Compare commits

..

49 Commits

Author SHA1 Message Date
c83b10df38 corrects puts in libwrap 2025-01-17 13:16:49 +01:00
24b64bce3e re-adds symbolic link for tgc_vp 2025-01-16 11:17:54 +01:00
fbe6560e79 makes bsp standalone library 2025-01-16 11:09:40 +01:00
0464b3b589 adds malloc to libwrap CMake 2025-01-16 11:09:20 +01:00
242c506e41 ammends toolchainfile 2025-01-07 11:01:22 +01:00
0a3b25cc6d updates Make build system with new Board specific writes 2025-01-07 10:45:02 +01:00
4d15523a74 removes -g switch from toolchain file as it gets set when using Debug anyway, this way it wont be in Release or others 2025-01-06 20:47:03 +01:00
e652e59dac removes platform dependency in libwrap 2025-01-06 20:45:20 +01:00
6cd7ea887a removes unused CMakeLists 2025-01-06 20:23:10 +01:00
cef1036169 adds board specific read for iss, changes read implementation 2025-01-06 20:21:21 +01:00
d9692688b6 changes puts functionality to use new board specific write 2025-01-06 20:20:48 +01:00
2c063fe9a4 adds toolchain file 2025-01-06 20:19:52 +01:00
32ff23709f splits write.c, adds iss implementation and adds CMake build system 2025-01-06 20:19:05 +01:00
bace1c31c1 moves semihosting away from libwrap 2025-01-06 20:17:40 +01:00
790379cd78 moves testbench implementations 2025-01-06 20:17:05 +01:00
7ea13b8993 removes SiFive from bsp 2025-01-06 20:16:29 +01:00
9ff9727bd6 replaces ehrenberg with new implementations 2025-01-06 20:15:44 +01:00
f419b1a3e6 first version of working cmake 2024-12-20 14:27:45 +01:00
32b9cc78b4 adds first version of cmake 2024-12-17 12:32:21 +01:00
5eac63d773 fix timer macro 2024-11-06 11:24:09 +01:00
e8cfbbdab0 add communication controller register interface 2024-11-05 13:01:57 +01:00
8e62de5cdf add RAM linker file 2024-10-01 10:56:40 +02:00
3484dc66e3 fix interrupt handler and Moonlight ROM size 2024-09-26 12:18:50 +02:00
ea5d61ec0b adds some cosmetic fixes 2024-09-14 09:58:57 +02:00
b36a42b386 update moonlight register headers. Remove unused control register in
camera
2024-09-10 15:46:32 +02:00
f632436fda rename SDMA to DMA 2024-08-28 16:18:18 +02:00
7a065a1d24 adds non-vectored interrupt handler 2024-08-23 21:56:15 +02:00
ac3ef788f9 fixes naming in qspi header 2024-08-18 20:27:41 +02:00
a00e57a8d2 does some cleanup 2024-08-11 17:30:16 +02:00
5d78f839a5 removes attribute packed as it disables word access generation by gcc 2024-08-11 17:29:43 +02:00
46d55f353e adds signature to start of firmware 2024-08-11 17:29:13 +02:00
d621264ef7 updates gpio registers 2024-08-09 14:20:00 +02:00
785cf20e8e fixes include guards 2024-08-04 13:27:53 +02:00
85ae6c1c59 simpledma renamed to dma 2024-08-02 12:36:38 +02:00
2e98acdeb2 Ehrenberg firmware headers generated with peakrdl 1.2.8 2024-08-02 09:55:38 +02:00
79a245b7f2 updates Ehrenberg device files 2024-07-16 16:22:42 +02:00
1f4b4d2bb9 updates ehrenberg dma device to support dual channel 2024-07-11 22:36:41 +02:00
9d607e932a updates BSP definitions for Ehrenberg 2024-07-01 11:41:28 +02:00
daa1ed184d adds missing ehrenberg devices 2024-06-10 12:21:20 +02:00
231366cc94 updates ehrenberg devices and BSP 2024-06-10 10:13:07 +02:00
gabriel
c94eb7c61a update include path 2024-05-31 09:21:57 +02:00
gabriel
9407d2cec5 Merge branch 'develop' of https://git.minres.com/Firmware/MNRS-BM-BSP into develop 2024-05-31 08:58:05 +02:00
gabriel
092f0fdfd3 update include paths 2024-05-31 08:56:21 +02:00
05062c5be4 updates Ehrenberg register description 2024-05-30 18:33:53 +02:00
442384574b Merge branch 'develop' of
https://git.minres.com/Firmware/MNRS-BM-BSP.git into develop
2024-05-30 18:33:35 +02:00
gabriel
ff8b3bb39c merge semihosting and bsp 2024-04-30 08:56:57 +02:00
gabriel
9aaf428620 further semihosting support 2024-04-30 08:48:44 +02:00
gabriel
e83f7996bc Adding semihosting support for bmsp 2024-04-08 14:36:22 +02:00
gabriel
39ee91af7d first semihosting integration 2024-02-26 20:41:15 +01:00
87 changed files with 2877 additions and 2801 deletions

1
.gitignore vendored
View File

@ -151,3 +151,4 @@ compile_commands.json
CTestTestfile.cmake
*.dump
/doc/

29
CMakeLists.txt Normal file
View File

@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.21)
project(mnrs-bsp LANGUAGES ASM C)
if(NOT DEFINED BOARD)
message(FATAL_ERROR "No Board selected")
endif()
add_compile_definitions("BOARD_${BOARD}")
# check if we are building for a testbench, adjust the Base accordingly
set(BOARD_BASE ${BOARD})
option(SEMIHOSTING "Enable semihosting support" OFF)
if(SEMIHOSTING)
add_compile_definitions(SEMIHOSTING)
endif()
add_library(startup STATIC env/start.S env/entry.S)
target_include_directories(startup PUBLIC env include)
add_subdirectory(libwrap)
add_library(bsp STATIC env/${BOARD_BASE}/init.c)
target_link_libraries(bsp PUBLIC startup wrap)
target_include_directories(bsp PUBLIC env/${BOARD_BASE})
target_link_options(bsp INTERFACE LINKER:--no-warn-rwx-segments -nostartfiles -T ${CMAKE_CURRENT_SOURCE_DIR}/env/${BOARD_BASE}/link.lds)
if(SEMIHOSTING)
target_include_directories(bsp INTERFACE include)
target_sources(bsp INTERFACE env/semihosting.c env/trap.c)
endif()

59
cmake/rv32imc.cmake Normal file
View File

@ -0,0 +1,59 @@
# Look for GCC in path
# https://xpack.github.io/riscv-none-embed-gcc/
FIND_FILE( RISCV_XPACK_GCC_COMPILER_EXE "riscv-none-embed-gcc.exe" PATHS ENV INCLUDE)
FIND_FILE( RISCV_XPACK_GCC_COMPILER "riscv-none-embed-gcc" PATHS ENV INCLUDE)
# New versions of xpack
FIND_FILE( RISCV_XPACK_NEW_GCC_COMPILER_EXE "riscv-none-elf-gcc.exe" PATHS ENV INCLUDE)
FIND_FILE( RISCV_XPACK_NEW_GCC_COMPILER "riscv-none-elf-gcc" PATHS ENV INCLUDE)
# Look for RISC-V github GCC
# https://github.com/riscv/riscv-gnu-toolchain
FIND_FILE( RISCV_XPACK_GCC_COMPILER_EXT "riscv64-unknown-elf-gcc.exe" PATHS ENV INCLUDE)
FIND_FILE( RISCV_XPACK_GCC_COMPILER "riscv64-unknown-elf-gcc" PATHS ENV INCLUDE)
# Select which is found
if (EXISTS ${RISCV_XPACK_NEW_GCC_COMPILER})
set( RISCV_GCC_COMPILER ${RISCV_XPACK_NEW_GCC_COMPILER})
elseif (EXISTS ${RISCV_XPACK_GCC_NEW_COMPILER_EXE})
set( RISCV_GCC_COMPILER ${RISCV_XPACK_NEW_GCC_COMPILER_EXE})
elseif (EXISTS ${RISCV_XPACK_GCC_COMPILER})
set( RISCV_GCC_COMPILER ${RISCV_XPACK_GCC_COMPILER})
elseif (EXISTS ${RISCV_XPACK_GCC_COMPILER_EXE})
set( RISCV_GCC_COMPILER ${RISCV_XPACK_GCC_COMPILER_EXE})
elseif (EXISTS ${RISCV_GITHUB_GCC_COMPILER})
set( RISCV_GCC_COMPILER ${RISCV_GITHUB_GCC_COMPILER})
elseif (EXISTS ${RISCV_GITHUB_GCC_COMPILER_EXE})
set( RISCV_GCC_COMPILER ${RISCV_GITHUB_GCC_COMPILER_EXE})
else()
message(FATAL_ERROR "RISC-V GCC not found. ${RISCV_GITHUB_GCC_COMPILER} ${RISCV_XPACK_GCC_COMPILER} ${RISCV_GITHUB_GCC_COMPILER_EXE} ${RISCV_XPACK_GCC_COMPILER_EXE}")
endif()
get_filename_component(RISCV_TOOLCHAIN_BIN_PATH ${RISCV_GCC_COMPILER} DIRECTORY)
get_filename_component(RISCV_TOOLCHAIN_BIN_GCC ${RISCV_GCC_COMPILER} NAME_WE)
get_filename_component(RISCV_TOOLCHAIN_BIN_EXT ${RISCV_GCC_COMPILER} EXT)
STRING(REGEX REPLACE "\-gcc" "-" CROSS_COMPILE ${RISCV_TOOLCHAIN_BIN_GCC})
# The Generic system name is used for embedded targets (targets without OS)
set(CMAKE_SYSTEM_NAME Generic )
set(CMAKE_EXECUTABLE_SUFFIX_C ".elf")
set(RISCV_ARCH rv32imc_zicsr_zifencei )
set(RISCV_ABI ilp32)
set(CMAKE_ASM_COMPILER {CROSS_COMPILE}gcc )
set(CMAKE_AR ${CROSS_COMPILE}ar)
set(CMAKE_ASM_COMPILER ${CROSS_COMPILE}gcc)
set(CMAKE_C_COMPILER ${CROSS_COMPILE}gcc)
set(CMAKE_CXX_COMPILER ${CROSS_COMPILE}g++)
set( CMAKE_OBJCOPY ${RISCV_TOOLCHAIN_BIN_PATH}/${CROSS_COMPILE}objcopy
CACHE FILEPATH "The toolchain objcopy command " FORCE )
set( CMAKE_OBJDUMP ${RISCV_TOOLCHAIN_BIN_PATH}/${CROSS_COMPILE}objdump
CACHE FILEPATH "The toolchain objdump command " FORCE )
set( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=${RISCV_ARCH} -mabi=${RISCV_ABI}" )
set( CMAKE_C_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "" )
set( CMAKE_CXX_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "" )
set( CMAKE_ASM_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "" )

View File

@ -1,252 +0,0 @@
// See LICENSE file for license details
#include "platform.h"
#ifdef PRCI_CTRL_ADDR
#include "fe300prci/fe300prci_driver.h"
#include <unistd.h>
#define rdmcycle(x) { \
uint32_t lo, hi, hi2; \
__asm__ __volatile__ ("1:\n\t" \
"csrr %0, mcycleh\n\t" \
"csrr %1, mcycle\n\t" \
"csrr %2, mcycleh\n\t" \
"bne %0, %2, 1b\n\t" \
: "=r" (hi), "=r" (lo), "=r" (hi2)) ; \
*(x) = lo | ((uint64_t) hi << 32); \
}
uint32_t PRCI_measure_mcycle_freq(uint32_t mtime_ticks, uint32_t mtime_freq)
{
uint32_t start_mtime = CLINT_REG(CLINT_MTIME);
uint32_t end_mtime = start_mtime + mtime_ticks + 1;
// Make sure we won't get rollover.
while (end_mtime < start_mtime){
start_mtime = CLINT_REG(CLINT_MTIME);
end_mtime = start_mtime + mtime_ticks + 1;
}
// Don't start measuring until mtime edge.
uint32_t tmp = start_mtime;
do {
start_mtime = CLINT_REG(CLINT_MTIME);
} while (start_mtime == tmp);
uint64_t start_mcycle;
rdmcycle(&start_mcycle);
while (CLINT_REG(CLINT_MTIME) < end_mtime) ;
uint64_t end_mcycle;
rdmcycle(&end_mcycle);
uint32_t difference = (uint32_t) (end_mcycle - start_mcycle);
uint64_t freq = ((uint64_t) difference * mtime_freq) / mtime_ticks;
return (uint32_t) freq & 0xFFFFFFFF;
}
void PRCI_use_hfrosc(int div, int trim)
{
// Make sure the HFROSC is running at its default setting
// It is OK to change this even if we are running off of it.
PRCI_REG(PRCI_HFROSCCFG) = (ROSC_DIV(div) | ROSC_TRIM(trim) | ROSC_EN(1));
while ((PRCI_REG(PRCI_HFROSCCFG) & ROSC_RDY(1)) == 0);
PRCI_REG(PRCI_PLLCFG) &= ~PLL_SEL(1);
}
void PRCI_use_pll(int refsel, int bypass,
int r, int f, int q, int finaldiv,
int hfroscdiv, int hfrosctrim)
{
// Ensure that we aren't running off the PLL before we mess with it.
if (PRCI_REG(PRCI_PLLCFG) & PLL_SEL(1)) {
// Make sure the HFROSC is running at its default setting
PRCI_use_hfrosc(4, 16);
}
// Set PLL Source to be HFXOSC if desired.
uint32_t config_value = 0;
config_value |= PLL_REFSEL(refsel);
if (bypass) {
// Bypass
config_value |= PLL_BYPASS(1);
PRCI_REG(PRCI_PLLCFG) = config_value;
// If we don't have an HFXTAL, this doesn't really matter.
// Set our Final output divide to divide-by-1:
PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
} else {
// To overclock, use the hfrosc
if (hfrosctrim >= 0 && hfroscdiv >= 0) {
PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
}
// Set DIV Settings for PLL
// (Legal values of f_REF are 6-48MHz)
// Set DIVR to divide-by-2 to get 8MHz frequency
// (legal values of f_R are 6-12 MHz)
config_value |= PLL_BYPASS(1);
config_value |= PLL_R(r);
// Set DIVF to get 512Mhz frequncy
// There is an implied multiply-by-2, 16Mhz.
// So need to write 32-1
// (legal values of f_F are 384-768 MHz)
config_value |= PLL_F(f);
// Set DIVQ to divide-by-2 to get 256 MHz frequency
// (legal values of f_Q are 50-400Mhz)
config_value |= PLL_Q(q);
// Set our Final output divide to divide-by-1:
if (finaldiv == 1){
PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
} else {
PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV(finaldiv-1));
}
PRCI_REG(PRCI_PLLCFG) = config_value;
// Un-Bypass the PLL.
PRCI_REG(PRCI_PLLCFG) &= ~PLL_BYPASS(1);
// Wait for PLL Lock
// Note that the Lock signal can be glitchy.
// Need to wait 100 us
// RTC is running at 32kHz.
// So wait 4 ticks of RTC.
uint32_t now = CLINT_REG(CLINT_MTIME);
while (CLINT_REG(CLINT_MTIME) - now < 4) ;
// Now it is safe to check for PLL Lock
while ((PRCI_REG(PRCI_PLLCFG) & PLL_LOCK(1)) == 0);
}
// Switch over to PLL Clock source
PRCI_REG(PRCI_PLLCFG) |= PLL_SEL(1);
// If we're running off HFXOSC, turn off the HFROSC to
// save power.
if (refsel) {
PRCI_REG(PRCI_HFROSCCFG) &= ~ROSC_EN(1);
}
}
void PRCI_use_default_clocks()
{
// Turn off the LFROSC
AON_REG(AON_LFROSC) &= ~ROSC_EN(1);
// Use HFROSC
PRCI_use_hfrosc(4, 16);
}
void PRCI_use_hfxosc(uint32_t finaldiv)
{
PRCI_use_pll(1, // Use HFXTAL
1, // Bypass = 1
0, // PLL settings don't matter
0, // PLL settings don't matter
0, // PLL settings don't matter
finaldiv,
-1,
-1);
}
// This is a generic function, which
// doesn't span the entire range of HFROSC settings.
// It only adjusts the trim, which can span a hundred MHz or so.
// This function does not check the legality of the PLL settings
// at all, and it is quite possible to configure invalid PLL settings
// this way.
// It returns the actual measured CPU frequency.
uint32_t PRCI_set_hfrosctrim_for_f_cpu(uint32_t f_cpu, PRCI_freq_target target )
{
uint32_t hfrosctrim = 0;
uint32_t hfroscdiv = 4;
uint32_t prev_trim = 0;
// In this function we use PLL settings which
// will give us a 32x multiplier from the output
// of the HFROSC source to the output of the
// PLL. We first measure our HFROSC to get the
// right trim, then finally use it as the PLL source.
// We should really check here that the f_cpu
// requested is something in the limit of the PLL. For
// now that is up to the user.
// This will undershoot for frequencies not divisible by 16.
uint32_t desired_hfrosc_freq = (f_cpu/ 16);
PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
// Ignore the first run (for icache reasons)
uint32_t cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);
cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);
uint32_t prev_freq = cpu_freq;
while ((cpu_freq < desired_hfrosc_freq) && (hfrosctrim < 0x1F)){
prev_trim = hfrosctrim;
prev_freq = cpu_freq;
hfrosctrim ++;
PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);
}
// We couldn't go low enough
if (prev_freq > desired_hfrosc_freq){
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
cpu_freq = PRCI_measure_mcycle_freq(1000, RTC_FREQ);
return cpu_freq;
}
// We couldn't go high enough
if (cpu_freq < desired_hfrosc_freq){
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
cpu_freq = PRCI_measure_mcycle_freq(1000, RTC_FREQ);
return cpu_freq;
}
// Check for over/undershoot
switch(target) {
case(PRCI_FREQ_CLOSEST):
if ((desired_hfrosc_freq - prev_freq) < (cpu_freq - desired_hfrosc_freq)) {
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
} else {
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, hfrosctrim);
}
break;
case(PRCI_FREQ_UNDERSHOOT):
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
break;
default:
PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, hfrosctrim);
}
cpu_freq = PRCI_measure_mcycle_freq(1000, RTC_FREQ);
return cpu_freq;
}
#endif

View File

@ -1,79 +0,0 @@
// See LICENSE file for license details
#ifndef _FE300PRCI_DRIVER_H_
#define _FE300PRCI_DRIVER_H_
__BEGIN_DECLS
#include <unistd.h>
typedef enum prci_freq_target {
PRCI_FREQ_OVERSHOOT,
PRCI_FREQ_CLOSEST,
PRCI_FREQ_UNDERSHOOT
} PRCI_freq_target;
/* Measure and return the approximate frequency of the
* CPU, as given by measuring the mcycle counter against
* the mtime ticks.
*/
uint32_t PRCI_measure_mcycle_freq(uint32_t mtime_ticks, uint32_t mtime_freq);
/* Safely switch over to the HFROSC using the given div
* and trim settings.
*/
void PRCI_use_hfrosc(int div, int trim);
/* Safely switch over to the 16MHz HFXOSC,
* applying the finaldiv clock divider (1 is the lowest
* legal value).
*/
void PRCI_use_hfxosc(uint32_t finaldiv);
/* Safely switch over to the PLL using the given
* settings.
*
* Note that not all combinations of the inputs are actually
* legal, and this function does not check for their
* legality ("safely" means that this function won't turn off
* or glitch the clock the CPU is actually running off, but
* doesn't protect against you making it too fast or slow.)
*/
void PRCI_use_pll(int refsel, int bypass,
int r, int f, int q, int finaldiv,
int hfroscdiv, int hfrosctrim);
/* Use the default clocks configured at reset.
* This is ~16Mhz HFROSC and turns off the LFROSC
* (on the current FE310 Dev Platforms, an external LFROSC is
* used as it is more power efficient).
*/
void PRCI_use_default_clocks();
/* This routine will adjust the HFROSC trim
* while using HFROSC as the clock source,
* measure the resulting frequency, then
* use it as the PLL clock source,
* in an attempt to get over, under, or close to the
* requested frequency. It returns the actual measured
* frequency.
*
* Note that the requested frequency must be within the
* range supported by the PLL so not all values are
* achievable with this function, and not all
* are guaranteed to actually work. The PLL
* is rated higher than the hardware.
*
* There is no check on the desired f_cpu frequency, it
* is up to the user to specify something reasonable.
*/
uint32_t PRCI_set_hfrosctrim_for_f_cpu(uint32_t f_cpu, PRCI_freq_target target);
__END_DECLS
#endif

10
env/common-gcc.mk vendored
View File

@ -2,7 +2,6 @@ ifndef _MK_COMMON
_MK_COMMON := # defined
TL_TARGET?=all
BOARD?=iss
.PHONY: $(TL_TARGET)
$(TL_TARGET): $(TARGET).elf
@ -13,9 +12,12 @@ PLATFORM_DIR = $(ENV_DIR)/$(BOARD)
include $(BSP_BASE)/libwrap/libwrap.mk
BOARD?=iss
ASM_SRCS += $(ENV_DIR)/start.S $(ENV_DIR)/entry.S
C_SRCS += $(PLATFORM_DIR)/init.c
C_SRCS += $(PLATFORM_DIR)/bsp_write.c $(PLATFORM_DIR)/bsp_read.c
LINKER_SCRIPT ?= $(PLATFORM_DIR)/$(LINK_TARGET).lds
@ -23,6 +25,7 @@ INCLUDES += -I$(BSP_BASE)/include
INCLUDES += -I$(BSP_BASE)/drivers/
INCLUDES += -I$(ENV_DIR)
INCLUDES += -I$(PLATFORM_DIR)
INCLUDES += -I$(BSP_BASE)/libwrap/sys/
LDFLAGS += -march=$(RISCV_ARCH) -mabi=$(RISCV_ABI)
LDFLAGS += -L$(ENV_DIR)
@ -42,7 +45,7 @@ CXX_OBJS := $(CXX_SRCS:.cpp=.o)
LINK_OBJS += $(ASM_OBJS) $(C_OBJS) $(CXX_OBJS)
LINK_DEPS += $(LINKER_SCRIPT)
CLEAN_OBJS += $(TARGET).elf $(LINK_OBJS)
CLEAN_OBJS += $(TARGET) $(LINK_OBJS)
GCCVERSION = $(shell $(CC) --version | grep gcc | awk '{print($NF);}')
ifeq ($(GCCVERSION),9.2)
@ -64,7 +67,6 @@ OBJCOPY := $(TOOL_DIR)$(TRIPLET)-objcopy
ifndef NO_DEFAULT_LINK
$(TARGET).elf: $(LINK_OBJS) $(LINK_DEPS)
echo LINK_OBJS: $(LINK_OBJS)
$(LD) $(LINK_OBJS) $(LDFLAGS) $(LIBWRAP_LDFLAGS) $(LIBWRAP) $(LD_SCRIPT) -o $@
$(OBJDUMP) -d -S $@ > $(TARGET).dis
endif
@ -80,6 +82,6 @@ $(CXX_OBJS): %.o: %.cpp $(HEADERS)
.PHONY: clean
clean:
rm -f $(CLEAN_OBJS) $(LIBWRAP)
rm -f $(CLEAN_OBJS) $(LIBWRAP) *.a *.hex *.map *.dis *.elf
endif

View File

@ -1,44 +0,0 @@
// See LICENSE for license details.
#ifndef _ISS_PLATFORM_H
#define _ISS_PLATFORM_H
#if __riscv_xlen == 32
#define MCAUSE_INT 0x80000000UL
#define MCAUSE_CAUSE 0x000003FFUL
#else
#define MCAUSE_INT 0x8000000000000000UL
#define MCAUSE_CAUSE 0x00000000000003FFUL
#endif
#define APB_BUS
#include "ehrenberg/devices/gpio.h"
#include "ehrenberg/devices/uart.h"
#include "ehrenberg/devices/timer.h"
#include "ehrenberg/devices/aclint.h"
#include "ehrenberg/devices/interrupt.h"
#include "ehrenberg/devices/qspi.h"
#define PERIPH(TYPE, ADDR) ((volatile TYPE*) (ADDR))
#define APB_BASE 0xF0000000
#define gpio PERIPH(gpio_t, APB_BASE+0x0000)
#define uart PERIPH(uart_t, APB_BASE+0x1000)
#define timer PERIPH(timer_t, APB_BASE+0x20000)
#define aclint PERIPH(aclint_t, APB_BASE+0x30000)
#define irq PERIPH(irq_t, APB_BASE+0x40000)
#define qspi PERIPH(qspi_t, APB_BASE+0x50000)
#define XIP_START_LOC 0xE0040000
// Misc
#include <stdint.h>
void init_pll(void);
unsigned long get_cpu_freq(void);
unsigned long get_timer_freq(void);
#endif /* _ISS_PLATFORM_H */

122
env/entry.S vendored
View File

@ -10,66 +10,80 @@
.align 2
.global trap_entry
trap_entry:
#ifdef __riscv_abi_rve
addi sp, sp, -8*REGBYTES
STORE x1, 1*REGBYTES(sp) // ra
STORE x5, 2*REGBYTES(sp) // t0
STORE x10, 3*REGBYTES(sp) // a0
STORE x11, 4*REGBYTES(sp) // a1
STORE x12, 5*REGBYTES(sp) // a2
STORE x13, 6*REGBYTES(sp) // a3
STORE x15, 7*REGBYTES(sp) // t1
#else
addi sp, sp, -16*REGBYTES
STORE x1, 1*REGBYTES(sp) // ra
STORE x5, 2*REGBYTES(sp) // t0
STORE x6, 3*REGBYTES(sp) // t1
STORE x7, 4*REGBYTES(sp) // t2
STORE x10, 5*REGBYTES(sp) // a0
STORE x11, 6*REGBYTES(sp) // a1
STORE x12, 7*REGBYTES(sp) // a2
STORE x13, 8*REGBYTES(sp) // a3
STORE x14, 9*REGBYTES(sp) // a4
STORE x15, 10*REGBYTES(sp) // a5
STORE x16, 11*REGBYTES(sp) // a6
STORE x17, 12*REGBYTES(sp) // a7
STORE x28, 13*REGBYTES(sp) // t3
STORE x29, 14*REGBYTES(sp) // t4
STORE x30, 15*REGBYTES(sp) // t5
STORE x31, 16*REGBYTES(sp) // t6
addi sp, sp, -32*REGBYTES
sw x1, 1*REGBYTES(sp)
sw x2, 2*REGBYTES(sp)
sw x3, 3*REGBYTES(sp)
sw x4, 4*REGBYTES(sp)
sw x5, 5*REGBYTES(sp)
sw x6, 6*REGBYTES(sp)
sw x7, 7*REGBYTES(sp)
sw x8, 8*REGBYTES(sp)
sw x9, 9*REGBYTES(sp)
sw x10, 10*REGBYTES(sp)
sw x11, 11*REGBYTES(sp)
sw x12, 12*REGBYTES(sp)
sw x13, 13*REGBYTES(sp)
sw x14, 14*REGBYTES(sp)
sw x15, 15*REGBYTES(sp)
#ifndef __riscv_abi_rve
sw x16, 16*REGBYTES(sp)
sw x17, 17*REGBYTES(sp)
sw x18, 18*REGBYTES(sp)
sw x19, 19*REGBYTES(sp)
sw x20, 20*REGBYTES(sp)
sw x21, 21*REGBYTES(sp)
sw x22, 22*REGBYTES(sp)
sw x23, 23*REGBYTES(sp)
sw x24, 24*REGBYTES(sp)
sw x25, 25*REGBYTES(sp)
sw x26, 26*REGBYTES(sp)
sw x27, 27*REGBYTES(sp)
sw x28, 28*REGBYTES(sp)
sw x29, 29*REGBYTES(sp)
sw x30, 30*REGBYTES(sp)
sw x31, 31*REGBYTES(sp)
#endif
csrr a0, mcause
csrr a1, mepc
mv a2, sp
call handle_trap
csrw mepc, a0
#ifdef __riscv_abi_rve
addi sp, sp, -8*REGBYTES
LOAD x1, 1*REGBYTES(sp) // ra
LOAD x5, 2*REGBYTES(sp) // t0
LOAD x10, 3*REGBYTES(sp) // a0
LOAD x11, 4*REGBYTES(sp) // a1
LOAD x12, 5*REGBYTES(sp) // a2
LOAD x13, 6*REGBYTES(sp) // a3
LOAD x15, 7*REGBYTES(sp) // t1
#else
addi sp, sp, -16*REGBYTES
LOAD x1, 1*REGBYTES(sp) // ra
LOAD x5, 2*REGBYTES(sp) // t0
LOAD x6, 3*REGBYTES(sp) // t1
LOAD x7, 4*REGBYTES(sp) // t2
LOAD x10, 5*REGBYTES(sp) // a0
LOAD x11, 6*REGBYTES(sp) // a1
LOAD x12, 7*REGBYTES(sp) // a2
LOAD x13, 8*REGBYTES(sp) // a3
LOAD x14, 9*REGBYTES(sp) // a4
LOAD x15, 10*REGBYTES(sp) // a5
LOAD x16, 11*REGBYTES(sp) // a6
LOAD x17, 12*REGBYTES(sp) // a7
LOAD x28, 13*REGBYTES(sp) // t3
LOAD x29, 14*REGBYTES(sp) // t4
LOAD x30, 15*REGBYTES(sp) // t5
LOAD x31, 16*REGBYTES(sp) // t6
lw x1, 1*REGBYTES(sp)
lw x2, 2*REGBYTES(sp)
lw x3, 3*REGBYTES(sp)
lw x4, 4*REGBYTES(sp)
lw x5, 5*REGBYTES(sp)
lw x6, 6*REGBYTES(sp)
lw x7, 7*REGBYTES(sp)
lw x8, 8*REGBYTES(sp)
lw x9, 9*REGBYTES(sp)
lw x10, 10*REGBYTES(sp)
lw x11, 11*REGBYTES(sp)
lw x12, 12*REGBYTES(sp)
lw x13, 13*REGBYTES(sp)
lw x14, 14*REGBYTES(sp)
lw x15, 15*REGBYTES(sp)
#ifndef __riscv_abi_rve
lw x16, 16*REGBYTES(sp)
lw x17, 17*REGBYTES(sp)
lw x18, 18*REGBYTES(sp)
lw x19, 19*REGBYTES(sp)
lw x20, 20*REGBYTES(sp)
lw x21, 21*REGBYTES(sp)
lw x22, 22*REGBYTES(sp)
lw x23, 23*REGBYTES(sp)
lw x24, 24*REGBYTES(sp)
lw x25, 25*REGBYTES(sp)
lw x26, 26*REGBYTES(sp)
lw x27, 27*REGBYTES(sp)
lw x28, 28*REGBYTES(sp)
lw x29, 29*REGBYTES(sp)
lw x30, 30*REGBYTES(sp)
lw x31, 31*REGBYTES(sp)
#endif
mret

81
env/hifive1.h vendored
View File

@ -1,81 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_HIFIVE1_H
#define _SIFIVE_HIFIVE1_H
#include <stdint.h>
/****************************************************************************
* GPIO Connections
*****************************************************************************/
// These are the GPIO bit offsets for the RGB LED on HiFive1 Board.
// These are also mapped to RGB LEDs on the Freedom E300 Arty
// FPGA
// Dev Kit.
#define RED_LED_OFFSET 22
#define GREEN_LED_OFFSET 19
#define BLUE_LED_OFFSET 21
// These are the GPIO bit offsets for the differen digital pins
// on the headers for both the HiFive1 Board and the Freedom E300 Arty FPGA Dev Kit.
#define PIN_0_OFFSET 16
#define PIN_1_OFFSET 17
#define PIN_2_OFFSET 18
#define PIN_3_OFFSET 19
#define PIN_4_OFFSET 20
#define PIN_5_OFFSET 21
#define PIN_6_OFFSET 22
#define PIN_7_OFFSET 23
#define PIN_8_OFFSET 0
#define PIN_9_OFFSET 1
#define PIN_10_OFFSET 2
#define PIN_11_OFFSET 3
#define PIN_12_OFFSET 4
#define PIN_13_OFFSET 5
//#define PIN_14_OFFSET 8 //This pin is not connected on either board.
#define PIN_15_OFFSET 9
#define PIN_16_OFFSET 10
#define PIN_17_OFFSET 11
#define PIN_18_OFFSET 12
#define PIN_19_OFFSET 13
// These are *PIN* numbers, not
// GPIO Offset Numbers.
#define PIN_SPI1_SCK (13u)
#define PIN_SPI1_MISO (12u)
#define PIN_SPI1_MOSI (11u)
#define PIN_SPI1_SS0 (10u)
#define PIN_SPI1_SS1 (14u)
#define PIN_SPI1_SS2 (15u)
#define PIN_SPI1_SS3 (16u)
#define SS_PIN_TO_CS_ID(x) \
((x==PIN_SPI1_SS0 ? 0 : \
(x==PIN_SPI1_SS1 ? 1 : \
(x==PIN_SPI1_SS2 ? 2 : \
(x==PIN_SPI1_SS3 ? 3 : \
-1)))))
// These buttons are present only on the Freedom E300 Arty Dev Kit.
#ifdef HAS_BOARD_BUTTONS
#define BUTTON_0_OFFSET 15
#define BUTTON_1_OFFSET 30
#define BUTTON_2_OFFSET 31
#define INT_DEVICE_BUTTON_0 (INT_GPIO_BASE + BUTTON_0_OFFSET)
#define INT_DEVICE_BUTTON_1 (INT_GPIO_BASE + BUTTON_1_OFFSET)
#define INT_DEVICE_BUTTON_2 (INT_GPIO_BASE + BUTTON_2_OFFSET)
#endif
#define HAS_HFXOSC 1
#define HAS_LFROSC_BYPASS 1
#define RTC_FREQ 32768
void write_hex(int fd, unsigned long int hex);
#endif /* _SIFIVE_HIFIVE1_H */

238
env/hifive1/init.c vendored
View File

@ -1,238 +0,0 @@
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include "platform.h"
#include "encoding.h"
extern int main(int argc, char** argv);
extern void trap_entry();
static unsigned long mtime_lo(void)
{
return *(volatile unsigned long *)(CLINT_CTRL_ADDR + CLINT_MTIME);
}
#ifdef __riscv32
static uint32_t mtime_hi(void)
{
return *(volatile uint32_t *)(CLINT_CTRL_ADDR + CLINT_MTIME + 4);
}
uint64_t get_timer_value()
{
while (1) {
uint32_t hi = mtime_hi();
uint32_t lo = mtime_lo();
if (hi == mtime_hi())
return ((uint64_t)hi << 32) | lo;
}
}
#else /* __riscv32 */
uint64_t get_timer_value()
{
return mtime_lo();
}
#endif
unsigned long get_timer_freq()
{
return 32768;
}
static void use_hfrosc(int div, int trim)
{
// Make sure the HFROSC is running at its default setting
PRCI_REG(PRCI_HFROSCCFG) = (ROSC_DIV(div) | ROSC_TRIM(trim) | ROSC_EN(1));
while ((PRCI_REG(PRCI_HFROSCCFG) & ROSC_RDY(1)) == 0) ;
PRCI_REG(PRCI_PLLCFG) &= ~PLL_SEL(1);
}
static void use_pll(int refsel, int bypass, int r, int f, int q)
{
// Ensure that we aren't running off the PLL before we mess with it.
if (PRCI_REG(PRCI_PLLCFG) & PLL_SEL(1)) {
// Make sure the HFROSC is running at its default setting
use_hfrosc(4, 16);
}
// Set PLL Source to be HFXOSC if available.
uint32_t config_value = 0;
config_value |= PLL_REFSEL(refsel);
if (bypass) {
// Bypass
config_value |= PLL_BYPASS(1);
PRCI_REG(PRCI_PLLCFG) = config_value;
// If we don't have an HFXTAL, this doesn't really matter.
// Set our Final output divide to divide-by-1:
PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
} else {
// In case we are executing from QSPI,
// (which is quite likely) we need to
// set the QSPI clock divider appropriately
// before boosting the clock frequency.
// Div = f_sck/2
SPI0_REG(SPI_REG_SCKDIV) = 8;
// Set DIV Settings for PLL
// Both HFROSC and HFXOSC are modeled as ideal
// 16MHz sources (assuming dividers are set properly for
// HFROSC).
// (Legal values of f_REF are 6-48MHz)
// Set DIVR to divide-by-2 to get 8MHz frequency
// (legal values of f_R are 6-12 MHz)
config_value |= PLL_BYPASS(1);
config_value |= PLL_R(r);
// Set DIVF to get 512Mhz frequncy
// There is an implied multiply-by-2, 16Mhz.
// So need to write 32-1
// (legal values of f_F are 384-768 MHz)
config_value |= PLL_F(f);
// Set DIVQ to divide-by-2 to get 256 MHz frequency
// (legal values of f_Q are 50-400Mhz)
config_value |= PLL_Q(q);
// Set our Final output divide to divide-by-1:
PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
PRCI_REG(PRCI_PLLCFG) = config_value;
// Un-Bypass the PLL.
PRCI_REG(PRCI_PLLCFG) &= ~PLL_BYPASS(1);
// Wait for PLL Lock
// Note that the Lock signal can be glitchy.
// Need to wait 100 us
// RTC is running at 32kHz.
// So wait 4 ticks of RTC.
uint32_t now = mtime_lo();
while (mtime_lo() - now < 4) ;
// Now it is safe to check for PLL Lock
while ((PRCI_REG(PRCI_PLLCFG) & PLL_LOCK(1)) == 0) ;
}
// Switch over to PLL Clock source
PRCI_REG(PRCI_PLLCFG) |= PLL_SEL(1);
}
static void use_default_clocks()
{
// Turn off the LFROSC
AON_REG(AON_LFROSC) &= ~ROSC_EN(1);
// Use HFROSC
use_hfrosc(4, 16);
}
static unsigned long __attribute__((noinline)) measure_cpu_freq(size_t n)
{
unsigned long start_mtime, delta_mtime;
unsigned long mtime_freq = get_timer_freq();
// Don't start measuruing until we see an mtime tick
unsigned long tmp = mtime_lo();
do {
start_mtime = mtime_lo();
} while (start_mtime == tmp);
unsigned long start_mcycle = read_csr(mcycle);
do {
delta_mtime = mtime_lo() - start_mtime;
} while (delta_mtime < n);
unsigned long delta_mcycle = read_csr(mcycle) - start_mcycle;
return (delta_mcycle / delta_mtime) * mtime_freq
+ ((delta_mcycle % delta_mtime) * mtime_freq) / delta_mtime;
}
unsigned long get_cpu_freq()
{
static uint32_t cpu_freq;
if (!cpu_freq) {
// warm up I$
measure_cpu_freq(1);
// measure for real
cpu_freq = measure_cpu_freq(10);
}
return cpu_freq;
}
static void uart_init(size_t baud_rate)
{
GPIO_REG(GPIO_IOF_SEL) &= ~IOF0_UART0_MASK;
GPIO_REG(GPIO_IOF_EN) |= IOF0_UART0_MASK;
UART0_REG(UART_REG_DIV) = get_cpu_freq() / baud_rate - 1;
UART0_REG(UART_REG_TXCTRL) |= UART_TXEN;
}
#ifdef USE_PLIC
extern void handle_m_ext_interrupt();
#endif
#ifdef USE_M_TIME
extern void handle_m_time_interrupt();
#endif
uintptr_t handle_trap(uintptr_t mcause, uintptr_t epc)
{
if (0){
#ifdef USE_PLIC
// External Machine-Level interrupt from PLIC
} else if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_EXT)) {
handle_m_ext_interrupt();
#endif
#ifdef USE_M_TIME
// External Machine-Level interrupt from PLIC
} else if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_TIMER)){
handle_m_time_interrupt();
#endif
}
else {
write(1, "trap\n", 5);
_exit(1 + mcause);
}
return epc;
}
void _init()
{
#ifndef NO_INIT
use_default_clocks();
use_pll(0, 0, 1, 31, 1);
uart_init(115200);
printf("core freq at %d Hz\n", get_cpu_freq());
write_csr(mtvec, &trap_entry);
if (read_csr(misa) & (1 << ('F' - 'A'))) { // if F extension is present
write_csr(mstatus, MSTATUS_FS); // allow FPU instructions without trapping
write_csr(fcsr, 0); // initialize rounding mode, undefined at reset
}
#endif
}
void _fini()
{
}

View File

@ -1,34 +0,0 @@
adapter_khz 10000
interface ftdi
ftdi_device_desc "Dual RS232-HS"
ftdi_vid_pid 0x0403 0x6010
ftdi_layout_init 0x0008 0x001b
ftdi_layout_signal nSRST -oe 0x0020 -data 0x0020
#Reset Stretcher logic on FE310 is ~1 second long
#This doesn't apply if you use
# ftdi_set_signal, but still good to document
#adapter_nsrst_delay 1500
set _CHIPNAME riscv
jtag newtap $_CHIPNAME cpu -irlen 5 -expected-id 0x10e31913
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME riscv -chain-position $_TARGETNAME
$_TARGETNAME configure -work-area-phys 0x80000000 -work-area-size 10000 -work-area-backup 1
flash bank onboard_spi_flash fespi 0x20000000 0 0 0 $_TARGETNAME
init
#reset -- This type of reset is not implemented yet
if {[ info exists pulse_srst]} {
ftdi_set_signal nSRST 0
ftdi_set_signal nSRST z
#Wait for the reset stretcher
#It will work without this, but
#will incur lots of delays for later commands.
sleep 1500
}
halt
#flash protect 0 64 last off

133
env/hifive1/platform.h vendored
View File

@ -1,133 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_PLATFORM_H
#define _SIFIVE_PLATFORM_H
// Some things missing from the official encoding.h
#define MCAUSE_INT 0x80000000
#define MCAUSE_CAUSE 0x7FFFFFFF
#include "bits.h"
#include "sifive/devices/aon.h"
#include "sifive/devices/clint.h"
#include "sifive/devices/gpio.h"
#include "sifive/devices/otp.h"
#include "sifive/devices/plic.h"
#include "sifive/devices/prci.h"
#include "sifive/devices/pwm.h"
#include "sifive/devices/spi.h"
#include "sifive/devices/uart.h"
/****************************************************************************
* Platform definitions
*****************************************************************************/
// Memory map
#define MASKROM_MEM_ADDR _AC(0x00001000,UL)
#define TRAPVEC_TABLE_CTRL_ADDR _AC(0x00001010,UL)
#define OTP_MEM_ADDR _AC(0x00020000,UL)
#define CLINT_CTRL_ADDR _AC(0x02000000,UL)
#define PLIC_CTRL_ADDR _AC(0x0C000000,UL)
#define AON_CTRL_ADDR _AC(0x10000000,UL)
#define PRCI_CTRL_ADDR _AC(0x10008000,UL)
#define OTP_CTRL_ADDR _AC(0x10010000,UL)
#define GPIO_CTRL_ADDR _AC(0x10012000,UL)
#define UART0_CTRL_ADDR _AC(0x10013000,UL)
#define SPI0_CTRL_ADDR _AC(0x10014000,UL)
#define PWM0_CTRL_ADDR _AC(0x10015000,UL)
#define UART1_CTRL_ADDR _AC(0x10023000,UL)
#define SPI1_CTRL_ADDR _AC(0x10024000,UL)
#define PWM1_CTRL_ADDR _AC(0x10025000,UL)
#define SPI2_CTRL_ADDR _AC(0x10034000,UL)
#define PWM2_CTRL_ADDR _AC(0x10035000,UL)
#define SPI0_MEM_ADDR _AC(0x20000000,UL)
#define MEM_CTRL_ADDR _AC(0x80000000,UL)
// IOF masks
#define IOF0_SPI1_MASK _AC(0x000007FC,UL)
#define SPI11_NUM_SS (4)
#define IOF_SPI1_SS0 (2u)
#define IOF_SPI1_SS1 (8u)
#define IOF_SPI1_SS2 (9u)
#define IOF_SPI1_SS3 (10u)
#define IOF_SPI1_MOSI (3u)
#define IOF_SPI1_MISO (4u)
#define IOF_SPI1_SCK (5u)
#define IOF_SPI1_DQ0 (3u)
#define IOF_SPI1_DQ1 (4u)
#define IOF_SPI1_DQ2 (6u)
#define IOF_SPI1_DQ3 (7u)
#define IOF0_SPI2_MASK _AC(0xFC000000,UL)
#define SPI2_NUM_SS (1)
#define IOF_SPI2_SS0 (26u)
#define IOF_SPI2_MOSI (27u)
#define IOF_SPI2_MISO (28u)
#define IOF_SPI2_SCK (29u)
#define IOF_SPI2_DQ0 (27u)
#define IOF_SPI2_DQ1 (28u)
#define IOF_SPI2_DQ2 (30u)
#define IOF_SPI2_DQ3 (31u)
//#define IOF0_I2C_MASK _AC(0x00003000,UL)
#define IOF0_UART0_MASK _AC(0x00030000, UL)
#define IOF_UART0_RX (16u)
#define IOF_UART0_TX (17u)
#define IOF0_UART1_MASK _AC(0x03000000, UL)
#define IOF_UART1_RX (24u)
#define IOF_UART1_TX (25u)
#define IOF1_PWM0_MASK _AC(0x0000000F, UL)
#define IOF1_PWM1_MASK _AC(0x00780000, UL)
#define IOF1_PWM2_MASK _AC(0x00003C00, UL)
// Interrupt numbers
#define INT_RESERVED 0
#define INT_WDOGCMP 1
#define INT_RTCCMP 2
#define INT_UART0_BASE 3
#define INT_UART1_BASE 4
#define INT_SPI0_BASE 5
#define INT_SPI1_BASE 6
#define INT_SPI2_BASE 7
#define INT_GPIO_BASE 8
#define INT_PWM0_BASE 40
#define INT_PWM1_BASE 44
#define INT_PWM2_BASE 48
// Helper functions
#define _REG32(p, i) (*(volatile uint32_t *) ((p) + (i)))
#define _REG32P(p, i) ((volatile uint32_t *) ((p) + (i)))
#define AON_REG(offset) _REG32(AON_CTRL_ADDR, offset)
#define CLINT_REG(offset) _REG32(CLINT_CTRL_ADDR, offset)
#define GPIO_REG(offset) _REG32(GPIO_CTRL_ADDR, offset)
#define OTP_REG(offset) _REG32(OTP_CTRL_ADDR, offset)
#define PLIC_REG(offset) _REG32(PLIC_CTRL_ADDR, offset)
#define PRCI_REG(offset) _REG32(PRCI_CTRL_ADDR, offset)
#define PWM0_REG(offset) _REG32(PWM0_CTRL_ADDR, offset)
#define PWM1_REG(offset) _REG32(PWM1_CTRL_ADDR, offset)
#define PWM2_REG(offset) _REG32(PWM2_CTRL_ADDR, offset)
#define SPI0_REG(offset) _REG32(SPI0_CTRL_ADDR, offset)
#define SPI1_REG(offset) _REG32(SPI1_CTRL_ADDR, offset)
#define SPI2_REG(offset) _REG32(SPI2_CTRL_ADDR, offset)
#define UART0_REG(offset) _REG32(UART0_CTRL_ADDR, offset)
#define UART1_REG(offset) _REG32(UART1_CTRL_ADDR, offset)
// Misc
#include <stdint.h>
#define NUM_GPIO 32
#define PLIC_NUM_INTERRUPTS 52
#define PLIC_NUM_PRIORITIES 7
#include "hifive1.h"
unsigned long get_cpu_freq(void);
unsigned long get_timer_freq(void);
uint64_t get_timer_value(void);
#endif /* _SIFIVE_PLATFORM_H */

View File

@ -1,3 +0,0 @@
# Describes the CPU on this board to the rest of the SDK.
RISCV_ARCH := rv32imac
RISCV_ABI := ilp32

30
env/iss/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,30 @@
#cmake_minimum_required(VERSION 3.12)
project(iss)
message(STATUS " here in iss")
# Create library for ISS board support
add_library(board_iss STATIC
init.c
write.c
)
# Include directories
target_include_directories(board_iss PUBLIC
${BSP_BASE}/include
${BSP_BASE}/env
${CMAKE_CURRENT_SOURCE_DIR}
)
# Set compile options
target_compile_options(board_iss PRIVATE
-march=${RISCV_ARCH}_zicsr_zifencei
-mabi=${RISCV_ABI}
-mcmodel=medany
-ffunction-sections
-fdata-sections
)
# Add compile definitions
target_compile_definitions(board_iss PRIVATE
BOARD_${BOARD}
)

19
env/iss/bsp_read.c vendored Normal file
View File

@ -0,0 +1,19 @@
#include <stdint.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
ssize_t _bsp_read(int fd, void *ptr, size_t len) {
uint8_t *current = (uint8_t *)ptr;
volatile uint32_t *uart_rx = (uint32_t *)0xFFFF0000;
ssize_t result = 0;
if (isatty(fd)) {
for (current = (uint8_t *)ptr; (current < ((uint8_t *)ptr) + len);
current++) {
*current = *uart_rx;
result++;
}
return result;
}
return EOF;
}

18
env/iss/bsp_write.c vendored Normal file
View File

@ -0,0 +1,18 @@
/* See LICENSE of license details. */
#include <errno.h>
#include <stdint.h>
#include <sys/types.h>
#include <unistd.h>
ssize_t _bsp_write(int fd, const void *ptr, size_t len) {
const uint8_t *current = (const uint8_t *)ptr;
if (isatty(fd)) {
for (size_t jj = 0; jj < len; jj++) {
*((uint32_t *)0xFFFF0000) = current[jj];
}
return len;
}
return 1;
}

71
env/iss/link.lds vendored
View File

@ -22,18 +22,13 @@ SECTIONS
.init ORIGIN(flash) :
{
KEEP (*(SORT_NONE(.init)))
*crt0.o(.text .text.*)
} >flash AT>flash :flash
.text :
{
*(.text.init)
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
*(.text.exit .text.exit.*)
*(.text.unlikely .text.unlikely.*)
*(.text.startup .text.startup.*)
*(.text.hot .text.hot.*)
*(.text .text.*)
*(.stub)
*(.gnu.linkonce.t.*)
} >flash AT>flash :flash
@ -55,13 +50,6 @@ SECTIONS
. = ALIGN(4);
/* Thread Local Storage sections */
.tdata :
{
PROVIDE_HIDDEN (__tdata_start = .);
*(.tdata .tdata.* .gnu.linkonce.td.*)
} >flash AT>flash :flash
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) } >flash AT>flash :flash
.preinit_array :
{
PROVIDE_HIDDEN (__preinit_array_start = .);
@ -128,6 +116,13 @@ SECTIONS
PROVIDE( _data = . );
} >ram AT>flash :ram_init
.data :
{
__DATA_BEGIN__ = .;
*(.data .data.*)
*(.gnu.linkonce.d.*)
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
@ -138,11 +133,9 @@ SECTIONS
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
.data :
.sdata :
{
*(.data .data.*)
*(.gnu.linkonce.d.*)
PROVIDE( __global_pointer$ = . + 0x800 );
__SDATA_BEGIN__ = .;
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
@ -165,6 +158,7 @@ SECTIONS
. = ALIGN(8);
__BSS_END__ = .;
__global_pointer$ = MIN(__SDATA_BEGIN__ + 0x800, MAX(__DATA_BEGIN__ + 0x800, __BSS_END__ - 0x800));
PROVIDE( _end = . );
PROVIDE( end = . );
@ -177,47 +171,4 @@ SECTIONS
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.gnu.build.attributes : { *(.gnu.build.attributes .gnu.build.attributes.*) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line .debug_line.* .debug_line_end) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* DWARF 3 */
.debug_pubtypes 0 : { *(.debug_pubtypes) }
.debug_ranges 0 : { *(.debug_ranges) }
/* DWARF Extension. */
.debug_macro 0 : { *(.debug_macro) }
.debug_addr 0 : { *(.debug_addr) }
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}

View File

@ -85,19 +85,26 @@ void __attribute__((weak)) handle_m_ext_interrupt(){
void __attribute__((weak)) handle_m_time_interrupt(){
uint64_t time = get_aclint_mtime(aclint);
time+=MTIMER_NEXT_TICK_INC;
set_aclint_mtime(aclint, time);
set_aclint_mtimecmp(aclint, time);
}
void __attribute__((weak)) default_handler(void) {
puts("default handler\n");
}
void __attribute__((weak)) interrupt_handler(unsigned) {
puts("interrupt handler\n");
}
uint32_t handle_trap(uint32_t mcause, uint32_t mepc, uint32_t sp){
if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_EXT)) {
handle_m_ext_interrupt();
// External Machine-Level interrupt from PLIC
} else if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_TIMER)){
handle_m_time_interrupt();
if ((mcause & MCAUSE_INT)) {
if ((mcause & MCAUSE_CAUSE) == IRQ_M_EXT) {
handle_m_ext_interrupt();
} else if (((mcause & MCAUSE_CAUSE) == IRQ_M_TIMER)){
handle_m_time_interrupt();
} else {
interrupt_handler(mcause& ~MCAUSE_INT);
}
} else {
write(1, "trap\n", 5);
_exit(1 + mcause);

View File

@ -25,18 +25,13 @@ SECTIONS
.init ORIGIN(flash) :
{
KEEP (*(SORT_NONE(.init)))
*crt0.o(.text .text.*)
} >flash AT>flash :flash
.text :
{
*(.text.init)
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
*(.text.exit .text.exit.*)
*(.text.unlikely .text.unlikely.*)
*(.text.startup .text.startup.*)
*(.text.hot .text.hot.*)
*(.text .text.*)
*(.stub)
*(.gnu.linkonce.t.*)
} >flash AT>flash :flash
@ -58,13 +53,6 @@ SECTIONS
. = ALIGN(4);
/* Thread Local Storage sections */
.tdata :
{
PROVIDE_HIDDEN (__tdata_start = .);
*(.tdata .tdata.* .gnu.linkonce.td.*)
} >flash AT>flash :flash
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) } >flash AT>flash :flash
.preinit_array :
{
PROVIDE_HIDDEN (__preinit_array_start = .);
@ -131,9 +119,15 @@ SECTIONS
PROVIDE( _data = . );
} >ram AT>flash :ram_init
.data :
{
__DATA_BEGIN__ = .;
*(.data .data.*)
*(.gnu.linkonce.d.*)
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
@ -141,11 +135,9 @@ SECTIONS
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
.data :
.sdata :
{
*(.data .data.*)
*(.gnu.linkonce.d.*)
PROVIDE( __global_pointer$ = . + 0x800 );
__SDATA_BEGIN__ = .;
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
@ -168,6 +160,7 @@ SECTIONS
. = ALIGN(8);
__BSS_END__ = .;
__global_pointer$ = MIN(__SDATA_BEGIN__ + 0x800, MAX(__DATA_BEGIN__ + 0x800, __BSS_END__ - 0x800));
PROVIDE( _end = . );
PROVIDE( end = . );
@ -180,47 +173,4 @@ SECTIONS
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.gnu.build.attributes : { *(.gnu.build.attributes .gnu.build.attributes.*) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line .debug_line.* .debug_line_end) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* DWARF 3 */
.debug_pubtypes 0 : { *(.debug_pubtypes) }
.debug_ranges 0 : { *(.debug_ranges) }
/* DWARF Extension. */
.debug_macro 0 : { *(.debug_macro) }
.debug_addr 0 : { *(.debug_addr) }
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}

53
env/moonlight/platform.h vendored Normal file
View File

@ -0,0 +1,53 @@
// See LICENSE for license details.
#ifndef _ISS_PLATFORM_H
#define _ISS_PLATFORM_H
#if __riscv_xlen == 32
#define MCAUSE_INT 0x80000000UL
#define MCAUSE_CAUSE 0x000003FFUL
#else
#define MCAUSE_INT 0x8000000000000000UL
#define MCAUSE_CAUSE 0x00000000000003FFUL
#endif
#define APB_BUS
#include "ehrenberg/devices/gpio.h"
#include "ehrenberg/devices/uart.h"
#include "ehrenberg/devices/timer.h"
#include "ehrenberg/devices/aclint.h"
#include "ehrenberg/devices/qspi.h"
#include "ehrenberg/devices/i2s.h"
#include "ehrenberg/devices/camera.h"
#include "ehrenberg/devices/dma.h"
#include "ehrenberg/devices/msg_if.h"
#define PERIPH(TYPE, ADDR) ((volatile TYPE*) (ADDR))
#define APB_BASE 0xF0000000
#define gpio PERIPH(gpio_t, APB_BASE+0x0000)
#define uart PERIPH(uart_t, APB_BASE+0x1000)
#define timer PERIPH(timercounter_t, APB_BASE+0x20000)
#define aclint PERIPH(aclint_t, APB_BASE+0x30000)
#define irq PERIPH(irq_t, APB_BASE+0x40000)
#define qspi PERIPH(qspi_t, APB_BASE+0x50000)
#define i2s PERIPH(i2s_t, APB_BASE+0x90000)
#define camera PERIPH(camera_t, APB_BASE+0xA0000)
#define dma PERIPH(dma_t, APB_BASE+0xB0000)
#define msgif PERIPH(msgif_t, APB_BASE+0xC0000)
#define XIP_START_LOC 0xE0040000
#define RAM_START_LOC 0x80000000
// Misc
#include <stdint.h>
void init_pll(void);
unsigned long get_cpu_freq(void);
unsigned long get_timer_freq(void);
#endif /* _ISS_PLATFORM_H */

View File

@ -4,13 +4,13 @@ ENTRY( _start )
MEMORY
{
flash (rxai!w) : ORIGIN = 0x00000000, LENGTH = 256M
ram (wxa!ri) : ORIGIN = 0x20000000, LENGTH = 1M
rom (rxai!w) : ORIGIN = 0x80000000, LENGTH = 128k
ram (wxa!ri) : ORIGIN = 0x80004000, LENGTH = 128k
}
PHDRS
{
flash PT_LOAD;
rom PT_LOAD;
ram_init PT_LOAD;
ram PT_NULL;
}
@ -19,28 +19,23 @@ SECTIONS
{
__stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
.init ORIGIN(flash) :
.init ORIGIN(rom) :
{
KEEP (*(SORT_NONE(.init)))
*crt0.o(.text .text.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
.text :
{
*(.text.init)
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
*(.text.exit .text.exit.*)
*(.text.unlikely .text.unlikely.*)
*(.text.startup .text.startup.*)
*(.text.hot .text.hot.*)
*(.text .text.*)
*(.stub)
*(.gnu.linkonce.t.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
.fini :
{
KEEP (*(SORT_NONE(.fini)))
} >flash AT>flash :flash
} >rom AT>rom :rom
PROVIDE (__etext = .);
PROVIDE (_etext = .);
@ -51,23 +46,16 @@ SECTIONS
*(.rdata)
*(.rodata .rodata.*)
*(.gnu.linkonce.r.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
. = ALIGN(4);
/* Thread Local Storage sections */
.tdata :
{
PROVIDE_HIDDEN (__tdata_start = .);
*(.tdata .tdata.* .gnu.linkonce.td.*)
} >flash AT>flash :flash
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) } >flash AT>flash :flash
.preinit_array :
{
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP (*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.init_array :
{
@ -75,7 +63,7 @@ SECTIONS
KEEP (*(SORT_BY_INIT_PRIORITY(.init_array.*) SORT_BY_INIT_PRIORITY(.ctors.*)))
KEEP (*(.init_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .ctors))
PROVIDE_HIDDEN (__init_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.fini_array :
{
@ -83,7 +71,7 @@ SECTIONS
KEEP (*(SORT_BY_INIT_PRIORITY(.fini_array.*) SORT_BY_INIT_PRIORITY(.dtors.*)))
KEEP (*(.fini_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .dtors))
PROVIDE_HIDDEN (__fini_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.ctors :
{
@ -105,7 +93,7 @@ SECTIONS
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o ) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
} >flash AT>flash :flash
} >rom AT>rom :rom
.dtors :
{
@ -114,38 +102,41 @@ SECTIONS
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o ) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
} >flash AT>flash :flash
} >rom AT>rom :rom
.lalign :
{
. = ALIGN(4);
PROVIDE( _data_lma = . );
} >flash AT>flash :flash
} >rom AT>rom :rom
.dalign :
{
. = ALIGN(4);
PROVIDE( _data = . );
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
*(.srodata.cst2)
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
} >ram AT>rom :ram_init
.data :
{
*(.data .data.*)
*(.gnu.linkonce.d.*)
} >ram AT>rom :ram_init
.srodata :
{
PROVIDE( __global_pointer$ = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
*(.srodata.cst2)
*(.srodata .srodata.*)
} >ram AT>rom :ram_init
.sdata :
{
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
} >ram AT>rom :ram_init
. = ALIGN(4);
PROVIDE( _edata = . );
@ -164,7 +155,6 @@ SECTIONS
} >ram AT>ram :ram
. = ALIGN(8);
__BSS_END__ = .;
PROVIDE( _end = . );
PROVIDE( end = . );
@ -174,50 +164,4 @@ SECTIONS
. = __stack_size;
PROVIDE( _sp = . );
} >ram AT>ram :ram
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.gnu.build.attributes : { *(.gnu.build.attributes .gnu.build.attributes.*) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line .debug_line.* .debug_line_end) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* DWARF 3 */
.debug_pubtypes 0 : { *(.debug_pubtypes) }
.debug_ranges 0 : { *(.debug_ranges) }
/* DWARF Extension. */
.debug_macro 0 : { *(.debug_macro) }
.debug_addr 0 : { *(.debug_addr) }
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}

View File

@ -4,13 +4,13 @@ ENTRY( _start )
MEMORY
{
flash (rxai!w) : ORIGIN = 0x00000000, LENGTH = 1M
ram (wxa!ri) : ORIGIN = 0x10000000, LENGTH = 16K
rom (rxai!w) : ORIGIN = 0xF0080000, LENGTH = 4k
ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH = 32k
}
PHDRS
{
flash PT_LOAD;
rom PT_LOAD;
ram_init PT_LOAD;
ram PT_NULL;
}
@ -19,28 +19,23 @@ SECTIONS
{
__stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
.init ORIGIN(flash) :
.init ORIGIN(rom) :
{
KEEP (*(SORT_NONE(.init)))
*crt0.o(.text .text.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
.text :
{
*(.text.init)
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
*(.text.exit .text.exit.*)
*(.text.unlikely .text.unlikely.*)
*(.text.startup .text.startup.*)
*(.text.hot .text.hot.*)
*(.text .text.*)
*(.stub)
*(.gnu.linkonce.t.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
.fini :
{
KEEP (*(SORT_NONE(.fini)))
} >flash AT>flash :flash
} >rom AT>rom :rom
PROVIDE (__etext = .);
PROVIDE (_etext = .);
@ -51,23 +46,16 @@ SECTIONS
*(.rdata)
*(.rodata .rodata.*)
*(.gnu.linkonce.r.*)
} >flash AT>flash :flash
} >rom AT>rom :rom
. = ALIGN(4);
/* Thread Local Storage sections */
.tdata :
{
PROVIDE_HIDDEN (__tdata_start = .);
*(.tdata .tdata.* .gnu.linkonce.td.*)
} >flash AT>flash :flash
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) } >flash AT>flash :flash
.preinit_array :
{
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP (*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.init_array :
{
@ -75,7 +63,7 @@ SECTIONS
KEEP (*(SORT_BY_INIT_PRIORITY(.init_array.*) SORT_BY_INIT_PRIORITY(.ctors.*)))
KEEP (*(.init_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .ctors))
PROVIDE_HIDDEN (__init_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.fini_array :
{
@ -83,7 +71,7 @@ SECTIONS
KEEP (*(SORT_BY_INIT_PRIORITY(.fini_array.*) SORT_BY_INIT_PRIORITY(.dtors.*)))
KEEP (*(.fini_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .dtors))
PROVIDE_HIDDEN (__fini_array_end = .);
} >flash AT>flash :flash
} >rom AT>rom :rom
.ctors :
{
@ -105,7 +93,7 @@ SECTIONS
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o ) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
} >flash AT>flash :flash
} >rom AT>rom :rom
.dtors :
{
@ -114,38 +102,41 @@ SECTIONS
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o ) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
} >flash AT>flash :flash
} >rom AT>rom :rom
.lalign :
{
. = ALIGN(4);
PROVIDE( _data_lma = . );
} >flash AT>flash :flash
} >rom AT>rom :rom
.dalign :
{
. = ALIGN(4);
PROVIDE( _data = . );
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
*(.srodata.cst2)
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
} >ram AT>rom :ram_init
.data :
{
*(.data .data.*)
*(.gnu.linkonce.d.*)
} >ram AT>rom :ram_init
.srodata :
{
PROVIDE( __global_pointer$ = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
*(.srodata.cst2)
*(.srodata .srodata.*)
} >ram AT>rom :ram_init
.sdata :
{
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
} >ram AT>rom :ram_init
. = ALIGN(4);
PROVIDE( _edata = . );
@ -164,7 +155,6 @@ SECTIONS
} >ram AT>ram :ram
. = ALIGN(8);
__BSS_END__ = .;
PROVIDE( _end = . );
PROVIDE( end = . );
@ -177,47 +167,4 @@ SECTIONS
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.gnu.build.attributes : { *(.gnu.build.attributes .gnu.build.attributes.*) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line .debug_line.* .debug_line_end) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* DWARF 3 */
.debug_pubtypes 0 : { *(.debug_pubtypes) }
.debug_ranges 0 : { *(.debug_ranges) }
/* DWARF Extension. */
.debug_macro 0 : { *(.debug_macro) }
.debug_addr 0 : { *(.debug_addr) }
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}

195
env/semihosting.c vendored Normal file
View File

@ -0,0 +1,195 @@
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include "semihosting.h"
#define SEMIHOSTING_SYS_OPEN 0x01
#define SEMIHOSTING_SYS_CLOSE 0x02
#define SEMIHOSTING_SYS_WRITEC 0x03
#define SEMIHOSTING_SYS_WRITE0 0x04
#define SEMIHOSTING_SYS_WRITE 0x05
#define SEMIHOSTING_SYS_READ 0x06
#define SEMIHOSTING_SYS_READC 0x07
#define SEMIHOSTING_SYS_ISERROR 0x08
#define SEMIHOSTING_SYS_ISTTY 0x09
#define SEMIHOSTING_SYS_SEEK 0x0A
#define SEMIHOSTING_SYS_FLEN 0x0C
#define SEMIHOSTING_SYS_TMPNAM 0x0D
#define SEMIHOSTING_SYS_REMOVE 0x0E
#define SEMIHOSTING_SYS_RENAME 0x0F
#define SEMIHOSTING_SYS_CLOCK 0x10
#define SEMIHOSTING_SYS_TIME 0x11
#define SEMIHOSTING_SYS_SYSTEM 0x12
#define SEMIHOSTING_SYS_ERRNO 0x13
#define SEMIHOSTING_SYS_GET_CMDLINE 0x15
#define SEMIHOSTING_SYS_HEAPINFO 0x16
#define SEMIHOSTING_EnterSVC 0x17
#define SEMIHOSTING_SYS_EXIT 0x18
#define SEMIHOSTING_SYS_EXIT_EXTENDED 0x20
#define SEMIHOSTING_SYS_ELAPSED 0x30
#define SEMIHOSTING_SYS_TICKFREQ 0x31
#define RISCV_SEMIHOSTING_CALL_NUMBER 7
typedef struct {
char *str;
int mode;
size_t length;
} OpenVector;
typedef struct {
char *old;
int old_len;
char *new;
int new_len;
} RenameVector;
typedef struct {
char *path;
size_t len;
} RemoveVector;
typedef struct {
int fd;
off_t pos;
} SeekVector;
static inline int __attribute__((always_inline))
call_host(int reason, void *arg) {
#if 1
// This must always be set back to 0 to cover the case where a host wasn't
// initially present, but only connected while the program was already up and
// running. In that case, trap() suddenly won't be called anymore, so we have
// to clear this variable *before* EBREAK is called.
sh_missing_host = 0;
register int value asm("a0") = reason;
register void *ptr asm("a1") = arg;
asm volatile(
// Workaround for RISC-V lack of multiple EBREAKs.
" .option push \n"
" .option norvc \n"
// Force 16-byte alignment to make sure that the 3 instruction fall
// within the same virtual page. If you the instruction straddle a page
// boundary the debugger fetching the instructions could lead to a page
// fault. Note: align 4 means, align by 2 to the power of 4!
" .align 4 \n"
" slli x0, x0, 0x1f \n"
" ebreak \n"
" srai x0, x0, 0x07 \n"
" .option pop \n"
: "=r"(value) /* Outputs */
: "0"(value),
"r"(ptr), [swi] "i"(RISCV_SEMIHOSTING_CALL_NUMBER) /* Inputs */
: "memory" /* Clobbers */
);
return value;
#else
return 0;
#endif
}
int sh_errno(void) { return call_host(SEMIHOSTING_SYS_ERRNO, (void *)NULL); }
int sh_time(void) { return call_host(SEMIHOSTING_SYS_TIME, (void *)NULL); }
int sh_remove(char *path) {
size_t len = strlen(path);
RemoveVector vec = {path, len};
return call_host(SEMIHOSTING_SYS_REMOVE, &vec);
}
void sh_seek(int file_handle, off_t pos) {
SeekVector vec = {file_handle, pos};
call_host(SEMIHOSTING_SYS_SEEK, &vec);
return;
}
void sh_write(char *str, int file_handle) {
size_t length = strlen(str);
OpenVector vec = {str, file_handle, length};
call_host(SEMIHOSTING_SYS_WRITE, &vec);
return;
}
int sh_close(int file_handle) {
return call_host(SEMIHOSTING_SYS_CLOSE, file_handle);
}
void sh_exit(void) {
call_host(SEMIHOSTING_SYS_EXIT, (void *)NULL);
return;
}
void sh_exit_extended(void) {
call_host(SEMIHOSTING_SYS_EXIT_EXTENDED, (void *)NULL);
return;
}
int sh_flen(int file_handle) {
return call_host(SEMIHOSTING_SYS_FLEN, file_handle);
}
int sh_iserror(int num) { return call_host(SEMIHOSTING_SYS_ISERROR, num); }
int sh_istty(int file_handle) {
return call_host(SEMIHOSTING_SYS_ISTTY, file_handle);
}
/*
int sh_remove(char* path) {
size_t len = strlen(path);
RemoveVector vec = {path, len};
return call_host(SEMIHOSTING_SYS_REMOVE, &vec);
}*/
void sh_rename(char *old, char *new) {
int old_len = strlen(old);
int new_len = strlen(new);
RenameVector vec = {old, old_len, new, new_len};
call_host(SEMIHOSTING_SYS_RENAME, &vec);
return;
}
void sh_write0(const char *buf) {
// Print zero-terminated string
call_host(SEMIHOSTING_SYS_WRITE0, (void *)buf);
}
void sh_writec(char c) {
// Print single character
call_host(SEMIHOSTING_SYS_WRITEC, (void *)&c);
}
char sh_readc(void) {
// Read character from keyboard. (Blocking operation!)
char c = call_host(SEMIHOSTING_SYS_READC, (void *)NULL);
return c;
}
int sh_open(char *str, int mode) {
// mode = 0;
// int length = 44;
size_t length = strlen(str);
OpenVector vec = {str, mode, length};
return call_host(SEMIHOSTING_SYS_OPEN, &vec);
}
int sh_read(char *buf, int file_handle, size_t length) {
OpenVector vec = {buf, file_handle, length};
int i = call_host(SEMIHOSTING_SYS_READ, &vec);
return i;
}
int sh_clock(void) {
int clock = call_host(SEMIHOSTING_SYS_CLOCK, (void *)NULL);
return clock;
}
/*
void sh_write(char* str, int file_handle) {
return;
}*/

16
env/start.S vendored
View File

@ -1,3 +1,4 @@
#include "encoding.h"
// See LICENSE for license details.
.section .init
@ -7,12 +8,17 @@
_start:
.option push
.option norelax
la gp, trap_entry
csrw mtvec, gp
.option norvc
j 1f
.2byte 0x4e4d
.2byte 0x5352
.4byte 0x669
1:
la gp, __global_pointer$
.option pop
la sp, _sp
la t0, trap_entry
csrw mtvec, t0
/* Load data section */
la a0, _data_lma
la a1, _data
@ -37,11 +43,11 @@ _start:
2:
/* Call global constructors */
//#ifdef HAVE_INIT_FINI
#ifndef HAVE_NO_INIT_FINI
la a0, __libc_fini_array
call atexit
call __libc_init_array
//#endif
#endif
#ifndef __riscv_float_abi_soft
/* Enable FPU */
li t0, MSTATUS_FS

View File

@ -110,13 +110,12 @@ void _fini()
}
int is_uart_ready(int uart_id){
return !UART0_REG(UART_REG_TXFIFO) & 0x80000000;
return 1;
}
int try_write_uart_char(int uart_id, char c){
if(UART0_REG(UART_REG_TXFIFO) & 0x80000000) return 0;
UART0_REG(UART_REG_TXFIFO) = c;
*((char*)0x10000000) = c;
return 1;
}
void write_uart_char(int uart_id, char c){
UART0_REG(UART_REG_TXFIFO) = c;
*((char*)0x10000000) = c;
}

View File

@ -4,8 +4,8 @@ ENTRY( _start )
MEMORY
{
flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 512M
ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH = 16K
flash (rxai!w) : ORIGIN = 0x00000000, LENGTH = 256M
ram (wxa!ri) : ORIGIN = 0x20000000, LENGTH = 1M
}
PHDRS
@ -19,7 +19,7 @@ SECTIONS
{
__stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
.init :
.init ORIGIN(flash) :
{
KEEP (*(SORT_NONE(.init)))
} >flash AT>flash :flash
@ -41,6 +41,13 @@ SECTIONS
PROVIDE (_etext = .);
PROVIDE (etext = .);
.rodata :
{
*(.rdata)
*(.rodata .rodata.*)
*(.gnu.linkonce.r.*)
} >flash AT>flash :flash
. = ALIGN(4);
.preinit_array :
@ -111,16 +118,14 @@ SECTIONS
.data :
{
*(.rdata)
*(.rodata .rodata.*)
*(.gnu.linkonce.r.*)
__DATA_BEGIN__ = .;
*(.data .data.*)
*(.gnu.linkonce.d.*)
. = ALIGN(8);
PROVIDE( __global_pointer$ = . + 0x800 );
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
. = ALIGN(8);
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
@ -128,6 +133,13 @@ SECTIONS
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
.sdata :
{
__SDATA_BEGIN__ = .;
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
. = ALIGN(4);
PROVIDE( _edata = . );
PROVIDE( edata = . );
@ -145,6 +157,8 @@ SECTIONS
} >ram AT>ram :ram
. = ALIGN(8);
__BSS_END__ = .;
__global_pointer$ = MIN(__SDATA_BEGIN__ + 0x800, MAX(__DATA_BEGIN__ + 0x800, __BSS_END__ - 0x800));
PROVIDE( _end = . );
PROVIDE( end = . );
@ -154,4 +168,7 @@ SECTIONS
. = __stack_size;
PROVIDE( _sp = . );
} >ram AT>ram :ram
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
}

View File

@ -7,18 +7,7 @@
#define MCAUSE_INT 0x80000000
#define MCAUSE_CAUSE 0x7FFFFFFF
#define UART0_BASE_ADDR 0xffff0000ULL
#define UART_REG_TXFIFO 0x00
#define UART_REG_RXFIFO 0x04
#define UART_REG_TXCTRL 0x08
#define UART_REG_RXCTRL 0x0c
#define UART_REG_IE 0x10
#define UART_REG_IP 0x14
#define UART_REG_DIV 0x18
#define UART_TXEN 0x1
#define UART0_REG(ADDR) *((volatile uint32_t*) (UART0_BASE_ADDR + ADDR))
#include "bits.h"
/****************************************************************************
* Platform definitions
*****************************************************************************/

View File

@ -4,8 +4,8 @@ ENTRY( _start )
MEMORY
{
flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 512M
ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH = 512K
flash (rxai!w) : ORIGIN = 0x00000000, LENGTH = 1M
ram (wxa!ri) : ORIGIN = 0x10000000, LENGTH = 16K
}
PHDRS
@ -19,7 +19,7 @@ SECTIONS
{
__stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
.init :
.init ORIGIN(flash) :
{
KEEP (*(SORT_NONE(.init)))
} >flash AT>flash :flash
@ -104,11 +104,6 @@ SECTIONS
KEEP (*(.dtors))
} >flash AT>flash :flash
.except :
{
*(.gcc_except_table.*)
} >flash AT>flash :flash
.lalign :
{
. = ALIGN(4);
@ -123,13 +118,14 @@ SECTIONS
.data :
{
__DATA_BEGIN__ = .;
*(.data .data.*)
*(.gnu.linkonce.d.*)
. = ALIGN(8);
PROVIDE( __global_pointer$ = . + 0x800 );
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
. = ALIGN(8);
} >ram AT>flash :ram_init
.srodata :
{
PROVIDE( _gp = . + 0x800 );
*(.srodata.cst16)
*(.srodata.cst8)
*(.srodata.cst4)
@ -137,6 +133,13 @@ SECTIONS
*(.srodata .srodata.*)
} >ram AT>flash :ram_init
.sdata :
{
__SDATA_BEGIN__ = .;
*(.sdata .sdata.*)
*(.gnu.linkonce.s.*)
} >ram AT>flash :ram_init
. = ALIGN(4);
PROVIDE( _edata = . );
PROVIDE( edata = . );
@ -154,6 +157,8 @@ SECTIONS
} >ram AT>ram :ram
. = ALIGN(8);
__BSS_END__ = .;
__global_pointer$ = MIN(__SDATA_BEGIN__ + 0x800, MAX(__DATA_BEGIN__ + 0x800, __BSS_END__ - 0x800));
PROVIDE( _end = . );
PROVIDE( end = . );
@ -163,4 +168,7 @@ SECTIONS
. = __stack_size;
PROVIDE( _sp = . );
} >ram AT>ram :ram
PROVIDE( tohost = 0xfffffff0 );
PROVIDE( fromhost = 0xfffffff8 );
}

2
env/tgc_vp vendored
View File

@ -1 +1 @@
ehrenberg/
moonlight/

60
env/trap.c vendored Normal file
View File

@ -0,0 +1,60 @@
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include "encoding.h"
#if defined(SEMIHOSTING)
#define EBREAK_OPCODE 0x00100073
#define EBREAK_MCAUSE 0x00000003
#define SLLI_X0_X0_0X1F_OPCODE 0x01f01013
#define SRAI_X0_X0_0X07_OPCODE 0x40705013
int sh_missing_host = 0;
void trap() { // ToDo: Check why macro CSR_MEPC and others are not
// resolved
uint32_t mepc = read_csr(0x341); // Address of trap
uint32_t mtval = read_csr(0x343); // Instruction value of trap
uint32_t mcause = read_csr(0x342); // Reason for the trap
if (mcause == EBREAK_MCAUSE && mtval == EBREAK_OPCODE) {
// This trap was caused by an EBREAK...
int aligned = ((mepc - 4) & 0x0f) == 0;
if (aligned && *(uint32_t *)mepc == EBREAK_OPCODE &&
*(uint32_t *)(mepc - 4) == SLLI_X0_X0_0X1F_OPCODE &&
*(uint32_t *)(mepc + 4) == SRAI_X0_X0_0X07_OPCODE) {
// The EBREAK was part of the semihosting call. (See semihosting.c)
//
// If a debugger were connected, this would have resulted in a CPU halt,
// and the debugger would have serviced the the semihosting call.
//
// However, the semihosting function was called without a debugger being
// attached. The best course of action is to simply return from the trap
// and let the semihosting function continue after the call to EBREAK to
// prevent the CPU from hanging in the trap handler.
write_csr(mepc, mepc + 4);
// Set a global variable to tell the semihosting code the the semihosting
// call
// didn't execute on the host.
sh_missing_host = 1;
return;
}
// EBREAK was not part of a semihosting call. This should not have happened.
// Hang forever.
while (1)
;
}
// Trap was issued for another reason than an EBREAK.
// Replace the code below with whatever trap handler you'd normally use. (e.g.
// interrupt processing.)
while (1)
;
}
#endif

View File

@ -1,54 +0,0 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
*/
#ifndef _BSP_APB3GPIO_H
#define _BSP_APB3GPIO_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
volatile uint32_t VALUE;
volatile uint32_t WRITE;
volatile uint32_t WRITEENABLE;
}apb3gpio_t;
#define GPIO_VALUE_OFFS 0
#define GPIO_VALUE_MASK 0xffffffff
#define GPIO_VALUE(V) ((V & GPIO_VALUE_MASK) << GPIO_VALUE_OFFS)
#define GPIO_WRITE_OFFS 0
#define GPIO_WRITE_MASK 0xffffffff
#define GPIO_WRITE(V) ((V & GPIO_WRITE_MASK) << GPIO_WRITE_OFFS)
#define GPIO_WRITEENABLE_OFFS 0
#define GPIO_WRITEENABLE_MASK 0xffffffff
#define GPIO_WRITEENABLE(V) ((V & GPIO_WRITEENABLE_MASK) << GPIO_WRITEENABLE_OFFS)
//GPIO_VALUE
inline uint32_t get_gpio_value(volatile apb3gpio_t* reg){
return (reg->VALUE >> 0) & 0xffffffff;
}
//GPIO_WRITE
inline uint32_t get_gpio_write(volatile apb3gpio_t* reg){
return (reg->WRITE >> 0) & 0xffffffff;
}
inline void set_gpio_write(volatile apb3gpio_t* reg, uint32_t value){
reg->WRITE = (reg->WRITE & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_WRITEENABLE
inline uint32_t get_gpio_writeEnable(volatile apb3gpio_t* reg){
return (reg->WRITEENABLE >> 0) & 0xffffffff;
}
inline void set_gpio_writeEnable(volatile apb3gpio_t* reg, uint32_t value){
reg->WRITEENABLE = (reg->WRITEENABLE & ~(0xffffffffU << 0)) | (value << 0);
}
#endif /* _BSP_APB3GPIO_H */

View File

@ -1,44 +0,0 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
*/
#ifndef _BSP_APB3IRQCTRL_H
#define _BSP_APB3IRQCTRL_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
volatile uint32_t PENDINGSREG;
volatile uint32_t MASKSREG;
}apb3irqctrl_t;
#define IRQ_PENDINGSREG_OFFS 0
#define IRQ_PENDINGSREG_MASK 0xf
#define IRQ_PENDINGSREG(V) ((V & IRQ_PENDINGSREG_MASK) << IRQ_PENDINGSREG_OFFS)
#define IRQ_MASKSREG_OFFS 0
#define IRQ_MASKSREG_MASK 0xf
#define IRQ_MASKSREG(V) ((V & IRQ_MASKSREG_MASK) << IRQ_MASKSREG_OFFS)
//IRQ_PENDINGSREG
inline uint32_t get_irq_pendingsReg(volatile apb3irqctrl_t* reg){
return (reg->PENDINGSREG >> 0) & 0xf;
}
inline void set_irq_pendingsReg(volatile apb3irqctrl_t* reg, uint8_t value){
reg->PENDINGSREG = (reg->PENDINGSREG & ~(0xfU << 0)) | (value << 0);
}
//IRQ_MASKSREG
inline uint32_t get_irq_masksReg(volatile apb3irqctrl_t* reg){
return (reg->MASKSREG >> 0) & 0xf;
}
inline void set_irq_masksReg(volatile apb3irqctrl_t* reg, uint8_t value){
reg->MASKSREG = (reg->MASKSREG & ~(0xfU << 0)) | (value << 0);
}
#endif /* _BSP_APB3IRQCTRL_H */

View File

@ -1,382 +0,0 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
*/
#ifndef _BSP_APB3SPIXDRMASTERCTRL_H
#define _BSP_APB3SPIXDRMASTERCTRL_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
volatile uint32_t DATA;
volatile uint32_t STATUS;
volatile uint32_t CONFIG;
volatile uint32_t INTR;
uint8_t fill0[16];
volatile uint32_t SCLK_CONFIG;
volatile uint32_t SSGEN_SETUP;
volatile uint32_t SSGEN_HOLD;
volatile uint32_t SSGEN_DISABLE;
volatile uint32_t SSGEN_ACTIVE_HIGH;
uint8_t fill1[12];
volatile uint32_t XIP_ENABLE;
volatile uint32_t XIP_CONFIG;
volatile uint32_t XIP_MODE;
uint8_t fill2[4];
volatile uint32_t XIP_WRITE;
volatile uint32_t XIP_READ_WRITE;
volatile uint32_t XIP_READ;
}apb3spixdrmasterctrl_t;
#define SPI_DATA_DATA_OFFS 0
#define SPI_DATA_DATA_MASK 0xff
#define SPI_DATA_DATA(V) ((V & SPI_DATA_DATA_MASK) << SPI_DATA_DATA_OFFS)
#define SPI_DATA_WRITE_OFFS 8
#define SPI_DATA_WRITE_MASK 0x1
#define SPI_DATA_WRITE(V) ((V & SPI_DATA_WRITE_MASK) << SPI_DATA_WRITE_OFFS)
#define SPI_DATA_READ_OFFS 9
#define SPI_DATA_READ_MASK 0x1
#define SPI_DATA_READ(V) ((V & SPI_DATA_READ_MASK) << SPI_DATA_READ_OFFS)
#define SPI_DATA_KIND_OFFS 11
#define SPI_DATA_KIND_MASK 0x1
#define SPI_DATA_KIND(V) ((V & SPI_DATA_KIND_MASK) << SPI_DATA_KIND_OFFS)
#define SPI_DATA_RX_DATA_INVALID_OFFS 31
#define SPI_DATA_RX_DATA_INVALID_MASK 0x1
#define SPI_DATA_RX_DATA_INVALID(V) ((V & SPI_DATA_RX_DATA_INVALID_MASK) << SPI_DATA_RX_DATA_INVALID_OFFS)
#define SPI_STATUS_TX_FREE_OFFS 0
#define SPI_STATUS_TX_FREE_MASK 0x3f
#define SPI_STATUS_TX_FREE(V) ((V & SPI_STATUS_TX_FREE_MASK) << SPI_STATUS_TX_FREE_OFFS)
#define SPI_STATUS_RX_AVAIL_OFFS 16
#define SPI_STATUS_RX_AVAIL_MASK 0x3f
#define SPI_STATUS_RX_AVAIL(V) ((V & SPI_STATUS_RX_AVAIL_MASK) << SPI_STATUS_RX_AVAIL_OFFS)
#define SPI_CONFIG_KIND_OFFS 0
#define SPI_CONFIG_KIND_MASK 0x3
#define SPI_CONFIG_KIND(V) ((V & SPI_CONFIG_KIND_MASK) << SPI_CONFIG_KIND_OFFS)
#define SPI_CONFIG_MODE_OFFS 4
#define SPI_CONFIG_MODE_MASK 0x7
#define SPI_CONFIG_MODE(V) ((V & SPI_CONFIG_MODE_MASK) << SPI_CONFIG_MODE_OFFS)
#define SPI_INTR_TX_IE_OFFS 0
#define SPI_INTR_TX_IE_MASK 0x1
#define SPI_INTR_TX_IE(V) ((V & SPI_INTR_TX_IE_MASK) << SPI_INTR_TX_IE_OFFS)
#define SPI_INTR_RX_IE_OFFS 1
#define SPI_INTR_RX_IE_MASK 0x1
#define SPI_INTR_RX_IE(V) ((V & SPI_INTR_RX_IE_MASK) << SPI_INTR_RX_IE_OFFS)
#define SPI_INTR_TX_IP_OFFS 8
#define SPI_INTR_TX_IP_MASK 0x1
#define SPI_INTR_TX_IP(V) ((V & SPI_INTR_TX_IP_MASK) << SPI_INTR_TX_IP_OFFS)
#define SPI_INTR_RX_IP_OFFS 9
#define SPI_INTR_RX_IP_MASK 0x1
#define SPI_INTR_RX_IP(V) ((V & SPI_INTR_RX_IP_MASK) << SPI_INTR_RX_IP_OFFS)
#define SPI_INTR_TX_ACTIVE_OFFS 16
#define SPI_INTR_TX_ACTIVE_MASK 0x1
#define SPI_INTR_TX_ACTIVE(V) ((V & SPI_INTR_TX_ACTIVE_MASK) << SPI_INTR_TX_ACTIVE_OFFS)
#define SPI_SCLK_CONFIG_OFFS 0
#define SPI_SCLK_CONFIG_MASK 0xfff
#define SPI_SCLK_CONFIG(V) ((V & SPI_SCLK_CONFIG_MASK) << SPI_SCLK_CONFIG_OFFS)
#define SPI_SSGEN_SETUP_OFFS 0
#define SPI_SSGEN_SETUP_MASK 0xfff
#define SPI_SSGEN_SETUP(V) ((V & SPI_SSGEN_SETUP_MASK) << SPI_SSGEN_SETUP_OFFS)
#define SPI_SSGEN_HOLD_OFFS 0
#define SPI_SSGEN_HOLD_MASK 0xfff
#define SPI_SSGEN_HOLD(V) ((V & SPI_SSGEN_HOLD_MASK) << SPI_SSGEN_HOLD_OFFS)
#define SPI_SSGEN_DISABLE_OFFS 0
#define SPI_SSGEN_DISABLE_MASK 0xfff
#define SPI_SSGEN_DISABLE(V) ((V & SPI_SSGEN_DISABLE_MASK) << SPI_SSGEN_DISABLE_OFFS)
#define SPI_SSGEN_ACTIVE_HIGH_OFFS 0
#define SPI_SSGEN_ACTIVE_HIGH_MASK 0x1
#define SPI_SSGEN_ACTIVE_HIGH(V) ((V & SPI_SSGEN_ACTIVE_HIGH_MASK) << SPI_SSGEN_ACTIVE_HIGH_OFFS)
#define SPI_XIP_ENABLE_OFFS 0
#define SPI_XIP_ENABLE_MASK 0x1
#define SPI_XIP_ENABLE(V) ((V & SPI_XIP_ENABLE_MASK) << SPI_XIP_ENABLE_OFFS)
#define SPI_XIP_CONFIG_INSTRUCTION_OFFS 0
#define SPI_XIP_CONFIG_INSTRUCTION_MASK 0xff
#define SPI_XIP_CONFIG_INSTRUCTION(V) ((V & SPI_XIP_CONFIG_INSTRUCTION_MASK) << SPI_XIP_CONFIG_INSTRUCTION_OFFS)
#define SPI_XIP_CONFIG_ENABLE_OFFS 8
#define SPI_XIP_CONFIG_ENABLE_MASK 0x1
#define SPI_XIP_CONFIG_ENABLE(V) ((V & SPI_XIP_CONFIG_ENABLE_MASK) << SPI_XIP_CONFIG_ENABLE_OFFS)
#define SPI_XIP_CONFIG_DUMMY_VALUE_OFFS 16
#define SPI_XIP_CONFIG_DUMMY_VALUE_MASK 0xff
#define SPI_XIP_CONFIG_DUMMY_VALUE(V) ((V & SPI_XIP_CONFIG_DUMMY_VALUE_MASK) << SPI_XIP_CONFIG_DUMMY_VALUE_OFFS)
#define SPI_XIP_CONFIG_DUMMY_COUNT_OFFS 24
#define SPI_XIP_CONFIG_DUMMY_COUNT_MASK 0xf
#define SPI_XIP_CONFIG_DUMMY_COUNT(V) ((V & SPI_XIP_CONFIG_DUMMY_COUNT_MASK) << SPI_XIP_CONFIG_DUMMY_COUNT_OFFS)
#define SPI_XIP_MODE_INSTRUCTION_OFFS 0
#define SPI_XIP_MODE_INSTRUCTION_MASK 0x7
#define SPI_XIP_MODE_INSTRUCTION(V) ((V & SPI_XIP_MODE_INSTRUCTION_MASK) << SPI_XIP_MODE_INSTRUCTION_OFFS)
#define SPI_XIP_MODE_ADDRESS_OFFS 8
#define SPI_XIP_MODE_ADDRESS_MASK 0x7
#define SPI_XIP_MODE_ADDRESS(V) ((V & SPI_XIP_MODE_ADDRESS_MASK) << SPI_XIP_MODE_ADDRESS_OFFS)
#define SPI_XIP_MODE_DUMMY_OFFS 16
#define SPI_XIP_MODE_DUMMY_MASK 0x7
#define SPI_XIP_MODE_DUMMY(V) ((V & SPI_XIP_MODE_DUMMY_MASK) << SPI_XIP_MODE_DUMMY_OFFS)
#define SPI_XIP_MODE_PAYLOAD_OFFS 24
#define SPI_XIP_MODE_PAYLOAD_MASK 0x7
#define SPI_XIP_MODE_PAYLOAD(V) ((V & SPI_XIP_MODE_PAYLOAD_MASK) << SPI_XIP_MODE_PAYLOAD_OFFS)
#define SPI_XIP_WRITE_OFFS 0
#define SPI_XIP_WRITE_MASK 0xff
#define SPI_XIP_WRITE(V) ((V & SPI_XIP_WRITE_MASK) << SPI_XIP_WRITE_OFFS)
#define SPI_XIP_READ_WRITE_OFFS 0
#define SPI_XIP_READ_WRITE_MASK 0xff
#define SPI_XIP_READ_WRITE(V) ((V & SPI_XIP_READ_WRITE_MASK) << SPI_XIP_READ_WRITE_OFFS)
#define SPI_XIP_READ_OFFS 0
#define SPI_XIP_READ_MASK 0xff
#define SPI_XIP_READ(V) ((V & SPI_XIP_READ_MASK) << SPI_XIP_READ_OFFS)
//SPI_DATA
inline uint32_t get_spi_data(volatile apb3spixdrmasterctrl_t* reg){
return reg->DATA;
}
inline void set_spi_data(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->DATA = value;
}
inline void set_spi_data_data(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0xffU << 0)) | (value << 0);
}
inline uint32_t get_spi_data_write(volatile apb3spixdrmasterctrl_t* reg){
return (reg->DATA >> 8) & 0x1;
}
inline void set_spi_data_write(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 8)) | (value << 8);
}
inline uint32_t get_spi_data_read(volatile apb3spixdrmasterctrl_t* reg){
return (reg->DATA >> 9) & 0x1;
}
inline void set_spi_data_read(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 9)) | (value << 9);
}
inline uint32_t get_spi_data_kind(volatile apb3spixdrmasterctrl_t* reg){
return (reg->DATA >> 11) & 0x1;
}
inline void set_spi_data_kind(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 11)) | (value << 11);
}
inline uint32_t get_spi_data_rx_data_invalid(volatile apb3spixdrmasterctrl_t* reg){
return (reg->DATA >> 31) & 0x1;
}
//SPI_STATUS
inline uint32_t get_spi_status(volatile apb3spixdrmasterctrl_t* reg){
return reg->STATUS;
}
inline void set_spi_status(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->STATUS = value;
}
inline uint32_t get_spi_status_tx_free(volatile apb3spixdrmasterctrl_t* reg){
return (reg->STATUS >> 0) & 0x3f;
}
inline uint32_t get_spi_status_rx_avail(volatile apb3spixdrmasterctrl_t* reg){
return (reg->STATUS >> 16) & 0x3f;
}
//SPI_CONFIG
inline uint32_t get_spi_config(volatile apb3spixdrmasterctrl_t* reg){
return reg->CONFIG;
}
inline void set_spi_config(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->CONFIG = value;
}
inline uint32_t get_spi_config_kind(volatile apb3spixdrmasterctrl_t* reg){
return (reg->CONFIG >> 0) & 0x3;
}
inline void set_spi_config_kind(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->CONFIG = (reg->CONFIG & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_spi_config_mode(volatile apb3spixdrmasterctrl_t* reg){
return (reg->CONFIG >> 4) & 0x7;
}
inline void set_spi_config_mode(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->CONFIG = (reg->CONFIG & ~(0x7U << 4)) | (value << 4);
}
//SPI_INTR
inline uint32_t get_spi_intr(volatile apb3spixdrmasterctrl_t* reg){
return reg->INTR;
}
inline void set_spi_intr(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->INTR = value;
}
inline uint32_t get_spi_intr_tx_ie(volatile apb3spixdrmasterctrl_t* reg){
return (reg->INTR >> 0) & 0x1;
}
inline void set_spi_intr_tx_ie(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->INTR = (reg->INTR & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_spi_intr_rx_ie(volatile apb3spixdrmasterctrl_t* reg){
return (reg->INTR >> 1) & 0x1;
}
inline void set_spi_intr_rx_ie(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->INTR = (reg->INTR & ~(0x1U << 1)) | (value << 1);
}
inline uint32_t get_spi_intr_tx_ip(volatile apb3spixdrmasterctrl_t* reg){
return (reg->INTR >> 8) & 0x1;
}
inline uint32_t get_spi_intr_rx_ip(volatile apb3spixdrmasterctrl_t* reg){
return (reg->INTR >> 9) & 0x1;
}
inline uint32_t get_spi_intr_tx_active(volatile apb3spixdrmasterctrl_t* reg){
return (reg->INTR >> 16) & 0x1;
}
//SPI_SCLK_CONFIG
inline uint32_t get_spi_sclk_config(volatile apb3spixdrmasterctrl_t* reg){
return (reg->SCLK_CONFIG >> 0) & 0xfff;
}
inline void set_spi_sclk_config(volatile apb3spixdrmasterctrl_t* reg, uint16_t value){
reg->SCLK_CONFIG = (reg->SCLK_CONFIG & ~(0xfffU << 0)) | (value << 0);
}
//SPI_SSGEN_SETUP
inline uint32_t get_spi_ssgen_setup(volatile apb3spixdrmasterctrl_t* reg){
return (reg->SSGEN_SETUP >> 0) & 0xfff;
}
inline void set_spi_ssgen_setup(volatile apb3spixdrmasterctrl_t* reg, uint16_t value){
reg->SSGEN_SETUP = (reg->SSGEN_SETUP & ~(0xfffU << 0)) | (value << 0);
}
//SPI_SSGEN_HOLD
inline uint32_t get_spi_ssgen_hold(volatile apb3spixdrmasterctrl_t* reg){
return (reg->SSGEN_HOLD >> 0) & 0xfff;
}
inline void set_spi_ssgen_hold(volatile apb3spixdrmasterctrl_t* reg, uint16_t value){
reg->SSGEN_HOLD = (reg->SSGEN_HOLD & ~(0xfffU << 0)) | (value << 0);
}
//SPI_SSGEN_DISABLE
inline uint32_t get_spi_ssgen_disable(volatile apb3spixdrmasterctrl_t* reg){
return (reg->SSGEN_DISABLE >> 0) & 0xfff;
}
inline void set_spi_ssgen_disable(volatile apb3spixdrmasterctrl_t* reg, uint16_t value){
reg->SSGEN_DISABLE = (reg->SSGEN_DISABLE & ~(0xfffU << 0)) | (value << 0);
}
//SPI_SSGEN_ACTIVE_HIGH
inline uint32_t get_spi_ssgen_active_high(volatile apb3spixdrmasterctrl_t* reg){
return (reg->SSGEN_ACTIVE_HIGH >> 0) & 0x1;
}
inline void set_spi_ssgen_active_high(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->SSGEN_ACTIVE_HIGH = (reg->SSGEN_ACTIVE_HIGH & ~(0x1U << 0)) | (value << 0);
}
//SPI_XIP_ENABLE
inline uint32_t get_spi_xip_enable(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_ENABLE >> 0) & 0x1;
}
inline void set_spi_xip_enable(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_ENABLE = (reg->XIP_ENABLE & ~(0x1U << 0)) | (value << 0);
}
//SPI_XIP_CONFIG
inline uint32_t get_spi_xip_config(volatile apb3spixdrmasterctrl_t* reg){
return reg->XIP_CONFIG;
}
inline void set_spi_xip_config(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->XIP_CONFIG = value;
}
inline uint32_t get_spi_xip_config_instruction(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_CONFIG >> 0) & 0xff;
}
inline void set_spi_xip_config_instruction(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xffU << 0)) | (value << 0);
}
inline uint32_t get_spi_xip_config_enable(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_CONFIG >> 8) & 0x1;
}
inline void set_spi_xip_config_enable(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0x1U << 8)) | (value << 8);
}
inline uint32_t get_spi_xip_config_dummy_value(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_CONFIG >> 16) & 0xff;
}
inline void set_spi_xip_config_dummy_value(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xffU << 16)) | (value << 16);
}
inline uint32_t get_spi_xip_config_dummy_count(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_CONFIG >> 24) & 0xf;
}
inline void set_spi_xip_config_dummy_count(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xfU << 24)) | (value << 24);
}
//SPI_XIP_MODE
inline uint32_t get_spi_xip_mode(volatile apb3spixdrmasterctrl_t* reg){
return reg->XIP_MODE;
}
inline void set_spi_xip_mode(volatile apb3spixdrmasterctrl_t* reg, uint32_t value){
reg->XIP_MODE = value;
}
inline uint32_t get_spi_xip_mode_instruction(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_MODE >> 0) & 0x7;
}
inline void set_spi_xip_mode_instruction(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_spi_xip_mode_address(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_MODE >> 8) & 0x7;
}
inline void set_spi_xip_mode_address(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x7U << 8)) | (value << 8);
}
inline uint32_t get_spi_xip_mode_dummy(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_MODE >> 16) & 0x7;
}
inline void set_spi_xip_mode_dummy(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x7U << 16)) | (value << 16);
}
inline uint32_t get_spi_xip_mode_payload(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_MODE >> 24) & 0x7;
}
inline void set_spi_xip_mode_payload(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x7U << 24)) | (value << 24);
}
//SPI_XIP_WRITE
inline void set_spi_xip_write(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_WRITE = (reg->XIP_WRITE & ~(0xffU << 0)) | (value << 0);
}
//SPI_XIP_READ_WRITE
inline void set_spi_xip_read_write(volatile apb3spixdrmasterctrl_t* reg, uint8_t value){
reg->XIP_READ_WRITE = (reg->XIP_READ_WRITE & ~(0xffU << 0)) | (value << 0);
}
//SPI_XIP_READ
inline uint32_t get_spi_xip_read(volatile apb3spixdrmasterctrl_t* reg){
return (reg->XIP_READ >> 0) & 0xff;
}
#endif /* _BSP_APB3SPIXDRMASTERCTRL_H */

View File

@ -1,135 +0,0 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
*/
#ifndef _BSP_APB3TIMER_H
#define _BSP_APB3TIMER_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
volatile uint32_t PRESCALER;
volatile uint32_t T0_CTRL;
volatile uint32_t T0_OVERFLOW;
volatile uint32_t T0_VALUE;
volatile uint32_t T1_CTRL;
volatile uint32_t T1_OVERFLOW;
volatile uint32_t T1_VALUE;
}apb3timer_t;
#define TIMER_PRESCALER_OFFS 0
#define TIMER_PRESCALER_MASK 0xffff
#define TIMER_PRESCALER(V) ((V & TIMER_PRESCALER_MASK) << TIMER_PRESCALER_OFFS)
#define TIMER_T0_CTRL_ENABLE_OFFS 0
#define TIMER_T0_CTRL_ENABLE_MASK 0x7
#define TIMER_T0_CTRL_ENABLE(V) ((V & TIMER_T0_CTRL_ENABLE_MASK) << TIMER_T0_CTRL_ENABLE_OFFS)
#define TIMER_T0_CTRL_CLEAR_OFFS 3
#define TIMER_T0_CTRL_CLEAR_MASK 0x3
#define TIMER_T0_CTRL_CLEAR(V) ((V & TIMER_T0_CTRL_CLEAR_MASK) << TIMER_T0_CTRL_CLEAR_OFFS)
#define TIMER_T0_OVERFLOW_OFFS 0
#define TIMER_T0_OVERFLOW_MASK 0xffffffff
#define TIMER_T0_OVERFLOW(V) ((V & TIMER_T0_OVERFLOW_MASK) << TIMER_T0_OVERFLOW_OFFS)
#define TIMER_T0_VALUE_OFFS 0
#define TIMER_T0_VALUE_MASK 0xffffffff
#define TIMER_T0_VALUE(V) ((V & TIMER_T0_VALUE_MASK) << TIMER_T0_VALUE_OFFS)
#define TIMER_T1_CTRL_ENABLE_OFFS 0
#define TIMER_T1_CTRL_ENABLE_MASK 0x7
#define TIMER_T1_CTRL_ENABLE(V) ((V & TIMER_T1_CTRL_ENABLE_MASK) << TIMER_T1_CTRL_ENABLE_OFFS)
#define TIMER_T1_CTRL_CLEAR_OFFS 3
#define TIMER_T1_CTRL_CLEAR_MASK 0x3
#define TIMER_T1_CTRL_CLEAR(V) ((V & TIMER_T1_CTRL_CLEAR_MASK) << TIMER_T1_CTRL_CLEAR_OFFS)
#define TIMER_T1_OVERFLOW_OFFS 0
#define TIMER_T1_OVERFLOW_MASK 0xffffffff
#define TIMER_T1_OVERFLOW(V) ((V & TIMER_T1_OVERFLOW_MASK) << TIMER_T1_OVERFLOW_OFFS)
#define TIMER_T1_VALUE_OFFS 0
#define TIMER_T1_VALUE_MASK 0xffffffff
#define TIMER_T1_VALUE(V) ((V & TIMER_T1_VALUE_MASK) << TIMER_T1_VALUE_OFFS)
//TIMER_PRESCALER
inline uint32_t get_timer_prescaler(volatile apb3timer_t* reg){
return (reg->PRESCALER >> 0) & 0xffff;
}
inline void set_timer_prescaler(volatile apb3timer_t* reg, uint16_t value){
reg->PRESCALER = (reg->PRESCALER & ~(0xffffU << 0)) | (value << 0);
}
//TIMER_T0_CTRL
inline uint32_t get_timer_t0_ctrl(volatile apb3timer_t* reg){
return reg->T0_CTRL;
}
inline void set_timer_t0_ctrl(volatile apb3timer_t* reg, uint32_t value){
reg->T0_CTRL = value;
}
inline uint32_t get_timer_t0_ctrl_enable(volatile apb3timer_t* reg){
return (reg->T0_CTRL >> 0) & 0x7;
}
inline void set_timer_t0_ctrl_enable(volatile apb3timer_t* reg, uint8_t value){
reg->T0_CTRL = (reg->T0_CTRL & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_timer_t0_ctrl_clear(volatile apb3timer_t* reg){
return (reg->T0_CTRL >> 3) & 0x3;
}
inline void set_timer_t0_ctrl_clear(volatile apb3timer_t* reg, uint8_t value){
reg->T0_CTRL = (reg->T0_CTRL & ~(0x3U << 3)) | (value << 3);
}
//TIMER_T0_OVERFLOW
inline uint32_t get_timer_t0_overflow(volatile apb3timer_t* reg){
return (reg->T0_OVERFLOW >> 0) & 0xffffffff;
}
inline void set_timer_t0_overflow(volatile apb3timer_t* reg, uint32_t value){
reg->T0_OVERFLOW = (reg->T0_OVERFLOW & ~(0xffffffffU << 0)) | (value << 0);
}
//TIMER_T0_VALUE
inline uint32_t get_timer_t0_value(volatile apb3timer_t* reg){
return (reg->T0_VALUE >> 0) & 0xffffffff;
}
//TIMER_T1_CTRL
inline uint32_t get_timer_t1_ctrl(volatile apb3timer_t* reg){
return reg->T1_CTRL;
}
inline void set_timer_t1_ctrl(volatile apb3timer_t* reg, uint32_t value){
reg->T1_CTRL = value;
}
inline uint32_t get_timer_t1_ctrl_enable(volatile apb3timer_t* reg){
return (reg->T1_CTRL >> 0) & 0x7;
}
inline void set_timer_t1_ctrl_enable(volatile apb3timer_t* reg, uint8_t value){
reg->T1_CTRL = (reg->T1_CTRL & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_timer_t1_ctrl_clear(volatile apb3timer_t* reg){
return (reg->T1_CTRL >> 3) & 0x3;
}
inline void set_timer_t1_ctrl_clear(volatile apb3timer_t* reg, uint8_t value){
reg->T1_CTRL = (reg->T1_CTRL & ~(0x3U << 3)) | (value << 3);
}
//TIMER_T1_OVERFLOW
inline uint32_t get_timer_t1_overflow(volatile apb3timer_t* reg){
return (reg->T1_OVERFLOW >> 0) & 0xffffffff;
}
inline void set_timer_t1_overflow(volatile apb3timer_t* reg, uint32_t value){
reg->T1_OVERFLOW = (reg->T1_OVERFLOW & ~(0xffffffffU << 0)) | (value << 0);
}
//TIMER_T1_VALUE
inline uint32_t get_timer_t1_value(volatile apb3timer_t* reg){
return (reg->T1_VALUE >> 0) & 0xffffffff;
}
#endif /* _BSP_APB3TIMER_H */

View File

@ -1,14 +0,0 @@
#ifndef _BSP_GPIO_H
#define _BSP_GPIO_H
#include <stdint.h>
#include "gen/Apb3Gpio.h"
#define gpio_t apb3gpio_t
inline void gpio_init(gpio_t* reg) {
set_gpio_write(reg, 0);
set_gpio_writeEnable(reg, 0);
}
#endif /* _BSP_GPIO_H */

View File

@ -1,14 +0,0 @@
#ifndef _BSP_INTERRUPT_H
#define _BSP_INTERRUPT_H
#include <stdint.h>
#include "gen/Apb3IrqCtrl.h"
#define irq_t apb3irqctrl_t
inline void irq_init(irq_t* reg){
set_irq_masksReg(reg, 0);
set_irq_pendingsReg(reg, 0xff);
}
#endif /* _BSP_INTERRUPT_H */

View File

@ -1,90 +0,0 @@
#ifndef _BSP_QSPI_H
#define _BSP_QSPI_H
#include <stdint.h>
#include "gen/Apb3SpiXdrMasterCtrl.h"
#define qspi_t apb3spixdrmasterctrl_t
typedef struct {
uint32_t cpol;
uint32_t cpha;
uint32_t mode;
uint32_t clkDivider;
uint32_t ssSetup;
uint32_t ssHold;
uint32_t ssDisable;
} spi_cfg;
#define SPI_CMD_WRITE (1 << 8)
#define SPI_CMD_READ (1 << 9)
#define SPI_CMD_SS (1 << 11)
#define SPI_RSP_VALID (1 << 31)
#define SPI_STATUS_CMD_INT_ENABLE = (1 << 0)
#define SPI_STATUS_RSP_INT_ENABLE = (1 << 1)
#define SPI_STATUS_CMD_INT_FLAG = (1 << 8)
#define SPI_STATUS_RSP_INT_FLAG = (1 << 9)
static inline void spi_configure(volatile qspi_t* reg, spi_cfg *config){
reg->CONFIG = (config->cpol << 0) | (config->cpha << 1) | (config->mode << 4);
reg->SCLK_CONFIG = config->clkDivider;
reg->SSGEN_SETUP = config->ssSetup;
reg->SSGEN_HOLD = config->ssHold;
reg->SSGEN_DISABLE = config->ssDisable;
}
static inline void spi_init(volatile qspi_t* spi){
spi_cfg spiCfg;
spiCfg.cpol = 0;
spiCfg.cpha = 0;
spiCfg.mode = 0;
spiCfg.clkDivider = 2;
spiCfg.ssSetup = 2;
spiCfg.ssHold = 2;
spiCfg.ssDisable = 2;
spi_configure(spi, &spiCfg);
}
static inline uint32_t spi_cmd_avail(volatile qspi_t* reg){
return reg->STATUS & 0xFFFF;
}
static inline uint32_t spi_rsp_occupied(volatile qspi_t* reg){
return reg->STATUS >> 16;
}
static inline void spi_write(volatile qspi_t* reg, uint8_t data){
while(spi_cmd_avail(reg) == 0);
reg->DATA = data | SPI_CMD_WRITE;
}
static inline uint8_t spi_write_read(volatile qspi_t* reg, uint8_t data){
while(spi_cmd_avail(reg) == 0);
reg->DATA = data | SPI_CMD_READ | SPI_CMD_WRITE;
while(spi_rsp_occupied(reg) == 0);
return reg->DATA;
}
static inline uint8_t spi_read(volatile qspi_t* reg){
while(spi_cmd_avail(reg) == 0);
reg->DATA = SPI_CMD_READ;
while(spi_rsp_occupied(reg) == 0);
while((reg->DATA & 0x80000000)==0);
return reg->DATA;
}
static inline void spi_select(volatile qspi_t* reg, uint32_t slaveId){
while(spi_cmd_avail(reg) == 0);
reg->DATA = slaveId | 0x80 | SPI_CMD_SS;
}
static inline void spi_deselect(volatile qspi_t* reg, uint32_t slaveId){
while(spi_cmd_avail(reg) == 0);
reg->DATA = slaveId | SPI_CMD_SS;
}
static inline void spi_wait_tx_idle(volatile qspi_t* reg){
while(spi_cmd_avail(reg) < 0x20);
}
#endif /* _BSP_QSPI_H */

View File

@ -1,19 +0,0 @@
#ifndef _BSP_TIMER_H
#define _BSP_TIMER_H
#include "gen/Apb3Timer.h"
#include <stdint.h>
inline void prescaler_init(apb3timer_t *reg, uint16_t value) {
set_timer_prescaler(reg, value);
}
inline void timer_t0__init(apb3timer_t *reg) {
set_timer_t0_overflow(reg, 0xffffffff);
}
inline void timer_t1__init(apb3timer_t *reg) {
set_timer_t1_overflow(reg, 0xffffffff);
}
#endif /* _BSP_TIMER_H */

View File

@ -1,28 +0,0 @@
#ifndef _BSP_UART_H
#define _BSP_UART_H
#include <stdint.h>
#include "gen/Apb3Uart.h"
#define uart_t apb3uart_t
static inline uint32_t uart_get_tx_free(volatile uart_t *reg){
return (reg->STATUS_REG >> 16) & 0xFF;
}
static inline uint32_t uart_get_rx_avail(volatile uart_t *reg){
return reg->STATUS_REG >> 24;
}
static inline void uart_write(volatile uart_t *reg, uint8_t data){
while(get_uart_rx_tx_reg_tx_free(reg) == 0);
set_uart_rx_tx_reg_data(reg, data);
}
static inline inline uint8_t uart_read(volatile uart_t *reg){
uint32_t res = get_uart_rx_tx_reg_data(reg);
while((res&0x10000) == 0) res = get_uart_rx_tx_reg_data(reg);
return res;
}
#endif /* _BSP_UART_H */

View File

@ -1,10 +1,9 @@
#ifndef _BSP_ACLINT_H
#define _BSP_ACLINT_H
#ifndef _DEVICES_ACLINT_H
#define _DEVICES_ACLINT_H
#include <stdint.h>
#include "gen/Apb3AClint.h"
#include "gen/aclint.h"
#define aclint_t apb3aclint_t
static void set_aclint_mtime(volatile aclint_t* reg, uint64_t value){
set_aclint_mtime_hi(reg, (uint32_t)(value >> 32));
@ -26,4 +25,4 @@ static uint64_t get_aclint_mtimecmp(volatile aclint_t* reg){
return value;
}
#endif /* _BSP_ACLINT_H */
#endif /* _DEVICES_ACLINT_H */

View File

@ -0,0 +1,6 @@
#ifndef _DEVICES_CAM_H
#define _DEVICES_CAM_H
#include "gen/camera.h"
#endif /* _DEVICES_CAM_H */

View File

@ -0,0 +1,11 @@
#ifndef _DEVICES_DMA_H
#define _DEVICES_DMA_H
#include "gen/dma.h"
#define EVENT_UART 1
#define I2S_LEFT_SAMPLE_AVAIL 2
#define I2S_RIGHT_SAMPLE_AVAIL 4
#define CAMERA_PIXEL_AVAIL 8
#endif /* _BSP_DMA_H */

View File

@ -3,16 +3,16 @@
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
* Generated at 2024-08-02 08:46:07 UTC
* by peakrdl_mnrs version 1.2.7
*/
#ifndef _BSP_APB3ACLINT_H
#define _BSP_APB3ACLINT_H
#ifndef _BSP_ACLINT_H
#define _BSP_ACLINT_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
typedef struct {
volatile uint32_t MSIP0;
uint8_t fill0[16380];
volatile uint32_t MTIMECMP0LO;
@ -20,7 +20,7 @@ typedef struct __attribute((__packed__)) {
uint8_t fill1[32752];
volatile uint32_t MTIME_LO;
volatile uint32_t MTIME_HI;
}apb3aclint_t;
}aclint_t;
#define ACLINT_MSIP0_OFFS 0
#define ACLINT_MSIP0_MASK 0x1
@ -43,43 +43,49 @@ typedef struct __attribute((__packed__)) {
#define ACLINT_MTIME_HI(V) ((V & ACLINT_MTIME_HI_MASK) << ACLINT_MTIME_HI_OFFS)
//ACLINT_MSIP0
inline uint32_t get_aclint_msip0(volatile apb3aclint_t* reg){
inline uint32_t get_aclint_msip0(volatile aclint_t* reg){
return reg->MSIP0;
}
inline void set_aclint_msip0(volatile aclint_t* reg, uint32_t value){
reg->MSIP0 = value;
}
inline uint32_t get_aclint_msip0_msip(volatile aclint_t* reg){
return (reg->MSIP0 >> 0) & 0x1;
}
inline void set_aclint_msip0(volatile apb3aclint_t* reg, uint8_t value){
inline void set_aclint_msip0_msip(volatile aclint_t* reg, uint8_t value){
reg->MSIP0 = (reg->MSIP0 & ~(0x1U << 0)) | (value << 0);
}
//ACLINT_MTIMECMP0LO
inline uint32_t get_aclint_mtimecmp0lo(volatile apb3aclint_t* reg){
inline uint32_t get_aclint_mtimecmp0lo(volatile aclint_t* reg){
return (reg->MTIMECMP0LO >> 0) & 0xffffffff;
}
inline void set_aclint_mtimecmp0lo(volatile apb3aclint_t* reg, uint32_t value){
inline void set_aclint_mtimecmp0lo(volatile aclint_t* reg, uint32_t value){
reg->MTIMECMP0LO = (reg->MTIMECMP0LO & ~(0xffffffffU << 0)) | (value << 0);
}
//ACLINT_MTIMECMP0HI
inline uint32_t get_aclint_mtimecmp0hi(volatile apb3aclint_t* reg){
inline uint32_t get_aclint_mtimecmp0hi(volatile aclint_t* reg){
return (reg->MTIMECMP0HI >> 0) & 0xffffffff;
}
inline void set_aclint_mtimecmp0hi(volatile apb3aclint_t* reg, uint32_t value){
inline void set_aclint_mtimecmp0hi(volatile aclint_t* reg, uint32_t value){
reg->MTIMECMP0HI = (reg->MTIMECMP0HI & ~(0xffffffffU << 0)) | (value << 0);
}
//ACLINT_MTIME_LO
inline uint32_t get_aclint_mtime_lo(volatile apb3aclint_t* reg){
inline uint32_t get_aclint_mtime_lo(volatile aclint_t* reg){
return (reg->MTIME_LO >> 0) & 0xffffffff;
}
inline void set_aclint_mtime_lo(volatile apb3aclint_t* reg, uint32_t value){
inline void set_aclint_mtime_lo(volatile aclint_t* reg, uint32_t value){
reg->MTIME_LO = (reg->MTIME_LO & ~(0xffffffffU << 0)) | (value << 0);
}
//ACLINT_MTIME_HI
inline uint32_t get_aclint_mtime_hi(volatile apb3aclint_t* reg){
inline uint32_t get_aclint_mtime_hi(volatile aclint_t* reg){
return (reg->MTIME_HI >> 0) & 0xffffffff;
}
inline void set_aclint_mtime_hi(volatile apb3aclint_t* reg, uint32_t value){
inline void set_aclint_mtime_hi(volatile aclint_t* reg, uint32_t value){
reg->MTIME_HI = (reg->MTIME_HI & ~(0xffffffffU << 0)) | (value << 0);
}
#endif /* _BSP_APB3ACLINT_H */
#endif /* _BSP_ACLINT_H */

View File

@ -0,0 +1,424 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-09-10 14:29:50 UTC
* by peakrdl_mnrs version 1.2.9
*/
#ifndef _BSP_APB3SPI_H
#define _BSP_APB3SPI_H
#include <stdint.h>
typedef struct {
volatile uint32_t DATA;
volatile uint32_t STATUS;
volatile uint32_t CONFIG;
volatile uint32_t INTR;
uint8_t fill0[16];
volatile uint32_t SCLK_CONFIG;
volatile uint32_t SSGEN_SETUP;
volatile uint32_t SSGEN_HOLD;
volatile uint32_t SSGEN_DISABLE;
volatile uint32_t SSGEN_ACTIVE_HIGH;
uint8_t fill1[12];
volatile uint32_t XIP_ENABLE;
volatile uint32_t XIP_CONFIG;
volatile uint32_t XIP_MODE;
uint8_t fill2[4];
volatile uint32_t XIP_WRITE;
volatile uint32_t XIP_READ_WRITE;
volatile uint32_t XIP_READ;
}apb3spi_t;
#define APB3SPI_DATA_DATA_OFFS 0
#define APB3SPI_DATA_DATA_MASK 0xff
#define APB3SPI_DATA_DATA(V) ((V & APB3SPI_DATA_DATA_MASK) << APB3SPI_DATA_DATA_OFFS)
#define APB3SPI_DATA_WRITE_OFFS 8
#define APB3SPI_DATA_WRITE_MASK 0x1
#define APB3SPI_DATA_WRITE(V) ((V & APB3SPI_DATA_WRITE_MASK) << APB3SPI_DATA_WRITE_OFFS)
#define APB3SPI_DATA_READ_OFFS 9
#define APB3SPI_DATA_READ_MASK 0x1
#define APB3SPI_DATA_READ(V) ((V & APB3SPI_DATA_READ_MASK) << APB3SPI_DATA_READ_OFFS)
#define APB3SPI_DATA_KIND_OFFS 11
#define APB3SPI_DATA_KIND_MASK 0x1
#define APB3SPI_DATA_KIND(V) ((V & APB3SPI_DATA_KIND_MASK) << APB3SPI_DATA_KIND_OFFS)
#define APB3SPI_DATA_RX_DATA_INVALID_OFFS 31
#define APB3SPI_DATA_RX_DATA_INVALID_MASK 0x1
#define APB3SPI_DATA_RX_DATA_INVALID(V) ((V & APB3SPI_DATA_RX_DATA_INVALID_MASK) << APB3SPI_DATA_RX_DATA_INVALID_OFFS)
#define APB3SPI_STATUS_TX_FREE_OFFS 0
#define APB3SPI_STATUS_TX_FREE_MASK 0x3f
#define APB3SPI_STATUS_TX_FREE(V) ((V & APB3SPI_STATUS_TX_FREE_MASK) << APB3SPI_STATUS_TX_FREE_OFFS)
#define APB3SPI_STATUS_RX_AVAIL_OFFS 16
#define APB3SPI_STATUS_RX_AVAIL_MASK 0x3f
#define APB3SPI_STATUS_RX_AVAIL(V) ((V & APB3SPI_STATUS_RX_AVAIL_MASK) << APB3SPI_STATUS_RX_AVAIL_OFFS)
#define APB3SPI_CONFIG_KIND_OFFS 0
#define APB3SPI_CONFIG_KIND_MASK 0x3
#define APB3SPI_CONFIG_KIND(V) ((V & APB3SPI_CONFIG_KIND_MASK) << APB3SPI_CONFIG_KIND_OFFS)
#define APB3SPI_CONFIG_MODE_OFFS 4
#define APB3SPI_CONFIG_MODE_MASK 0x3
#define APB3SPI_CONFIG_MODE(V) ((V & APB3SPI_CONFIG_MODE_MASK) << APB3SPI_CONFIG_MODE_OFFS)
#define APB3SPI_INTR_TX_IE_OFFS 0
#define APB3SPI_INTR_TX_IE_MASK 0x1
#define APB3SPI_INTR_TX_IE(V) ((V & APB3SPI_INTR_TX_IE_MASK) << APB3SPI_INTR_TX_IE_OFFS)
#define APB3SPI_INTR_RX_IE_OFFS 1
#define APB3SPI_INTR_RX_IE_MASK 0x1
#define APB3SPI_INTR_RX_IE(V) ((V & APB3SPI_INTR_RX_IE_MASK) << APB3SPI_INTR_RX_IE_OFFS)
#define APB3SPI_INTR_TX_IP_OFFS 8
#define APB3SPI_INTR_TX_IP_MASK 0x1
#define APB3SPI_INTR_TX_IP(V) ((V & APB3SPI_INTR_TX_IP_MASK) << APB3SPI_INTR_TX_IP_OFFS)
#define APB3SPI_INTR_RX_IP_OFFS 9
#define APB3SPI_INTR_RX_IP_MASK 0x1
#define APB3SPI_INTR_RX_IP(V) ((V & APB3SPI_INTR_RX_IP_MASK) << APB3SPI_INTR_RX_IP_OFFS)
#define APB3SPI_INTR_TX_ACTIVE_OFFS 16
#define APB3SPI_INTR_TX_ACTIVE_MASK 0x1
#define APB3SPI_INTR_TX_ACTIVE(V) ((V & APB3SPI_INTR_TX_ACTIVE_MASK) << APB3SPI_INTR_TX_ACTIVE_OFFS)
#define APB3SPI_SCLK_CONFIG_OFFS 0
#define APB3SPI_SCLK_CONFIG_MASK 0xfff
#define APB3SPI_SCLK_CONFIG(V) ((V & APB3SPI_SCLK_CONFIG_MASK) << APB3SPI_SCLK_CONFIG_OFFS)
#define APB3SPI_SSGEN_SETUP_OFFS 0
#define APB3SPI_SSGEN_SETUP_MASK 0xfff
#define APB3SPI_SSGEN_SETUP(V) ((V & APB3SPI_SSGEN_SETUP_MASK) << APB3SPI_SSGEN_SETUP_OFFS)
#define APB3SPI_SSGEN_HOLD_OFFS 0
#define APB3SPI_SSGEN_HOLD_MASK 0xfff
#define APB3SPI_SSGEN_HOLD(V) ((V & APB3SPI_SSGEN_HOLD_MASK) << APB3SPI_SSGEN_HOLD_OFFS)
#define APB3SPI_SSGEN_DISABLE_OFFS 0
#define APB3SPI_SSGEN_DISABLE_MASK 0xfff
#define APB3SPI_SSGEN_DISABLE(V) ((V & APB3SPI_SSGEN_DISABLE_MASK) << APB3SPI_SSGEN_DISABLE_OFFS)
#define APB3SPI_SSGEN_ACTIVE_HIGH_OFFS 0
#define APB3SPI_SSGEN_ACTIVE_HIGH_MASK 0x1
#define APB3SPI_SSGEN_ACTIVE_HIGH(V) ((V & APB3SPI_SSGEN_ACTIVE_HIGH_MASK) << APB3SPI_SSGEN_ACTIVE_HIGH_OFFS)
#define APB3SPI_XIP_ENABLE_OFFS 0
#define APB3SPI_XIP_ENABLE_MASK 0x1
#define APB3SPI_XIP_ENABLE(V) ((V & APB3SPI_XIP_ENABLE_MASK) << APB3SPI_XIP_ENABLE_OFFS)
#define APB3SPI_XIP_CONFIG_INSTRUCTION_OFFS 0
#define APB3SPI_XIP_CONFIG_INSTRUCTION_MASK 0xff
#define APB3SPI_XIP_CONFIG_INSTRUCTION(V) ((V & APB3SPI_XIP_CONFIG_INSTRUCTION_MASK) << APB3SPI_XIP_CONFIG_INSTRUCTION_OFFS)
#define APB3SPI_XIP_CONFIG_ENABLE_OFFS 8
#define APB3SPI_XIP_CONFIG_ENABLE_MASK 0x1
#define APB3SPI_XIP_CONFIG_ENABLE(V) ((V & APB3SPI_XIP_CONFIG_ENABLE_MASK) << APB3SPI_XIP_CONFIG_ENABLE_OFFS)
#define APB3SPI_XIP_CONFIG_DUMMY_VALUE_OFFS 16
#define APB3SPI_XIP_CONFIG_DUMMY_VALUE_MASK 0xff
#define APB3SPI_XIP_CONFIG_DUMMY_VALUE(V) ((V & APB3SPI_XIP_CONFIG_DUMMY_VALUE_MASK) << APB3SPI_XIP_CONFIG_DUMMY_VALUE_OFFS)
#define APB3SPI_XIP_CONFIG_DUMMY_COUNT_OFFS 24
#define APB3SPI_XIP_CONFIG_DUMMY_COUNT_MASK 0xf
#define APB3SPI_XIP_CONFIG_DUMMY_COUNT(V) ((V & APB3SPI_XIP_CONFIG_DUMMY_COUNT_MASK) << APB3SPI_XIP_CONFIG_DUMMY_COUNT_OFFS)
#define APB3SPI_XIP_MODE_INSTRUCTION_OFFS 0
#define APB3SPI_XIP_MODE_INSTRUCTION_MASK 0x3
#define APB3SPI_XIP_MODE_INSTRUCTION(V) ((V & APB3SPI_XIP_MODE_INSTRUCTION_MASK) << APB3SPI_XIP_MODE_INSTRUCTION_OFFS)
#define APB3SPI_XIP_MODE_ADDRESS_OFFS 8
#define APB3SPI_XIP_MODE_ADDRESS_MASK 0x3
#define APB3SPI_XIP_MODE_ADDRESS(V) ((V & APB3SPI_XIP_MODE_ADDRESS_MASK) << APB3SPI_XIP_MODE_ADDRESS_OFFS)
#define APB3SPI_XIP_MODE_DUMMY_OFFS 16
#define APB3SPI_XIP_MODE_DUMMY_MASK 0x3
#define APB3SPI_XIP_MODE_DUMMY(V) ((V & APB3SPI_XIP_MODE_DUMMY_MASK) << APB3SPI_XIP_MODE_DUMMY_OFFS)
#define APB3SPI_XIP_MODE_PAYLOAD_OFFS 24
#define APB3SPI_XIP_MODE_PAYLOAD_MASK 0x3
#define APB3SPI_XIP_MODE_PAYLOAD(V) ((V & APB3SPI_XIP_MODE_PAYLOAD_MASK) << APB3SPI_XIP_MODE_PAYLOAD_OFFS)
#define APB3SPI_XIP_WRITE_OFFS 0
#define APB3SPI_XIP_WRITE_MASK 0xff
#define APB3SPI_XIP_WRITE(V) ((V & APB3SPI_XIP_WRITE_MASK) << APB3SPI_XIP_WRITE_OFFS)
#define APB3SPI_XIP_READ_WRITE_OFFS 0
#define APB3SPI_XIP_READ_WRITE_MASK 0xff
#define APB3SPI_XIP_READ_WRITE(V) ((V & APB3SPI_XIP_READ_WRITE_MASK) << APB3SPI_XIP_READ_WRITE_OFFS)
#define APB3SPI_XIP_READ_OFFS 0
#define APB3SPI_XIP_READ_MASK 0xff
#define APB3SPI_XIP_READ(V) ((V & APB3SPI_XIP_READ_MASK) << APB3SPI_XIP_READ_OFFS)
//APB3SPI_DATA
inline uint32_t get_apb3spi_data(volatile apb3spi_t* reg){
return reg->DATA;
}
inline void set_apb3spi_data(volatile apb3spi_t* reg, uint32_t value){
reg->DATA = value;
}
inline void set_apb3spi_data_data(volatile apb3spi_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0xffU << 0)) | (value << 0);
}
inline uint32_t get_apb3spi_data_write(volatile apb3spi_t* reg){
return (reg->DATA >> 8) & 0x1;
}
inline void set_apb3spi_data_write(volatile apb3spi_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 8)) | (value << 8);
}
inline uint32_t get_apb3spi_data_read(volatile apb3spi_t* reg){
return (reg->DATA >> 9) & 0x1;
}
inline void set_apb3spi_data_read(volatile apb3spi_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 9)) | (value << 9);
}
inline uint32_t get_apb3spi_data_kind(volatile apb3spi_t* reg){
return (reg->DATA >> 11) & 0x1;
}
inline void set_apb3spi_data_kind(volatile apb3spi_t* reg, uint8_t value){
reg->DATA = (reg->DATA & ~(0x1U << 11)) | (value << 11);
}
inline uint32_t get_apb3spi_data_rx_data_invalid(volatile apb3spi_t* reg){
return (reg->DATA >> 31) & 0x1;
}
//APB3SPI_STATUS
inline uint32_t get_apb3spi_status(volatile apb3spi_t* reg){
return reg->STATUS;
}
inline uint32_t get_apb3spi_status_tx_free(volatile apb3spi_t* reg){
return (reg->STATUS >> 0) & 0x3f;
}
inline uint32_t get_apb3spi_status_rx_avail(volatile apb3spi_t* reg){
return (reg->STATUS >> 16) & 0x3f;
}
//APB3SPI_CONFIG
inline uint32_t get_apb3spi_config(volatile apb3spi_t* reg){
return reg->CONFIG;
}
inline void set_apb3spi_config(volatile apb3spi_t* reg, uint32_t value){
reg->CONFIG = value;
}
inline uint32_t get_apb3spi_config_kind(volatile apb3spi_t* reg){
return (reg->CONFIG >> 0) & 0x3;
}
inline void set_apb3spi_config_kind(volatile apb3spi_t* reg, uint8_t value){
reg->CONFIG = (reg->CONFIG & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_apb3spi_config_mode(volatile apb3spi_t* reg){
return (reg->CONFIG >> 4) & 0x3;
}
inline void set_apb3spi_config_mode(volatile apb3spi_t* reg, uint8_t value){
reg->CONFIG = (reg->CONFIG & ~(0x3U << 4)) | (value << 4);
}
//APB3SPI_INTR
inline uint32_t get_apb3spi_intr(volatile apb3spi_t* reg){
return reg->INTR;
}
inline void set_apb3spi_intr(volatile apb3spi_t* reg, uint32_t value){
reg->INTR = value;
}
inline uint32_t get_apb3spi_intr_tx_ie(volatile apb3spi_t* reg){
return (reg->INTR >> 0) & 0x1;
}
inline void set_apb3spi_intr_tx_ie(volatile apb3spi_t* reg, uint8_t value){
reg->INTR = (reg->INTR & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_apb3spi_intr_rx_ie(volatile apb3spi_t* reg){
return (reg->INTR >> 1) & 0x1;
}
inline void set_apb3spi_intr_rx_ie(volatile apb3spi_t* reg, uint8_t value){
reg->INTR = (reg->INTR & ~(0x1U << 1)) | (value << 1);
}
inline uint32_t get_apb3spi_intr_tx_ip(volatile apb3spi_t* reg){
return (reg->INTR >> 8) & 0x1;
}
inline uint32_t get_apb3spi_intr_rx_ip(volatile apb3spi_t* reg){
return (reg->INTR >> 9) & 0x1;
}
inline uint32_t get_apb3spi_intr_tx_active(volatile apb3spi_t* reg){
return (reg->INTR >> 16) & 0x1;
}
//APB3SPI_SCLK_CONFIG
inline uint32_t get_apb3spi_sclk_config(volatile apb3spi_t* reg){
return reg->SCLK_CONFIG;
}
inline void set_apb3spi_sclk_config(volatile apb3spi_t* reg, uint32_t value){
reg->SCLK_CONFIG = value;
}
inline uint32_t get_apb3spi_sclk_config_clk_divider(volatile apb3spi_t* reg){
return (reg->SCLK_CONFIG >> 0) & 0xfff;
}
inline void set_apb3spi_sclk_config_clk_divider(volatile apb3spi_t* reg, uint16_t value){
reg->SCLK_CONFIG = (reg->SCLK_CONFIG & ~(0xfffU << 0)) | (value << 0);
}
//APB3SPI_SSGEN_SETUP
inline uint32_t get_apb3spi_ssgen_setup(volatile apb3spi_t* reg){
return reg->SSGEN_SETUP;
}
inline void set_apb3spi_ssgen_setup(volatile apb3spi_t* reg, uint32_t value){
reg->SSGEN_SETUP = value;
}
inline uint32_t get_apb3spi_ssgen_setup_setup_cycles(volatile apb3spi_t* reg){
return (reg->SSGEN_SETUP >> 0) & 0xfff;
}
inline void set_apb3spi_ssgen_setup_setup_cycles(volatile apb3spi_t* reg, uint16_t value){
reg->SSGEN_SETUP = (reg->SSGEN_SETUP & ~(0xfffU << 0)) | (value << 0);
}
//APB3SPI_SSGEN_HOLD
inline uint32_t get_apb3spi_ssgen_hold(volatile apb3spi_t* reg){
return reg->SSGEN_HOLD;
}
inline void set_apb3spi_ssgen_hold(volatile apb3spi_t* reg, uint32_t value){
reg->SSGEN_HOLD = value;
}
inline uint32_t get_apb3spi_ssgen_hold_hold_cycles(volatile apb3spi_t* reg){
return (reg->SSGEN_HOLD >> 0) & 0xfff;
}
inline void set_apb3spi_ssgen_hold_hold_cycles(volatile apb3spi_t* reg, uint16_t value){
reg->SSGEN_HOLD = (reg->SSGEN_HOLD & ~(0xfffU << 0)) | (value << 0);
}
//APB3SPI_SSGEN_DISABLE
inline uint32_t get_apb3spi_ssgen_disable(volatile apb3spi_t* reg){
return reg->SSGEN_DISABLE;
}
inline void set_apb3spi_ssgen_disable(volatile apb3spi_t* reg, uint32_t value){
reg->SSGEN_DISABLE = value;
}
inline uint32_t get_apb3spi_ssgen_disable_disable_cycles(volatile apb3spi_t* reg){
return (reg->SSGEN_DISABLE >> 0) & 0xfff;
}
inline void set_apb3spi_ssgen_disable_disable_cycles(volatile apb3spi_t* reg, uint16_t value){
reg->SSGEN_DISABLE = (reg->SSGEN_DISABLE & ~(0xfffU << 0)) | (value << 0);
}
//APB3SPI_SSGEN_ACTIVE_HIGH
inline uint32_t get_apb3spi_ssgen_active_high(volatile apb3spi_t* reg){
return reg->SSGEN_ACTIVE_HIGH;
}
inline void set_apb3spi_ssgen_active_high(volatile apb3spi_t* reg, uint32_t value){
reg->SSGEN_ACTIVE_HIGH = value;
}
inline uint32_t get_apb3spi_ssgen_active_high_spi_cs_active_high(volatile apb3spi_t* reg){
return (reg->SSGEN_ACTIVE_HIGH >> 0) & 0x1;
}
inline void set_apb3spi_ssgen_active_high_spi_cs_active_high(volatile apb3spi_t* reg, uint8_t value){
reg->SSGEN_ACTIVE_HIGH = (reg->SSGEN_ACTIVE_HIGH & ~(0x1U << 0)) | (value << 0);
}
//APB3SPI_XIP_ENABLE
inline uint32_t get_apb3spi_xip_enable(volatile apb3spi_t* reg){
return reg->XIP_ENABLE;
}
inline void set_apb3spi_xip_enable(volatile apb3spi_t* reg, uint32_t value){
reg->XIP_ENABLE = value;
}
inline uint32_t get_apb3spi_xip_enable_enable(volatile apb3spi_t* reg){
return (reg->XIP_ENABLE >> 0) & 0x1;
}
inline void set_apb3spi_xip_enable_enable(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_ENABLE = (reg->XIP_ENABLE & ~(0x1U << 0)) | (value << 0);
}
//APB3SPI_XIP_CONFIG
inline uint32_t get_apb3spi_xip_config(volatile apb3spi_t* reg){
return reg->XIP_CONFIG;
}
inline void set_apb3spi_xip_config(volatile apb3spi_t* reg, uint32_t value){
reg->XIP_CONFIG = value;
}
inline uint32_t get_apb3spi_xip_config_instruction(volatile apb3spi_t* reg){
return (reg->XIP_CONFIG >> 0) & 0xff;
}
inline void set_apb3spi_xip_config_instruction(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xffU << 0)) | (value << 0);
}
inline uint32_t get_apb3spi_xip_config_enable(volatile apb3spi_t* reg){
return (reg->XIP_CONFIG >> 8) & 0x1;
}
inline void set_apb3spi_xip_config_enable(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0x1U << 8)) | (value << 8);
}
inline uint32_t get_apb3spi_xip_config_dummy_value(volatile apb3spi_t* reg){
return (reg->XIP_CONFIG >> 16) & 0xff;
}
inline void set_apb3spi_xip_config_dummy_value(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xffU << 16)) | (value << 16);
}
inline uint32_t get_apb3spi_xip_config_dummy_count(volatile apb3spi_t* reg){
return (reg->XIP_CONFIG >> 24) & 0xf;
}
inline void set_apb3spi_xip_config_dummy_count(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_CONFIG = (reg->XIP_CONFIG & ~(0xfU << 24)) | (value << 24);
}
//APB3SPI_XIP_MODE
inline uint32_t get_apb3spi_xip_mode(volatile apb3spi_t* reg){
return reg->XIP_MODE;
}
inline void set_apb3spi_xip_mode(volatile apb3spi_t* reg, uint32_t value){
reg->XIP_MODE = value;
}
inline uint32_t get_apb3spi_xip_mode_instruction(volatile apb3spi_t* reg){
return (reg->XIP_MODE >> 0) & 0x3;
}
inline void set_apb3spi_xip_mode_instruction(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_apb3spi_xip_mode_address(volatile apb3spi_t* reg){
return (reg->XIP_MODE >> 8) & 0x3;
}
inline void set_apb3spi_xip_mode_address(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x3U << 8)) | (value << 8);
}
inline uint32_t get_apb3spi_xip_mode_dummy(volatile apb3spi_t* reg){
return (reg->XIP_MODE >> 16) & 0x3;
}
inline void set_apb3spi_xip_mode_dummy(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x3U << 16)) | (value << 16);
}
inline uint32_t get_apb3spi_xip_mode_payload(volatile apb3spi_t* reg){
return (reg->XIP_MODE >> 24) & 0x3;
}
inline void set_apb3spi_xip_mode_payload(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_MODE = (reg->XIP_MODE & ~(0x3U << 24)) | (value << 24);
}
//APB3SPI_XIP_WRITE
inline void set_apb3spi_xip_write(volatile apb3spi_t* reg, uint32_t value){
reg->XIP_WRITE = value;
}
inline void set_apb3spi_xip_write_data(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_WRITE = (reg->XIP_WRITE & ~(0xffU << 0)) | (value << 0);
}
//APB3SPI_XIP_READ_WRITE
inline void set_apb3spi_xip_read_write(volatile apb3spi_t* reg, uint32_t value){
reg->XIP_READ_WRITE = value;
}
inline void set_apb3spi_xip_read_write_data(volatile apb3spi_t* reg, uint8_t value){
reg->XIP_READ_WRITE = (reg->XIP_READ_WRITE & ~(0xffU << 0)) | (value << 0);
}
//APB3SPI_XIP_READ
inline uint32_t get_apb3spi_xip_read(volatile apb3spi_t* reg){
return reg->XIP_READ;
}
inline uint32_t get_apb3spi_xip_read_data(volatile apb3spi_t* reg){
return (reg->XIP_READ >> 0) & 0xff;
}
#endif /* _BSP_APB3SPI_H */

View File

@ -0,0 +1,127 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-09-10 14:29:50 UTC
* by peakrdl_mnrs version 1.2.9
*/
#ifndef _BSP_CAMERA_H
#define _BSP_CAMERA_H
#include <stdint.h>
typedef struct {
volatile uint32_t PIXEL;
volatile uint32_t STATUS;
volatile uint32_t CAMERA_CLOCK_CTRL;
volatile uint32_t IE;
volatile uint32_t IP;
}camera_t;
#define CAMERA_PIXEL_OFFS 0
#define CAMERA_PIXEL_MASK 0x7ff
#define CAMERA_PIXEL(V) ((V & CAMERA_PIXEL_MASK) << CAMERA_PIXEL_OFFS)
#define CAMERA_STATUS_OFFS 0
#define CAMERA_STATUS_MASK 0x1
#define CAMERA_STATUS(V) ((V & CAMERA_STATUS_MASK) << CAMERA_STATUS_OFFS)
#define CAMERA_CAMERA_CLOCK_CTRL_OFFS 0
#define CAMERA_CAMERA_CLOCK_CTRL_MASK 0xfffff
#define CAMERA_CAMERA_CLOCK_CTRL(V) ((V & CAMERA_CAMERA_CLOCK_CTRL_MASK) << CAMERA_CAMERA_CLOCK_CTRL_OFFS)
#define CAMERA_IE_EN_PIXEL_AVAIL_OFFS 0
#define CAMERA_IE_EN_PIXEL_AVAIL_MASK 0x1
#define CAMERA_IE_EN_PIXEL_AVAIL(V) ((V & CAMERA_IE_EN_PIXEL_AVAIL_MASK) << CAMERA_IE_EN_PIXEL_AVAIL_OFFS)
#define CAMERA_IE_EN_FRAME_FINISHED_OFFS 1
#define CAMERA_IE_EN_FRAME_FINISHED_MASK 0x1
#define CAMERA_IE_EN_FRAME_FINISHED(V) ((V & CAMERA_IE_EN_FRAME_FINISHED_MASK) << CAMERA_IE_EN_FRAME_FINISHED_OFFS)
#define CAMERA_IP_PIXEL_AVAIL_IRQ_PEND_OFFS 0
#define CAMERA_IP_PIXEL_AVAIL_IRQ_PEND_MASK 0x1
#define CAMERA_IP_PIXEL_AVAIL_IRQ_PEND(V) ((V & CAMERA_IP_PIXEL_AVAIL_IRQ_PEND_MASK) << CAMERA_IP_PIXEL_AVAIL_IRQ_PEND_OFFS)
#define CAMERA_IP_FRAME_FINISHED_IRQ_PEND_OFFS 1
#define CAMERA_IP_FRAME_FINISHED_IRQ_PEND_MASK 0x1
#define CAMERA_IP_FRAME_FINISHED_IRQ_PEND(V) ((V & CAMERA_IP_FRAME_FINISHED_IRQ_PEND_MASK) << CAMERA_IP_FRAME_FINISHED_IRQ_PEND_OFFS)
//CAMERA_PIXEL
inline uint32_t get_camera_pixel(volatile camera_t* reg){
return reg->PIXEL;
}
inline void set_camera_pixel(volatile camera_t* reg, uint32_t value){
reg->PIXEL = value;
}
inline uint32_t get_camera_pixel_data(volatile camera_t* reg){
return (reg->PIXEL >> 0) & 0x7ff;
}
inline void set_camera_pixel_data(volatile camera_t* reg, uint16_t value){
reg->PIXEL = (reg->PIXEL & ~(0x7ffU << 0)) | (value << 0);
}
//CAMERA_STATUS
inline uint32_t get_camera_status(volatile camera_t* reg){
return reg->STATUS;
}
inline uint32_t get_camera_status_pixel_avail(volatile camera_t* reg){
return (reg->STATUS >> 0) & 0x1;
}
//CAMERA_CAMERA_CLOCK_CTRL
inline uint32_t get_camera_camera_clock_ctrl(volatile camera_t* reg){
return reg->CAMERA_CLOCK_CTRL;
}
inline void set_camera_camera_clock_ctrl(volatile camera_t* reg, uint32_t value){
reg->CAMERA_CLOCK_CTRL = value;
}
inline uint32_t get_camera_camera_clock_ctrl_divider(volatile camera_t* reg){
return (reg->CAMERA_CLOCK_CTRL >> 0) & 0xfffff;
}
inline void set_camera_camera_clock_ctrl_divider(volatile camera_t* reg, uint32_t value){
reg->CAMERA_CLOCK_CTRL = (reg->CAMERA_CLOCK_CTRL & ~(0xfffffU << 0)) | (value << 0);
}
//CAMERA_IE
inline uint32_t get_camera_ie(volatile camera_t* reg){
return reg->IE;
}
inline void set_camera_ie(volatile camera_t* reg, uint32_t value){
reg->IE = value;
}
inline uint32_t get_camera_ie_en_pixel_avail(volatile camera_t* reg){
return (reg->IE >> 0) & 0x1;
}
inline void set_camera_ie_en_pixel_avail(volatile camera_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_camera_ie_en_frame_finished(volatile camera_t* reg){
return (reg->IE >> 1) & 0x1;
}
inline void set_camera_ie_en_frame_finished(volatile camera_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 1)) | (value << 1);
}
//CAMERA_IP
inline uint32_t get_camera_ip(volatile camera_t* reg){
return reg->IP;
}
inline void set_camera_ip(volatile camera_t* reg, uint32_t value){
reg->IP = value;
}
inline uint32_t get_camera_ip_pixel_avail_irq_pend(volatile camera_t* reg){
return (reg->IP >> 0) & 0x1;
}
inline void set_camera_ip_pixel_avail_irq_pend(volatile camera_t* reg, uint8_t value){
reg->IP = (reg->IP & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_camera_ip_frame_finished_irq_pend(volatile camera_t* reg){
return (reg->IP >> 1) & 0x1;
}
inline void set_camera_ip_frame_finished_irq_pend(volatile camera_t* reg, uint8_t value){
reg->IP = (reg->IP & ~(0x1U << 1)) | (value << 1);
}
#endif /* _BSP_CAMERA_H */

View File

@ -0,0 +1,454 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-08-02 08:46:07 UTC
* by peakrdl_mnrs version 1.2.7
*/
#ifndef _BSP_DMA_H
#define _BSP_DMA_H
#include <stdint.h>
typedef struct {
volatile uint32_t CONTROL;
volatile uint32_t STATUS;
volatile uint32_t IE;
volatile uint32_t IP;
volatile uint32_t CH0_EVENT;
volatile uint32_t CH0_TRANSFER;
volatile uint32_t CH0_SRC_START_ADDR;
volatile uint32_t CH0_SRC_ADDR_INC;
volatile uint32_t CH0_DST_START_ADDR;
volatile uint32_t CH0_DST_ADDR_INC;
volatile uint32_t CH1_EVENT;
volatile uint32_t CH1_TRANSFER;
volatile uint32_t CH1_SRC_START_ADDR;
volatile uint32_t CH1_SRC_ADDR_INC;
volatile uint32_t CH1_DST_START_ADDR;
volatile uint32_t CH1_DST_ADDR_INC;
}dma_t;
#define DMA_CONTROL_CH0_ENABLE_TRANSFER_OFFS 0
#define DMA_CONTROL_CH0_ENABLE_TRANSFER_MASK 0x1
#define DMA_CONTROL_CH0_ENABLE_TRANSFER(V) ((V & DMA_CONTROL_CH0_ENABLE_TRANSFER_MASK) << DMA_CONTROL_CH0_ENABLE_TRANSFER_OFFS)
#define DMA_CONTROL_CH1_ENABLE_TRANSFER_OFFS 1
#define DMA_CONTROL_CH1_ENABLE_TRANSFER_MASK 0x1
#define DMA_CONTROL_CH1_ENABLE_TRANSFER(V) ((V & DMA_CONTROL_CH1_ENABLE_TRANSFER_MASK) << DMA_CONTROL_CH1_ENABLE_TRANSFER_OFFS)
#define DMA_STATUS_CH0_BUSY_OFFS 0
#define DMA_STATUS_CH0_BUSY_MASK 0x1
#define DMA_STATUS_CH0_BUSY(V) ((V & DMA_STATUS_CH0_BUSY_MASK) << DMA_STATUS_CH0_BUSY_OFFS)
#define DMA_STATUS_CH1_BUSY_OFFS 1
#define DMA_STATUS_CH1_BUSY_MASK 0x1
#define DMA_STATUS_CH1_BUSY(V) ((V & DMA_STATUS_CH1_BUSY_MASK) << DMA_STATUS_CH1_BUSY_OFFS)
#define DMA_IE_CH0_IE_SEG_TRANSFER_DONE_OFFS 0
#define DMA_IE_CH0_IE_SEG_TRANSFER_DONE_MASK 0x1
#define DMA_IE_CH0_IE_SEG_TRANSFER_DONE(V) ((V & DMA_IE_CH0_IE_SEG_TRANSFER_DONE_MASK) << DMA_IE_CH0_IE_SEG_TRANSFER_DONE_OFFS)
#define DMA_IE_CH0_IE_TRANSFER_DONE_OFFS 1
#define DMA_IE_CH0_IE_TRANSFER_DONE_MASK 0x1
#define DMA_IE_CH0_IE_TRANSFER_DONE(V) ((V & DMA_IE_CH0_IE_TRANSFER_DONE_MASK) << DMA_IE_CH0_IE_TRANSFER_DONE_OFFS)
#define DMA_IE_CH1_IE_SEG_TRANSFER_DONE_OFFS 2
#define DMA_IE_CH1_IE_SEG_TRANSFER_DONE_MASK 0x1
#define DMA_IE_CH1_IE_SEG_TRANSFER_DONE(V) ((V & DMA_IE_CH1_IE_SEG_TRANSFER_DONE_MASK) << DMA_IE_CH1_IE_SEG_TRANSFER_DONE_OFFS)
#define DMA_IE_CH1_IE_TRANSFER_DONE_OFFS 3
#define DMA_IE_CH1_IE_TRANSFER_DONE_MASK 0x1
#define DMA_IE_CH1_IE_TRANSFER_DONE(V) ((V & DMA_IE_CH1_IE_TRANSFER_DONE_MASK) << DMA_IE_CH1_IE_TRANSFER_DONE_OFFS)
#define DMA_IP_CH0_IP_SEG_TRANSFER_DONE_OFFS 0
#define DMA_IP_CH0_IP_SEG_TRANSFER_DONE_MASK 0x1
#define DMA_IP_CH0_IP_SEG_TRANSFER_DONE(V) ((V & DMA_IP_CH0_IP_SEG_TRANSFER_DONE_MASK) << DMA_IP_CH0_IP_SEG_TRANSFER_DONE_OFFS)
#define DMA_IP_CH0_IP_TRANSFER_DONE_OFFS 1
#define DMA_IP_CH0_IP_TRANSFER_DONE_MASK 0x1
#define DMA_IP_CH0_IP_TRANSFER_DONE(V) ((V & DMA_IP_CH0_IP_TRANSFER_DONE_MASK) << DMA_IP_CH0_IP_TRANSFER_DONE_OFFS)
#define DMA_IP_CH1_IP_SEG_TRANSFER_DONE_OFFS 2
#define DMA_IP_CH1_IP_SEG_TRANSFER_DONE_MASK 0x1
#define DMA_IP_CH1_IP_SEG_TRANSFER_DONE(V) ((V & DMA_IP_CH1_IP_SEG_TRANSFER_DONE_MASK) << DMA_IP_CH1_IP_SEG_TRANSFER_DONE_OFFS)
#define DMA_IP_CH1_IP_TRANSFER_DONE_OFFS 3
#define DMA_IP_CH1_IP_TRANSFER_DONE_MASK 0x1
#define DMA_IP_CH1_IP_TRANSFER_DONE(V) ((V & DMA_IP_CH1_IP_TRANSFER_DONE_MASK) << DMA_IP_CH1_IP_TRANSFER_DONE_OFFS)
#define DMA_CH0_EVENT_SELECT_OFFS 0
#define DMA_CH0_EVENT_SELECT_MASK 0x1f
#define DMA_CH0_EVENT_SELECT(V) ((V & DMA_CH0_EVENT_SELECT_MASK) << DMA_CH0_EVENT_SELECT_OFFS)
#define DMA_CH0_EVENT_COMBINE_OFFS 31
#define DMA_CH0_EVENT_COMBINE_MASK 0x1
#define DMA_CH0_EVENT_COMBINE(V) ((V & DMA_CH0_EVENT_COMBINE_MASK) << DMA_CH0_EVENT_COMBINE_OFFS)
#define DMA_CH0_TRANSFER_WIDTH_OFFS 0
#define DMA_CH0_TRANSFER_WIDTH_MASK 0x3
#define DMA_CH0_TRANSFER_WIDTH(V) ((V & DMA_CH0_TRANSFER_WIDTH_MASK) << DMA_CH0_TRANSFER_WIDTH_OFFS)
#define DMA_CH0_TRANSFER_SEG_LENGTH_OFFS 2
#define DMA_CH0_TRANSFER_SEG_LENGTH_MASK 0x3ff
#define DMA_CH0_TRANSFER_SEG_LENGTH(V) ((V & DMA_CH0_TRANSFER_SEG_LENGTH_MASK) << DMA_CH0_TRANSFER_SEG_LENGTH_OFFS)
#define DMA_CH0_TRANSFER_SEG_COUNT_OFFS 12
#define DMA_CH0_TRANSFER_SEG_COUNT_MASK 0xfffff
#define DMA_CH0_TRANSFER_SEG_COUNT(V) ((V & DMA_CH0_TRANSFER_SEG_COUNT_MASK) << DMA_CH0_TRANSFER_SEG_COUNT_OFFS)
#define DMA_CH0_SRC_START_ADDR_OFFS 0
#define DMA_CH0_SRC_START_ADDR_MASK 0xffffffff
#define DMA_CH0_SRC_START_ADDR(V) ((V & DMA_CH0_SRC_START_ADDR_MASK) << DMA_CH0_SRC_START_ADDR_OFFS)
#define DMA_CH0_SRC_ADDR_INC_SRC_STEP_OFFS 0
#define DMA_CH0_SRC_ADDR_INC_SRC_STEP_MASK 0xfff
#define DMA_CH0_SRC_ADDR_INC_SRC_STEP(V) ((V & DMA_CH0_SRC_ADDR_INC_SRC_STEP_MASK) << DMA_CH0_SRC_ADDR_INC_SRC_STEP_OFFS)
#define DMA_CH0_SRC_ADDR_INC_SRC_STRIDE_OFFS 12
#define DMA_CH0_SRC_ADDR_INC_SRC_STRIDE_MASK 0xfffff
#define DMA_CH0_SRC_ADDR_INC_SRC_STRIDE(V) ((V & DMA_CH0_SRC_ADDR_INC_SRC_STRIDE_MASK) << DMA_CH0_SRC_ADDR_INC_SRC_STRIDE_OFFS)
#define DMA_CH0_DST_START_ADDR_OFFS 0
#define DMA_CH0_DST_START_ADDR_MASK 0xffffffff
#define DMA_CH0_DST_START_ADDR(V) ((V & DMA_CH0_DST_START_ADDR_MASK) << DMA_CH0_DST_START_ADDR_OFFS)
#define DMA_CH0_DST_ADDR_INC_DST_STEP_OFFS 0
#define DMA_CH0_DST_ADDR_INC_DST_STEP_MASK 0xfff
#define DMA_CH0_DST_ADDR_INC_DST_STEP(V) ((V & DMA_CH0_DST_ADDR_INC_DST_STEP_MASK) << DMA_CH0_DST_ADDR_INC_DST_STEP_OFFS)
#define DMA_CH0_DST_ADDR_INC_DST_STRIDE_OFFS 12
#define DMA_CH0_DST_ADDR_INC_DST_STRIDE_MASK 0xfffff
#define DMA_CH0_DST_ADDR_INC_DST_STRIDE(V) ((V & DMA_CH0_DST_ADDR_INC_DST_STRIDE_MASK) << DMA_CH0_DST_ADDR_INC_DST_STRIDE_OFFS)
#define DMA_CH1_EVENT_SELECT_OFFS 0
#define DMA_CH1_EVENT_SELECT_MASK 0x1f
#define DMA_CH1_EVENT_SELECT(V) ((V & DMA_CH1_EVENT_SELECT_MASK) << DMA_CH1_EVENT_SELECT_OFFS)
#define DMA_CH1_EVENT_COMBINE_OFFS 31
#define DMA_CH1_EVENT_COMBINE_MASK 0x1
#define DMA_CH1_EVENT_COMBINE(V) ((V & DMA_CH1_EVENT_COMBINE_MASK) << DMA_CH1_EVENT_COMBINE_OFFS)
#define DMA_CH1_TRANSFER_WIDTH_OFFS 0
#define DMA_CH1_TRANSFER_WIDTH_MASK 0x3
#define DMA_CH1_TRANSFER_WIDTH(V) ((V & DMA_CH1_TRANSFER_WIDTH_MASK) << DMA_CH1_TRANSFER_WIDTH_OFFS)
#define DMA_CH1_TRANSFER_SEG_LENGTH_OFFS 2
#define DMA_CH1_TRANSFER_SEG_LENGTH_MASK 0x3ff
#define DMA_CH1_TRANSFER_SEG_LENGTH(V) ((V & DMA_CH1_TRANSFER_SEG_LENGTH_MASK) << DMA_CH1_TRANSFER_SEG_LENGTH_OFFS)
#define DMA_CH1_TRANSFER_SEG_COUNT_OFFS 12
#define DMA_CH1_TRANSFER_SEG_COUNT_MASK 0xfffff
#define DMA_CH1_TRANSFER_SEG_COUNT(V) ((V & DMA_CH1_TRANSFER_SEG_COUNT_MASK) << DMA_CH1_TRANSFER_SEG_COUNT_OFFS)
#define DMA_CH1_SRC_START_ADDR_OFFS 0
#define DMA_CH1_SRC_START_ADDR_MASK 0xffffffff
#define DMA_CH1_SRC_START_ADDR(V) ((V & DMA_CH1_SRC_START_ADDR_MASK) << DMA_CH1_SRC_START_ADDR_OFFS)
#define DMA_CH1_SRC_ADDR_INC_SRC_STEP_OFFS 0
#define DMA_CH1_SRC_ADDR_INC_SRC_STEP_MASK 0xfff
#define DMA_CH1_SRC_ADDR_INC_SRC_STEP(V) ((V & DMA_CH1_SRC_ADDR_INC_SRC_STEP_MASK) << DMA_CH1_SRC_ADDR_INC_SRC_STEP_OFFS)
#define DMA_CH1_SRC_ADDR_INC_SRC_STRIDE_OFFS 12
#define DMA_CH1_SRC_ADDR_INC_SRC_STRIDE_MASK 0xfffff
#define DMA_CH1_SRC_ADDR_INC_SRC_STRIDE(V) ((V & DMA_CH1_SRC_ADDR_INC_SRC_STRIDE_MASK) << DMA_CH1_SRC_ADDR_INC_SRC_STRIDE_OFFS)
#define DMA_CH1_DST_START_ADDR_OFFS 0
#define DMA_CH1_DST_START_ADDR_MASK 0xffffffff
#define DMA_CH1_DST_START_ADDR(V) ((V & DMA_CH1_DST_START_ADDR_MASK) << DMA_CH1_DST_START_ADDR_OFFS)
#define DMA_CH1_DST_ADDR_INC_DST_STEP_OFFS 0
#define DMA_CH1_DST_ADDR_INC_DST_STEP_MASK 0xfff
#define DMA_CH1_DST_ADDR_INC_DST_STEP(V) ((V & DMA_CH1_DST_ADDR_INC_DST_STEP_MASK) << DMA_CH1_DST_ADDR_INC_DST_STEP_OFFS)
#define DMA_CH1_DST_ADDR_INC_DST_STRIDE_OFFS 12
#define DMA_CH1_DST_ADDR_INC_DST_STRIDE_MASK 0xfffff
#define DMA_CH1_DST_ADDR_INC_DST_STRIDE(V) ((V & DMA_CH1_DST_ADDR_INC_DST_STRIDE_MASK) << DMA_CH1_DST_ADDR_INC_DST_STRIDE_OFFS)
//DMA_CONTROL
inline uint32_t get_dma_control(volatile dma_t* reg){
return reg->CONTROL;
}
inline void set_dma_control(volatile dma_t* reg, uint32_t value){
reg->CONTROL = value;
}
inline uint32_t get_dma_control_ch0_enable_transfer(volatile dma_t* reg){
return (reg->CONTROL >> 0) & 0x1;
}
inline void set_dma_control_ch0_enable_transfer(volatile dma_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_dma_control_ch1_enable_transfer(volatile dma_t* reg){
return (reg->CONTROL >> 1) & 0x1;
}
inline void set_dma_control_ch1_enable_transfer(volatile dma_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x1U << 1)) | (value << 1);
}
//DMA_STATUS
inline uint32_t get_dma_status(volatile dma_t* reg){
return reg->STATUS;
}
inline uint32_t get_dma_status_ch0_busy(volatile dma_t* reg){
return (reg->STATUS >> 0) & 0x1;
}
inline uint32_t get_dma_status_ch1_busy(volatile dma_t* reg){
return (reg->STATUS >> 1) & 0x1;
}
//DMA_IE
inline uint32_t get_dma_ie(volatile dma_t* reg){
return reg->IE;
}
inline void set_dma_ie(volatile dma_t* reg, uint32_t value){
reg->IE = value;
}
inline uint32_t get_dma_ie_ch0_ie_seg_transfer_done(volatile dma_t* reg){
return (reg->IE >> 0) & 0x1;
}
inline void set_dma_ie_ch0_ie_seg_transfer_done(volatile dma_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_dma_ie_ch0_ie_transfer_done(volatile dma_t* reg){
return (reg->IE >> 1) & 0x1;
}
inline void set_dma_ie_ch0_ie_transfer_done(volatile dma_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 1)) | (value << 1);
}
inline uint32_t get_dma_ie_ch1_ie_seg_transfer_done(volatile dma_t* reg){
return (reg->IE >> 2) & 0x1;
}
inline void set_dma_ie_ch1_ie_seg_transfer_done(volatile dma_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 2)) | (value << 2);
}
inline uint32_t get_dma_ie_ch1_ie_transfer_done(volatile dma_t* reg){
return (reg->IE >> 3) & 0x1;
}
inline void set_dma_ie_ch1_ie_transfer_done(volatile dma_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 3)) | (value << 3);
}
//DMA_IP
inline uint32_t get_dma_ip(volatile dma_t* reg){
return reg->IP;
}
inline uint32_t get_dma_ip_ch0_ip_seg_transfer_done(volatile dma_t* reg){
return (reg->IP >> 0) & 0x1;
}
inline uint32_t get_dma_ip_ch0_ip_transfer_done(volatile dma_t* reg){
return (reg->IP >> 1) & 0x1;
}
inline uint32_t get_dma_ip_ch1_ip_seg_transfer_done(volatile dma_t* reg){
return (reg->IP >> 2) & 0x1;
}
inline uint32_t get_dma_ip_ch1_ip_transfer_done(volatile dma_t* reg){
return (reg->IP >> 3) & 0x1;
}
//DMA_CH0_EVENT
inline uint32_t get_dma_ch0_event(volatile dma_t* reg){
return reg->CH0_EVENT;
}
inline void set_dma_ch0_event(volatile dma_t* reg, uint32_t value){
reg->CH0_EVENT = value;
}
inline uint32_t get_dma_ch0_event_select(volatile dma_t* reg){
return (reg->CH0_EVENT >> 0) & 0x1f;
}
inline void set_dma_ch0_event_select(volatile dma_t* reg, uint8_t value){
reg->CH0_EVENT = (reg->CH0_EVENT & ~(0x1fU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch0_event_combine(volatile dma_t* reg){
return (reg->CH0_EVENT >> 31) & 0x1;
}
inline void set_dma_ch0_event_combine(volatile dma_t* reg, uint8_t value){
reg->CH0_EVENT = (reg->CH0_EVENT & ~(0x1U << 31)) | (value << 31);
}
//DMA_CH0_TRANSFER
inline uint32_t get_dma_ch0_transfer(volatile dma_t* reg){
return reg->CH0_TRANSFER;
}
inline void set_dma_ch0_transfer(volatile dma_t* reg, uint32_t value){
reg->CH0_TRANSFER = value;
}
inline uint32_t get_dma_ch0_transfer_width(volatile dma_t* reg){
return (reg->CH0_TRANSFER >> 0) & 0x3;
}
inline void set_dma_ch0_transfer_width(volatile dma_t* reg, uint8_t value){
reg->CH0_TRANSFER = (reg->CH0_TRANSFER & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_dma_ch0_transfer_seg_length(volatile dma_t* reg){
return (reg->CH0_TRANSFER >> 2) & 0x3ff;
}
inline void set_dma_ch0_transfer_seg_length(volatile dma_t* reg, uint16_t value){
reg->CH0_TRANSFER = (reg->CH0_TRANSFER & ~(0x3ffU << 2)) | (value << 2);
}
inline uint32_t get_dma_ch0_transfer_seg_count(volatile dma_t* reg){
return (reg->CH0_TRANSFER >> 12) & 0xfffff;
}
inline void set_dma_ch0_transfer_seg_count(volatile dma_t* reg, uint32_t value){
reg->CH0_TRANSFER = (reg->CH0_TRANSFER & ~(0xfffffU << 12)) | (value << 12);
}
//DMA_CH0_SRC_START_ADDR
inline uint32_t get_dma_ch0_src_start_addr(volatile dma_t* reg){
return (reg->CH0_SRC_START_ADDR >> 0) & 0xffffffff;
}
inline void set_dma_ch0_src_start_addr(volatile dma_t* reg, uint32_t value){
reg->CH0_SRC_START_ADDR = (reg->CH0_SRC_START_ADDR & ~(0xffffffffU << 0)) | (value << 0);
}
//DMA_CH0_SRC_ADDR_INC
inline uint32_t get_dma_ch0_src_addr_inc(volatile dma_t* reg){
return reg->CH0_SRC_ADDR_INC;
}
inline void set_dma_ch0_src_addr_inc(volatile dma_t* reg, uint32_t value){
reg->CH0_SRC_ADDR_INC = value;
}
inline uint32_t get_dma_ch0_src_addr_inc_src_step(volatile dma_t* reg){
return (reg->CH0_SRC_ADDR_INC >> 0) & 0xfff;
}
inline void set_dma_ch0_src_addr_inc_src_step(volatile dma_t* reg, uint16_t value){
reg->CH0_SRC_ADDR_INC = (reg->CH0_SRC_ADDR_INC & ~(0xfffU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch0_src_addr_inc_src_stride(volatile dma_t* reg){
return (reg->CH0_SRC_ADDR_INC >> 12) & 0xfffff;
}
inline void set_dma_ch0_src_addr_inc_src_stride(volatile dma_t* reg, uint32_t value){
reg->CH0_SRC_ADDR_INC = (reg->CH0_SRC_ADDR_INC & ~(0xfffffU << 12)) | (value << 12);
}
//DMA_CH0_DST_START_ADDR
inline uint32_t get_dma_ch0_dst_start_addr(volatile dma_t* reg){
return (reg->CH0_DST_START_ADDR >> 0) & 0xffffffff;
}
inline void set_dma_ch0_dst_start_addr(volatile dma_t* reg, uint32_t value){
reg->CH0_DST_START_ADDR = (reg->CH0_DST_START_ADDR & ~(0xffffffffU << 0)) | (value << 0);
}
//DMA_CH0_DST_ADDR_INC
inline uint32_t get_dma_ch0_dst_addr_inc(volatile dma_t* reg){
return reg->CH0_DST_ADDR_INC;
}
inline void set_dma_ch0_dst_addr_inc(volatile dma_t* reg, uint32_t value){
reg->CH0_DST_ADDR_INC = value;
}
inline uint32_t get_dma_ch0_dst_addr_inc_dst_step(volatile dma_t* reg){
return (reg->CH0_DST_ADDR_INC >> 0) & 0xfff;
}
inline void set_dma_ch0_dst_addr_inc_dst_step(volatile dma_t* reg, uint16_t value){
reg->CH0_DST_ADDR_INC = (reg->CH0_DST_ADDR_INC & ~(0xfffU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch0_dst_addr_inc_dst_stride(volatile dma_t* reg){
return (reg->CH0_DST_ADDR_INC >> 12) & 0xfffff;
}
inline void set_dma_ch0_dst_addr_inc_dst_stride(volatile dma_t* reg, uint32_t value){
reg->CH0_DST_ADDR_INC = (reg->CH0_DST_ADDR_INC & ~(0xfffffU << 12)) | (value << 12);
}
//DMA_CH1_EVENT
inline uint32_t get_dma_ch1_event(volatile dma_t* reg){
return reg->CH1_EVENT;
}
inline void set_dma_ch1_event(volatile dma_t* reg, uint32_t value){
reg->CH1_EVENT = value;
}
inline uint32_t get_dma_ch1_event_select(volatile dma_t* reg){
return (reg->CH1_EVENT >> 0) & 0x1f;
}
inline void set_dma_ch1_event_select(volatile dma_t* reg, uint8_t value){
reg->CH1_EVENT = (reg->CH1_EVENT & ~(0x1fU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch1_event_combine(volatile dma_t* reg){
return (reg->CH1_EVENT >> 31) & 0x1;
}
inline void set_dma_ch1_event_combine(volatile dma_t* reg, uint8_t value){
reg->CH1_EVENT = (reg->CH1_EVENT & ~(0x1U << 31)) | (value << 31);
}
//DMA_CH1_TRANSFER
inline uint32_t get_dma_ch1_transfer(volatile dma_t* reg){
return reg->CH1_TRANSFER;
}
inline void set_dma_ch1_transfer(volatile dma_t* reg, uint32_t value){
reg->CH1_TRANSFER = value;
}
inline uint32_t get_dma_ch1_transfer_width(volatile dma_t* reg){
return (reg->CH1_TRANSFER >> 0) & 0x3;
}
inline void set_dma_ch1_transfer_width(volatile dma_t* reg, uint8_t value){
reg->CH1_TRANSFER = (reg->CH1_TRANSFER & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_dma_ch1_transfer_seg_length(volatile dma_t* reg){
return (reg->CH1_TRANSFER >> 2) & 0x3ff;
}
inline void set_dma_ch1_transfer_seg_length(volatile dma_t* reg, uint16_t value){
reg->CH1_TRANSFER = (reg->CH1_TRANSFER & ~(0x3ffU << 2)) | (value << 2);
}
inline uint32_t get_dma_ch1_transfer_seg_count(volatile dma_t* reg){
return (reg->CH1_TRANSFER >> 12) & 0xfffff;
}
inline void set_dma_ch1_transfer_seg_count(volatile dma_t* reg, uint32_t value){
reg->CH1_TRANSFER = (reg->CH1_TRANSFER & ~(0xfffffU << 12)) | (value << 12);
}
//DMA_CH1_SRC_START_ADDR
inline uint32_t get_dma_ch1_src_start_addr(volatile dma_t* reg){
return (reg->CH1_SRC_START_ADDR >> 0) & 0xffffffff;
}
inline void set_dma_ch1_src_start_addr(volatile dma_t* reg, uint32_t value){
reg->CH1_SRC_START_ADDR = (reg->CH1_SRC_START_ADDR & ~(0xffffffffU << 0)) | (value << 0);
}
//DMA_CH1_SRC_ADDR_INC
inline uint32_t get_dma_ch1_src_addr_inc(volatile dma_t* reg){
return reg->CH1_SRC_ADDR_INC;
}
inline void set_dma_ch1_src_addr_inc(volatile dma_t* reg, uint32_t value){
reg->CH1_SRC_ADDR_INC = value;
}
inline uint32_t get_dma_ch1_src_addr_inc_src_step(volatile dma_t* reg){
return (reg->CH1_SRC_ADDR_INC >> 0) & 0xfff;
}
inline void set_dma_ch1_src_addr_inc_src_step(volatile dma_t* reg, uint16_t value){
reg->CH1_SRC_ADDR_INC = (reg->CH1_SRC_ADDR_INC & ~(0xfffU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch1_src_addr_inc_src_stride(volatile dma_t* reg){
return (reg->CH1_SRC_ADDR_INC >> 12) & 0xfffff;
}
inline void set_dma_ch1_src_addr_inc_src_stride(volatile dma_t* reg, uint32_t value){
reg->CH1_SRC_ADDR_INC = (reg->CH1_SRC_ADDR_INC & ~(0xfffffU << 12)) | (value << 12);
}
//DMA_CH1_DST_START_ADDR
inline uint32_t get_dma_ch1_dst_start_addr(volatile dma_t* reg){
return (reg->CH1_DST_START_ADDR >> 0) & 0xffffffff;
}
inline void set_dma_ch1_dst_start_addr(volatile dma_t* reg, uint32_t value){
reg->CH1_DST_START_ADDR = (reg->CH1_DST_START_ADDR & ~(0xffffffffU << 0)) | (value << 0);
}
//DMA_CH1_DST_ADDR_INC
inline uint32_t get_dma_ch1_dst_addr_inc(volatile dma_t* reg){
return reg->CH1_DST_ADDR_INC;
}
inline void set_dma_ch1_dst_addr_inc(volatile dma_t* reg, uint32_t value){
reg->CH1_DST_ADDR_INC = value;
}
inline uint32_t get_dma_ch1_dst_addr_inc_dst_step(volatile dma_t* reg){
return (reg->CH1_DST_ADDR_INC >> 0) & 0xfff;
}
inline void set_dma_ch1_dst_addr_inc_dst_step(volatile dma_t* reg, uint16_t value){
reg->CH1_DST_ADDR_INC = (reg->CH1_DST_ADDR_INC & ~(0xfffU << 0)) | (value << 0);
}
inline uint32_t get_dma_ch1_dst_addr_inc_dst_stride(volatile dma_t* reg){
return (reg->CH1_DST_ADDR_INC >> 12) & 0xfffff;
}
inline void set_dma_ch1_dst_addr_inc_dst_stride(volatile dma_t* reg, uint32_t value){
reg->CH1_DST_ADDR_INC = (reg->CH1_DST_ADDR_INC & ~(0xfffffU << 12)) | (value << 12);
}
#endif /* _BSP_DMA_H */

View File

@ -0,0 +1,119 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-08-09 14:18:51 UTC
* by peakrdl_mnrs version 1.2.8
*/
#ifndef _BSP_GPIO_H
#define _BSP_GPIO_H
#include <stdint.h>
typedef struct {
volatile uint32_t VALUE;
volatile uint32_t WRITE;
volatile uint32_t WRITEENABLE;
volatile uint32_t IE;
volatile uint32_t IP;
volatile uint32_t IRQ_TRIGGER;
volatile uint32_t IRQ_TYPE;
volatile uint32_t BOOT_SEL;
}gpio_t;
#define GPIO_VALUE_OFFS 0
#define GPIO_VALUE_MASK 0xffffffff
#define GPIO_VALUE(V) ((V & GPIO_VALUE_MASK) << GPIO_VALUE_OFFS)
#define GPIO_WRITE_OFFS 0
#define GPIO_WRITE_MASK 0xffffffff
#define GPIO_WRITE(V) ((V & GPIO_WRITE_MASK) << GPIO_WRITE_OFFS)
#define GPIO_WRITEENABLE_OFFS 0
#define GPIO_WRITEENABLE_MASK 0xffffffff
#define GPIO_WRITEENABLE(V) ((V & GPIO_WRITEENABLE_MASK) << GPIO_WRITEENABLE_OFFS)
#define GPIO_IE_OFFS 0
#define GPIO_IE_MASK 0xffffffff
#define GPIO_IE(V) ((V & GPIO_IE_MASK) << GPIO_IE_OFFS)
#define GPIO_IP_OFFS 0
#define GPIO_IP_MASK 0xffffffff
#define GPIO_IP(V) ((V & GPIO_IP_MASK) << GPIO_IP_OFFS)
#define GPIO_IRQ_TRIGGER_OFFS 0
#define GPIO_IRQ_TRIGGER_MASK 0xffffffff
#define GPIO_IRQ_TRIGGER(V) ((V & GPIO_IRQ_TRIGGER_MASK) << GPIO_IRQ_TRIGGER_OFFS)
#define GPIO_IRQ_TYPE_OFFS 0
#define GPIO_IRQ_TYPE_MASK 0xffffffff
#define GPIO_IRQ_TYPE(V) ((V & GPIO_IRQ_TYPE_MASK) << GPIO_IRQ_TYPE_OFFS)
#define GPIO_BOOT_SEL_OFFS 0
#define GPIO_BOOT_SEL_MASK 0x7
#define GPIO_BOOT_SEL(V) ((V & GPIO_BOOT_SEL_MASK) << GPIO_BOOT_SEL_OFFS)
//GPIO_VALUE
inline uint32_t get_gpio_value(volatile gpio_t* reg){
return (reg->VALUE >> 0) & 0xffffffff;
}
//GPIO_WRITE
inline uint32_t get_gpio_write(volatile gpio_t* reg){
return (reg->WRITE >> 0) & 0xffffffff;
}
inline void set_gpio_write(volatile gpio_t* reg, uint32_t value){
reg->WRITE = (reg->WRITE & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_WRITEENABLE
inline uint32_t get_gpio_writeEnable(volatile gpio_t* reg){
return (reg->WRITEENABLE >> 0) & 0xffffffff;
}
inline void set_gpio_writeEnable(volatile gpio_t* reg, uint32_t value){
reg->WRITEENABLE = (reg->WRITEENABLE & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_IE
inline uint32_t get_gpio_ie(volatile gpio_t* reg){
return (reg->IE >> 0) & 0xffffffff;
}
inline void set_gpio_ie(volatile gpio_t* reg, uint32_t value){
reg->IE = (reg->IE & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_IP
inline uint32_t get_gpio_ip(volatile gpio_t* reg){
return (reg->IP >> 0) & 0xffffffff;
}
inline void set_gpio_ip(volatile gpio_t* reg, uint32_t value){
reg->IP = (reg->IP & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_IRQ_TRIGGER
inline uint32_t get_gpio_irq_trigger(volatile gpio_t* reg){
return (reg->IRQ_TRIGGER >> 0) & 0xffffffff;
}
inline void set_gpio_irq_trigger(volatile gpio_t* reg, uint32_t value){
reg->IRQ_TRIGGER = (reg->IRQ_TRIGGER & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_IRQ_TYPE
inline uint32_t get_gpio_irq_type(volatile gpio_t* reg){
return (reg->IRQ_TYPE >> 0) & 0xffffffff;
}
inline void set_gpio_irq_type(volatile gpio_t* reg, uint32_t value){
reg->IRQ_TYPE = (reg->IRQ_TYPE & ~(0xffffffffU << 0)) | (value << 0);
}
//GPIO_BOOT_SEL
inline uint32_t get_gpio_boot_sel(volatile gpio_t* reg){
return reg->BOOT_SEL;
}
inline uint32_t get_gpio_boot_sel_bootSel(volatile gpio_t* reg){
return (reg->BOOT_SEL >> 0) & 0x7;
}
#endif /* _BSP_GPIO_H */

View File

@ -0,0 +1,228 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-09-10 14:29:50 UTC
* by peakrdl_mnrs version 1.2.9
*/
#ifndef _BSP_I2S_H
#define _BSP_I2S_H
#include <stdint.h>
typedef struct {
volatile uint32_t LEFT_CH;
volatile uint32_t RIGHT_CH;
volatile uint32_t CONTROL;
volatile uint32_t STATUS;
volatile uint32_t I2S_CLOCK_CTRL;
volatile uint32_t PDM_CLOCK_CTRL;
volatile uint32_t IE;
volatile uint32_t IP;
}i2s_t;
#define I2S_LEFT_CH_OFFS 0
#define I2S_LEFT_CH_MASK 0xffffffff
#define I2S_LEFT_CH(V) ((V & I2S_LEFT_CH_MASK) << I2S_LEFT_CH_OFFS)
#define I2S_RIGHT_CH_OFFS 0
#define I2S_RIGHT_CH_MASK 0xffffffff
#define I2S_RIGHT_CH(V) ((V & I2S_RIGHT_CH_MASK) << I2S_RIGHT_CH_OFFS)
#define I2S_CONTROL_MODE_OFFS 0
#define I2S_CONTROL_MODE_MASK 0x3
#define I2S_CONTROL_MODE(V) ((V & I2S_CONTROL_MODE_MASK) << I2S_CONTROL_MODE_OFFS)
#define I2S_CONTROL_DISABLE_LEFT_OFFS 2
#define I2S_CONTROL_DISABLE_LEFT_MASK 0x1
#define I2S_CONTROL_DISABLE_LEFT(V) ((V & I2S_CONTROL_DISABLE_LEFT_MASK) << I2S_CONTROL_DISABLE_LEFT_OFFS)
#define I2S_CONTROL_DISABLE_RIGHT_OFFS 3
#define I2S_CONTROL_DISABLE_RIGHT_MASK 0x1
#define I2S_CONTROL_DISABLE_RIGHT(V) ((V & I2S_CONTROL_DISABLE_RIGHT_MASK) << I2S_CONTROL_DISABLE_RIGHT_OFFS)
#define I2S_CONTROL_IS_MASTER_OFFS 4
#define I2S_CONTROL_IS_MASTER_MASK 0x1
#define I2S_CONTROL_IS_MASTER(V) ((V & I2S_CONTROL_IS_MASTER_MASK) << I2S_CONTROL_IS_MASTER_OFFS)
#define I2S_CONTROL_SAMPLE_SIZE_OFFS 5
#define I2S_CONTROL_SAMPLE_SIZE_MASK 0x3
#define I2S_CONTROL_SAMPLE_SIZE(V) ((V & I2S_CONTROL_SAMPLE_SIZE_MASK) << I2S_CONTROL_SAMPLE_SIZE_OFFS)
#define I2S_CONTROL_PDM_SCALE_OFFS 7
#define I2S_CONTROL_PDM_SCALE_MASK 0x7
#define I2S_CONTROL_PDM_SCALE(V) ((V & I2S_CONTROL_PDM_SCALE_MASK) << I2S_CONTROL_PDM_SCALE_OFFS)
#define I2S_STATUS_ENABLED_OFFS 0
#define I2S_STATUS_ENABLED_MASK 0x1
#define I2S_STATUS_ENABLED(V) ((V & I2S_STATUS_ENABLED_MASK) << I2S_STATUS_ENABLED_OFFS)
#define I2S_STATUS_ACTIVE_OFFS 1
#define I2S_STATUS_ACTIVE_MASK 0x1
#define I2S_STATUS_ACTIVE(V) ((V & I2S_STATUS_ACTIVE_MASK) << I2S_STATUS_ACTIVE_OFFS)
#define I2S_STATUS_LEFT_AVAIL_OFFS 2
#define I2S_STATUS_LEFT_AVAIL_MASK 0x1
#define I2S_STATUS_LEFT_AVAIL(V) ((V & I2S_STATUS_LEFT_AVAIL_MASK) << I2S_STATUS_LEFT_AVAIL_OFFS)
#define I2S_STATUS_RIGHT_AVAIL_OFFS 3
#define I2S_STATUS_RIGHT_AVAIL_MASK 0x1
#define I2S_STATUS_RIGHT_AVAIL(V) ((V & I2S_STATUS_RIGHT_AVAIL_MASK) << I2S_STATUS_RIGHT_AVAIL_OFFS)
#define I2S_I2S_CLOCK_CTRL_OFFS 0
#define I2S_I2S_CLOCK_CTRL_MASK 0xfffff
#define I2S_I2S_CLOCK_CTRL(V) ((V & I2S_I2S_CLOCK_CTRL_MASK) << I2S_I2S_CLOCK_CTRL_OFFS)
#define I2S_PDM_CLOCK_CTRL_OFFS 0
#define I2S_PDM_CLOCK_CTRL_MASK 0x3ff
#define I2S_PDM_CLOCK_CTRL(V) ((V & I2S_PDM_CLOCK_CTRL_MASK) << I2S_PDM_CLOCK_CTRL_OFFS)
#define I2S_IE_EN_LEFT_SAMPLE_AVAIL_OFFS 0
#define I2S_IE_EN_LEFT_SAMPLE_AVAIL_MASK 0x1
#define I2S_IE_EN_LEFT_SAMPLE_AVAIL(V) ((V & I2S_IE_EN_LEFT_SAMPLE_AVAIL_MASK) << I2S_IE_EN_LEFT_SAMPLE_AVAIL_OFFS)
#define I2S_IE_EN_RIGHT_SAMPLE_AVAIL_OFFS 1
#define I2S_IE_EN_RIGHT_SAMPLE_AVAIL_MASK 0x1
#define I2S_IE_EN_RIGHT_SAMPLE_AVAIL(V) ((V & I2S_IE_EN_RIGHT_SAMPLE_AVAIL_MASK) << I2S_IE_EN_RIGHT_SAMPLE_AVAIL_OFFS)
#define I2S_IP_LEFT_SAMPLE_AVAIL_OFFS 0
#define I2S_IP_LEFT_SAMPLE_AVAIL_MASK 0x1
#define I2S_IP_LEFT_SAMPLE_AVAIL(V) ((V & I2S_IP_LEFT_SAMPLE_AVAIL_MASK) << I2S_IP_LEFT_SAMPLE_AVAIL_OFFS)
#define I2S_IP_RIGHT_SAMPLE_AVAIL_OFFS 1
#define I2S_IP_RIGHT_SAMPLE_AVAIL_MASK 0x1
#define I2S_IP_RIGHT_SAMPLE_AVAIL(V) ((V & I2S_IP_RIGHT_SAMPLE_AVAIL_MASK) << I2S_IP_RIGHT_SAMPLE_AVAIL_OFFS)
//I2S_LEFT_CH
inline uint32_t get_i2s_left_ch(volatile i2s_t* reg){
return (reg->LEFT_CH >> 0) & 0xffffffff;
}
//I2S_RIGHT_CH
inline uint32_t get_i2s_right_ch(volatile i2s_t* reg){
return (reg->RIGHT_CH >> 0) & 0xffffffff;
}
//I2S_CONTROL
inline uint32_t get_i2s_control(volatile i2s_t* reg){
return reg->CONTROL;
}
inline void set_i2s_control(volatile i2s_t* reg, uint32_t value){
reg->CONTROL = value;
}
inline uint32_t get_i2s_control_mode(volatile i2s_t* reg){
return (reg->CONTROL >> 0) & 0x3;
}
inline void set_i2s_control_mode(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x3U << 0)) | (value << 0);
}
inline uint32_t get_i2s_control_disable_left(volatile i2s_t* reg){
return (reg->CONTROL >> 2) & 0x1;
}
inline void set_i2s_control_disable_left(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x1U << 2)) | (value << 2);
}
inline uint32_t get_i2s_control_disable_right(volatile i2s_t* reg){
return (reg->CONTROL >> 3) & 0x1;
}
inline void set_i2s_control_disable_right(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x1U << 3)) | (value << 3);
}
inline uint32_t get_i2s_control_is_master(volatile i2s_t* reg){
return (reg->CONTROL >> 4) & 0x1;
}
inline void set_i2s_control_is_master(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x1U << 4)) | (value << 4);
}
inline uint32_t get_i2s_control_sample_size(volatile i2s_t* reg){
return (reg->CONTROL >> 5) & 0x3;
}
inline void set_i2s_control_sample_size(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x3U << 5)) | (value << 5);
}
inline uint32_t get_i2s_control_pdm_scale(volatile i2s_t* reg){
return (reg->CONTROL >> 7) & 0x7;
}
inline void set_i2s_control_pdm_scale(volatile i2s_t* reg, uint8_t value){
reg->CONTROL = (reg->CONTROL & ~(0x7U << 7)) | (value << 7);
}
//I2S_STATUS
inline uint32_t get_i2s_status(volatile i2s_t* reg){
return reg->STATUS;
}
inline uint32_t get_i2s_status_enabled(volatile i2s_t* reg){
return (reg->STATUS >> 0) & 0x1;
}
inline uint32_t get_i2s_status_active(volatile i2s_t* reg){
return (reg->STATUS >> 1) & 0x1;
}
inline uint32_t get_i2s_status_left_avail(volatile i2s_t* reg){
return (reg->STATUS >> 2) & 0x1;
}
inline uint32_t get_i2s_status_right_avail(volatile i2s_t* reg){
return (reg->STATUS >> 3) & 0x1;
}
//I2S_I2S_CLOCK_CTRL
inline uint32_t get_i2s_i2s_clock_ctrl(volatile i2s_t* reg){
return reg->I2S_CLOCK_CTRL;
}
inline void set_i2s_i2s_clock_ctrl(volatile i2s_t* reg, uint32_t value){
reg->I2S_CLOCK_CTRL = value;
}
inline uint32_t get_i2s_i2s_clock_ctrl_divider(volatile i2s_t* reg){
return (reg->I2S_CLOCK_CTRL >> 0) & 0xfffff;
}
inline void set_i2s_i2s_clock_ctrl_divider(volatile i2s_t* reg, uint32_t value){
reg->I2S_CLOCK_CTRL = (reg->I2S_CLOCK_CTRL & ~(0xfffffU << 0)) | (value << 0);
}
//I2S_PDM_CLOCK_CTRL
inline uint32_t get_i2s_pdm_clock_ctrl(volatile i2s_t* reg){
return reg->PDM_CLOCK_CTRL;
}
inline void set_i2s_pdm_clock_ctrl(volatile i2s_t* reg, uint32_t value){
reg->PDM_CLOCK_CTRL = value;
}
inline uint32_t get_i2s_pdm_clock_ctrl_divider(volatile i2s_t* reg){
return (reg->PDM_CLOCK_CTRL >> 0) & 0x3ff;
}
inline void set_i2s_pdm_clock_ctrl_divider(volatile i2s_t* reg, uint16_t value){
reg->PDM_CLOCK_CTRL = (reg->PDM_CLOCK_CTRL & ~(0x3ffU << 0)) | (value << 0);
}
//I2S_IE
inline uint32_t get_i2s_ie(volatile i2s_t* reg){
return reg->IE;
}
inline void set_i2s_ie(volatile i2s_t* reg, uint32_t value){
reg->IE = value;
}
inline uint32_t get_i2s_ie_en_left_sample_avail(volatile i2s_t* reg){
return (reg->IE >> 0) & 0x1;
}
inline void set_i2s_ie_en_left_sample_avail(volatile i2s_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_i2s_ie_en_right_sample_avail(volatile i2s_t* reg){
return (reg->IE >> 1) & 0x1;
}
inline void set_i2s_ie_en_right_sample_avail(volatile i2s_t* reg, uint8_t value){
reg->IE = (reg->IE & ~(0x1U << 1)) | (value << 1);
}
//I2S_IP
inline uint32_t get_i2s_ip(volatile i2s_t* reg){
return reg->IP;
}
inline uint32_t get_i2s_ip_left_sample_avail(volatile i2s_t* reg){
return (reg->IP >> 0) & 0x1;
}
inline uint32_t get_i2s_ip_right_sample_avail(volatile i2s_t* reg){
return (reg->IP >> 1) & 0x1;
}
#endif /* _BSP_I2S_H */

View File

@ -0,0 +1,197 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-11-05 12:12:15 UTC
* by peakrdl_mnrs version 1.2.7
*/
#ifndef _BSP_MSGIF_H
#define _BSP_MSGIF_H
#include <stdint.h>
typedef struct {
volatile uint32_t REG_SEND;
volatile uint32_t REG_HEADER;
volatile uint32_t REG_ACK;
volatile uint32_t REG_RECV_ID;
volatile uint32_t REG_RECV_PAYLOAD;
uint8_t fill0[12];
volatile uint32_t REG_PAYLOAD_0;
volatile uint32_t REG_PAYLOAD_1;
volatile uint32_t REG_PAYLOAD_2;
volatile uint32_t REG_PAYLOAD_3;
volatile uint32_t REG_PAYLOAD_4;
volatile uint32_t REG_PAYLOAD_5;
volatile uint32_t REG_PAYLOAD_6;
volatile uint32_t REG_PAYLOAD_7;
}msgif_t;
#define MSGIF_REG_SEND_OFFS 0
#define MSGIF_REG_SEND_MASK 0x1
#define MSGIF_REG_SEND(V) ((V & MSGIF_REG_SEND_MASK) << MSGIF_REG_SEND_OFFS)
#define MSGIF_REG_HEADER_RECIPIENT_COMPONENT_OFFS 0
#define MSGIF_REG_HEADER_RECIPIENT_COMPONENT_MASK 0x7
#define MSGIF_REG_HEADER_RECIPIENT_COMPONENT(V) ((V & MSGIF_REG_HEADER_RECIPIENT_COMPONENT_MASK) << MSGIF_REG_HEADER_RECIPIENT_COMPONENT_OFFS)
#define MSGIF_REG_HEADER_RECIPIENT_CLUSTER_OFFS 3
#define MSGIF_REG_HEADER_RECIPIENT_CLUSTER_MASK 0x3
#define MSGIF_REG_HEADER_RECIPIENT_CLUSTER(V) ((V & MSGIF_REG_HEADER_RECIPIENT_CLUSTER_MASK) << MSGIF_REG_HEADER_RECIPIENT_CLUSTER_OFFS)
#define MSGIF_REG_HEADER_MESSAGE_LENGTH_OFFS 5
#define MSGIF_REG_HEADER_MESSAGE_LENGTH_MASK 0xf
#define MSGIF_REG_HEADER_MESSAGE_LENGTH(V) ((V & MSGIF_REG_HEADER_MESSAGE_LENGTH_MASK) << MSGIF_REG_HEADER_MESSAGE_LENGTH_OFFS)
#define MSGIF_REG_HEADER_MESSAGE_ID_OFFS 9
#define MSGIF_REG_HEADER_MESSAGE_ID_MASK 0xf
#define MSGIF_REG_HEADER_MESSAGE_ID(V) ((V & MSGIF_REG_HEADER_MESSAGE_ID_MASK) << MSGIF_REG_HEADER_MESSAGE_ID_OFFS)
#define MSGIF_REG_ACK_OFFS 0
#define MSGIF_REG_ACK_MASK 0x1
#define MSGIF_REG_ACK(V) ((V & MSGIF_REG_ACK_MASK) << MSGIF_REG_ACK_OFFS)
#define MSGIF_REG_RECV_ID_OFFS 0
#define MSGIF_REG_RECV_ID_MASK 0xf
#define MSGIF_REG_RECV_ID(V) ((V & MSGIF_REG_RECV_ID_MASK) << MSGIF_REG_RECV_ID_OFFS)
#define MSGIF_REG_RECV_PAYLOAD_OFFS 0
#define MSGIF_REG_RECV_PAYLOAD_MASK 0xffffffff
#define MSGIF_REG_RECV_PAYLOAD(V) ((V & MSGIF_REG_RECV_PAYLOAD_MASK) << MSGIF_REG_RECV_PAYLOAD_OFFS)
#define MSGIF_REG_PAYLOAD_0_OFFS 0
#define MSGIF_REG_PAYLOAD_0_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_0(V) ((V & MSGIF_REG_PAYLOAD_0_MASK) << MSGIF_REG_PAYLOAD_0_OFFS)
#define MSGIF_REG_PAYLOAD_1_OFFS 0
#define MSGIF_REG_PAYLOAD_1_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_1(V) ((V & MSGIF_REG_PAYLOAD_1_MASK) << MSGIF_REG_PAYLOAD_1_OFFS)
#define MSGIF_REG_PAYLOAD_2_OFFS 0
#define MSGIF_REG_PAYLOAD_2_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_2(V) ((V & MSGIF_REG_PAYLOAD_2_MASK) << MSGIF_REG_PAYLOAD_2_OFFS)
#define MSGIF_REG_PAYLOAD_3_OFFS 0
#define MSGIF_REG_PAYLOAD_3_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_3(V) ((V & MSGIF_REG_PAYLOAD_3_MASK) << MSGIF_REG_PAYLOAD_3_OFFS)
#define MSGIF_REG_PAYLOAD_4_OFFS 0
#define MSGIF_REG_PAYLOAD_4_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_4(V) ((V & MSGIF_REG_PAYLOAD_4_MASK) << MSGIF_REG_PAYLOAD_4_OFFS)
#define MSGIF_REG_PAYLOAD_5_OFFS 0
#define MSGIF_REG_PAYLOAD_5_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_5(V) ((V & MSGIF_REG_PAYLOAD_5_MASK) << MSGIF_REG_PAYLOAD_5_OFFS)
#define MSGIF_REG_PAYLOAD_6_OFFS 0
#define MSGIF_REG_PAYLOAD_6_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_6(V) ((V & MSGIF_REG_PAYLOAD_6_MASK) << MSGIF_REG_PAYLOAD_6_OFFS)
#define MSGIF_REG_PAYLOAD_7_OFFS 0
#define MSGIF_REG_PAYLOAD_7_MASK 0xffffffff
#define MSGIF_REG_PAYLOAD_7(V) ((V & MSGIF_REG_PAYLOAD_7_MASK) << MSGIF_REG_PAYLOAD_7_OFFS)
//MSGIF_REG_SEND
inline void set_msgif_REG_SEND(volatile msgif_t* reg, uint32_t value){
reg->REG_SEND = value;
}
inline void set_msgif_REG_SEND_SEND(volatile msgif_t* reg, uint8_t value){
reg->REG_SEND = (reg->REG_SEND & ~(0x1U << 0)) | (value << 0);
}
//MSGIF_REG_HEADER
inline uint32_t get_msgif_REG_HEADER(volatile msgif_t* reg){
return reg->REG_HEADER;
}
inline void set_msgif_REG_HEADER(volatile msgif_t* reg, uint32_t value){
reg->REG_HEADER = value;
}
inline uint32_t get_msgif_REG_HEADER_RECIPIENT_COMPONENT(volatile msgif_t* reg){
return (reg->REG_HEADER >> 0) & 0x7;
}
inline void set_msgif_REG_HEADER_RECIPIENT_COMPONENT(volatile msgif_t* reg, uint8_t value){
reg->REG_HEADER = (reg->REG_HEADER & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_msgif_REG_HEADER_RECIPIENT_CLUSTER(volatile msgif_t* reg){
return (reg->REG_HEADER >> 3) & 0x3;
}
inline void set_msgif_REG_HEADER_RECIPIENT_CLUSTER(volatile msgif_t* reg, uint8_t value){
reg->REG_HEADER = (reg->REG_HEADER & ~(0x3U << 3)) | (value << 3);
}
inline uint32_t get_msgif_REG_HEADER_MESSAGE_LENGTH(volatile msgif_t* reg){
return (reg->REG_HEADER >> 5) & 0xf;
}
inline void set_msgif_REG_HEADER_MESSAGE_LENGTH(volatile msgif_t* reg, uint8_t value){
reg->REG_HEADER = (reg->REG_HEADER & ~(0xfU << 5)) | (value << 5);
}
inline uint32_t get_msgif_REG_HEADER_MESSAGE_ID(volatile msgif_t* reg){
return (reg->REG_HEADER >> 9) & 0xf;
}
inline void set_msgif_REG_HEADER_MESSAGE_ID(volatile msgif_t* reg, uint8_t value){
reg->REG_HEADER = (reg->REG_HEADER & ~(0xfU << 9)) | (value << 9);
}
//MSGIF_REG_ACK
inline void set_msgif_REG_ACK(volatile msgif_t* reg, uint32_t value){
reg->REG_ACK = value;
}
inline void set_msgif_REG_ACK_ACK(volatile msgif_t* reg, uint8_t value){
reg->REG_ACK = (reg->REG_ACK & ~(0x1U << 0)) | (value << 0);
}
//MSGIF_REG_RECV_ID
inline uint32_t get_msgif_REG_RECV_ID(volatile msgif_t* reg){
return reg->REG_RECV_ID;
}
inline uint32_t get_msgif_REG_RECV_ID_RECV_ID(volatile msgif_t* reg){
return (reg->REG_RECV_ID >> 0) & 0xf;
}
//MSGIF_REG_RECV_PAYLOAD
inline uint32_t get_msgif_REG_RECV_PAYLOAD(volatile msgif_t* reg){
return (reg->REG_RECV_PAYLOAD >> 0) & 0xffffffff;
}
//MSGIF_REG_PAYLOAD_0
inline void set_msgif_REG_PAYLOAD_0(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_0 = (reg->REG_PAYLOAD_0 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_1
inline void set_msgif_REG_PAYLOAD_1(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_1 = (reg->REG_PAYLOAD_1 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_2
inline void set_msgif_REG_PAYLOAD_2(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_2 = (reg->REG_PAYLOAD_2 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_3
inline void set_msgif_REG_PAYLOAD_3(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_3 = (reg->REG_PAYLOAD_3 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_4
inline void set_msgif_REG_PAYLOAD_4(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_4 = (reg->REG_PAYLOAD_4 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_5
inline void set_msgif_REG_PAYLOAD_5(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_5 = (reg->REG_PAYLOAD_5 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_6
inline void set_msgif_REG_PAYLOAD_6(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_6 = (reg->REG_PAYLOAD_6 & ~(0xffffffffU << 0)) | (value << 0);
}
//MSGIF_REG_PAYLOAD_7
inline void set_msgif_REG_PAYLOAD_7(volatile msgif_t* reg, uint32_t value){
reg->REG_PAYLOAD_7 = (reg->REG_PAYLOAD_7 & ~(0xffffffffU << 0)) | (value << 0);
}
#endif /* _BSP_MSGIF_H */

View File

@ -0,0 +1,141 @@
/*
* Copyright (c) 2023 - 2024 MINRES Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-08-02 08:46:07 UTC
* by peakrdl_mnrs version 1.2.7
*/
#ifndef _BSP_TIMERCOUNTER_H
#define _BSP_TIMERCOUNTER_H
#include <stdint.h>
typedef struct {
volatile uint32_t PRESCALER;
volatile uint32_t T0_CTRL;
volatile uint32_t T0_OVERFLOW;
volatile uint32_t T0_VALUE;
volatile uint32_t T1_CTRL;
volatile uint32_t T1_OVERFLOW;
volatile uint32_t T1_VALUE;
}timercounter_t;
#define TIMERCOUNTER_PRESCALER_OFFS 0
#define TIMERCOUNTER_PRESCALER_MASK 0xffff
#define TIMERCOUNTER_PRESCALER(V) ((V & TIMERCOUNTER_PRESCALER_MASK) << TIMERCOUNTER_PRESCALER_OFFS)
#define TIMERCOUNTER_T0_CTRL_ENABLE_OFFS 0
#define TIMERCOUNTER_T0_CTRL_ENABLE_MASK 0x7
#define TIMERCOUNTER_T0_CTRL_ENABLE(V) ((V & TIMERCOUNTER_T0_CTRL_ENABLE_MASK) << TIMERCOUNTER_T0_CTRL_ENABLE_OFFS)
#define TIMERCOUNTER_T0_CTRL_CLEAR_OFFS 3
#define TIMERCOUNTER_T0_CTRL_CLEAR_MASK 0x3
#define TIMERCOUNTER_T0_CTRL_CLEAR(V) ((V & TIMERCOUNTER_T0_CTRL_CLEAR_MASK) << TIMERCOUNTER_T0_CTRL_CLEAR_OFFS)
#define TIMERCOUNTER_T0_OVERFLOW_OFFS 0
#define TIMERCOUNTER_T0_OVERFLOW_MASK 0xffffffff
#define TIMERCOUNTER_T0_OVERFLOW(V) ((V & TIMERCOUNTER_T0_OVERFLOW_MASK) << TIMERCOUNTER_T0_OVERFLOW_OFFS)
#define TIMERCOUNTER_T0_VALUE_OFFS 0
#define TIMERCOUNTER_T0_VALUE_MASK 0xffffffff
#define TIMERCOUNTER_T0_VALUE(V) ((V & TIMERCOUNTER_T0_VALUE_MASK) << TIMERCOUNTER_T0_VALUE_OFFS)
#define TIMERCOUNTER_T1_CTRL_ENABLE_OFFS 0
#define TIMERCOUNTER_T1_CTRL_ENABLE_MASK 0x7
#define TIMERCOUNTER_T1_CTRL_ENABLE(V) ((V & TIMERCOUNTER_T1_CTRL_ENABLE_MASK) << TIMERCOUNTER_T1_CTRL_ENABLE_OFFS)
#define TIMERCOUNTER_T1_CTRL_CLEAR_OFFS 3
#define TIMERCOUNTER_T1_CTRL_CLEAR_MASK 0x3
#define TIMERCOUNTER_T1_CTRL_CLEAR(V) ((V & TIMERCOUNTER_T1_CTRL_CLEAR_MASK) << TIMERCOUNTER_T1_CTRL_CLEAR_OFFS)
#define TIMERCOUNTER_T1_OVERFLOW_OFFS 0
#define TIMERCOUNTER_T1_OVERFLOW_MASK 0xffffffff
#define TIMERCOUNTER_T1_OVERFLOW(V) ((V & TIMERCOUNTER_T1_OVERFLOW_MASK) << TIMERCOUNTER_T1_OVERFLOW_OFFS)
#define TIMERCOUNTER_T1_VALUE_OFFS 0
#define TIMERCOUNTER_T1_VALUE_MASK 0xffffffff
#define TIMERCOUNTER_T1_VALUE(V) ((V & TIMERCOUNTER_T1_VALUE_MASK) << TIMERCOUNTER_T1_VALUE_OFFS)
//TIMERCOUNTER_PRESCALER
inline uint32_t get_timercounter_prescaler(volatile timercounter_t* reg){
return reg->PRESCALER;
}
inline void set_timercounter_prescaler(volatile timercounter_t* reg, uint32_t value){
reg->PRESCALER = value;
}
inline uint32_t get_timercounter_prescaler_limit(volatile timercounter_t* reg){
return (reg->PRESCALER >> 0) & 0xffff;
}
inline void set_timercounter_prescaler_limit(volatile timercounter_t* reg, uint16_t value){
reg->PRESCALER = (reg->PRESCALER & ~(0xffffU << 0)) | (value << 0);
}
//TIMERCOUNTER_T0_CTRL
inline uint32_t get_timercounter_t0_ctrl(volatile timercounter_t* reg){
return reg->T0_CTRL;
}
inline void set_timercounter_t0_ctrl(volatile timercounter_t* reg, uint32_t value){
reg->T0_CTRL = value;
}
inline uint32_t get_timercounter_t0_ctrl_enable(volatile timercounter_t* reg){
return (reg->T0_CTRL >> 0) & 0x7;
}
inline void set_timercounter_t0_ctrl_enable(volatile timercounter_t* reg, uint8_t value){
reg->T0_CTRL = (reg->T0_CTRL & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_timercounter_t0_ctrl_clear(volatile timercounter_t* reg){
return (reg->T0_CTRL >> 3) & 0x3;
}
inline void set_timercounter_t0_ctrl_clear(volatile timercounter_t* reg, uint8_t value){
reg->T0_CTRL = (reg->T0_CTRL & ~(0x3U << 3)) | (value << 3);
}
//TIMERCOUNTER_T0_OVERFLOW
inline uint32_t get_timercounter_t0_overflow(volatile timercounter_t* reg){
return (reg->T0_OVERFLOW >> 0) & 0xffffffff;
}
inline void set_timercounter_t0_overflow(volatile timercounter_t* reg, uint32_t value){
reg->T0_OVERFLOW = (reg->T0_OVERFLOW & ~(0xffffffffU << 0)) | (value << 0);
}
//TIMERCOUNTER_T0_VALUE
inline uint32_t get_timercounter_t0_value(volatile timercounter_t* reg){
return (reg->T0_VALUE >> 0) & 0xffffffff;
}
//TIMERCOUNTER_T1_CTRL
inline uint32_t get_timercounter_t1_ctrl(volatile timercounter_t* reg){
return reg->T1_CTRL;
}
inline void set_timercounter_t1_ctrl(volatile timercounter_t* reg, uint32_t value){
reg->T1_CTRL = value;
}
inline uint32_t get_timercounter_t1_ctrl_enable(volatile timercounter_t* reg){
return (reg->T1_CTRL >> 0) & 0x7;
}
inline void set_timercounter_t1_ctrl_enable(volatile timercounter_t* reg, uint8_t value){
reg->T1_CTRL = (reg->T1_CTRL & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_timercounter_t1_ctrl_clear(volatile timercounter_t* reg){
return (reg->T1_CTRL >> 3) & 0x3;
}
inline void set_timercounter_t1_ctrl_clear(volatile timercounter_t* reg, uint8_t value){
reg->T1_CTRL = (reg->T1_CTRL & ~(0x3U << 3)) | (value << 3);
}
//TIMERCOUNTER_T1_OVERFLOW
inline uint32_t get_timercounter_t1_overflow(volatile timercounter_t* reg){
return (reg->T1_OVERFLOW >> 0) & 0xffffffff;
}
inline void set_timercounter_t1_overflow(volatile timercounter_t* reg, uint32_t value){
reg->T1_OVERFLOW = (reg->T1_OVERFLOW & ~(0xffffffffU << 0)) | (value << 0);
}
//TIMERCOUNTER_T1_VALUE
inline uint32_t get_timercounter_t1_value(volatile timercounter_t* reg){
return (reg->T1_VALUE >> 0) & 0xffffffff;
}
#endif /* _BSP_TIMERCOUNTER_H */

View File

@ -3,22 +3,22 @@
*
* SPDX-License-Identifier: Apache-2.0
*
* Generated at 2024-03-28 11:47:58 UTC
* by peakrdl_mnrs version 1.2.4
* Generated at 2024-08-02 08:46:07 UTC
* by peakrdl_mnrs version 1.2.7
*/
#ifndef _BSP_APB3UART_H
#define _BSP_APB3UART_H
#ifndef _BSP_UART_H
#define _BSP_UART_H
#include <stdint.h>
typedef struct __attribute((__packed__)) {
typedef struct {
volatile uint32_t RX_TX_REG;
volatile uint32_t INT_CTRL_REG;
volatile uint32_t CLK_DIVIDER_REG;
volatile uint32_t FRAME_CONFIG_REG;
volatile uint32_t STATUS_REG;
}apb3uart_t;
}uart_t;
#define UART_RX_TX_REG_DATA_OFFS 0
#define UART_RX_TX_REG_DATA_MASK 0xff
@ -32,6 +32,10 @@ typedef struct __attribute((__packed__)) {
#define UART_RX_TX_REG_TX_FREE_MASK 0x1
#define UART_RX_TX_REG_TX_FREE(V) ((V & UART_RX_TX_REG_TX_FREE_MASK) << UART_RX_TX_REG_TX_FREE_OFFS)
#define UART_RX_TX_REG_TX_EMPTY_OFFS 16
#define UART_RX_TX_REG_TX_EMPTY_MASK 0x1
#define UART_RX_TX_REG_TX_EMPTY(V) ((V & UART_RX_TX_REG_TX_EMPTY_MASK) << UART_RX_TX_REG_TX_EMPTY_OFFS)
#define UART_INT_CTRL_REG_WRITE_INTR_ENABLE_OFFS 0
#define UART_INT_CTRL_REG_WRITE_INTR_ENABLE_MASK 0x1
#define UART_INT_CTRL_REG_WRITE_INTR_ENABLE(V) ((V & UART_INT_CTRL_REG_WRITE_INTR_ENABLE_MASK) << UART_INT_CTRL_REG_WRITE_INTR_ENABLE_OFFS)
@ -40,6 +44,10 @@ typedef struct __attribute((__packed__)) {
#define UART_INT_CTRL_REG_READ_INTR_ENABLE_MASK 0x1
#define UART_INT_CTRL_REG_READ_INTR_ENABLE(V) ((V & UART_INT_CTRL_REG_READ_INTR_ENABLE_MASK) << UART_INT_CTRL_REG_READ_INTR_ENABLE_OFFS)
#define UART_INT_CTRL_REG_BREAK_INTR_ENABLE_OFFS 2
#define UART_INT_CTRL_REG_BREAK_INTR_ENABLE_MASK 0x1
#define UART_INT_CTRL_REG_BREAK_INTR_ENABLE(V) ((V & UART_INT_CTRL_REG_BREAK_INTR_ENABLE_MASK) << UART_INT_CTRL_REG_BREAK_INTR_ENABLE_OFFS)
#define UART_INT_CTRL_REG_WRITE_INTR_PEND_OFFS 8
#define UART_INT_CTRL_REG_WRITE_INTR_PEND_MASK 0x1
#define UART_INT_CTRL_REG_WRITE_INTR_PEND(V) ((V & UART_INT_CTRL_REG_WRITE_INTR_PEND_MASK) << UART_INT_CTRL_REG_WRITE_INTR_PEND_OFFS)
@ -48,13 +56,17 @@ typedef struct __attribute((__packed__)) {
#define UART_INT_CTRL_REG_READ_INTR_PEND_MASK 0x1
#define UART_INT_CTRL_REG_READ_INTR_PEND(V) ((V & UART_INT_CTRL_REG_READ_INTR_PEND_MASK) << UART_INT_CTRL_REG_READ_INTR_PEND_OFFS)
#define UART_INT_CTRL_REG_BREAK_INTR_PEND_OFFS 10
#define UART_INT_CTRL_REG_BREAK_INTR_PEND_MASK 0x1
#define UART_INT_CTRL_REG_BREAK_INTR_PEND(V) ((V & UART_INT_CTRL_REG_BREAK_INTR_PEND_MASK) << UART_INT_CTRL_REG_BREAK_INTR_PEND_OFFS)
#define UART_CLK_DIVIDER_REG_OFFS 0
#define UART_CLK_DIVIDER_REG_MASK 0xfffff
#define UART_CLK_DIVIDER_REG(V) ((V & UART_CLK_DIVIDER_REG_MASK) << UART_CLK_DIVIDER_REG_OFFS)
#define UART_FRAME_CONFIG_REG_DATA_LENGHT_OFFS 0
#define UART_FRAME_CONFIG_REG_DATA_LENGHT_MASK 0x7
#define UART_FRAME_CONFIG_REG_DATA_LENGHT(V) ((V & UART_FRAME_CONFIG_REG_DATA_LENGHT_MASK) << UART_FRAME_CONFIG_REG_DATA_LENGHT_OFFS)
#define UART_FRAME_CONFIG_REG_DATA_LENGTH_OFFS 0
#define UART_FRAME_CONFIG_REG_DATA_LENGTH_MASK 0x7
#define UART_FRAME_CONFIG_REG_DATA_LENGTH(V) ((V & UART_FRAME_CONFIG_REG_DATA_LENGTH_MASK) << UART_FRAME_CONFIG_REG_DATA_LENGTH_OFFS)
#define UART_FRAME_CONFIG_REG_PARITY_OFFS 3
#define UART_FRAME_CONFIG_REG_PARITY_MASK 0x3
@ -72,9 +84,9 @@ typedef struct __attribute((__packed__)) {
#define UART_STATUS_REG_STALL_MASK 0x1
#define UART_STATUS_REG_STALL(V) ((V & UART_STATUS_REG_STALL_MASK) << UART_STATUS_REG_STALL_OFFS)
#define UART_STATUS_REG_BREAK_OFFS 8
#define UART_STATUS_REG_BREAK_MASK 0x1
#define UART_STATUS_REG_BREAK(V) ((V & UART_STATUS_REG_BREAK_MASK) << UART_STATUS_REG_BREAK_OFFS)
#define UART_STATUS_REG_BREAK_LINE_OFFS 8
#define UART_STATUS_REG_BREAK_LINE_MASK 0x1
#define UART_STATUS_REG_BREAK_LINE(V) ((V & UART_STATUS_REG_BREAK_LINE_MASK) << UART_STATUS_REG_BREAK_LINE_OFFS)
#define UART_STATUS_REG_BREAK_DETECTED_OFFS 9
#define UART_STATUS_REG_BREAK_DETECTED_MASK 0x1
@ -89,118 +101,136 @@ typedef struct __attribute((__packed__)) {
#define UART_STATUS_REG_CLEAR_BREAK(V) ((V & UART_STATUS_REG_CLEAR_BREAK_MASK) << UART_STATUS_REG_CLEAR_BREAK_OFFS)
//UART_RX_TX_REG
inline uint32_t get_uart_rx_tx_reg(volatile apb3uart_t* reg){
inline uint32_t get_uart_rx_tx_reg(volatile uart_t* reg){
return reg->RX_TX_REG;
}
inline void set_uart_rx_tx_reg(volatile apb3uart_t* reg, uint32_t value){
inline void set_uart_rx_tx_reg(volatile uart_t* reg, uint32_t value){
reg->RX_TX_REG = value;
}
inline uint32_t get_uart_rx_tx_reg_data(volatile apb3uart_t* reg){
inline uint32_t get_uart_rx_tx_reg_data(volatile uart_t* reg){
return (reg->RX_TX_REG >> 0) & 0xff;
}
inline void set_uart_rx_tx_reg_data(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_rx_tx_reg_data(volatile uart_t* reg, uint8_t value){
reg->RX_TX_REG = (reg->RX_TX_REG & ~(0xffU << 0)) | (value << 0);
}
inline uint32_t get_uart_rx_tx_reg_rx_avail(volatile apb3uart_t* reg){
inline uint32_t get_uart_rx_tx_reg_rx_avail(volatile uart_t* reg){
return (reg->RX_TX_REG >> 14) & 0x1;
}
inline uint32_t get_uart_rx_tx_reg_tx_free(volatile apb3uart_t* reg){
inline uint32_t get_uart_rx_tx_reg_tx_free(volatile uart_t* reg){
return (reg->RX_TX_REG >> 15) & 0x1;
}
inline uint32_t get_uart_rx_tx_reg_tx_empty(volatile uart_t* reg){
return (reg->RX_TX_REG >> 16) & 0x1;
}
//UART_INT_CTRL_REG
inline uint32_t get_uart_int_ctrl_reg(volatile apb3uart_t* reg){
inline uint32_t get_uart_int_ctrl_reg(volatile uart_t* reg){
return reg->INT_CTRL_REG;
}
inline void set_uart_int_ctrl_reg(volatile apb3uart_t* reg, uint32_t value){
inline void set_uart_int_ctrl_reg(volatile uart_t* reg, uint32_t value){
reg->INT_CTRL_REG = value;
}
inline uint32_t get_uart_int_ctrl_reg_write_intr_enable(volatile apb3uart_t* reg){
inline uint32_t get_uart_int_ctrl_reg_write_intr_enable(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 0) & 0x1;
}
inline void set_uart_int_ctrl_reg_write_intr_enable(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_int_ctrl_reg_write_intr_enable(volatile uart_t* reg, uint8_t value){
reg->INT_CTRL_REG = (reg->INT_CTRL_REG & ~(0x1U << 0)) | (value << 0);
}
inline uint32_t get_uart_int_ctrl_reg_read_intr_enable(volatile apb3uart_t* reg){
inline uint32_t get_uart_int_ctrl_reg_read_intr_enable(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 1) & 0x1;
}
inline void set_uart_int_ctrl_reg_read_intr_enable(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_int_ctrl_reg_read_intr_enable(volatile uart_t* reg, uint8_t value){
reg->INT_CTRL_REG = (reg->INT_CTRL_REG & ~(0x1U << 1)) | (value << 1);
}
inline uint32_t get_uart_int_ctrl_reg_write_intr_pend(volatile apb3uart_t* reg){
inline uint32_t get_uart_int_ctrl_reg_break_intr_enable(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 2) & 0x1;
}
inline void set_uart_int_ctrl_reg_break_intr_enable(volatile uart_t* reg, uint8_t value){
reg->INT_CTRL_REG = (reg->INT_CTRL_REG & ~(0x1U << 2)) | (value << 2);
}
inline uint32_t get_uart_int_ctrl_reg_write_intr_pend(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 8) & 0x1;
}
inline uint32_t get_uart_int_ctrl_reg_read_intr_pend(volatile apb3uart_t* reg){
inline uint32_t get_uart_int_ctrl_reg_read_intr_pend(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 9) & 0x1;
}
inline uint32_t get_uart_int_ctrl_reg_break_intr_pend(volatile uart_t* reg){
return (reg->INT_CTRL_REG >> 10) & 0x1;
}
//UART_CLK_DIVIDER_REG
inline uint32_t get_uart_clk_divider_reg(volatile apb3uart_t* reg){
inline uint32_t get_uart_clk_divider_reg(volatile uart_t* reg){
return reg->CLK_DIVIDER_REG;
}
inline void set_uart_clk_divider_reg(volatile uart_t* reg, uint32_t value){
reg->CLK_DIVIDER_REG = value;
}
inline uint32_t get_uart_clk_divider_reg_clock_divider(volatile uart_t* reg){
return (reg->CLK_DIVIDER_REG >> 0) & 0xfffff;
}
inline void set_uart_clk_divider_reg(volatile apb3uart_t* reg, uint32_t value){
inline void set_uart_clk_divider_reg_clock_divider(volatile uart_t* reg, uint32_t value){
reg->CLK_DIVIDER_REG = (reg->CLK_DIVIDER_REG & ~(0xfffffU << 0)) | (value << 0);
}
//UART_FRAME_CONFIG_REG
inline uint32_t get_uart_frame_config_reg(volatile apb3uart_t* reg){
inline uint32_t get_uart_frame_config_reg(volatile uart_t* reg){
return reg->FRAME_CONFIG_REG;
}
inline void set_uart_frame_config_reg(volatile apb3uart_t* reg, uint32_t value){
inline void set_uart_frame_config_reg(volatile uart_t* reg, uint32_t value){
reg->FRAME_CONFIG_REG = value;
}
inline uint32_t get_uart_frame_config_reg_data_lenght(volatile apb3uart_t* reg){
inline uint32_t get_uart_frame_config_reg_data_length(volatile uart_t* reg){
return (reg->FRAME_CONFIG_REG >> 0) & 0x7;
}
inline void set_uart_frame_config_reg_data_lenght(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_frame_config_reg_data_length(volatile uart_t* reg, uint8_t value){
reg->FRAME_CONFIG_REG = (reg->FRAME_CONFIG_REG & ~(0x7U << 0)) | (value << 0);
}
inline uint32_t get_uart_frame_config_reg_parity(volatile apb3uart_t* reg){
inline uint32_t get_uart_frame_config_reg_parity(volatile uart_t* reg){
return (reg->FRAME_CONFIG_REG >> 3) & 0x3;
}
inline void set_uart_frame_config_reg_parity(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_frame_config_reg_parity(volatile uart_t* reg, uint8_t value){
reg->FRAME_CONFIG_REG = (reg->FRAME_CONFIG_REG & ~(0x3U << 3)) | (value << 3);
}
inline uint32_t get_uart_frame_config_reg_stop_bit(volatile apb3uart_t* reg){
inline uint32_t get_uart_frame_config_reg_stop_bit(volatile uart_t* reg){
return (reg->FRAME_CONFIG_REG >> 5) & 0x1;
}
inline void set_uart_frame_config_reg_stop_bit(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_frame_config_reg_stop_bit(volatile uart_t* reg, uint8_t value){
reg->FRAME_CONFIG_REG = (reg->FRAME_CONFIG_REG & ~(0x1U << 5)) | (value << 5);
}
//UART_STATUS_REG
inline uint32_t get_uart_status_reg(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg(volatile uart_t* reg){
return reg->STATUS_REG;
}
inline void set_uart_status_reg(volatile apb3uart_t* reg, uint32_t value){
inline void set_uart_status_reg(volatile uart_t* reg, uint32_t value){
reg->STATUS_REG = value;
}
inline uint32_t get_uart_status_reg_read_error(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_read_error(volatile uart_t* reg){
return (reg->STATUS_REG >> 0) & 0x1;
}
inline uint32_t get_uart_status_reg_stall(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_stall(volatile uart_t* reg){
return (reg->STATUS_REG >> 1) & 0x1;
}
inline uint32_t get_uart_status_reg_break(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_break_line(volatile uart_t* reg){
return (reg->STATUS_REG >> 8) & 0x1;
}
inline uint32_t get_uart_status_reg_break_detected(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_break_detected(volatile uart_t* reg){
return (reg->STATUS_REG >> 9) & 0x1;
}
inline void set_uart_status_reg_break_detected(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_status_reg_break_detected(volatile uart_t* reg, uint8_t value){
reg->STATUS_REG = (reg->STATUS_REG & ~(0x1U << 9)) | (value << 9);
}
inline uint32_t get_uart_status_reg_set_break(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_set_break(volatile uart_t* reg){
return (reg->STATUS_REG >> 10) & 0x1;
}
inline void set_uart_status_reg_set_break(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_status_reg_set_break(volatile uart_t* reg, uint8_t value){
reg->STATUS_REG = (reg->STATUS_REG & ~(0x1U << 10)) | (value << 10);
}
inline uint32_t get_uart_status_reg_clear_break(volatile apb3uart_t* reg){
inline uint32_t get_uart_status_reg_clear_break(volatile uart_t* reg){
return (reg->STATUS_REG >> 11) & 0x1;
}
inline void set_uart_status_reg_clear_break(volatile apb3uart_t* reg, uint8_t value){
inline void set_uart_status_reg_clear_break(volatile uart_t* reg, uint8_t value){
reg->STATUS_REG = (reg->STATUS_REG & ~(0x1U << 11)) | (value << 11);
}
#endif /* _BSP_APB3UART_H */
#endif /* _BSP_UART_H */

View File

@ -0,0 +1,12 @@
#ifndef _DEVICES_GPIO_H
#define _DEVICES_GPIO_H
#include <stdint.h>
#include "gen/gpio.h"
inline void gpio_init(volatile gpio_t* reg) {
set_gpio_write(reg, 0);
set_gpio_writeEnable(reg, 0);
}
#endif /* _DEVICES_GPIO_H */

View File

@ -0,0 +1,9 @@
#ifndef _DEVICES_IIS_H
#define _DEVICES_IIS_H
#include "gen/i2s.h"
#define MODE_I2S 1
#define MODE_PDM 2
#endif /* _DEVICES_IIS_H */

View File

@ -0,0 +1,11 @@
#ifndef _DEVICES_INTERRUPT_H
#define _DEVICES_INTERRUPT_H
#include <stdint.h>
#define irq_t void*
inline void irq_init(volatile irq_t* reg){
}
#endif /* _DEVICES_INTERRUPT_H */

View File

@ -0,0 +1,6 @@
#ifndef _DEVICES_MSG_IF_H
#define _DEVICES_MSG_IF_H
#include "gen/msgif.h"
#endif /* _DEVICES_MSG_IF_H */

View File

@ -0,0 +1,82 @@
#ifndef _DEVICES_QSPI_H
#define _DEVICES_QSPI_H
#include <stdint.h>
#include "gen/apb3spi.h"
#define qspi_t apb3spi_t
typedef struct {
uint32_t cpol;
uint32_t cpha;
uint32_t mode;
uint32_t clkDivider;
uint32_t ssSetup;
uint32_t ssHold;
uint32_t ssDisable;
} spi_cfg;
#define SPI_CMD_WRITE (1 << 8)
#define SPI_CMD_READ (1 << 9)
#define SPI_CMD_SS (1 << 11)
#define SPI_RSP_VALID (1 << 31)
#define SPI_STATUS_CMD_INT_ENABLE = (1 << 0)
#define SPI_STATUS_RSP_INT_ENABLE = (1 << 1)
#define SPI_STATUS_CMD_INT_FLAG = (1 << 8)
#define SPI_STATUS_RSP_INT_FLAG = (1 << 9)
static inline void spi_configure(volatile qspi_t* qspi, spi_cfg *config){
set_apb3spi_config(qspi, (config->cpol << 0) | (config->cpha << 1) | (config->mode << 4));
set_apb3spi_sclk_config(qspi, config->clkDivider);
set_apb3spi_ssgen_setup(qspi, config->ssSetup);
set_apb3spi_ssgen_hold(qspi, config->ssHold);
set_apb3spi_ssgen_disable(qspi, config->ssDisable);
}
static inline void spi_init(volatile qspi_t* spi){
spi_cfg spiCfg;
spiCfg.cpol = 0;
spiCfg.cpha = 0;
spiCfg.mode = 0;
spiCfg.clkDivider = 2;
spiCfg.ssSetup = 2;
spiCfg.ssHold = 2;
spiCfg.ssDisable = 2;
spi_configure(spi, &spiCfg);
}
static inline uint32_t spi_cmd_avail(volatile qspi_t* qspi){
return qspi->STATUS & 0xFFFF;
}
static inline uint32_t spi_rsp_occupied(volatile qspi_t* qspi){
return qspi->STATUS >> 16;
}
static inline void spi_write(volatile qspi_t* qspi, uint8_t data){
while(spi_cmd_avail(qspi) == 0);
qspi->DATA = data | SPI_CMD_WRITE;
}
static inline uint8_t spi_read(volatile qspi_t* qspi){
while(spi_cmd_avail(qspi) == 0);
qspi->DATA = SPI_CMD_READ;
while(spi_rsp_occupied(qspi) == 0);
while((qspi->DATA & 0x80000000)==0);
return qspi->DATA;
}
static inline void spi_select(volatile qspi_t* qspi, uint32_t slaveId){
while(spi_cmd_avail(qspi) == 0);
qspi->DATA = slaveId | 0x80 | SPI_CMD_SS;
}
static inline void spi_deselect(volatile qspi_t* qspi, uint32_t slaveId){
while(spi_cmd_avail(qspi) == 0);
qspi->DATA = slaveId | SPI_CMD_SS;
}
static inline void spi_wait_tx_idle(volatile qspi_t* qspi){
while(spi_cmd_avail(qspi) < 0x20);
}
#endif /* _DEVICES_QSPI_H */

View File

@ -0,0 +1,19 @@
#ifndef _DEVICES_TIMER_H
#define _DEVICES_TIMER_H
#include <stdint.h>
#include "gen/timercounter.h"
inline void prescaler_init(timercounter_t* reg, uint16_t value){
set_timercounter_prescaler(reg, value);
}
inline void timer_t0__init(timercounter_t *reg){
set_timercounter_t0_overflow(reg, 0xffffffff);
}
inline void timer_t1__init(timercounter_t *reg){
set_timercounter_t1_overflow(reg, 0xffffffff);
}
#endif /* _DEVICES_TIMER_H */

View File

@ -0,0 +1,30 @@
#ifndef _DEVICES_UART_H
#define _DEVICES_UART_H
#include <stdint.h>
#include "gen/uart.h"
static inline uint32_t uart_get_tx_free(volatile uart_t* reg){
return get_uart_rx_tx_reg_tx_free(reg);
}
static inline uint32_t uart_get_tx_empty(volatile uart_t* reg){
return get_uart_rx_tx_reg_tx_empty(reg);
}
static inline uint32_t uart_get_rx_avail(volatile uart_t* reg){
return get_uart_rx_tx_reg_rx_avail(reg);
}
static inline void uart_write(volatile uart_t* reg, uint8_t data){
while(get_uart_rx_tx_reg_tx_free(reg) == 0);
set_uart_rx_tx_reg_data(reg, data);
}
static inline inline uint8_t uart_read(volatile uart_t* reg){
uint32_t res = get_uart_rx_tx_reg_data(reg);
while((res&0x10000) == 0) res = get_uart_rx_tx_reg_data(reg);
return res;
}
#endif /* _DEVICES_UART_H */

31
include/semihosting.h Normal file
View File

@ -0,0 +1,31 @@
#ifndef SEMIHOSTING_H
#define SEMIHOSTING_H
#include <sys/types.h>
#include <unistd.h>
// int32_t trace_write(const char* buf, uint32_t nbyte);
void sh_seek(int, off_t);
void sh_write0(const char *buf);
void sh_writec(char c);
char sh_readc(void);
int sh_clock(void);
int sh_read(char *, int, size_t);
void sh_write(char *, int);
int sh_open(char *, int);
void sh_rename(char *, char *);
int sh_remove(char *);
int sh_istty(int);
int sh_iserror(int);
int sh_flen(int);
void sh_exit(void);
void sh_exit_extended(void);
int sh_close(int);
int sh_time(void);
int sh_errno(void);
int getchar(void);
extern int sh_missing_host;
#endif

View File

@ -1,88 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_AON_H
#define _SIFIVE_AON_H
/* Register offsets */
#define AON_WDOGCFG 0x000
#define AON_WDOGCOUNT 0x008
#define AON_WDOGS 0x010
#define AON_WDOGFEED 0x018
#define AON_WDOGKEY 0x01C
#define AON_WDOGCMP 0x020
#define AON_RTCCFG 0x040
#define AON_RTCLO 0x048
#define AON_RTCHI 0x04C
#define AON_RTCS 0x050
#define AON_RTCCMP 0x060
#define AON_BACKUP0 0x080
#define AON_BACKUP1 0x084
#define AON_BACKUP2 0x088
#define AON_BACKUP3 0x08C
#define AON_BACKUP4 0x090
#define AON_BACKUP5 0x094
#define AON_BACKUP6 0x098
#define AON_BACKUP7 0x09C
#define AON_BACKUP8 0x0A0
#define AON_BACKUP9 0x0A4
#define AON_BACKUP10 0x0A8
#define AON_BACKUP11 0x0AC
#define AON_BACKUP12 0x0B0
#define AON_BACKUP13 0x0B4
#define AON_BACKUP14 0x0B8
#define AON_BACKUP15 0x0BC
#define AON_PMUWAKEUPI0 0x100
#define AON_PMUWAKEUPI1 0x104
#define AON_PMUWAKEUPI2 0x108
#define AON_PMUWAKEUPI3 0x10C
#define AON_PMUWAKEUPI4 0x110
#define AON_PMUWAKEUPI5 0x114
#define AON_PMUWAKEUPI6 0x118
#define AON_PMUWAKEUPI7 0x11C
#define AON_PMUSLEEPI0 0x120
#define AON_PMUSLEEPI1 0x124
#define AON_PMUSLEEPI2 0x128
#define AON_PMUSLEEPI3 0x12C
#define AON_PMUSLEEPI4 0x130
#define AON_PMUSLEEPI5 0x134
#define AON_PMUSLEEPI6 0x138
#define AON_PMUSLEEPI7 0x13C
#define AON_PMUIE 0x140
#define AON_PMUCAUSE 0x144
#define AON_PMUSLEEP 0x148
#define AON_PMUKEY 0x14C
#define AON_LFROSC 0x070
/* Constants */
#define AON_WDOGKEY_VALUE 0x51F15E
#define AON_WDOGFEED_VALUE 0xD09F00D
#define AON_WDOGCFG_SCALE 0x0000000F
#define AON_WDOGCFG_RSTEN 0x00000100
#define AON_WDOGCFG_ZEROCMP 0x00000200
#define AON_WDOGCFG_ENALWAYS 0x00001000
#define AON_WDOGCFG_ENCOREAWAKE 0x00002000
#define AON_WDOGCFG_CMPIP 0x10000000
#define AON_RTCCFG_SCALE 0x0000000F
#define AON_RTCCFG_ENALWAYS 0x00001000
#define AON_RTCCFG_CMPIP 0x10000000
#define AON_WAKEUPCAUSE_RESET 0x00
#define AON_WAKEUPCAUSE_RTC 0x01
#define AON_WAKEUPCAUSE_DWAKEUP 0x02
#define AON_WAKEUPCAUSE_AWAKEUP 0x03
#define AON_RESETCAUSE_POWERON 0x0000
#define AON_RESETCAUSE_EXTERNAL 0x0100
#define AON_RESETCAUSE_WATCHDOG 0x0200
#define AON_PMUCAUSE_WAKEUPCAUSE 0x00FF
#define AON_PMUCAUSE_RESETCAUSE 0xFF00
#endif /* _SIFIVE_AON_H */

View File

@ -1,30 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_CLIC_H
#define _SIFIVE_CLIC_H
#define CLIC_HART0 0x00800000
#define CLIC_MSIP 0x0000
#define CLIC_MSIP_size 0x4
#define CLIC_MTIMECMP 0x4000
#define CLIC_MTIMECMP_size 0x8
#define CLIC_MTIME 0xBFF8
#define CLIC_MTIME_size 0x8
#define CLIC_INTIP 0x000
#define CLIC_INTIE 0x400
#define CLIC_INTCFG 0x800
#define CLIC_CFG 0xc00
// These interrupt IDs are consistent across old and new mtvec modes
#define SSIPID 1
#define MSIPID 3
#define STIPID 5
#define MTIPID 7
#define SEIPID 9
#define MEIPID 11
#define CSIPID 12
#define LOCALINTIDBASE 16
#endif /* _SIFIVE_CLIC_H */

View File

@ -1,14 +0,0 @@
// See LICENSE for license details
#ifndef _SIFIVE_CLINT_H
#define _SIFIVE_CLINT_H
#define CLINT_MSIP 0x0000
#define CLINT_MSIP_size 0x4
#define CLINT_MTIMECMP 0x4000
#define CLINT_MTIMECMP_size 0x8
#define CLINT_MTIME 0xBFF8
#define CLINT_MTIME_size 0x8
#endif /* _SIFIVE_CLINT_H */

View File

@ -1,24 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_GPIO_H
#define _SIFIVE_GPIO_H
#define GPIO_INPUT_VAL (0x00)
#define GPIO_INPUT_EN (0x04)
#define GPIO_OUTPUT_EN (0x08)
#define GPIO_OUTPUT_VAL (0x0C)
#define GPIO_PULLUP_EN (0x10)
#define GPIO_DRIVE (0x14)
#define GPIO_RISE_IE (0x18)
#define GPIO_RISE_IP (0x1C)
#define GPIO_FALL_IE (0x20)
#define GPIO_FALL_IP (0x24)
#define GPIO_HIGH_IE (0x28)
#define GPIO_HIGH_IP (0x2C)
#define GPIO_LOW_IE (0x30)
#define GPIO_LOW_IP (0x34)
#define GPIO_IOF_EN (0x38)
#define GPIO_IOF_SEL (0x3C)
#define GPIO_OUTPUT_XOR (0x40)
#endif /* _SIFIVE_GPIO_H */

View File

@ -1,23 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_OTP_H
#define _SIFIVE_OTP_H
/* Register offsets */
#define OTP_LOCK 0x00
#define OTP_CK 0x04
#define OTP_OE 0x08
#define OTP_SEL 0x0C
#define OTP_WE 0x10
#define OTP_MR 0x14
#define OTP_MRR 0x18
#define OTP_MPP 0x1C
#define OTP_VRREN 0x20
#define OTP_VPPEN 0x24
#define OTP_A 0x28
#define OTP_D 0x2C
#define OTP_Q 0x30
#define OTP_READ_TIMINGS 0x34
#endif

View File

@ -1,31 +0,0 @@
// See LICENSE for license details.
#ifndef PLIC_H
#define PLIC_H
//#include <sifive/const.h>
// 32 bits per source
#define PLIC_PRIORITY_OFFSET _AC(0x0000,UL)
#define PLIC_PRIORITY_SHIFT_PER_SOURCE 2
// 1 bit per source (1 address)
#define PLIC_PENDING_OFFSET _AC(0x1000,UL)
#define PLIC_PENDING_SHIFT_PER_SOURCE 0
//0x80 per target
#define PLIC_ENABLE_OFFSET _AC(0x2000,UL)
#define PLIC_ENABLE_SHIFT_PER_TARGET 7
#define PLIC_THRESHOLD_OFFSET _AC(0x200000,UL)
#define PLIC_CLAIM_OFFSET _AC(0x200004,UL)
#define PLIC_THRESHOLD_SHIFT_PER_TARGET 12
#define PLIC_CLAIM_SHIFT_PER_TARGET 12
#define PLIC_MAX_SOURCE 1023
#define PLIC_SOURCE_MASK 0x3FF
#define PLIC_MAX_TARGET 15871
#define PLIC_TARGET_MASK 0x3FFF
#endif /* PLIC_H */

View File

@ -1,56 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_PRCI_H
#define _SIFIVE_PRCI_H
/* Register offsets */
#define PRCI_HFROSCCFG (0x0000)
#define PRCI_HFXOSCCFG (0x0004)
#define PRCI_PLLCFG (0x0008)
#define PRCI_PLLDIV (0x000C)
#define PRCI_PROCMONCFG (0x00F0)
/* Fields */
#define ROSC_DIV(x) (((x) & 0x2F) << 0 )
#define ROSC_TRIM(x) (((x) & 0x1F) << 16)
#define ROSC_EN(x) (((x) & 0x1 ) << 30)
#define ROSC_RDY(x) (((x) & 0x1 ) << 31)
#define XOSC_EN(x) (((x) & 0x1) << 30)
#define XOSC_RDY(x) (((x) & 0x1) << 31)
#define PLL_R(x) (((x) & 0x7) << 0)
// single reserved bit for F LSB.
#define PLL_F(x) (((x) & 0x3F) << 4)
#define PLL_Q(x) (((x) & 0x3) << 10)
#define PLL_SEL(x) (((x) & 0x1) << 16)
#define PLL_REFSEL(x) (((x) & 0x1) << 17)
#define PLL_BYPASS(x) (((x) & 0x1) << 18)
#define PLL_LOCK(x) (((x) & 0x1) << 31)
#define PLL_R_default 0x1
#define PLL_F_default 0x1F
#define PLL_Q_default 0x3
#define PLL_REFSEL_HFROSC 0x0
#define PLL_REFSEL_HFXOSC 0x1
#define PLL_SEL_HFROSC 0x0
#define PLL_SEL_PLL 0x1
#define PLL_FINAL_DIV(x) (((x) & 0x3F) << 0)
#define PLL_FINAL_DIV_BY_1(x) (((x) & 0x1 ) << 8)
#define PROCMON_DIV(x) (((x) & 0x1F) << 0)
#define PROCMON_TRIM(x) (((x) & 0x1F) << 8)
#define PROCMON_EN(x) (((x) & 0x1) << 16)
#define PROCMON_SEL(x) (((x) & 0x3) << 24)
#define PROCMON_NT_EN(x) (((x) & 0x1) << 28)
#define PROCMON_SEL_HFCLK 0
#define PROCMON_SEL_HFXOSCIN 1
#define PROCMON_SEL_PLLOUTDIV 2
#define PROCMON_SEL_PROCMON 3
#endif // _SIFIVE_PRCI_H

View File

@ -1,37 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_PWM_H
#define _SIFIVE_PWM_H
/* Register offsets */
#define PWM_CFG 0x00
#define PWM_COUNT 0x08
#define PWM_S 0x10
#define PWM_CMP0 0x20
#define PWM_CMP1 0x24
#define PWM_CMP2 0x28
#define PWM_CMP3 0x2C
/* Constants */
#define PWM_CFG_SCALE 0x0000000F
#define PWM_CFG_STICKY 0x00000100
#define PWM_CFG_ZEROCMP 0x00000200
#define PWM_CFG_DEGLITCH 0x00000400
#define PWM_CFG_ENALWAYS 0x00001000
#define PWM_CFG_ONESHOT 0x00002000
#define PWM_CFG_CMP0CENTER 0x00010000
#define PWM_CFG_CMP1CENTER 0x00020000
#define PWM_CFG_CMP2CENTER 0x00040000
#define PWM_CFG_CMP3CENTER 0x00080000
#define PWM_CFG_CMP0GANG 0x01000000
#define PWM_CFG_CMP1GANG 0x02000000
#define PWM_CFG_CMP2GANG 0x04000000
#define PWM_CFG_CMP3GANG 0x08000000
#define PWM_CFG_CMP0IP 0x10000000
#define PWM_CFG_CMP1IP 0x20000000
#define PWM_CFG_CMP2IP 0x40000000
#define PWM_CFG_CMP3IP 0x80000000
#endif /* _SIFIVE_PWM_H */

View File

@ -1,80 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_SPI_H
#define _SIFIVE_SPI_H
/* Register offsets */
#define SPI_REG_SCKDIV 0x00
#define SPI_REG_SCKMODE 0x04
#define SPI_REG_CSID 0x10
#define SPI_REG_CSDEF 0x14
#define SPI_REG_CSMODE 0x18
#define SPI_REG_DCSSCK 0x28
#define SPI_REG_DSCKCS 0x2a
#define SPI_REG_DINTERCS 0x2c
#define SPI_REG_DINTERXFR 0x2e
#define SPI_REG_FMT 0x40
#define SPI_REG_TXFIFO 0x48
#define SPI_REG_RXFIFO 0x4c
#define SPI_REG_TXCTRL 0x50
#define SPI_REG_RXCTRL 0x54
#define SPI_REG_FCTRL 0x60
#define SPI_REG_FFMT 0x64
#define SPI_REG_IE 0x70
#define SPI_REG_IP 0x74
/* Fields */
#define SPI_SCK_PHA 0x1
#define SPI_SCK_POL 0x2
#define SPI_FMT_PROTO(x) ((x) & 0x3)
#define SPI_FMT_ENDIAN(x) (((x) & 0x1) << 2)
#define SPI_FMT_DIR(x) (((x) & 0x1) << 3)
#define SPI_FMT_LEN(x) (((x) & 0xf) << 16)
/* TXCTRL register */
#define SPI_TXWM(x) ((x) & 0xffff)
/* RXCTRL register */
#define SPI_RXWM(x) ((x) & 0xffff)
#define SPI_IP_TXWM 0x1
#define SPI_IP_RXWM 0x2
#define SPI_FCTRL_EN 0x1
#define SPI_INSN_CMD_EN 0x1
#define SPI_INSN_ADDR_LEN(x) (((x) & 0x7) << 1)
#define SPI_INSN_PAD_CNT(x) (((x) & 0xf) << 4)
#define SPI_INSN_CMD_PROTO(x) (((x) & 0x3) << 8)
#define SPI_INSN_ADDR_PROTO(x) (((x) & 0x3) << 10)
#define SPI_INSN_DATA_PROTO(x) (((x) & 0x3) << 12)
#define SPI_INSN_CMD_CODE(x) (((x) & 0xff) << 16)
#define SPI_INSN_PAD_CODE(x) (((x) & 0xff) << 24)
#define SPI_TXFIFO_FULL (1 << 31)
#define SPI_RXFIFO_EMPTY (1 << 31)
/* Values */
#define SPI_CSMODE_AUTO 0
#define SPI_CSMODE_HOLD 2
#define SPI_CSMODE_OFF 3
#define SPI_DIR_RX 0
#define SPI_DIR_TX 1
#define SPI_PROTO_S 0
#define SPI_PROTO_D 1
#define SPI_PROTO_Q 2
#define SPI_ENDIAN_MSB 0
#define SPI_ENDIAN_LSB 1
#endif /* _SIFIVE_SPI_H */

View File

@ -1,27 +0,0 @@
// See LICENSE for license details.
#ifndef _SIFIVE_UART_H
#define _SIFIVE_UART_H
/* Register offsets */
#define UART_REG_TXFIFO 0x00
#define UART_REG_RXFIFO 0x04
#define UART_REG_TXCTRL 0x08
#define UART_REG_RXCTRL 0x0c
#define UART_REG_IE 0x10
#define UART_REG_IP 0x14
#define UART_REG_DIV 0x18
/* TXCTRL register */
#define UART_TXEN 0x1
#define UART_TXWM(x) (((x) & 0xffff) << 16)
/* RXCTRL register */
#define UART_RXEN 0x1
#define UART_RXWM(x) (((x) & 0xffff) << 16)
/* IP register */
#define UART_IP_TXWM 0x1
#define UART_IP_RXWM 0x2
#endif /* _SIFIVE_UART_H */

View File

@ -1,65 +0,0 @@
#ifndef SIFIVE_SMP
#define SIFIVE_SMP
// The maximum number of HARTs this code supports
#ifndef MAX_HARTS
#define MAX_HARTS 32
#endif
#define CLINT_END_HART_IPI CLINT_CTRL_ADDR + (MAX_HARTS*4)
// The hart that non-SMP tests should run on
#ifndef NONSMP_HART
#define NONSMP_HART 0
#endif
/* If your test cannot handle multiple-threads, use this:
* smp_disable(reg1)
*/
#define smp_disable(reg1, reg2) \
csrr reg1, mhartid ;\
li reg2, NONSMP_HART ;\
beq reg1, reg2, hart0_entry ;\
42: ;\
wfi ;\
j 42b ;\
hart0_entry:
/* If your test needs to temporarily block multiple-threads, do this:
* smp_pause(reg1, reg2)
* ... single-threaded work ...
* smp_resume(reg1, reg2)
* ... multi-threaded work ...
*/
#define smp_pause(reg1, reg2) \
li reg2, 0x8 ;\
csrw mie, reg2 ;\
csrr reg2, mhartid ;\
bnez reg2, 42f
#define smp_resume(reg1, reg2) \
li reg1, CLINT_CTRL_ADDR ;\
41: ;\
li reg2, 1 ;\
sw reg2, 0(reg1) ;\
addi reg1, reg1, 4 ;\
li reg2, CLINT_END_HART_IPI ;\
blt reg1, reg2, 41b ;\
42: ;\
wfi ;\
csrr reg2, mip ;\
andi reg2, reg2, 0x8 ;\
beqz reg2, 42b ;\
li reg1, CLINT_CTRL_ADDR ;\
csrr reg2, mhartid ;\
slli reg2, reg2, 2 ;\
add reg2, reg2, reg1 ;\
sw zero, 0(reg2) ;\
41: ;\
lw reg2, 0(reg1) ;\
bnez reg2, 41b ;\
addi reg1, reg1, 4 ;\
li reg2, CLINT_END_HART_IPI ;\
blt reg1, reg2, 41b
#endif

40
libwrap/CMakeLists.txt Normal file
View File

@ -0,0 +1,40 @@
include(CMakePrintHelpers)
set(LIB_SOURCES
sys/_exit.c
sys/close.c
sys/execve.c
sys/fork.c
sys/fstat.c
sys/getpid.c
sys/isatty.c
sys/kill.c
sys/link.c
sys/lseek.c
sys/open.c
sys/openat.c
sys/printf.c
sys/puts.c
sys/read.c
sys/sbrk.c
sys/stat.c
sys/times.c
sys/unlink.c
sys/wait.c
sys/write.c
# Standard library
stdlib/malloc.c
# Miscellaneous
misc/write_hex.c
)
set(WRAP_ARGS "")
foreach(FILE ${LIB_SOURCES})
get_filename_component(DIR ${FILE} DIRECTORY)
if(NOT DIR STREQUAL "misc")
get_filename_component(BASE_NAME ${FILE} NAME_WE)
list(APPEND WRAP_ARGS "LINKER:--wrap=${BASE_NAME}")
endif()
endforeach()
add_library(wrap STATIC ${LIB_SOURCES} ../env/${BOARD_BASE}/bsp_write.c ../env/${BOARD_BASE}/bsp_read.c)
target_link_options(wrap INTERFACE ${WRAP_ARGS})

View File

@ -2,18 +2,16 @@
#include <stdint.h>
#include <unistd.h>
#include "platform.h"
void write_hex(int fd, uint32_t hex)
{
void write_hex(int fd, uint32_t hex) {
uint8_t ii;
uint8_t jj;
char towrite;
write(fd , "0x", 2);
for (ii = 8 ; ii > 0; ii--) {
write(fd, "0x", 2);
for (ii = 8; ii > 0; ii--) {
jj = ii - 1;
uint8_t digit = ((hex & (0xF << (jj*4))) >> (jj*4));
towrite = digit < 0xA ? ('0' + digit) : ('A' + (digit - 0xA));
uint8_t digit = ((hex & (0xF << (jj * 4))) >> (jj * 4));
towrite = digit < 0xA ? ('0' + digit) : ('A' + (digit - 0xA));
write(fd, &towrite, 1);
}
}

View File

@ -1,8 +1,10 @@
/* See LICENSE of license details. */
#include <unistd.h>
#include "platform.h"
#include "weak_under_alias.h"
#include <unistd.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
#if defined(BOARD_hifive1)
static volatile uint32_t tohost;
@ -14,17 +16,21 @@ extern volatile uint32_t fromhost;
void write_hex(int fd, uint32_t hex);
void __wrap_exit(int code)
{
//volatile uint32_t* leds = (uint32_t*) (GPIO_BASE_ADDR + GPIO_OUT_OFFSET);
void __wrap_exit(int code) {
/*#if defined(SEMIHOSTING)
sh_exit();
return;
#endif*/
// volatile uint32_t* leds = (uint32_t*) (GPIO_BASE_ADDR + GPIO_OUT_OFFSET);
const char message[] = "\nProgam has exited with code:";
//*leds = (~(code));
//*leds = (~(code));
write(STDERR_FILENO, message, sizeof(message) - 1);
write_hex(STDERR_FILENO, code);
write(STDERR_FILENO, "\n", 1);
tohost = code+1;
tohost = code + 1;
write(STDERR_FILENO, "\x04", 1);
for (;;);
for (;;)
;
}
weak_under_alias(exit);

View File

@ -1,13 +1,18 @@
/* See LICENSE of license details. */
#include <errno.h>
#include "stub.h"
#include "weak_under_alias.h"
#include <errno.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
int __wrap_close(int fd)
{
int __wrap_close(int fd) {
#if defined(SEMIHOTING)
int i = sh_close(fd);
return i;
#endif
return _stub(EBADF);
}
weak_under_alias(close);

View File

@ -1,10 +1,16 @@
/* See LICENSE of license details. */
#include <unistd.h>
#include "weak_under_alias.h"
#include <unistd.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
int __wrap_isatty(int fd)
{
int __wrap_isatty(int fd) {
#if defined(SEMIHOSTING)
int i = sh_istty(fd);
return i;
#endif
if (fd == STDOUT_FILENO || fd == STDERR_FILENO)
return 1;

View File

@ -1,13 +1,21 @@
/* See LICENSE of license details. */
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include "stub.h"
#include "weak_under_alias.h"
#include <errno.h>
#include <sys/types.h>
#include <unistd.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
off_t __wrap_lseek(int fd, off_t ptr, int dir)
{
off_t __wrap_lseek(int fd, off_t ptr, int dir) {
#if defined(SEMIHOSTING)
if (sh_istty(fd))
return 0;
sh_seek(fd, ptr);
return ptr;
#endif
if (isatty(fd))
return 0;
@ -15,4 +23,3 @@ off_t __wrap_lseek(int fd, off_t ptr, int dir)
}
weak_under_alias(lseek);

View File

@ -1,11 +1,17 @@
/* See LICENSE of license details. */
#include <errno.h>
#include "stub.h"
#include "weak_under_alias.h"
#include <errno.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
int __wrap_open(const char* name, int flags, int mode)
{
int __wrap_open(const char *name, int flags, int mode) {
#if defined(SEMIHOSTING)
int fd = sh_open(name, mode);
return fd;
#endif
return _stub(ENOENT);
}
weak_under_alias(open);

View File

@ -3,59 +3,49 @@
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#undef putchar
int putchar(int ch)
{
return write(STDOUT_FILENO, &ch, 1) == 1 ? ch : -1;
}
int putchar(int ch) { return write(STDOUT_FILENO, &ch, 1) == 1 ? ch : -1; }
size_t strnlen (const char *str, size_t n)
{
size_t strnlen(const char *str, size_t n) {
const char *start = str;
while (n-- > 0 && *str) str++;
while (n-- > 0 && *str)
str++;
return str - start;
}
static void fprintf_putch(int ch, void** data)
{
putchar(ch);
}
static void sprintf_putch(int ch, void** data)
{
char** pstr = (char**)data;
static void fprintf_putch(int ch, void **data) { putchar(ch); }
static void sprintf_putch(int ch, void **data) {
char **pstr = (char **)data;
**pstr = ch;
(*pstr)++;
}
static unsigned long getuint(va_list *ap, int lflag)
{
static unsigned long getuint(va_list *ap, int lflag) {
if (lflag)
return va_arg(*ap, unsigned long);
else
return va_arg(*ap, unsigned int);
}
static long getint(va_list *ap, int lflag)
{
static long getint(va_list *ap, int lflag) {
if (lflag)
return va_arg(*ap, long);
else
return va_arg(*ap, int);
}
static inline void printnum(void (*putch)(int, void**), void **putdat,
unsigned long num, unsigned base, int width, int padc)
{
unsigned digs[sizeof(num)*8];
static inline void printnum(void (*putch)(int, void **), void **putdat,
unsigned long num, unsigned base, int width,
int padc) {
unsigned digs[sizeof(num) * 8];
int pos = 0;
while (1)
{
while (1) {
digs[pos++] = num % base;
if (num < base)
break;
@ -69,9 +59,8 @@ static inline void printnum(void (*putch)(int, void**), void **putdat,
putch(digs[pos] + (digs[pos] >= 10 ? 'a' - 10 : '0'), putdat);
}
static inline void print_double(void (*putch)(int, void**), void **putdat,
double num, int width, int prec)
{
static inline void print_double(void (*putch)(int, void **), void **putdat,
double num, int width, int prec) {
union {
double d;
uint64_t u;
@ -87,30 +76,30 @@ static inline void print_double(void (*putch)(int, void**), void **putdat,
u.d *= 10;
char buf[32], *pbuf = buf;
printnum(sprintf_putch, (void**)&pbuf, (unsigned long)u.d, 10, 0, 0);
printnum(sprintf_putch, (void **)&pbuf, (unsigned long)u.d, 10, 0, 0);
if (prec > 0) {
for (int i = 0; i < prec; i++) {
pbuf[-i] = pbuf[-i-1];
pbuf[-i] = pbuf[-i - 1];
}
pbuf[-prec] = '.';
pbuf++;
}
for (char* p = buf; p < pbuf; p++)
for (char *p = buf; p < pbuf; p++)
putch(*p, putdat);
}
static void vprintfmt(void (*putch)(int, void**), void **putdat, const char *fmt, va_list ap)
{
register const char* p;
const char* last_fmt;
static void vprintfmt(void (*putch)(int, void **), void **putdat,
const char *fmt, va_list ap) {
register const char *p;
const char *last_fmt;
register int ch;
unsigned long num;
int base, lflag, width, precision;
char padc;
while (1) {
while ((ch = *(const char *) fmt) != '%') {
while ((ch = *(const char *)fmt) != '%') {
if (ch == '\0')
return;
fmt++;
@ -125,13 +114,13 @@ static void vprintfmt(void (*putch)(int, void**), void **putdat, const char *fmt
precision = -1;
lflag = 0;
reswitch:
switch (ch = *(const char *) fmt++) {
switch (ch = *(const char *)fmt++) {
// flag to pad on the right
case '-':
padc = '-';
goto reswitch;
// flag to pad with 0's instead of spaces
case '0':
padc = '0';
@ -147,7 +136,7 @@ static void vprintfmt(void (*putch)(int, void**), void **putdat, const char *fmt
case '7':
case '8':
case '9':
for (precision = 0; ; ++fmt) {
for (precision = 0;; ++fmt) {
precision = precision * 10 + ch - '0';
ch = *fmt;
if (ch < '0' || ch > '9')
@ -172,61 +161,62 @@ static void vprintfmt(void (*putch)(int, void**), void **putdat, const char *fmt
width = precision, precision = -1;
goto reswitch;
case 'l': // long flag
case 'l': // long flag
if (lflag)
goto bad;
goto reswitch;
case 'c': // character
case 'c': // character
putch(va_arg(ap, int), putdat);
break;
case 'f': // double
case 'f': // double
print_double(putch, putdat, va_arg(ap, double), width, precision);
break;
case 's': // string
case 's': // string
if ((p = va_arg(ap, char *)) == NULL)
p = "(null)";
if (width > 0 && padc != '-')
for (width -= strnlen(p, precision); width > 0; width--)
putch(padc, putdat);
for (; (ch = *p) != '\0' && (precision < 0 || --precision >= 0); width--) {
for (; (ch = *p) != '\0' && (precision < 0 || --precision >= 0);
width--) {
putch(ch, putdat);
p++;
}
for (; width > 0; width--)
putch(' ', putdat);
break;
case 'd': // (signed) decimal
case 'd': // (signed) decimal
num = getint(&ap, lflag);
if ((long) num < 0) {
if ((long)num < 0) {
putch('-', putdat);
num = -(long) num;
num = -(long)num;
}
base = 10;
goto signed_number;
case 'u': // unsigned decimal
case 'u': // unsigned decimal
base = 10;
goto unsigned_number;
case 'o': // (unsigned) octal
// should do something with padding so it's always 3 octits
base = 8;
goto unsigned_number;
case 'p':// pointer
case 'p': // pointer
lflag = 1;
putch('0', putdat);
putch('x', putdat);
/* fall through to 'x' */
__attribute__((fallthrough));
case 'x': // (unsigned) hexadecimal
case 'x': // (unsigned) hexadecimal
base = 16;
unsigned_number:
unsigned_number:
num = getuint(&ap, lflag);
signed_number:
signed_number:
printnum(putch, putdat, num, base, width, padc);
break;
case '%': // escaped '%' character
case '%': // escaped '%' character
putch(ch, putdat);
break;
default: // unrecognized escape sequence - just print it literally
default: // unrecognized escape sequence - just print it literally
bad:
putch('%', putdat);
fmt = last_fmt;
@ -235,8 +225,7 @@ static void vprintfmt(void (*putch)(int, void**), void **putdat, const char *fmt
}
}
int __wrap_printf(const char* fmt, ...)
{
int __wrap_printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
@ -246,13 +235,12 @@ int __wrap_printf(const char* fmt, ...)
return 0; // incorrect return value, but who cares, anyway?
}
int __wrap_sprintf(char* str, const char* fmt, ...)
{
int __wrap_sprintf(char *str, const char *fmt, ...) {
va_list ap;
char* str0 = str;
char *str0 = str;
va_start(ap, fmt);
vprintfmt(sprintf_putch, (void**)&str, fmt, ap);
vprintfmt(sprintf_putch, (void **)&str, fmt, ap);
*str = 0;
va_end(ap);

View File

@ -1,38 +1,11 @@
/* See LICENSE of license details. */
#include <errno.h>
#include <stdint.h>
#include <sys/types.h>
#include "weak_under_alias.h"
#include <string.h>
#include <unistd.h>
#include "platform.h"
#include "stub.h"
#include "weak_under_alias.h"
extern ssize_t _bsp_write(int, const void *, size_t);
int __wrap_puts(const char *s) {
while (*s != '\0') {
#if defined(BOARD_ehrenberg) || defined(BOARD_tgc_vp)
while (get_uart_rx_tx_reg_tx_free(uart) == 0)
;
uart_write(uart, *s);
#elif defined(BOARD_iss)
*((uint32_t *)0xFFFF0000) = *s;
#elif defined(BOARD_TGCP)
// TODO: implement
#else
while (UART0_REG(UART_REG_TXFIFO) & 0x80000000)
;
UART0_REG(UART_REG_TXFIFO) = *s;
if (*s == '\n') {
while (UART0_REG(UART_REG_TXFIFO) & 0x80000000)
;
UART0_REG(UART_REG_TXFIFO) = '\r';
}
#endif
++s;
}
return 0;
int len = strlen(s);
return _bsp_write(STDOUT_FILENO, s, len);
}
weak_under_alias(puts);

View File

@ -1,54 +1,10 @@
/* See LICENSE of license details. */
#include "platform.h"
#include "stub.h"
#include "weak_under_alias.h"
#include <errno.h>
#include <stdint.h>
#include <sys/types.h>
#include <unistd.h>
extern ssize_t _bsp_read(int fd, void *ptr, size_t len);
ssize_t __wrap_read(int fd, void *ptr, size_t len) {
uint8_t *current = (uint8_t *)ptr;
#if defined(BOARD_hifive1)
volatile uint32_t *uart_rx = (uint32_t *)(UART0_CTRL_ADDR + UART_REG_RXFIFO);
volatile uint8_t *uart_rx_cnt =
(uint8_t *)(UART0_CTRL_ADDR + UART_REG_RXCTRL + 2);
#elif defined(BOARD_iss)
volatile uint32_t *uart_rx = (uint32_t *)0xFFFF0000;
#elif defined(BOARD_TGCP)
// TODO: implement
#elif !defined(BOARD_ehrenberg) && !defined(BOARD_tgc_vp)
volatile uint32_t *uart_rx = (uint32_t *)(UART0_BASE_ADDR + UART_REG_RXFIFO);
volatile uint8_t *uart_rx_cnt =
(uint8_t *)(UART0_BASE_ADDR + UART_REG_RXCTRL + 2);
#endif
ssize_t result = 0;
if (isatty(fd)) {
#if defined(BOARD_ehrenberg) || defined(BOARD_tgc_vp)
for (current = (uint8_t *)ptr; (current < ((uint8_t *)ptr) + len) &&
(get_uart_rx_tx_reg_rx_avail(uart) > 0);
current++) {
*current = uart_read(uart);
result++;
}
#elif defined(BOARD_iss)
for (current = (uint8_t *)ptr; (current < ((uint8_t *)ptr) + len);
current++) {
*current = *uart_rx;
result++;
}
#elif defined(BOARD_TGCP)
// TODO: implement
#else
for (current = (uint8_t *)ptr;
(current < ((uint8_t *)ptr) + len) && (*uart_rx_cnt > 0); current++) {
*current = *uart_rx;
result++;
}
#endif
return result;
}
return _stub(EBADF);
return _bsp_read(fd, ptr, len);
}
weak_under_alias(read);

View File

@ -1,11 +1,16 @@
/* See LICENSE of license details. */
#include <errno.h>
#include "stub.h"
#include "weak_under_alias.h"
#include <errno.h>
#if defined(SEMIHOSTING)
#include "semihosting.h"
#endif
int __wrap_unlink(const char* name)
{
int __wrap_unlink(const char *name) {
#if defined(SEMIHOSTING)
return sh_remove(name);
#endif
return _stub(ENOENT);
}
weak_under_alias(unlink);

View File

@ -1,43 +1,8 @@
/* See LICENSE of license details. */
#include <errno.h>
#include <stdint.h>
#include <sys/types.h>
#include "weak_under_alias.h"
#include <unistd.h>
#include "platform.h"
#include "stub.h"
#include "weak_under_alias.h"
extern ssize_t _bsp_write(int, const void *, size_t);
ssize_t __wrap_write(int fd, const void *ptr, size_t len) {
const uint8_t *current = (const uint8_t *)ptr;
if (isatty(fd)) {
for (size_t jj = 0; jj < len; jj++) {
#if defined(BOARD_ehrenberg) || defined(BOARD_tgc_vp)
while (get_uart_rx_tx_reg_tx_free(uart) == 0)
;
uart_write(uart, current[jj]);
if (current[jj] == '\n') {
while (get_uart_rx_tx_reg_tx_free(uart) == 0)
;
uart_write(uart, '\r');
}
#elif defined(BOARD_iss)
*((uint32_t*) 0xFFFF0000) = current[jj];
#else
while (UART0_REG(UART_REG_TXFIFO) & 0x80000000)
;
UART0_REG(UART_REG_TXFIFO) = current[jj];
if (current[jj] == '\n') {
while (UART0_REG(UART_REG_TXFIFO) & 0x80000000)
;
UART0_REG(UART_REG_TXFIFO) = '\r';
}
#endif
}
return len;
}
return _stub(EBADF);
return _bsp_write(fd, ptr, len);
}
weak_under_alias(write);