtr, zPtr) softfloat_addM(3, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_add128M
@@ -920,7 +819,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_add128M( aPtr, bPtr, zPtr ) softfloat_addM( 4, aPtr, bPtr, zPtr )
#define softfloat_add128M(aPtr, bPtr, zPtr) softfloat_addM(4, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_add160M
@@ -928,7 +827,7 @@ void
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_add160M( aPtr, bPtr, zPtr ) softfloat_addM( 5, aPtr, bPtr, zPtr )
#define softfloat_add160M(aPtr, bPtr, zPtr) softfloat_addM(5, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_addCarryM
@@ -940,14 +839,7 @@ void
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
uint_fast8_t
softfloat_addCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
uint_fast8_t softfloat_addCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry, uint32_t* zPtr);
#endif
#ifndef softfloat_addComplCarryM
@@ -956,14 +848,8 @@ uint_fast8_t
| the value of the unsigned integer pointed to by 'bPtr' is bit-wise completed
| before the addition.
*----------------------------------------------------------------------------*/
uint_fast8_t
softfloat_addComplCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
uint_fast8_t softfloat_addComplCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry,
uint32_t* zPtr);
#endif
#ifndef softfloat_addComplCarry96M
@@ -971,7 +857,7 @@ uint_fast8_t
| This function or macro is the same as 'softfloat_addComplCarryM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_addComplCarry96M( aPtr, bPtr, carry, zPtr ) softfloat_addComplCarryM( 3, aPtr, bPtr, carry, zPtr )
#define softfloat_addComplCarry96M(aPtr, bPtr, carry, zPtr) softfloat_addComplCarryM(3, aPtr, bPtr, carry, zPtr)
#endif
#ifndef softfloat_negXM
@@ -981,7 +867,7 @@ uint_fast8_t
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
#endif
#ifndef softfloat_negX96M
@@ -989,7 +875,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_negX96M( zPtr ) softfloat_negXM( 3, zPtr )
#define softfloat_negX96M(zPtr) softfloat_negXM(3, zPtr)
#endif
#ifndef softfloat_negX128M
@@ -997,7 +883,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_negX128M( zPtr ) softfloat_negXM( 4, zPtr )
#define softfloat_negX128M(zPtr) softfloat_negXM(4, zPtr)
#endif
#ifndef softfloat_negX160M
@@ -1005,7 +891,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_negX160M( zPtr ) softfloat_negXM( 5, zPtr )
#define softfloat_negX160M(zPtr) softfloat_negXM(5, zPtr)
#endif
#ifndef softfloat_negX256M
@@ -1013,7 +899,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 8 (N = 256).
*----------------------------------------------------------------------------*/
#define softfloat_negX256M( zPtr ) softfloat_negXM( 8, zPtr )
#define softfloat_negX256M(zPtr) softfloat_negXM(8, zPtr)
#endif
#ifndef softfloat_sub1XM
@@ -1024,7 +910,7 @@ void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
#endif
#ifndef softfloat_sub1X96M
@@ -1032,7 +918,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X96M( zPtr ) softfloat_sub1XM( 3, zPtr )
#define softfloat_sub1X96M(zPtr) softfloat_sub1XM(3, zPtr)
#endif
#ifndef softfloat_sub1X160M
@@ -1040,7 +926,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X160M( zPtr ) softfloat_sub1XM( 5, zPtr )
#define softfloat_sub1X160M(zPtr) softfloat_sub1XM(5, zPtr)
#endif
#ifndef softfloat_subM
@@ -1052,13 +938,7 @@ void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
| array of 32-bit elements that concatenate in the platform's normal endian
| order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_subM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_sub96M
@@ -1066,7 +946,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub96M( aPtr, bPtr, zPtr ) softfloat_subM( 3, aPtr, bPtr, zPtr )
#define softfloat_sub96M(aPtr, bPtr, zPtr) softfloat_subM(3, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_sub128M
@@ -1074,7 +954,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_sub128M( aPtr, bPtr, zPtr ) softfloat_subM( 4, aPtr, bPtr, zPtr )
#define softfloat_sub128M(aPtr, bPtr, zPtr) softfloat_subM(4, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_sub160M
@@ -1082,7 +962,7 @@ void
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub160M( aPtr, bPtr, zPtr ) softfloat_subM( 5, aPtr, bPtr, zPtr )
#define softfloat_sub160M(aPtr, bPtr, zPtr) softfloat_subM(5, aPtr, bPtr, zPtr)
#endif
#ifndef softfloat_mul64To128M
@@ -1092,7 +972,7 @@ void
| elements that concatenate in the platform's normal endian order to form a
| 128-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
void softfloat_mul64To128M(uint64_t a, uint64_t b, uint32_t* zPtr);
#endif
#ifndef softfloat_mul128MTo256M
@@ -1104,9 +984,7 @@ void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
| Argument 'zPtr' points to an array of eight 32-bit elements that concatenate
| to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_mul128MTo256M(
const uint32_t *aPtr, const uint32_t *bPtr, uint32_t *zPtr );
void softfloat_mul128MTo256M(const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
#endif
#ifndef softfloat_remStepMBy32
@@ -1119,15 +997,8 @@ void
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
softfloat_remStepMBy32(
uint_fast8_t size_words,
const uint32_t *remPtr,
uint_fast8_t dist,
const uint32_t *bPtr,
uint32_t q,
uint32_t *zPtr
);
void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uint_fast8_t dist, const uint32_t* bPtr, uint32_t q,
uint32_t* zPtr);
#endif
#ifndef softfloat_remStep96MBy32
@@ -1135,7 +1006,7 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_remStep96MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 3, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep96MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(3, remPtr, dist, bPtr, q, zPtr)
#endif
#ifndef softfloat_remStep128MBy32
@@ -1143,7 +1014,7 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_remStep128MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 4, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep128MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(4, remPtr, dist, bPtr, q, zPtr)
#endif
#ifndef softfloat_remStep160MBy32
@@ -1151,10 +1022,9 @@ void
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_remStep160MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 5, remPtr, dist, bPtr, q, zPtr )
#define softfloat_remStep160MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(5, remPtr, dist, bPtr, q, zPtr)
#endif
#endif
#endif

View File

@@ -34,7 +34,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*============================================================================
| Note: If SoftFloat is made available as a general library for programs to
| use, it is strongly recommended that a platform-specific version of this
@@ -42,13 +41,12 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| eliminates all dependencies on compile-time macros.
*============================================================================*/
#ifndef softfloat_h
#define softfloat_h 1
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
#include "softfloat_types.h"
#ifndef THREAD_LOCAL
#define THREAD_LOCAL
@@ -58,10 +56,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| Software floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_detectTininess;
enum {
softfloat_tininess_beforeRounding = 0,
softfloat_tininess_afterRounding = 1
};
enum { softfloat_tininess_beforeRounding = 0, softfloat_tininess_afterRounding = 1 };
/*----------------------------------------------------------------------------
| Software floating-point rounding mode. (Mode "odd" is supported only if
@@ -69,12 +64,12 @@ enum {
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_roundingMode;
enum {
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_maxMag = 4,
softfloat_round_odd = 6
softfloat_round_odd = 6
};
/*----------------------------------------------------------------------------
@@ -82,169 +77,169 @@ enum {
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_exceptionFlags;
typedef enum {
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
} exceptionFlag_t;
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software floating-point exception flags.
*----------------------------------------------------------------------------*/
void softfloat_raiseFlags( uint_fast8_t );
void softfloat_raiseFlags(uint_fast8_t);
/*----------------------------------------------------------------------------
| Integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float16_t ui32_to_f16( uint32_t );
float32_t ui32_to_f32( uint32_t );
float64_t ui32_to_f64( uint32_t );
float16_t ui32_to_f16(uint32_t);
float32_t ui32_to_f32(uint32_t);
float64_t ui32_to_f64(uint32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui32_to_extF80( uint32_t );
float128_t ui32_to_f128( uint32_t );
extFloat80_t ui32_to_extF80(uint32_t);
float128_t ui32_to_f128(uint32_t);
#endif
void ui32_to_extF80M( uint32_t, extFloat80_t * );
void ui32_to_f128M( uint32_t, float128_t * );
float16_t ui64_to_f16( uint64_t );
float32_t ui64_to_f32( uint64_t );
float64_t ui64_to_f64( uint64_t );
void ui32_to_extF80M(uint32_t, extFloat80_t*);
void ui32_to_f128M(uint32_t, float128_t*);
float16_t ui64_to_f16(uint64_t);
float32_t ui64_to_f32(uint64_t);
float64_t ui64_to_f64(uint64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui64_to_extF80( uint64_t );
float128_t ui64_to_f128( uint64_t );
extFloat80_t ui64_to_extF80(uint64_t);
float128_t ui64_to_f128(uint64_t);
#endif
void ui64_to_extF80M( uint64_t, extFloat80_t * );
void ui64_to_f128M( uint64_t, float128_t * );
float16_t i32_to_f16( int32_t );
float32_t i32_to_f32( int32_t );
float64_t i32_to_f64( int32_t );
void ui64_to_extF80M(uint64_t, extFloat80_t*);
void ui64_to_f128M(uint64_t, float128_t*);
float16_t i32_to_f16(int32_t);
float32_t i32_to_f32(int32_t);
float64_t i32_to_f64(int32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i32_to_extF80( int32_t );
float128_t i32_to_f128( int32_t );
extFloat80_t i32_to_extF80(int32_t);
float128_t i32_to_f128(int32_t);
#endif
void i32_to_extF80M( int32_t, extFloat80_t * );
void i32_to_f128M( int32_t, float128_t * );
float16_t i64_to_f16( int64_t );
float32_t i64_to_f32( int64_t );
float64_t i64_to_f64( int64_t );
void i32_to_extF80M(int32_t, extFloat80_t*);
void i32_to_f128M(int32_t, float128_t*);
float16_t i64_to_f16(int64_t);
float32_t i64_to_f32(int64_t);
float64_t i64_to_f64(int64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i64_to_extF80( int64_t );
float128_t i64_to_f128( int64_t );
extFloat80_t i64_to_extF80(int64_t);
float128_t i64_to_f128(int64_t);
#endif
void i64_to_extF80M( int64_t, extFloat80_t * );
void i64_to_f128M( int64_t, float128_t * );
void i64_to_extF80M(int64_t, extFloat80_t*);
void i64_to_f128M(int64_t, float128_t*);
/*----------------------------------------------------------------------------
| 16-bit (half-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f16_to_ui32( float16_t, uint_fast8_t, bool );
uint_fast64_t f16_to_ui64( float16_t, uint_fast8_t, bool );
int_fast32_t f16_to_i32( float16_t, uint_fast8_t, bool );
int_fast64_t f16_to_i64( float16_t, uint_fast8_t, bool );
uint_fast32_t f16_to_ui32_r_minMag( float16_t, bool );
uint_fast64_t f16_to_ui64_r_minMag( float16_t, bool );
int_fast32_t f16_to_i32_r_minMag( float16_t, bool );
int_fast64_t f16_to_i64_r_minMag( float16_t, bool );
float32_t f16_to_f32( float16_t );
float64_t f16_to_f64( float16_t );
uint_fast32_t f16_to_ui32(float16_t, uint_fast8_t, bool);
uint_fast64_t f16_to_ui64(float16_t, uint_fast8_t, bool);
int_fast32_t f16_to_i32(float16_t, uint_fast8_t, bool);
int_fast64_t f16_to_i64(float16_t, uint_fast8_t, bool);
uint_fast32_t f16_to_ui32_r_minMag(float16_t, bool);
uint_fast64_t f16_to_ui64_r_minMag(float16_t, bool);
int_fast32_t f16_to_i32_r_minMag(float16_t, bool);
int_fast64_t f16_to_i64_r_minMag(float16_t, bool);
float32_t f16_to_f32(float16_t);
float64_t f16_to_f64(float16_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f16_to_extF80( float16_t );
float128_t f16_to_f128( float16_t );
extFloat80_t f16_to_extF80(float16_t);
float128_t f16_to_f128(float16_t);
#endif
void f16_to_extF80M( float16_t, extFloat80_t * );
void f16_to_f128M( float16_t, float128_t * );
float16_t f16_roundToInt( float16_t, uint_fast8_t, bool );
float16_t f16_add( float16_t, float16_t );
float16_t f16_sub( float16_t, float16_t );
float16_t f16_mul( float16_t, float16_t );
float16_t f16_mulAdd( float16_t, float16_t, float16_t );
float16_t f16_div( float16_t, float16_t );
float16_t f16_rem( float16_t, float16_t );
float16_t f16_sqrt( float16_t );
bool f16_eq( float16_t, float16_t );
bool f16_le( float16_t, float16_t );
bool f16_lt( float16_t, float16_t );
bool f16_eq_signaling( float16_t, float16_t );
bool f16_le_quiet( float16_t, float16_t );
bool f16_lt_quiet( float16_t, float16_t );
bool f16_isSignalingNaN( float16_t );
void f16_to_extF80M(float16_t, extFloat80_t*);
void f16_to_f128M(float16_t, float128_t*);
float16_t f16_roundToInt(float16_t, uint_fast8_t, bool);
float16_t f16_add(float16_t, float16_t);
float16_t f16_sub(float16_t, float16_t);
float16_t f16_mul(float16_t, float16_t);
float16_t f16_mulAdd(float16_t, float16_t, float16_t);
float16_t f16_div(float16_t, float16_t);
float16_t f16_rem(float16_t, float16_t);
float16_t f16_sqrt(float16_t);
bool f16_eq(float16_t, float16_t);
bool f16_le(float16_t, float16_t);
bool f16_lt(float16_t, float16_t);
bool f16_eq_signaling(float16_t, float16_t);
bool f16_le_quiet(float16_t, float16_t);
bool f16_lt_quiet(float16_t, float16_t);
bool f16_isSignalingNaN(float16_t);
/*----------------------------------------------------------------------------
| 16-bit (brain float 16) floating-point operations.
*----------------------------------------------------------------------------*/
float32_t bf16_to_f32( bfloat16_t );
bfloat16_t f32_to_bf16( float32_t );
bool bf16_isSignalingNaN( bfloat16_t );
float32_t bf16_to_f32(bfloat16_t);
bfloat16_t f32_to_bf16(float32_t);
bool bf16_isSignalingNaN(bfloat16_t);
/*----------------------------------------------------------------------------
| 32-bit (single-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f32_to_ui32( float32_t, uint_fast8_t, bool );
uint_fast64_t f32_to_ui64( float32_t, uint_fast8_t, bool );
int_fast32_t f32_to_i32( float32_t, uint_fast8_t, bool );
int_fast64_t f32_to_i64( float32_t, uint_fast8_t, bool );
uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool );
uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool );
int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
int_fast64_t f32_to_i64_r_minMag( float32_t, bool );
float16_t f32_to_f16( float32_t );
float64_t f32_to_f64( float32_t );
uint_fast32_t f32_to_ui32(float32_t, uint_fast8_t, bool);
uint_fast64_t f32_to_ui64(float32_t, uint_fast8_t, bool);
int_fast32_t f32_to_i32(float32_t, uint_fast8_t, bool);
int_fast64_t f32_to_i64(float32_t, uint_fast8_t, bool);
uint_fast32_t f32_to_ui32_r_minMag(float32_t, bool);
uint_fast64_t f32_to_ui64_r_minMag(float32_t, bool);
int_fast32_t f32_to_i32_r_minMag(float32_t, bool);
int_fast64_t f32_to_i64_r_minMag(float32_t, bool);
float16_t f32_to_f16(float32_t);
float64_t f32_to_f64(float32_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f32_to_extF80( float32_t );
float128_t f32_to_f128( float32_t );
extFloat80_t f32_to_extF80(float32_t);
float128_t f32_to_f128(float32_t);
#endif
void f32_to_extF80M( float32_t, extFloat80_t * );
void f32_to_f128M( float32_t, float128_t * );
float32_t f32_roundToInt( float32_t, uint_fast8_t, bool );
float32_t f32_add( float32_t, float32_t );
float32_t f32_sub( float32_t, float32_t );
float32_t f32_mul( float32_t, float32_t );
float32_t f32_mulAdd( float32_t, float32_t, float32_t );
float32_t f32_div( float32_t, float32_t );
float32_t f32_rem( float32_t, float32_t );
float32_t f32_sqrt( float32_t );
bool f32_eq( float32_t, float32_t );
bool f32_le( float32_t, float32_t );
bool f32_lt( float32_t, float32_t );
bool f32_eq_signaling( float32_t, float32_t );
bool f32_le_quiet( float32_t, float32_t );
bool f32_lt_quiet( float32_t, float32_t );
bool f32_isSignalingNaN( float32_t );
void f32_to_extF80M(float32_t, extFloat80_t*);
void f32_to_f128M(float32_t, float128_t*);
float32_t f32_roundToInt(float32_t, uint_fast8_t, bool);
float32_t f32_add(float32_t, float32_t);
float32_t f32_sub(float32_t, float32_t);
float32_t f32_mul(float32_t, float32_t);
float32_t f32_mulAdd(float32_t, float32_t, float32_t);
float32_t f32_div(float32_t, float32_t);
float32_t f32_rem(float32_t, float32_t);
float32_t f32_sqrt(float32_t);
bool f32_eq(float32_t, float32_t);
bool f32_le(float32_t, float32_t);
bool f32_lt(float32_t, float32_t);
bool f32_eq_signaling(float32_t, float32_t);
bool f32_le_quiet(float32_t, float32_t);
bool f32_lt_quiet(float32_t, float32_t);
bool f32_isSignalingNaN(float32_t);
/*----------------------------------------------------------------------------
| 64-bit (double-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f64_to_ui32( float64_t, uint_fast8_t, bool );
uint_fast64_t f64_to_ui64( float64_t, uint_fast8_t, bool );
int_fast32_t f64_to_i32( float64_t, uint_fast8_t, bool );
int_fast64_t f64_to_i64( float64_t, uint_fast8_t, bool );
uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool );
uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool );
int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
int_fast64_t f64_to_i64_r_minMag( float64_t, bool );
float16_t f64_to_f16( float64_t );
float32_t f64_to_f32( float64_t );
uint_fast32_t f64_to_ui32(float64_t, uint_fast8_t, bool);
uint_fast64_t f64_to_ui64(float64_t, uint_fast8_t, bool);
int_fast32_t f64_to_i32(float64_t, uint_fast8_t, bool);
int_fast64_t f64_to_i64(float64_t, uint_fast8_t, bool);
uint_fast32_t f64_to_ui32_r_minMag(float64_t, bool);
uint_fast64_t f64_to_ui64_r_minMag(float64_t, bool);
int_fast32_t f64_to_i32_r_minMag(float64_t, bool);
int_fast64_t f64_to_i64_r_minMag(float64_t, bool);
float16_t f64_to_f16(float64_t);
float32_t f64_to_f32(float64_t);
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f64_to_extF80( float64_t );
float128_t f64_to_f128( float64_t );
extFloat80_t f64_to_extF80(float64_t);
float128_t f64_to_f128(float64_t);
#endif
void f64_to_extF80M( float64_t, extFloat80_t * );
void f64_to_f128M( float64_t, float128_t * );
float64_t f64_roundToInt( float64_t, uint_fast8_t, bool );
float64_t f64_add( float64_t, float64_t );
float64_t f64_sub( float64_t, float64_t );
float64_t f64_mul( float64_t, float64_t );
float64_t f64_mulAdd( float64_t, float64_t, float64_t );
float64_t f64_div( float64_t, float64_t );
float64_t f64_rem( float64_t, float64_t );
float64_t f64_sqrt( float64_t );
bool f64_eq( float64_t, float64_t );
bool f64_le( float64_t, float64_t );
bool f64_lt( float64_t, float64_t );
bool f64_eq_signaling( float64_t, float64_t );
bool f64_le_quiet( float64_t, float64_t );
bool f64_lt_quiet( float64_t, float64_t );
bool f64_isSignalingNaN( float64_t );
void f64_to_extF80M(float64_t, extFloat80_t*);
void f64_to_f128M(float64_t, float128_t*);
float64_t f64_roundToInt(float64_t, uint_fast8_t, bool);
float64_t f64_add(float64_t, float64_t);
float64_t f64_sub(float64_t, float64_t);
float64_t f64_mul(float64_t, float64_t);
float64_t f64_mulAdd(float64_t, float64_t, float64_t);
float64_t f64_div(float64_t, float64_t);
float64_t f64_rem(float64_t, float64_t);
float64_t f64_sqrt(float64_t);
bool f64_eq(float64_t, float64_t);
bool f64_le(float64_t, float64_t);
bool f64_lt(float64_t, float64_t);
bool f64_eq_signaling(float64_t, float64_t);
bool f64_le_quiet(float64_t, float64_t);
bool f64_lt_quiet(float64_t, float64_t);
bool f64_isSignalingNaN(float64_t);
/*----------------------------------------------------------------------------
| Rounding precision for 80-bit extended double-precision floating-point.
@@ -256,124 +251,118 @@ extern THREAD_LOCAL uint_fast8_t extF80_roundingPrecision;
| 80-bit extended double-precision floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t extF80_to_ui32( extFloat80_t, uint_fast8_t, bool );
uint_fast64_t extF80_to_ui64( extFloat80_t, uint_fast8_t, bool );
int_fast32_t extF80_to_i32( extFloat80_t, uint_fast8_t, bool );
int_fast64_t extF80_to_i64( extFloat80_t, uint_fast8_t, bool );
uint_fast32_t extF80_to_ui32_r_minMag( extFloat80_t, bool );
uint_fast64_t extF80_to_ui64_r_minMag( extFloat80_t, bool );
int_fast32_t extF80_to_i32_r_minMag( extFloat80_t, bool );
int_fast64_t extF80_to_i64_r_minMag( extFloat80_t, bool );
float16_t extF80_to_f16( extFloat80_t );
float32_t extF80_to_f32( extFloat80_t );
float64_t extF80_to_f64( extFloat80_t );
float128_t extF80_to_f128( extFloat80_t );
extFloat80_t extF80_roundToInt( extFloat80_t, uint_fast8_t, bool );
extFloat80_t extF80_add( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sub( extFloat80_t, extFloat80_t );
extFloat80_t extF80_mul( extFloat80_t, extFloat80_t );
extFloat80_t extF80_div( extFloat80_t, extFloat80_t );
extFloat80_t extF80_rem( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sqrt( extFloat80_t );
bool extF80_eq( extFloat80_t, extFloat80_t );
bool extF80_le( extFloat80_t, extFloat80_t );
bool extF80_lt( extFloat80_t, extFloat80_t );
bool extF80_eq_signaling( extFloat80_t, extFloat80_t );
bool extF80_le_quiet( extFloat80_t, extFloat80_t );
bool extF80_lt_quiet( extFloat80_t, extFloat80_t );
bool extF80_isSignalingNaN( extFloat80_t );
uint_fast32_t extF80_to_ui32(extFloat80_t, uint_fast8_t, bool);
uint_fast64_t extF80_to_ui64(extFloat80_t, uint_fast8_t, bool);
int_fast32_t extF80_to_i32(extFloat80_t, uint_fast8_t, bool);
int_fast64_t extF80_to_i64(extFloat80_t, uint_fast8_t, bool);
uint_fast32_t extF80_to_ui32_r_minMag(extFloat80_t, bool);
uint_fast64_t extF80_to_ui64_r_minMag(extFloat80_t, bool);
int_fast32_t extF80_to_i32_r_minMag(extFloat80_t, bool);
int_fast64_t extF80_to_i64_r_minMag(extFloat80_t, bool);
float16_t extF80_to_f16(extFloat80_t);
float32_t extF80_to_f32(extFloat80_t);
float64_t extF80_to_f64(extFloat80_t);
float128_t extF80_to_f128(extFloat80_t);
extFloat80_t extF80_roundToInt(extFloat80_t, uint_fast8_t, bool);
extFloat80_t extF80_add(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sub(extFloat80_t, extFloat80_t);
extFloat80_t extF80_mul(extFloat80_t, extFloat80_t);
extFloat80_t extF80_div(extFloat80_t, extFloat80_t);
extFloat80_t extF80_rem(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sqrt(extFloat80_t);
bool extF80_eq(extFloat80_t, extFloat80_t);
bool extF80_le(extFloat80_t, extFloat80_t);
bool extF80_lt(extFloat80_t, extFloat80_t);
bool extF80_eq_signaling(extFloat80_t, extFloat80_t);
bool extF80_le_quiet(extFloat80_t, extFloat80_t);
bool extF80_lt_quiet(extFloat80_t, extFloat80_t);
bool extF80_isSignalingNaN(extFloat80_t);
#endif
uint_fast32_t extF80M_to_ui32( const extFloat80_t *, uint_fast8_t, bool );
uint_fast64_t extF80M_to_ui64( const extFloat80_t *, uint_fast8_t, bool );
int_fast32_t extF80M_to_i32( const extFloat80_t *, uint_fast8_t, bool );
int_fast64_t extF80M_to_i64( const extFloat80_t *, uint_fast8_t, bool );
uint_fast32_t extF80M_to_ui32_r_minMag( const extFloat80_t *, bool );
uint_fast64_t extF80M_to_ui64_r_minMag( const extFloat80_t *, bool );
int_fast32_t extF80M_to_i32_r_minMag( const extFloat80_t *, bool );
int_fast64_t extF80M_to_i64_r_minMag( const extFloat80_t *, bool );
float16_t extF80M_to_f16( const extFloat80_t * );
float32_t extF80M_to_f32( const extFloat80_t * );
float64_t extF80M_to_f64( const extFloat80_t * );
void extF80M_to_f128M( const extFloat80_t *, float128_t * );
void
extF80M_roundToInt(
const extFloat80_t *, uint_fast8_t, bool, extFloat80_t * );
void extF80M_add( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sub( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_mul( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_div( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_rem( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sqrt( const extFloat80_t *, extFloat80_t * );
bool extF80M_eq( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt( const extFloat80_t *, const extFloat80_t * );
bool extF80M_eq_signaling( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_isSignalingNaN( const extFloat80_t * );
uint_fast32_t extF80M_to_ui32(const extFloat80_t*, uint_fast8_t, bool);
uint_fast64_t extF80M_to_ui64(const extFloat80_t*, uint_fast8_t, bool);
int_fast32_t extF80M_to_i32(const extFloat80_t*, uint_fast8_t, bool);
int_fast64_t extF80M_to_i64(const extFloat80_t*, uint_fast8_t, bool);
uint_fast32_t extF80M_to_ui32_r_minMag(const extFloat80_t*, bool);
uint_fast64_t extF80M_to_ui64_r_minMag(const extFloat80_t*, bool);
int_fast32_t extF80M_to_i32_r_minMag(const extFloat80_t*, bool);
int_fast64_t extF80M_to_i64_r_minMag(const extFloat80_t*, bool);
float16_t extF80M_to_f16(const extFloat80_t*);
float32_t extF80M_to_f32(const extFloat80_t*);
float64_t extF80M_to_f64(const extFloat80_t*);
void extF80M_to_f128M(const extFloat80_t*, float128_t*);
void extF80M_roundToInt(const extFloat80_t*, uint_fast8_t, bool, extFloat80_t*);
void extF80M_add(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sub(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_mul(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_div(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_rem(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sqrt(const extFloat80_t*, extFloat80_t*);
bool extF80M_eq(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt(const extFloat80_t*, const extFloat80_t*);
bool extF80M_eq_signaling(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_isSignalingNaN(const extFloat80_t*);
/*----------------------------------------------------------------------------
| 128-bit (quadruple-precision) floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t f128_to_ui32( float128_t, uint_fast8_t, bool );
uint_fast64_t f128_to_ui64( float128_t, uint_fast8_t, bool );
int_fast32_t f128_to_i32( float128_t, uint_fast8_t, bool );
int_fast64_t f128_to_i64( float128_t, uint_fast8_t, bool );
uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool );
uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool );
int_fast32_t f128_to_i32_r_minMag( float128_t, bool );
int_fast64_t f128_to_i64_r_minMag( float128_t, bool );
float16_t f128_to_f16( float128_t );
float32_t f128_to_f32( float128_t );
float64_t f128_to_f64( float128_t );
extFloat80_t f128_to_extF80( float128_t );
float128_t f128_roundToInt( float128_t, uint_fast8_t, bool );
float128_t f128_add( float128_t, float128_t );
float128_t f128_sub( float128_t, float128_t );
float128_t f128_mul( float128_t, float128_t );
float128_t f128_mulAdd( float128_t, float128_t, float128_t );
float128_t f128_div( float128_t, float128_t );
float128_t f128_rem( float128_t, float128_t );
float128_t f128_sqrt( float128_t );
bool f128_eq( float128_t, float128_t );
bool f128_le( float128_t, float128_t );
bool f128_lt( float128_t, float128_t );
bool f128_eq_signaling( float128_t, float128_t );
bool f128_le_quiet( float128_t, float128_t );
bool f128_lt_quiet( float128_t, float128_t );
bool f128_isSignalingNaN( float128_t );
uint_fast32_t f128_to_ui32(float128_t, uint_fast8_t, bool);
uint_fast64_t f128_to_ui64(float128_t, uint_fast8_t, bool);
int_fast32_t f128_to_i32(float128_t, uint_fast8_t, bool);
int_fast64_t f128_to_i64(float128_t, uint_fast8_t, bool);
uint_fast32_t f128_to_ui32_r_minMag(float128_t, bool);
uint_fast64_t f128_to_ui64_r_minMag(float128_t, bool);
int_fast32_t f128_to_i32_r_minMag(float128_t, bool);
int_fast64_t f128_to_i64_r_minMag(float128_t, bool);
float16_t f128_to_f16(float128_t);
float32_t f128_to_f32(float128_t);
float64_t f128_to_f64(float128_t);
extFloat80_t f128_to_extF80(float128_t);
float128_t f128_roundToInt(float128_t, uint_fast8_t, bool);
float128_t f128_add(float128_t, float128_t);
float128_t f128_sub(float128_t, float128_t);
float128_t f128_mul(float128_t, float128_t);
float128_t f128_mulAdd(float128_t, float128_t, float128_t);
float128_t f128_div(float128_t, float128_t);
float128_t f128_rem(float128_t, float128_t);
float128_t f128_sqrt(float128_t);
bool f128_eq(float128_t, float128_t);
bool f128_le(float128_t, float128_t);
bool f128_lt(float128_t, float128_t);
bool f128_eq_signaling(float128_t, float128_t);
bool f128_le_quiet(float128_t, float128_t);
bool f128_lt_quiet(float128_t, float128_t);
bool f128_isSignalingNaN(float128_t);
#endif
uint_fast32_t f128M_to_ui32( const float128_t *, uint_fast8_t, bool );
uint_fast64_t f128M_to_ui64( const float128_t *, uint_fast8_t, bool );
int_fast32_t f128M_to_i32( const float128_t *, uint_fast8_t, bool );
int_fast64_t f128M_to_i64( const float128_t *, uint_fast8_t, bool );
uint_fast32_t f128M_to_ui32_r_minMag( const float128_t *, bool );
uint_fast64_t f128M_to_ui64_r_minMag( const float128_t *, bool );
int_fast32_t f128M_to_i32_r_minMag( const float128_t *, bool );
int_fast64_t f128M_to_i64_r_minMag( const float128_t *, bool );
float16_t f128M_to_f16( const float128_t * );
float32_t f128M_to_f32( const float128_t * );
float64_t f128M_to_f64( const float128_t * );
void f128M_to_extF80M( const float128_t *, extFloat80_t * );
void f128M_roundToInt( const float128_t *, uint_fast8_t, bool, float128_t * );
void f128M_add( const float128_t *, const float128_t *, float128_t * );
void f128M_sub( const float128_t *, const float128_t *, float128_t * );
void f128M_mul( const float128_t *, const float128_t *, float128_t * );
void
f128M_mulAdd(
const float128_t *, const float128_t *, const float128_t *, float128_t *
);
void f128M_div( const float128_t *, const float128_t *, float128_t * );
void f128M_rem( const float128_t *, const float128_t *, float128_t * );
void f128M_sqrt( const float128_t *, float128_t * );
bool f128M_eq( const float128_t *, const float128_t * );
bool f128M_le( const float128_t *, const float128_t * );
bool f128M_lt( const float128_t *, const float128_t * );
bool f128M_eq_signaling( const float128_t *, const float128_t * );
bool f128M_le_quiet( const float128_t *, const float128_t * );
bool f128M_lt_quiet( const float128_t *, const float128_t * );
bool f128M_isSignalingNaN( const float128_t * );
uint_fast32_t f128M_to_ui32(const float128_t*, uint_fast8_t, bool);
uint_fast64_t f128M_to_ui64(const float128_t*, uint_fast8_t, bool);
int_fast32_t f128M_to_i32(const float128_t*, uint_fast8_t, bool);
int_fast64_t f128M_to_i64(const float128_t*, uint_fast8_t, bool);
uint_fast32_t f128M_to_ui32_r_minMag(const float128_t*, bool);
uint_fast64_t f128M_to_ui64_r_minMag(const float128_t*, bool);
int_fast32_t f128M_to_i32_r_minMag(const float128_t*, bool);
int_fast64_t f128M_to_i64_r_minMag(const float128_t*, bool);
float16_t f128M_to_f16(const float128_t*);
float32_t f128M_to_f32(const float128_t*);
float64_t f128M_to_f64(const float128_t*);
void f128M_to_extF80M(const float128_t*, extFloat80_t*);
void f128M_roundToInt(const float128_t*, uint_fast8_t, bool, float128_t*);
void f128M_add(const float128_t*, const float128_t*, float128_t*);
void f128M_sub(const float128_t*, const float128_t*, float128_t*);
void f128M_mul(const float128_t*, const float128_t*, float128_t*);
void f128M_mulAdd(const float128_t*, const float128_t*, const float128_t*, float128_t*);
void f128M_div(const float128_t*, const float128_t*, float128_t*);
void f128M_rem(const float128_t*, const float128_t*, float128_t*);
void f128M_sqrt(const float128_t*, float128_t*);
bool f128M_eq(const float128_t*, const float128_t*);
bool f128M_le(const float128_t*, const float128_t*);
bool f128M_lt(const float128_t*, const float128_t*);
bool f128M_eq_signaling(const float128_t*, const float128_t*);
bool f128M_le_quiet(const float128_t*, const float128_t*);
bool f128M_lt_quiet(const float128_t*, const float128_t*);
bool f128M_isSignalingNaN(const float128_t*);
#endif

View File

@@ -47,11 +47,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| the types below may, if desired, be defined as aliases for the native types
| (typically 'float' and 'double', and possibly 'long double').
*----------------------------------------------------------------------------*/
typedef struct { uint16_t v; } float16_t;
typedef struct { uint16_t v; } bfloat16_t;
typedef struct { uint32_t v; } float32_t;
typedef struct { uint64_t v; } float64_t;
typedef struct { uint64_t v[2]; } float128_t;
typedef struct {
uint16_t v;
} float16_t;
typedef struct {
uint16_t v;
} bfloat16_t;
typedef struct {
uint32_t v;
} float32_t;
typedef struct {
uint64_t v;
} float64_t;
typedef struct {
uint64_t v[2];
} float128_t;
/*----------------------------------------------------------------------------
| The format of an 80-bit extended floating-point number in memory. This
@@ -59,9 +69,15 @@ typedef struct { uint64_t v[2]; } float128_t;
| named 'signif'.
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
struct extFloat80M { uint64_t signif; uint16_t signExp; };
struct extFloat80M {
uint64_t signif;
uint16_t signExp;
};
#else
struct extFloat80M { uint16_t signExp; uint64_t signif; };
struct extFloat80M {
uint16_t signExp;
uint64_t signif;
};
#endif
/*----------------------------------------------------------------------------
@@ -79,4 +95,3 @@ struct extFloat80M { uint16_t signExp; uint64_t signif; };
typedef struct extFloat80M extFloat80_t;
#endif

35
src/elfio.cpp Normal file
View File

@@ -0,0 +1,35 @@
#ifdef _MSC_VER
#define _SCL_SECURE_NO_WARNINGS
#define ELFIO_NO_INTTYPES
#endif
#include <elfio/elfio_dump.hpp>
#include <iostream>
using namespace ELFIO;
int main(int argc, char** argv) {
if(argc != 2) {
printf("Usage: elfdump <file_name>\n");
return 1;
}
elfio reader;
if(!reader.load(argv[1])) {
printf("File %s is not found or it is not an ELF file\n", argv[1]);
return 1;
}
dump::header(std::cout, reader);
dump::section_headers(std::cout, reader);
dump::segment_headers(std::cout, reader);
dump::symbol_tables(std::cout, reader);
dump::notes(std::cout, reader);
dump::modinfo(std::cout, reader);
dump::dynamic_tags(std::cout, reader);
dump::section_datas(std::cout, reader);
dump::segment_datas(std::cout, reader);
return 0;
}

View File

@@ -51,8 +51,8 @@ public:
virtual ~hwl() = default;
protected:
iss::status read_custom_csr_reg(unsigned addr, reg_t& val) override;
iss::status write_custom_csr_reg(unsigned addr, reg_t val) override;
iss::status read_custom_csr(unsigned addr, reg_t& val) override;
iss::status write_custom_csr(unsigned addr, reg_t val) override;
};
template <typename BASE>
@@ -68,7 +68,7 @@ inline hwl<BASE>::hwl(feature_config cfg)
}
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t& val) {
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr(unsigned addr, reg_t& val) {
switch(addr) {
case 0x800:
val = this->reg.lpstart0;
@@ -92,7 +92,7 @@ template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_cs
return iss::Ok;
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr(unsigned addr, reg_t val) {
switch(addr) {
case 0x800:
this->reg.lpstart0 = val;

View File

@@ -35,6 +35,7 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/vm_types.h"
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
@@ -314,55 +315,67 @@ struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
std::unordered_map<std::string, uint64_t> symbol_table;
uint64_t entry_address{0};
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
std::unordered_map<std::string, uint64_t> get_sym_table(std::string name) {
if(!symbol_table.empty())
return symbol_table;
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
const auto sym_sec = reader.sections[".symtab"];
if(SHT_SYMTAB == sym_sec->get_type() || SHT_DYNSYM == sym_sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sym_sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name != "") {
this->symbol_table[name] = value;
bool read_elf_file(std::string name, uint8_t expected_elf_class,
std::function<iss::status(uint64_t, uint64_t, const uint8_t* const)> cb) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(reader.load(name)) {
// check elf properties
if(reader.get_class() != expected_elf_class)
return false;
if(reader.get_type() != ELFIO::ET_EXEC)
return false;
if(reader.get_machine() != ELFIO::EM_RISCV)
return false;
entry_address = reader.get_entry();
for(const auto& pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == 1 && fsize > 0) {
auto res = cb(pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
const auto sym_sec = reader.sections[".symtab"];
if(ELFIO::SHT_SYMTAB == sym_sec->get_type() || ELFIO::SHT_DYNSYM == sym_sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sym_sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name != "") {
this->symbol_table[name] = value;
#ifndef NDEBUG
CPPLOG(DEBUG) << "Found Symbol " << name;
CPPLOG(DEBUG) << "Found Symbol " << name;
#endif
}
}
}
return symbol_table;
try {
tohost = symbol_table.at("tohost");
try {
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
fromhost = tohost + 0x40;
}
} catch(std::out_of_range& e) {
}
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
} else
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
return true;
}
return false;
};
};

View File

@@ -41,6 +41,7 @@
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
#include <elfio/elf_types.hpp>
#include <stdexcept>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
@@ -278,7 +279,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override {
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", pc, instr, (reg_t)state.mstatus,
this->reg.icount + cycle_offset);
this->reg.cycle + cycle_offset);
};
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
@@ -311,7 +312,7 @@ protected:
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
@@ -321,7 +322,7 @@ protected:
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> get_symbol_table(std::string name) override { return arch.get_sym_table(name); }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_m_p<BASE, FEAT, LOGCAT>& arch;
};
@@ -343,8 +344,6 @@ protected:
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
bool tohost_lower_written = false;
riscv_instrumentation_if instr_if;
@@ -377,8 +376,8 @@ protected:
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t& val);
iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_plain(unsigned addr, reg_t& val);
iss::status write_plain(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t& val);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_cycle(unsigned addr, reg_t& val);
@@ -399,17 +398,19 @@ protected:
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
iss::status write_xtvt(unsigned addr, reg_t val);
iss::status write_dcsr_dcsr(unsigned addr, reg_t val);
iss::status read_dcsr_reg(unsigned addr, reg_t& val);
iss::status write_dcsr_reg(unsigned addr, reg_t val);
iss::status read_dpc_reg(unsigned addr, reg_t& val);
iss::status write_dpc_reg(unsigned addr, reg_t val);
iss::status write_dcsr(unsigned addr, reg_t val);
iss::status read_debug(unsigned addr, reg_t& val);
iss::status write_dscratch(unsigned addr, reg_t val);
iss::status read_dpc(unsigned addr, reg_t& val);
iss::status write_dpc(unsigned addr, reg_t val);
iss::status read_fcsr(unsigned addr, reg_t& val);
iss::status write_fcsr(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) { return iss::status::Err; };
virtual iss::status read_custom_csr(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr_reg; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr_reg; }
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr; }
reg_t mhartid_reg{0x0};
@@ -446,18 +447,22 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
csr[mimpid] = 1;
uart_buf.str("");
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
@@ -465,18 +470,17 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
// csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_null;
}
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr : rwaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_plain;
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
@@ -517,7 +521,7 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_csr_reg;
csr_rd_cb[mtvt] = &this_class::read_plain;
csr_wr_cb[mtvt] = &this_class::write_xtvt;
// csr_rd_cb[mxnti] = &this_class::read_csr_reg;
// csr_wr_cb[mxnti] = &this_class::write_csr_reg;
@@ -527,7 +531,7 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
// csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
// csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_plain;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x20;
@@ -553,14 +557,14 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
}
if(FEAT & FEAT_DEBUG) {
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch1] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch1] = &this_class::read_dcsr_reg;
csr_wr_cb[dpc] = &this_class::write_dpc_reg;
csr_rd_cb[dpc] = &this_class::read_dpc_reg;
csr_wr_cb[dcsr] = &this_class::write_dcsr_dcsr;
csr_rd_cb[dcsr] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch0] = &this_class::write_dscratch;
csr_rd_cb[dscratch0] = &this_class::read_debug;
csr_wr_cb[dscratch1] = &this_class::write_dscratch;
csr_rd_cb[dscratch1] = &this_class::read_debug;
csr_wr_cb[dpc] = &this_class::write_dpc;
csr_rd_cb[dpc] = &this_class::read_dpc;
csr_wr_cb[dcsr] = &this_class::write_dcsr;
csr_rd_cb[dcsr] = &this_class::read_debug;
}
hart_mem_rd_delegate = [this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return this->read_mem(a, l, d); };
hart_mem_wr_delegate = [this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return this->write_mem(a, l, d); };
@@ -568,57 +572,14 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
template <typename BASE, features_e FEAT, typename LOGCAT>
std::pair<uint64_t, bool> riscv_hart_m_p<BASE, FEAT, LOGCAT>::load_file(std::string name, int type) {
get_sym_table(name);
try {
tohost = symbol_table.at("tohost");
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
if(read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64,
[this](uint64_t addr, uint64_t size, const uint8_t* const data) -> iss::status {
return this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM, addr, size,
data);
})) {
return std::make_pair(entry_address, true);
}
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_class() != ELFCLASS32)
if(sizeof(reg_t) == 4)
throw std::runtime_error("wrong elf class in file");
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
for(const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == 1 && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(entry, true);
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
}
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
return std::make_pair(entry_address, false);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
@@ -665,7 +626,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
}
phys_addr_t phys_addr{access, space, addr};
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()) {
if(!is_fetch(access) && memfn_range.size()) {
auto it =
std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a) {
return std::get<0>(a) <= phys_addr.val && (std::get<0>(a) + std::get<1>(a)) > phys_addr.val;
@@ -684,19 +645,16 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
// We emulate the FCSR in the architectural state
if(addr == 3) {
*data = this->get_fcsr();
return iss::Ok;
}
return read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
@@ -717,8 +675,10 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, co
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -746,7 +706,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
<< std::hex << addr;
break;
default:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
CPPLOG(TRACE) << prefix << "write of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
@@ -767,7 +727,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
}
phys_addr_t phys_addr{access, space, addr};
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()) {
if(!is_fetch(access) && memfn_range.size()) {
auto it =
std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a) {
return std::get<0>(a) <= phys_addr.val && (std::get<0>(a) + std::get<1>(a)) > phys_addr.val;
@@ -798,8 +758,6 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
// CPPLOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
@@ -828,11 +786,6 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
// We emulate the FCSR in the architectural state
if(addr == 3) {
this->set_fcsr(*data);
return iss::Ok;
}
return write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
@@ -855,8 +808,10 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -889,12 +844,6 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_csr(unsigned addr, reg_t v
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_csr_reg(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_null(unsigned addr, reg_t& val) {
val = 0;
@@ -902,14 +851,20 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_null(unsigned addr, reg_t&
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_csr_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
@@ -929,7 +884,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_cycle(unsigned addr, reg_t
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
@@ -960,7 +915,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_instret(unsigned addr, reg
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
@@ -1052,7 +1007,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_epc(unsigned addr, reg_t v
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr_dcsr(unsigned addr, reg_t val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
@@ -1064,7 +1019,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr_dcsr(unsigned addr, r
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dcsr_reg(unsigned addr, reg_t& val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
@@ -1072,7 +1027,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dcsr_reg(unsigned addr, reg
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
@@ -1080,7 +1035,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dcsr_reg(unsigned addr, re
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dpc_reg(unsigned addr, reg_t& val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
@@ -1088,7 +1043,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_dpc_reg(unsigned addr, reg_
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dpc_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
@@ -1101,6 +1056,18 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_intstatus(unsigned addr, re
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_fcsr(unsigned addr, reg_t& val) {
val = this->get_fcsr();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_fcsr(unsigned addr, reg_t val) {
this->set_fcsr(val);
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_intthresh(unsigned addr, reg_t val) {
csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;

View File

@@ -39,7 +39,9 @@
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
#include <stdexcept>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@@ -326,7 +328,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus,
this->reg.icount + cycle_offset);
this->reg.cycle + cycle_offset);
};
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
@@ -359,7 +361,7 @@ protected:
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
@@ -369,7 +371,7 @@ protected:
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> get_symbol_table(std::string name) override { return arch.get_sym_table(name); }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_msu_vp<BASE>& arch;
};
@@ -391,8 +393,6 @@ protected:
uint64_t minstret_csr{0};
reg_t fault_data;
std::array<vm_info, 2> vm;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
bool tohost_lower_written = false;
riscv_instrumentation_if instr_if;
@@ -555,71 +555,14 @@ riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
}
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_msu_vp<BASE>::load_file(std::string name, int type) {
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_class() != ELFCLASS32)
if(sizeof(reg_t) == 4)
throw std::runtime_error("wrong elf class in file");
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
for(const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == 1 && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".symtab") {
if(SHT_SYMTAB == sec->get_type() || SHT_DYNSYM == sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name == "tohost") {
tohost = value;
} else if(name == "fromhost") {
fromhost = value;
}
}
}
} else if(sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(entry, true);
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
if(read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64,
[this](uint64_t addr, uint64_t size, const uint8_t* const data) -> iss::status {
return this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM, addr, size,
data);
})) {
return std::make_pair(entry_address, true);
}
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
return std::make_pair(entry_address, false);
}
template <typename BASE>
@@ -669,8 +612,10 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1 << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
} break;
@@ -708,8 +653,10 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -839,8 +786,10 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -887,7 +836,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_reg(unsigned
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
@@ -908,7 +857,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_cycle(unsign
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
@@ -936,7 +885,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_instret(unsi
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {

View File

@@ -39,7 +39,9 @@
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
#include <stdexcept>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@@ -302,8 +304,8 @@ public:
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus,
this->reg.icount + cycle_offset);
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus,
this->reg.cycle + cycle_offset);
};
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
@@ -336,7 +338,7 @@ protected:
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
@@ -346,7 +348,7 @@ protected:
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> get_symbol_table(std::string name) override { return arch.get_sym_table(name); }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_mu_p<BASE, FEAT, LOGCAT>& arch;
};
@@ -368,8 +370,6 @@ protected:
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
bool tohost_lower_written = false;
riscv_instrumentation_if instr_if;
@@ -402,8 +402,8 @@ protected:
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t& val);
iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_plain(unsigned addr, reg_t& val);
iss::status write_plain(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t& val);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_cycle(unsigned addr, reg_t& val);
@@ -426,15 +426,17 @@ protected:
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
iss::status write_xtvt(unsigned addr, reg_t val);
iss::status write_dcsr_dcsr(unsigned addr, reg_t val);
iss::status read_dcsr_reg(unsigned addr, reg_t& val);
iss::status write_dcsr_reg(unsigned addr, reg_t val);
iss::status read_dpc_reg(unsigned addr, reg_t& val);
iss::status write_dpc_reg(unsigned addr, reg_t val);
iss::status write_pmpcfg_reg(unsigned addr, reg_t val);
iss::status write_dcsr(unsigned addr, reg_t val);
iss::status read_debug(unsigned addr, reg_t& val);
iss::status write_dscratch(unsigned addr, reg_t val);
iss::status read_dpc(unsigned addr, reg_t& val);
iss::status write_dpc(unsigned addr, reg_t val);
iss::status read_fcsr(unsigned addr, reg_t& val);
iss::status write_fcsr(unsigned addr, reg_t val);
iss::status write_pmpcfg(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) { return iss::status::Err; };
virtual iss::status read_custom_csr(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr_reg; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr_reg; }
@@ -474,18 +476,22 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
csr[mimpid] = 1;
uart_buf.str("");
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_wr_cb[addr] = &this_class::write_plain;
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
@@ -493,12 +499,11 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
// csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_null;
}
const std::array<unsigned, 8> rwaddrs{{
@@ -512,8 +517,8 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
utval,
}};
for(auto addr : rwaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_csr_reg;
csr_rd_cb[addr] = &this_class::read_plain;
csr_wr_cb[addr] = &this_class::write_plain;
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
@@ -558,18 +563,18 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
if(FEAT & FEAT_PMP) {
for(size_t i = pmpaddr0; i <= pmpaddr15; ++i) {
csr_rd_cb[i] = &this_class::read_csr_reg;
csr_wr_cb[i] = &this_class::write_csr_reg;
csr_rd_cb[i] = &this_class::read_plain;
csr_wr_cb[i] = &this_class::write_plain;
}
for(size_t i = pmpcfg0; i < pmpcfg0 + 16 / sizeof(reg_t); ++i) {
csr_rd_cb[i] = &this_class::read_csr_reg;
csr_wr_cb[i] = &this_class::write_pmpcfg_reg;
csr_rd_cb[i] = &this_class::read_plain;
csr_wr_cb[i] = &this_class::write_pmpcfg;
}
}
if(FEAT & FEAT_EXT_N) {
csr_rd_cb[mideleg] = &this_class::read_csr_reg;
csr_rd_cb[mideleg] = &this_class::read_plain;
csr_wr_cb[mideleg] = &this_class::write_ideleg;
csr_rd_cb[medeleg] = &this_class::read_csr_reg;
csr_rd_cb[medeleg] = &this_class::read_plain;
csr_wr_cb[medeleg] = &this_class::write_edeleg;
csr_rd_cb[uie] = &this_class::read_ie;
csr_wr_cb[uie] = &this_class::write_ie;
@@ -583,7 +588,7 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
csr_rd_cb[utvec] = &this_class::read_tvec;
}
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_csr_reg;
csr_rd_cb[mtvt] = &this_class::read_plain;
csr_wr_cb[mtvt] = &this_class::write_xtvt;
// csr_rd_cb[mxnti] = &this_class::read_csr_reg;
// csr_wr_cb[mxnti] = &this_class::write_csr_reg;
@@ -593,14 +598,14 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
// csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
// csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_plain;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
if(FEAT & FEAT_EXT_N) {
csr_rd_cb[utvt] = &this_class::read_csr_reg;
csr_rd_cb[utvt] = &this_class::read_plain;
csr_wr_cb[utvt] = &this_class::write_xtvt;
csr_rd_cb[uintstatus] = &this_class::read_intstatus;
csr_wr_cb[uintstatus] = &this_class::write_null;
csr_rd_cb[uintthresh] = &this_class::read_csr_reg;
csr_rd_cb[uintthresh] = &this_class::read_plain;
csr_wr_cb[uintthresh] = &this_class::write_intthresh;
}
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
@@ -629,14 +634,14 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
}
if(FEAT & FEAT_DEBUG) {
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch1] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch1] = &this_class::read_dcsr_reg;
csr_wr_cb[dpc] = &this_class::write_dpc_reg;
csr_rd_cb[dpc] = &this_class::read_dpc_reg;
csr_wr_cb[dcsr] = &this_class::write_dcsr_dcsr;
csr_rd_cb[dcsr] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch0] = &this_class::write_dscratch;
csr_rd_cb[dscratch0] = &this_class::read_debug;
csr_wr_cb[dscratch1] = &this_class::write_dscratch;
csr_rd_cb[dscratch1] = &this_class::read_debug;
csr_wr_cb[dpc] = &this_class::write_dpc;
csr_rd_cb[dpc] = &this_class::read_dpc;
csr_wr_cb[dcsr] = &this_class::write_dcsr;
csr_rd_cb[dcsr] = &this_class::read_debug;
}
hart_mem_rd_delegate = [this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return this->read_mem(a, l, d); };
hart_mem_wr_delegate = [this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return this->write_mem(a, l, d); };
@@ -644,71 +649,14 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
template <typename BASE, features_e FEAT, typename LOGCAT>
std::pair<uint64_t, bool> riscv_hart_mu_p<BASE, FEAT, LOGCAT>::load_file(std::string name, int type) {
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_class() != ELFCLASS32)
if(sizeof(reg_t) == 4)
throw std::runtime_error("wrong elf class in file");
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
for(const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == 1 && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".symtab") {
if(SHT_SYMTAB == sec->get_type() || SHT_DYNSYM == sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name == "tohost") {
tohost = value;
} else if(name == "fromhost") {
fromhost = value;
}
}
}
} else if(sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(entry, true);
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
if(read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64,
[this](uint64_t addr, uint64_t size, const uint8_t* const data) -> iss::status {
return this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM, addr, size,
data);
})) {
return std::make_pair(entry_address, true);
}
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
return std::make_pair(entry_address, false);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
@@ -725,7 +673,7 @@ inline void riscv_hart_mu_p<BASE, FEAT, LOGCAT>::insert_mem_range(uint64_t base,
}
template <typename BASE, features_e FEAT, typename LOGCAT>
inline iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_pmpcfg_reg(unsigned addr, reg_t val) {
inline iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_pmpcfg(unsigned addr, reg_t val) {
csr[addr] = val & 0x9f9f9f9f;
return iss::Ok;
}
@@ -870,8 +818,10 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read(const address_type type, c
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
} break;
@@ -898,8 +848,10 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read(const address_type type, c
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -988,8 +940,6 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write(const address_type type,
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
// CPPLOG(INFO)<<"UART"<<((addr>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
@@ -1040,8 +990,10 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write(const address_type type,
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
}
return iss::Err;
}
}
@@ -1074,12 +1026,6 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_csr(unsigned addr, reg_t
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_csr_reg(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_null(unsigned addr, reg_t& val) {
val = 0;
@@ -1087,14 +1033,20 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_null(unsigned addr, reg_t&
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_csr_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
@@ -1114,7 +1066,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_cycle(unsigned addr, reg_
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
@@ -1145,7 +1097,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_instret(unsigned addr, re
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
@@ -1161,6 +1113,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_tvec(unsigned addr, reg_t&
val = FEAT & features_e::FEAT_CLIC ? csr[addr] : csr[addr] & ~2;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_status(unsigned addr, reg_t& val) {
val = state.mstatus & hart_state_type::get_mask((addr >> 8) & 0x3);
@@ -1272,7 +1225,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_epc(unsigned addr, reg_t
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dcsr_dcsr(unsigned addr, reg_t val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
@@ -1284,7 +1237,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dcsr_dcsr(unsigned addr,
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_dcsr_reg(unsigned addr, reg_t& val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
@@ -1292,7 +1245,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_dcsr_reg(unsigned addr, re
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dcsr_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
@@ -1300,7 +1253,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dcsr_reg(unsigned addr, r
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_dpc_reg(unsigned addr, reg_t& val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
@@ -1308,7 +1261,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_dpc_reg(unsigned addr, reg
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dpc_reg(unsigned addr, reg_t val) {
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
@@ -1324,6 +1277,18 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_intstatus(unsigned addr, r
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_fcsr(unsigned addr, reg_t& val) {
val = this->get_fcsr();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_fcsr(unsigned addr, reg_t val) {
this->set_fcsr(val);
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_intthresh(unsigned addr, reg_t val) {
csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;

View File

@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2020 MINRES Technologies GmbH
* Copyright (C) 2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

View File

@@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2021 MINRES Technologies GmbH
* Copyright (C) 2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -189,7 +189,7 @@ struct tgc5c: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline uint64_t get_icount() { return reg.icount; } //This should not be accessible, only through the instrumentation_if
inline bool should_stop() { return interrupt_sim; }
@@ -199,7 +199,7 @@ struct tgc5c: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
inline uint32_t get_last_branch() { return reg.last_branch; } //This should also only be accessible through the instrumentation_if
#pragma pack(push, 1)

File diff suppressed because it is too large Load Diff

View File

@@ -30,8 +30,8 @@
*
*******************************************************************************/
#ifndef _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#define _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#ifndef _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#define _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#include "iss/arch_if.h"
#include <iss/arch/traits.h>
@@ -48,6 +48,10 @@
namespace iss {
namespace debugger {
char const* const get_csr_name(unsigned);
constexpr auto csr_offset = 100U;
using namespace iss::arch;
using namespace iss::debugger;
@@ -129,11 +133,17 @@ public:
protected:
static inline constexpr addr_t map_addr(const addr_t& i) { return i; }
std::string csr_xml;
iss::arch_if* core;
rp_thread_ref thread_idx;
};
template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN != 0, unsigned>::type get_f0_offset() {
return iss::arch::traits<ARCH>::F0;
}
template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN == 0, unsigned>::type get_f0_offset() { return 0; }
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) {
thread_idx = thread;
return Ok;
@@ -175,34 +185,37 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query
template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
CPPLOG(TRACE) << "reading target registers";
// return idx<0?:;
data.clear();
avail.clear();
const uint8_t* reg_base = core->get_regs_base_ptr();
auto start_reg = arch::traits<ARCH>::X0;
for(size_t reg_no = start_reg; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < reg_width; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
for(size_t i = 0; i < 33; ++i) {
if(i < arch::traits<ARCH>::RFS || i == arch::traits<ARCH>::PC) {
auto reg_no = i < 32 ? start_reg + i : arch::traits<ARCH>::PC;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
}
} else {
for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) {
data.push_back(0);
avail.push_back(0);
}
}
}
if(iss::arch::traits<ARCH>::FLEN > 0) {
auto fstart_reg = get_f0_offset<ARCH>();
for(size_t i = 0; i < 32; ++i) {
auto reg_no = fstart_reg + i;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < reg_width; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
}
}
}
// work around fill with F type registers
// if (arch::traits<ARCH>::NUM_REGS < 65) {
// auto reg_width = sizeof(typename arch::traits<ARCH>::reg_t);
// for (size_t reg_no = 0; reg_no < 33; ++reg_no) {
// for (size_t j = 0; j < reg_width; ++j) {
// data.push_back(0x0);
// avail.push_back(0x00);
// }
// // if(arch::traits<ARCH>::XLEN < 64)
// // for(unsigned j=0; j<4; ++j){
// // data.push_back(0x0);
// // avail.push_back(0x00);
// // }
// }
// }
return Ok;
}
@@ -210,25 +223,25 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
auto start_reg = arch::traits<ARCH>::X0;
auto* reg_base = core->get_regs_base_ptr();
auto iter = data.data();
bool e_ext = arch::traits<ARCH>::PC < 32;
for(size_t reg_no = 0; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
if(e_ext && reg_no > 15) {
if(reg_no == 32) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
std::copy(iter, iter + reg_width, reg_base);
} else {
const uint64_t zero_val = 0;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[15] / 8;
auto iter = (uint8_t*)&zero_val;
std::copy(iter, iter + reg_width, reg_base);
}
} else {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(iter, iter + reg_width, reg_base);
iter += 4;
reg_base += offset;
auto iter_end = data.data() + data.size();
for(size_t i = 0; i < 33 && iter < iter_end; ++i) {
auto reg_width = arch::traits<ARCH>::XLEN / 8;
if(i < arch::traits<ARCH>::RFS) {
auto offset = traits<ARCH>::reg_byte_offsets[start_reg + i];
std::copy(iter, iter + reg_width, reg_base + offset);
} else if(i == 32) {
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
std::copy(iter, iter + reg_width, reg_base + offset);
}
iter += reg_width;
}
if(iss::arch::traits<ARCH>::FLEN > 0) {
auto fstart_reg = get_f0_offset<ARCH>();
auto reg_width = arch::traits<ARCH>::FLEN / 8;
for(size_t i = 0; i < 32 && iter < iter_end; ++i) {
unsigned offset = traits<ARCH>::reg_byte_offsets[fstart_reg + i];
std::copy(iter, iter + reg_width, reg_base + offset);
iter += reg_width;
}
}
return Ok;
@@ -236,7 +249,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
if(reg_no < 65) {
if(reg_no < csr_offset) {
// auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename
// arch::traits<ARCH>::reg_e>(reg_no))/8;
auto* reg_base = core->get_regs_base_ptr();
@@ -247,23 +260,24 @@ status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std
std::copy(reg_base + offset, reg_base + offset + reg_width, data.begin());
std::fill(avail.begin(), avail.end(), 0xff);
} else {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, reg_no - 65);
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, reg_no - csr_offset);
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
std::fill(avail.begin(), avail.end(), 0xff);
core->read(a, data.size(), data.data());
std::fill(avail.begin(), avail.end(), 0xff);
}
return data.size() > 0 ? Ok : Err;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) {
if(reg_no < 65) {
if(reg_no < csr_offset) {
auto* reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[static_cast<typename arch::traits<ARCH>::reg_e>(reg_no)] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(data.begin(), data.begin() + reg_width, reg_base + offset);
} else {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - 65);
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - csr_offset);
core->write(a, data.size(), data.data());
}
return Ok;
@@ -276,7 +290,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t ad
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) {
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto a = map_addr({iss::access_type::DEBUG_WRITE, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->write(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
@@ -369,93 +383,57 @@ status riscv_target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t
}
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string& out_buf) {
const std::string res{"<?xml version=\"1.0\"?><!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target><architecture>riscv:rv32</architecture>"
//" <feature name=\"org.gnu.gdb.riscv.rv32i\">\n"
//" <reg name=\"x0\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x1\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x2\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x3\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x4\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x5\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x6\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x7\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x8\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x9\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x10\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x11\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x12\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x13\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x14\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x15\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x16\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x17\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x18\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x19\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x20\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x21\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x22\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x23\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x24\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x25\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x26\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x27\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x28\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x29\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x30\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x31\" bitsize=\"32\" group=\"general\"/>\n"
//" </feature>\n"
"</target>"};
out_buf = res;
if(!csr_xml.size()) {
std::ostringstream oss;
oss << "<?xml version=\"1.0\"?><!DOCTYPE feature SYSTEM \"gdb-target.dtd\"><target version=\"1.0\">\n";
if(iss::arch::traits<ARCH>::XLEN == 32)
oss << "<architecture>riscv:rv32</architecture>\n";
else if(iss::arch::traits<ARCH>::XLEN == 64)
oss << " <architectureriscv:rv64</architecture>\n";
oss << " <feature name=\"org.gnu.gdb.riscv.cpu\">\n";
auto reg_base_num = iss::arch::traits<ARCH>::X0;
for(auto i = 0U; i < iss::arch::traits<ARCH>::RFS; ++i) {
oss << " <reg name=\"x" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i]
<< "\" type=\"int\" regnum=\"" << i << "\"/>\n";
}
oss << " <reg name=\"pc\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[iss::arch::traits<ARCH>::PC]
<< "\" type=\"code_ptr\" regnum=\"" << 32U << "\"/>\n";
oss << " </feature>\n";
if(iss::arch::traits<ARCH>::FLEN > 0) {
oss << " <feature name=\"org.gnu.gdb.riscv.fpu\">\n";
auto reg_base_num = get_f0_offset<ARCH>();
auto type = iss::arch::traits<ARCH>::FLEN == 32 ? "ieee_single" : "riscv_double";
for(auto i = 0U; i < 32; ++i) {
oss << " <reg name=\"f" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i]
<< "\" type=\"" << type << "\" regnum=\"" << i + 33 << "\"/>\n";
}
oss << " <reg name=\"fcsr\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"103\" type int/>\n";
oss << " <reg name=\"fflags\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"101\" type int/>\n";
oss << " <reg name=\"frm\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"102\" type int/>\n";
oss << " </feature>\n";
}
oss << " <feature name=\"org.gnu.gdb.riscv.csr\">\n";
std::vector<uint8_t> data;
std::vector<uint8_t> avail;
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
for(auto i = 0U; i < 4096; ++i) {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, i);
std::fill(avail.begin(), avail.end(), 0xff);
auto res = core->read(a, data.size(), data.data());
if(res == iss::Ok) {
oss << " <reg name=\"" << get_csr_name(i) << "\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN
<< "\" type=\"int\" regnum=\"" << (i + csr_offset) << "\"/>\n";
}
}
oss << " </feature>\n";
oss << "</target>\n";
csr_xml = oss.str();
}
out_buf = csr_xml;
return Ok;
}
/*
*
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target>
<architecture>riscv:rv32</architecture>
<feature name="org.gnu.gdb.riscv.rv32i">
<reg name="x0" bitsize="32" group="general"/>
<reg name="x1" bitsize="32" group="general"/>
<reg name="x2" bitsize="32" group="general"/>
<reg name="x3" bitsize="32" group="general"/>
<reg name="x4" bitsize="32" group="general"/>
<reg name="x5" bitsize="32" group="general"/>
<reg name="x6" bitsize="32" group="general"/>
<reg name="x7" bitsize="32" group="general"/>
<reg name="x8" bitsize="32" group="general"/>
<reg name="x9" bitsize="32" group="general"/>
<reg name="x10" bitsize="32" group="general"/>
<reg name="x11" bitsize="32" group="general"/>
<reg name="x12" bitsize="32" group="general"/>
<reg name="x13" bitsize="32" group="general"/>
<reg name="x14" bitsize="32" group="general"/>
<reg name="x15" bitsize="32" group="general"/>
<reg name="x16" bitsize="32" group="general"/>
<reg name="x17" bitsize="32" group="general"/>
<reg name="x18" bitsize="32" group="general"/>
<reg name="x19" bitsize="32" group="general"/>
<reg name="x20" bitsize="32" group="general"/>
<reg name="x21" bitsize="32" group="general"/>
<reg name="x22" bitsize="32" group="general"/>
<reg name="x23" bitsize="32" group="general"/>
<reg name="x24" bitsize="32" group="general"/>
<reg name="x25" bitsize="32" group="general"/>
<reg name="x26" bitsize="32" group="general"/>
<reg name="x27" bitsize="32" group="general"/>
<reg name="x28" bitsize="32" group="general"/>
<reg name="x29" bitsize="32" group="general"/>
<reg name="x30" bitsize="32" group="general"/>
<reg name="x31" bitsize="32" group="general"/>
</feature>
</target>
*/
} // namespace debugger
} // namespace iss
#endif /* _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */
#endif /* _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */

View File

@@ -69,7 +69,8 @@ int main(int argc, char* argv[]) {
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("ilimit,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("flimit", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of fetches to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
@@ -140,7 +141,10 @@ int main(int argc, char* argv[]) {
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>(), &semihosting_cb);
}
if(!cpu) {
CPPLOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
auto list = f.get_names();
std::sort(std::begin(list), std::end(list));
CPPLOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << "\n"
<< "Available implementations (core|platform|backend):\n - " << util::join(list, "\n - ") << std::endl;
return 127;
}
if(!vm) {
@@ -202,21 +206,36 @@ int main(int argc, char* argv[]) {
if(clim.count("elf"))
for(std::string input : clim["elf"].as<std::vector<std::string>>()) {
auto start_addr = vm->get_arch()->load_file(input);
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
for(std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
if(clim.count("reset")) {
auto str = clim["reset"].as<std::string>();
start_address = str.find("0x") == 0 ? std::stoull(str.substr(2), nullptr, 16) : std::stoull(str, nullptr, 10);
}
vm->reset(start_address);
auto cycles = clim["instructions"].as<uint64_t>();
res = vm->start(cycles, dump);
auto limit = clim["ilimit"].as<uint64_t>();
auto cond = iss::finish_cond_e::JUMP_TO_SELF;
if(clim.count("flimit")) {
cond = cond | iss::finish_cond_e::FCOUNT_LIMIT;
limit = clim["flimit"].as<uint64_t>();
} else {
cond = cond | iss::finish_cond_e::ICOUNT_LIMIT;
}
res = vm->start(limit, dump, cond);
auto instr_if = vm->get_arch()->get_instrumentation_if();
// this assumes a single input file

View File

@@ -42,7 +42,6 @@
#include <iss/plugin/loader.h>
#endif
#include "sc_core_adapter_if.h"
#include <iss/arch/tgc_mapper.h>
#include <scc/report.h>
#include <util/ities.h>
#include <iostream>
@@ -125,7 +124,7 @@ using vm_ptr = std::unique_ptr<iss::vm_if>;
class core_wrapper {
public:
core_wrapper(core_complex* owner)
core_wrapper(core_complex_if* owner)
: owner(owner) {}
void reset(uint64_t addr) { vm->reset(addr); }
@@ -181,7 +180,7 @@ public:
"SystemC sub-commands: break <time>, print_time"});
}
core_complex* const owner;
core_complex_if* const owner;
vm_ptr vm{nullptr};
sc_cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if* tgt_adapter{nullptr};
@@ -197,9 +196,9 @@ struct core_trace {
scv_tr_handle tr_handle;
};
SC_HAS_PROCESS(core_complex); // NOLINT
#ifndef CWR_SYSTEMC
core_complex::core_complex(sc_module_name const& name)
template <unsigned int BUSWIDTH>
core_complex<BUSWIDTH>::core_complex(sc_module_name const& name)
: sc_module(name)
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
@@ -208,7 +207,7 @@ core_complex::core_complex(sc_module_name const& name)
}
#endif
void core_complex::init() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::init() {
trc = new core_trace();
ibus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = fetch_lut.getEntry(start);
@@ -227,6 +226,7 @@ void core_complex::init() {
}
});
SC_HAS_PROCESS(core_complex<BUSWIDTH>); // NOLINT
SC_THREAD(run);
SC_METHOD(rst_cb);
sensitive << rst_i;
@@ -252,16 +252,16 @@ void core_complex::init() {
#endif
}
core_complex::~core_complex() {
template <unsigned int BUSWIDTH> core_complex<BUSWIDTH>::~core_complex() {
delete cpu;
delete trc;
for(auto* p : plugin_list)
delete p;
}
void core_complex::trace(sc_trace_file* trf) const {}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::trace(sc_trace_file* trf) const {}
void core_complex::before_end_of_elaboration() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::before_end_of_elaboration() {
SCCDEBUG(SCMOD) << "instantiating iss::arch::tgf with " << GET_PROP_VALUE(backend) << " backend";
// cpu = scc::make_unique<core_wrapper>(this);
cpu = new core_wrapper(this);
@@ -302,7 +302,7 @@ void core_complex::before_end_of_elaboration() {
}
}
void core_complex::start_of_simulation() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::start_of_simulation() {
// quantum_keeper.reset();
if(GET_PROP_VALUE(elf_file).size() > 0) {
istringstream is(GET_PROP_VALUE(elf_file));
@@ -325,7 +325,7 @@ void core_complex::start_of_simulation() {
}
}
bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::disass_output(uint64_t pc, const std::string instr_str) {
if(trc->m_db == nullptr)
return false;
if(trc->tr_handle.is_active())
@@ -339,7 +339,7 @@ bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
return true;
}
void core_complex::forward() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::forward() {
#ifndef CWR_SYSTEMC
set_clock_period(clk_i.read());
#else
@@ -348,24 +348,24 @@ void core_complex::forward() {
#endif
}
void core_complex::set_clock_period(sc_core::sc_time period) {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::set_clock_period(sc_core::sc_time period) {
curr_clk = period;
if(period == SC_ZERO_TIME)
cpu->set_interrupt_execution(true);
}
void core_complex::rst_cb() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::rst_cb() {
if(rst_i.read())
cpu->set_interrupt_execution(true);
}
void core_complex::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
void core_complex::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
void core_complex::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
void core_complex::local_irq_cb() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::local_irq_cb() {
for(auto i = 0U; i < local_irq_i.size(); ++i) {
if(local_irq_i[i].event()) {
cpu->local_irq(16 + i, local_irq_i[i].read());
@@ -373,7 +373,7 @@ void core_complex::local_irq_cb() {
}
}
void core_complex::run() {
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::run() {
wait(SC_ZERO_TIME); // separate from elaboration phase
do {
wait(SC_ZERO_TIME);
@@ -391,7 +391,7 @@ void core_complex::run() {
sc_stop();
}
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
auto& dmi_lut = is_fetch ? fetch_lut : read_lut;
auto lut_entry = dmi_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
@@ -449,7 +449,7 @@ bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t* const data,
}
}
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
auto lut_entry = write_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
@@ -497,7 +497,7 @@ bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* cons
}
}
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
@@ -507,7 +507,7 @@ bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const d
return dbus->transport_dbg(gp) == length;
}
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
@@ -518,5 +518,10 @@ bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t*
gp.set_streaming_width(length);
return dbus->transport_dbg(gp) == length;
}
template class core_complex<scc::LT>;
template class core_complex<32>;
template class core_complex<64>;
} /* namespace tgfs */
} /* namespace sysc */

View File

@@ -33,6 +33,7 @@
#ifndef _SYSC_CORE_COMPLEX_H_
#define _SYSC_CORE_COMPLEX_H_
#include <scc/signal_opt_ports.h>
#include <scc/tick2time.h>
#include <scc/traceable.h>
#include <scc/utilities.h>
@@ -40,10 +41,8 @@
#include <tlm/scc/scv/tlm_rec_initiator_socket.h>
#ifdef CWR_SYSTEMC
#include <scmlinc/scml_property.h>
#define SOCKET_WIDTH 32
#else
#include <cci_configuration>
#define SOCKET_WIDTH scc::LT
#endif
#include <memory>
#include <tlm>
@@ -68,12 +67,35 @@ public:
namespace tgfs {
class core_wrapper;
struct core_trace;
struct core_complex_if {
class core_complex : public sc_core::sc_module, public scc::traceable {
virtual ~core_complex_if() = default;
virtual bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) = 0;
virtual bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data) = 0;
virtual bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) = 0;
virtual bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) = 0;
virtual bool disass_output(uint64_t pc, const std::string instr) = 0;
virtual unsigned get_last_bus_cycles() = 0;
//! Allow quantum keeper handling
virtual void sync(uint64_t) = 0;
virtual char const* hier_name() = 0;
scc::sc_in_opt<uint64_t> mtime_i{"mtime_i"};
};
template <unsigned int BUSWIDTH = scc::LT> class core_complex : public sc_core::sc_module, public scc::traceable, public core_complex_if {
public:
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> ibus{"ibus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<BUSWIDTH>> ibus{"ibus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> dbus{"dbus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<BUSWIDTH>> dbus{"dbus"};
sc_core::sc_in<bool> rst_i{"rst_i"};
@@ -88,8 +110,6 @@ public:
#ifndef CWR_SYSTEMC
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_port<tlm::tlm_peek_if<uint64_t>, 1, sc_core::SC_ZERO_OR_MORE_BOUND> mtime_o{"mtime_o"};
cci::cci_param<std::string> elf_file{"elf_file", ""};
cci::cci_param<bool> enable_disass{"enable_disass", false};
@@ -115,8 +135,6 @@ public:
#else
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<bool> enable_disass{"enable_disass", false};
@@ -159,13 +177,13 @@ public:
~core_complex();
inline unsigned get_last_bus_cycles() {
unsigned get_last_bus_cycles() override {
auto mem_incr = std::max(ibus_inc, dbus_inc);
ibus_inc = dbus_inc = 0;
return mem_incr > 1 ? mem_incr : 1;
}
inline void sync(uint64_t cycle) {
void sync(uint64_t cycle) override {
auto core_inc = curr_clk * (cycle - last_sync_cycle);
quantum_keeper.inc(core_inc);
if(quantum_keeper.need_sync()) {
@@ -175,20 +193,22 @@ public:
last_sync_cycle = cycle;
}
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch);
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) override;
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data);
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data) override;
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) override;
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) override;
void trace(sc_core::sc_trace_file* trf) const override;
bool disass_output(uint64_t pc, const std::string instr);
bool disass_output(uint64_t pc, const std::string instr) override;
void set_clock_period(sc_core::sc_time period);
char const* hier_name() override { return name(); }
protected:
void before_end_of_elaboration() override;
void start_of_simulation() override;

View File

@@ -46,12 +46,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|interp",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@@ -62,12 +62,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|llvm",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@@ -79,12 +79,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|tcc",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@@ -96,12 +96,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|asmjit",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};

View File

@@ -21,7 +21,7 @@ public:
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex* owner)
sc_core_adapter(sysc::tgfs::core_complex_if* owner)
: owner(owner) {}
iss::arch_if* get_arch_if() override { return this; }
@@ -54,9 +54,9 @@ public:
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0') << std::setw(sizeof(reg_t) * 2)
<< (reg_t)this->state.mstatus << std::dec << ";c:" << this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
SCCDEBUG(owner->hier_name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t"
<< std::setw(40) << std::setfill(' ') << std::left << instr << s.str();
}
};
@@ -79,10 +79,10 @@ public:
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->name())
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->name())
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
@@ -112,21 +112,8 @@ public:
}
iss::status read_csr(unsigned addr, reg_t& val) override {
#ifndef CWR_SYSTEMC
if((addr == iss::arch::time || addr == iss::arch::timeh) && owner->mtime_o.get_interface(0)) {
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret ? iss::Ok : iss::Err;
#else
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
uint64_t time_val = owner->mtime_i.read();
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
@@ -135,14 +122,13 @@ public:
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
#endif
} else {
return PLAT::read_csr(addr, val);
}
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
SCCDEBUG(owner->hier_name()) << "Sleeping until interrupt";
while(this->reg.pending_trap == 0 && (this->csr[iss::arch::mip] & this->csr[iss::arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
@@ -173,11 +159,11 @@ public:
this->csr[iss::arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
SCCTRACE(owner->hier_name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
}
private:
sysc::tgfs::core_complex* const owner;
sysc::tgfs::core_complex_if* const owner{nullptr};
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;

View File

@@ -88,7 +88,6 @@ protected:
using super::write_reg_to_mem;
using super::gen_read_mem;
using super::gen_write_mem;
using super::gen_wait;
using super::gen_leave;
using super::gen_sync;
@@ -104,7 +103,7 @@ protected:
void gen_instr_prologue(jit_holder& jh);
void gen_instr_epilogue(jit_holder& jh);
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause);
template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> void gen_set_tval(jit_holder& jh, T new_tval) ;
template <typename T, typename = typename std::enable_if<std::is_integral<T>::value>::type> void gen_set_tval(jit_holder& jh, T new_tval) ;
void gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) ;
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
@@ -113,6 +112,7 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
@@ -500,6 +500,7 @@ private:
(gen_operation(cc, band, (gen_operation(cc, add, load_reg_from_mem(jh, traits::X0 + rs1), (int16_t)sext<12>(imm))
), addr_mask)
), 32, true);
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, urem, new_pc, static_cast<uint32_t>(traits::INSTR_ALIGNMENT))
,0);
@@ -521,6 +522,7 @@ private:
mov(cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(UNKNOWN_JUMP));
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -566,6 +568,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, eq, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
@@ -583,6 +586,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -628,6 +632,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
@@ -645,6 +650,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -690,6 +696,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, lt, gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(cc,
@@ -709,6 +716,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -754,6 +762,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, gte, gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(cc,
@@ -773,6 +782,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -818,6 +828,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ltu, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
@@ -835,6 +846,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -880,6 +892,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, gteu, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
@@ -897,6 +910,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = BRANCH;
@@ -1407,23 +1421,21 @@ private:
}
else{
if(rd!=0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(cc, 1);
auto label_then11 = cc.newLabel();
auto label_merge11 = cc.newLabel();
auto tmp_reg11 = get_reg(cc, 8, false);
cmp(cc, gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), (int16_t)sext<12>(imm));
cc.jl(label_then);
mov(cc, tmp_reg,0);
cc.jmp(label_merge);
cc.bind(label_then);
mov(cc, tmp_reg,1);
cc.bind(label_merge);
cc.jl(label_then11);
mov(cc, tmp_reg11,0);
cc.jmp(label_merge11);
cc.bind(label_then11);
mov(cc, tmp_reg11, 1);
cc.bind(label_merge11);
mov(cc, get_ptr_for(jh, traits::X0+ rd),
gen_ext(cc, tmp_reg
gen_ext(cc, tmp_reg11
, 32, false)
);
}
}
}
auto returnValue = CONT;
@@ -1470,22 +1482,20 @@ private:
}
else{
if(rd!=0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(cc, 1);
auto label_then12 = cc.newLabel();
auto label_merge12 = cc.newLabel();
auto tmp_reg12 = get_reg(cc, 8, false);
cmp(cc, load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm)));
cc.jb(label_then);
mov(cc, tmp_reg,0);
cc.jmp(label_merge);
cc.bind(label_then);
mov(cc, tmp_reg,1);
cc.bind(label_merge);
cc.jb(label_then12);
mov(cc, tmp_reg12,0);
cc.jmp(label_merge12);
cc.bind(label_then12);
mov(cc, tmp_reg12, 1);
cc.bind(label_merge12);
mov(cc, get_ptr_for(jh, traits::X0+ rd),
gen_ext(cc, tmp_reg
gen_ext(cc, tmp_reg12
, 32, false)
);
}
}
}
auto returnValue = CONT;
@@ -1978,24 +1988,22 @@ private:
}
else{
if(rd!=0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(cc, 1);
auto label_then13 = cc.newLabel();
auto label_merge13 = cc.newLabel();
auto tmp_reg13 = get_reg(cc, 8, false);
cmp(cc, gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs2), 32, true));
cc.jl(label_then);
mov(cc, tmp_reg,0);
cc.jmp(label_merge);
cc.bind(label_then);
mov(cc, tmp_reg,1);
cc.bind(label_merge);
cc.jl(label_then13);
mov(cc, tmp_reg13,0);
cc.jmp(label_merge13);
cc.bind(label_then13);
mov(cc, tmp_reg13, 1);
cc.bind(label_merge13);
mov(cc, get_ptr_for(jh, traits::X0+ rd),
gen_ext(cc, tmp_reg
gen_ext(cc, tmp_reg13
, 32, false)
);
}
}
}
auto returnValue = CONT;
@@ -2042,22 +2050,20 @@ private:
}
else{
if(rd!=0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(cc, 1);
auto label_then14 = cc.newLabel();
auto label_merge14 = cc.newLabel();
auto tmp_reg14 = get_reg(cc, 8, false);
cmp(cc, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2));
cc.jb(label_then);
mov(cc, tmp_reg,0);
cc.jmp(label_merge);
cc.bind(label_then);
mov(cc, tmp_reg,1);
cc.bind(label_merge);
cc.jb(label_then14);
mov(cc, tmp_reg14,0);
cc.jmp(label_merge14);
cc.bind(label_then14);
mov(cc, tmp_reg14, 1);
cc.bind(label_merge14);
mov(cc, get_ptr_for(jh, traits::X0+ rd),
gen_ext(cc, tmp_reg
gen_ext(cc, tmp_reg14
, 32, false)
);
}
}
}
auto returnValue = CONT;
@@ -2364,7 +2370,7 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
//No disass specified, using instruction name
std::string mnemonic = "ecall";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -2401,7 +2407,7 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
//No disass specified, using instruction name
std::string mnemonic = "ebreak";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -2438,7 +2444,7 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
//No disass specified, using instruction name
std::string mnemonic = "mret";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -2475,7 +2481,7 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
//No disass specified, using instruction name
std::string mnemonic = "wfi";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -2497,7 +2503,10 @@ private:
gen_instr_prologue(jh);
cc.comment("//behavior:");
/*generate behavior*/
gen_wait(jh, 1);
InvokeNode* call_wait_15;
jh.cc.comment("//call_wait");
jh.cc.invoke(&call_wait_15, &wait, FuncSignature::build<void, int32_t>());
setArg(call_wait_15, 0, 1);
auto returnValue = CONT;
gen_sync(jh, POST_SYNC, 41);
@@ -3116,6 +3125,7 @@ private:
auto divisor = gen_ext(cc,
load_reg_from_mem(jh, traits::X0 + rs2), 32, true);
if(rd!=0){
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, divisor, 0)
,0);
@@ -3123,6 +3133,7 @@ private:
cc.je(label_else);
{
auto MMIN = ((uint32_t)1)<<(static_cast<uint32_t>(traits::XLEN)-1);
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, land, gen_operation(cc, eq, load_reg_from_mem(jh, traits::X0 + rs1), MMIN)
, gen_operation(cc, eq, divisor, - 1)
@@ -3143,6 +3154,7 @@ private:
), 32, true));
}
cc.bind(label_merge);
}
}
cc.jmp(label_merge);
cc.bind(label_else);
@@ -3151,6 +3163,7 @@ private:
(uint32_t)- 1);
}
cc.bind(label_merge);
}
}
}
auto returnValue = CONT;
@@ -3196,6 +3209,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, load_reg_from_mem(jh, traits::X0 + rs2), 0)
,0);
@@ -3217,6 +3231,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = CONT;
@@ -3261,6 +3276,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, load_reg_from_mem(jh, traits::X0 + rs2), 0)
,0);
@@ -3268,6 +3284,7 @@ private:
cc.je(label_else);
{
auto MMIN = (uint32_t)1<<(static_cast<uint32_t>(traits::XLEN)-1);
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, land, gen_operation(cc, eq, load_reg_from_mem(jh, traits::X0 + rs1), MMIN)
, gen_operation(cc, eq, gen_ext(cc,
@@ -3296,6 +3313,7 @@ private:
}
}
cc.bind(label_merge);
}
}
cc.jmp(label_merge);
cc.bind(label_else);
@@ -3306,6 +3324,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = CONT;
@@ -3350,6 +3369,7 @@ private:
gen_raise(jh, 0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, load_reg_from_mem(jh, traits::X0 + rs2), 0)
,0);
@@ -3371,6 +3391,7 @@ private:
}
}
cc.bind(label_merge);
}
}
auto returnValue = CONT;
@@ -3388,7 +3409,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__addi4spn"),
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.addi4spn"),
fmt::arg("rd", name(8+rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3436,7 +3457,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__lw"),
"{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c.lw"),
fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3482,7 +3503,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__sw"),
"{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c.sw"),
fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3525,7 +3546,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__addi"),
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.addi"),
fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3572,8 +3593,8 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "c__nop";
//No disass specified, using instruction name
std::string mnemonic = "c.nop";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
@@ -3609,7 +3630,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__jal"),
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c.jal"),
fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3653,7 +3674,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__li"),
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.li"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3700,7 +3721,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__lui"),
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3744,7 +3765,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c__addi16sp"),
"{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c.addi16sp"),
fmt::arg("nzimm", nzimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3789,8 +3810,8 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "__reserved_clui";
//No disass specified, using instruction name
std::string mnemonic = ".reserved_clui";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
@@ -3828,7 +3849,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srli"),
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c.srli"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3869,7 +3890,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srai"),
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c.srai"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3923,7 +3944,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__andi"),
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.andi"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -3965,7 +3986,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__sub"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.sub"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4007,7 +4028,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__xor"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.xor"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4048,7 +4069,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__or"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.or"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4089,7 +4110,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__and"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.and"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4129,7 +4150,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__j"),
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c.j"),
fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4171,7 +4192,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__beqz"),
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.beqz"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4194,6 +4215,7 @@ private:
cc.comment("//behavior:");
/*generate behavior*/
mov(jh.cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(NO_JUMP));
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, eq, load_reg_from_mem(jh, traits::X0 + rs1+8), 0)
,0);
@@ -4204,6 +4226,7 @@ private:
mov(cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(KNOWN_JUMP));
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_sync(jh, POST_SYNC, 75);
@@ -4220,7 +4243,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__bnez"),
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.bnez"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4243,6 +4266,7 @@ private:
cc.comment("//behavior:");
/*generate behavior*/
mov(jh.cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(NO_JUMP));
{
auto label_merge = cc.newLabel();
cmp(cc, gen_operation(cc, ne, load_reg_from_mem(jh, traits::X0 + rs1+8), 0)
,0);
@@ -4253,6 +4277,7 @@ private:
mov(cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(KNOWN_JUMP));
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_sync(jh, POST_SYNC, 76);
@@ -4269,7 +4294,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c__slli"),
"{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c.slli"),
fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4317,7 +4342,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c__lwsp"),
"{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c.lwsp"),
fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4367,7 +4392,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__mv"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.mv"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4413,7 +4438,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jr"),
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c.jr"),
fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4459,8 +4484,8 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "__reserved_cmv";
//No disass specified, using instruction name
std::string mnemonic = ".reserved_cmv";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
@@ -4498,7 +4523,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__add"),
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.add"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4546,7 +4571,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jalr"),
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c.jalr"),
fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4595,8 +4620,8 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "c__ebreak";
//No disass specified, using instruction name
std::string mnemonic = "c.ebreak";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
@@ -4634,7 +4659,7 @@ private:
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c__swsp"),
"{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c.swsp"),
fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4679,7 +4704,7 @@ private:
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
//No disass specified, using instruction name
std::string mnemonic = "dii";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
@@ -4735,7 +4760,7 @@ private:
gen_raise(jh, 0, 2);
gen_sync(jh, POST_SYNC, instr_descr.size());
gen_instr_epilogue(jh);
return BRANCH;
return ILLEGAL_INSTR;
}
};
@@ -4764,9 +4789,9 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
@@ -4797,6 +4822,7 @@ void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
@@ -4842,6 +4868,7 @@ inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t
auto tmp1 = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
mov(cc, get_ptr_for(jh, traits::TRAP_STATE), tmp1);
cc.jmp(jh.trap_entry);
}
template <typename ARCH>
template <typename T, typename>
@@ -4850,8 +4877,8 @@ void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, T new_tval) {
}
template <typename ARCH>
void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) {
if(std::holds_alternative<x86::Gp>(_new_tval)) {
x86::Gp new_tval = std::get<x86::Gp>(_new_tval);
if(nonstd::holds_alternative<x86::Gp>(_new_tval)) {
x86::Gp new_tval = nonstd::get<x86::Gp>(_new_tval);
if(new_tval.size() < 8)
new_tval = gen_ext_Gp(jh.cc, new_tval, 64, false);
mov(jh.cc, jh.globals[TVAL], new_tval);

View File

@@ -128,7 +128,6 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
}
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float32_t r;
@@ -204,8 +203,8 @@ uint32_t fclass_s(uint32_t v1) {
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF32UI(uiA) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI(uiA) == 0;
bool infOrNaN = expF32UI(uiA) == 0xFF;
bool subnormalOrZero = expF32UI(uiA) == 0;
bool sign = signF32UI(uiA);
bool fracZero = fracF32UI(uiA) == 0;
bool isNaN = isNaNF32UI(uiA);
@@ -218,9 +217,13 @@ uint32_t fclass_s(uint32_t v1) {
}
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
bool isNan = isNaNF64UI(v1);
bool isSNaN = softfloat_isSigNaNF64UI(v1);
softfloat_roundingMode = rmm_map.at(mode);
bool nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI;
if(nan) {
softfloat_exceptionFlags = 0;
if(isNan) {
if(isSNaN)
softfloat_raiseFlags(softfloat_flag_invalid);
return defaultNaNF32UI;
} else {
float32_t res = f64_to_f32(float64_t{v1});
@@ -229,11 +232,11 @@ uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI;
if(nan) {
bool infOrNaN = expF32UI(v1) == 0xFF;
bool subnormalOrZero = expF32UI(v1) == 0;
if(infOrNaN || subnormalOrZero) {
return defaultNaNF64UI;
} else {
softfloat_roundingMode = rmm_map.at(mode);
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
}
@@ -313,22 +316,23 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
}
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: { // l->d, fp to int32
case 0: { // l from d
int64_t res = f64_to_i64(v1f, rmm_map.at(mode), true);
return (uint64_t)res;
}
case 1: { // lu->s
case 1: { // lu from d
uint64_t res = f64_to_ui64(v1f, rmm_map.at(mode), true);
return res;
}
case 2: // s->l
case 2: // d from l
r = i64_to_f64(v1);
return r.v;
case 3: // s->lu
case 3: // d from lu
r = ui64_to_f64(v1);
return r.v;
}
@@ -336,12 +340,24 @@ uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
}
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
uint64_t F64_SIGN = 1ULL << 63;
switch(op) {
case 0: // FMADD_D
break;
case 1: // FMSUB_D
v3 ^= F64_SIGN;
break;
case 2: // FNMADD_D
v1 ^= F64_SIGN;
v3 ^= F64_SIGN;
break;
case 3: // FNMSUB_D
v1 ^= F64_SIGN;
break;
}
softfloat_roundingMode = rmm_map.at(mode);
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 63;
float64_t res = softfloat_mulAddF64(v1, v2, v3, 0);
return res.v;
}
@@ -377,8 +393,8 @@ uint64_t fclass_d(uint64_t v1) {
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF64UI(uiA) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI(uiA) == 0;
bool infOrNaN = expF64UI(uiA) == 0x7FF;
bool subnormalOrZero = expF64UI(uiA) == 0;
bool sign = signF64UI(uiA);
bool fracZero = fracF64UI(uiA) == 0;
bool isNaN = isNaNF64UI(uiA);

View File

@@ -96,7 +96,8 @@ protected:
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return index<traits::reg_aliases.size()?traits::reg_aliases[index]:"illegal";}
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
@@ -274,9 +275,6 @@ template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__
@@ -332,17 +330,21 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
while(!this->core.should_stop() &&
!(is_icount_limit_enabled(cond) && icount >= count_limit) &&
!(is_fcount_limit_enabled(cond) && fetch_count >= count_limit)){
fetch_count++;
if(this->debugging_enabled())
this->tgt_adapter->check_continue(*PC);
pc.val=*PC;
if(fetch_ins(pc, data)!=iss::Ok){
this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0);
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, std::numeric_limits<unsigned>::max());
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(PRE_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(arch::traits<ARCH>::RV_CAUSE_FETCH_ACCESS<<16, pc.val, 0);
} else {
if (is_jump_to_self_enabled(cond) &&
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
uint32_t inst_index = instr_decoder.decode_instr(instr);
opcode_e inst_id = arch::traits<ARCH>::opcode_e::MAX_OPCODE;;
if(inst_index <instr_descr.size())
inst_id = instr_descr.at(instr_decoder.decode_instr(instr)).op;
inst_id = instr_descr[inst_index].op;
// pre execution stuff
this->core.reg.last_branch = 0;
@@ -1457,7 +1459,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::ECALL: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "ecall");
//No disass specified, using instruction name
std::string mnemonic = "ecall";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 4;
@@ -1470,7 +1474,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::EBREAK: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "ebreak");
//No disass specified, using instruction name
std::string mnemonic = "ebreak";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 4;
@@ -1483,7 +1489,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::MRET: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "mret");
//No disass specified, using instruction name
std::string mnemonic = "mret";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 4;
@@ -1496,7 +1504,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::WFI: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "wfi");
//No disass specified, using instruction name
std::string mnemonic = "wfi";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 4;
@@ -1720,7 +1730,7 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence.i"),
"{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"),
fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
this->core.disass_output(pc.val, mnemonic);
}
@@ -2094,7 +2104,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "c.nop");
//No disass specified, using instruction name
std::string mnemonic = "c.nop";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 2;
@@ -2200,7 +2212,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, ".reserved_clui");
//No disass specified, using instruction name
std::string mnemonic = ".reserved_clui";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 2;
@@ -2519,7 +2533,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::__reserved_cmv: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, ".reserved_cmv");
//No disass specified, using instruction name
std::string mnemonic = ".reserved_cmv";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 2;
@@ -2585,7 +2601,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::C__EBREAK: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "c.ebreak");
//No disass specified, using instruction name
std::string mnemonic = "c.ebreak";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 2;
@@ -2624,7 +2642,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
case arch::traits<ARCH>::opcode_e::DII: {
if(this->disass_enabled){
/* generate console output when executing the command */
this->core.disass_output(pc.val, "dii");
//No disass specified, using instruction name
std::string mnemonic = "dii";
this->core.disass_output(pc.val, mnemonic);
}
// used registers// calculate next pc value
*NEXT_PC = *PC + 2;
@@ -2654,11 +2674,11 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
icount++;
instret++;
}
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC;
*PC = *NEXT_PC;
this->core.reg.trap_state = this->core.reg.pending_trap;
}
fetch_count++;
cycle++;
}
return pc;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff