32 Commits

Author SHA1 Message Date
1720bd4aaa adds support for compressed instructions 2022-05-20 15:17:58 +02:00
df16378605 update template for changed code generator 2022-05-18 19:10:34 +02:00
1438f0f373 add backannotation to pc trace plugin 2022-05-17 15:29:04 +02:00
766f3ba9ee fix assertion in compressed pctrace writer 2022-05-13 12:38:12 +02:00
5da4e6b424 fix alignment check for unaligned debugger accesses 2022-05-13 12:37:47 +02:00
e382217e04 update vm_tgc_c due reworked CoreDSL generator 2022-05-11 18:52:15 +02:00
9db4e3fd87 fix assertion 2022-05-10 16:13:21 +02:00
bb658be3b4 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2022-05-08 15:25:56 +02:00
6579780dc9 add call column in output 2022-05-08 15:24:26 +02:00
e56bc12788 fix non-lz4 build of plugin 2022-05-07 17:27:11 +02:00
e88f309ea2 add lz4 compression to pctrace 2022-05-07 17:22:06 +02:00
03bec27376 implement extended instrumentation interface 2022-04-26 17:14:33 +02:00
9d9008a3a2 fix pointer mess 2022-04-26 15:35:17 +02:00
5f6d462973 check that no interrupts are pending before entering the wfi wait 2022-04-26 13:58:20 +02:00
a92b84bef4 add code word access for ISS plugins 2022-04-25 14:18:19 +02:00
477c530847 extend debug mode handling 2022-04-13 11:41:01 +02:00
c054d75717 update to latest coredsl description 2022-04-10 18:55:44 +02:00
15cd26f800 remove CoreDSL ISA repo 2022-04-10 12:15:40 +02:00
9465cffe79 adapt to change in dbt-rise-core 2022-04-09 14:55:36 +02:00
00d2d06cbd adapt to privileged spec 2022-03-31 20:33:12 +02:00
8e4e702cb9 Merge remote-tracking branch 'origin/feature/reduced_output' into develop 2022-03-28 14:09:06 +02:00
49be143588 make features configurable 2022-03-27 17:54:08 +02:00
0aea1d0177 remove mcounteren in M-mode only wrapper 2022-03-27 17:21:46 +02:00
6ea7721961 add TCM 2022-03-27 15:38:18 +02:00
b0cb997009 add TGC_X with DMR 2022-03-26 10:48:21 +01:00
9dfca612b7 add hardware loop CSR access 2022-03-25 11:33:44 +01:00
30ae743361 add pctrace plugin to iss 2022-03-20 17:41:54 +01:00
d91f5f9df4 fix compiler warning for reduced number of registers 2022-03-14 15:38:05 +01:00
5ec457c76b build pctrace plugin only if RapidJSON target is availble 2022-03-08 11:23:07 +01:00
2e670c4d03 change interpreter structure 2022-03-06 15:11:38 +01:00
3d32c33333 update gitignore 2022-03-05 20:59:45 +01:00
521f40a3d6 refactored interpreter backend structure 2022-03-05 20:59:17 +01:00
23 changed files with 3116 additions and 4475 deletions

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "gen_input/CoreDSL-Instruction-Set-Description"]
path = gen_input/CoreDSL-Instruction-Set-Description
url = ../CoreDSL-Instruction-Set-Description.git

View File

@ -6,7 +6,7 @@ project(dbt-rise-tgc VERSION 1.0.0)
include(GNUInstallDirs) include(GNUInstallDirs)
find_package(elfio) find_package(elfio QUIET)
find_package(Boost COMPONENTS coroutine) find_package(Boost COMPONENTS coroutine)
if(WITH_LLVM) if(WITH_LLVM)
@ -35,13 +35,12 @@ FILE(GLOB TGC_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/vm/interp/vm_*.cpp)
set(LIB_SOURCES set(LIB_SOURCES
src/vm/fp_functions.cpp src/vm/fp_functions.cpp
src/plugin/instruction_count.cpp src/plugin/instruction_count.cpp
src/plugin/pctrace.cpp
${TGC_SOURCES} ${TGC_SOURCES}
${TGC_VM_SOURCES} ${TGC_VM_SOURCES}
) )
if(TARGET RapidJSON) if(TARGET RapidJSON)
list(APPEND LIB_SOURCES src/plugin/cycle_estimate.cpp) list(APPEND LIB_SOURCES src/plugin/cycle_estimate.cpp src/plugin/pctrace.cpp)
endif() endif()
if(WITH_LLVM) if(WITH_LLVM)
@ -73,9 +72,9 @@ endif()
target_include_directories(${PROJECT_NAME} PUBLIC incl) target_include_directories(${PROJECT_NAME} PUBLIC incl)
target_link_libraries(${PROJECT_NAME} PUBLIC softfloat scc-util jsoncpp Boost::coroutine) target_link_libraries(${PROJECT_NAME} PUBLIC softfloat scc-util jsoncpp Boost::coroutine)
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
target_link_libraries(${PROJECT_NAME} PUBLIC -Wl,--whole-archive dbt-core -Wl,--no-whole-archive) target_link_libraries(${PROJECT_NAME} PUBLIC -Wl,--whole-archive dbt-rise-core -Wl,--no-whole-archive)
else() else()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-core) target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-core)
endif() endif()
if(TARGET CONAN_PKG::elfio) if(TARGET CONAN_PKG::elfio)
target_link_libraries(${PROJECT_NAME} PUBLIC CONAN_PKG::elfio) target_link_libraries(${PROJECT_NAME} PUBLIC CONAN_PKG::elfio)
@ -84,6 +83,10 @@ elseif(TARGET elfio::elfio)
else() else()
message(FATAL_ERROR "No elfio library found, maybe a find_package() call is missing") message(FATAL_ERROR "No elfio library found, maybe a find_package() call is missing")
endif() endif()
if(TARGET lz4::lz4)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_LZ4)
target_link_libraries(${PROJECT_NAME} PUBLIC lz4::lz4)
endif()
if(TARGET RapidJSON) if(TARGET RapidJSON)
target_link_libraries(${PROJECT_NAME} PUBLIC RapidJSON) target_link_libraries(${PROJECT_NAME} PUBLIC RapidJSON)
endif() endif()

View File

@ -1 +1,2 @@
/src-gen/ /src-gen/
/CoreDSL-Instruction-Set-Description

View File

@ -1,6 +1,6 @@
import "CoreDSL-Instruction-Set-Description/RV32I.core_desc" import "RV32I.core_desc"
import "CoreDSL-Instruction-Set-Description/RVM.core_desc" import "RVM.core_desc"
import "CoreDSL-Instruction-Set-Description/RVC.core_desc" import "RVC.core_desc"
Core TGC_C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC { Core TGC_C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
architectural_state { architectural_state {

View File

@ -33,7 +33,7 @@
def getRegisterSizes(){ def getRegisterSizes(){
def regs = registers.collect{it.size} def regs = registers.collect{it.size}
regs[-1]=64 // correct for NEXT_PC regs[-1]=64 // correct for NEXT_PC
regs+=[32, 32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET //regs+=[32, 32, 64, 64, 64, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION
return regs return regs
} }
%> %>
@ -51,9 +51,7 @@ constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::a
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths; constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets; constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() { ${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() = default;
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default; ${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
@ -64,8 +62,8 @@ void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
reg.PC=address; reg.PC=address;
reg.NEXT_PC=reg.PC; reg.NEXT_PC=reg.PC;
reg.PRIV=0x3; reg.PRIV=0x3;
reg.trap_state=0; trap_state=0;
reg.icount=0; icount=0;
} }
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() { uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {

View File

@ -37,7 +37,7 @@ def nativeTypeSize(int size){
} }
def getRegisterSizes(){ def getRegisterSizes(){
def regs = registers.collect{nativeTypeSize(it.size)} def regs = registers.collect{nativeTypeSize(it.size)}
regs+=[32,32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET // regs+=[32,32, 64, 64, 64, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION
return regs return regs
} }
def getRegisterOffsets(){ def getRegisterOffsets(){
@ -91,12 +91,7 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0}; constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e { enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS, ${registers.collect{it.name}.join(', ')}, NUM_REGS
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
}; };
using reg_t = uint${addrDataWidth}_t; using reg_t = uint${addrDataWidth}_t;
@ -141,7 +136,7 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override; uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; } inline uint64_t get_icount() { return icount; }
inline bool should_stop() { return interrupt_sim; } inline bool should_stop() { return interrupt_sim; }
@ -159,7 +154,7 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; } virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; } inline uint32_t get_last_branch() { return last_branch; }
#pragma pack(push, 1) #pragma pack(push, 1)
@ -167,12 +162,14 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
registers.each { reg -> if(reg.size>0) {%> registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<% uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
}}%> }}%>
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t instret = 0;
uint32_t last_branch;
} reg; } reg;
#pragma pack(pop) #pragma pack(pop)
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
std::array<address_type, 4> addr_mode; std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0; uint64_t interrupt_sim=0;

View File

@ -94,7 +94,7 @@ protected:
inline const char *name(size_t index){return traits::reg_aliases.at(index);} inline const char *name(size_t index){return traits::reg_aliases.at(index);}
compile_func decode_inst(code_word_t instr) ; typename arch::traits<ARCH>::opcode_e decode_inst_id(code_word_t instr);
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override; virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
// some compile time constants // some compile time constants
@ -114,14 +114,14 @@ protected:
struct instruction_pattern { struct instruction_pattern {
uint32_t value; uint32_t value;
uint32_t mask; uint32_t mask;
compile_func opc; typename arch::traits<ARCH>::opcode_e id;
}; };
std::array<std::vector<instruction_pattern>, 4> qlut; std::array<std::vector<instruction_pattern>, 4> qlut;
inline void raise(uint16_t trap_id, uint16_t cause){ inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id; auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val; this->core.trap_state = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max(); this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
} }
@ -141,39 +141,39 @@ protected:
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;} T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){ inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint8_t>(space, addr); auto ret = super::template read_mem<uint8_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
return ret; return ret;
} }
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){ inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint16_t>(space, addr); auto ret = super::template read_mem<uint16_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
return ret; return ret;
} }
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){ inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint32_t>(space, addr); auto ret = super::template read_mem<uint32_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
return ret; return ret;
} }
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){ inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint64_t>(space, addr); auto ret = super::template read_mem<uint64_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
return ret; return ret;
} }
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){ inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){
super::write_mem(space, addr, data); super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
} }
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){ inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){
super::write_mem(space, addr, data); super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
} }
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){ inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){
super::write_mem(space, addr, data); super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
} }
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){ inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){
super::write_mem(space, addr, data); super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0; if(this->core.trap_state) throw 0;
} }
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type> template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) { inline S sext(U from) {
@ -201,74 +201,14 @@ private:
size_t length; size_t length;
uint32_t value; uint32_t value;
uint32_t mask; uint32_t mask;
compile_func op; typename arch::traits<ARCH>::opcode_e op;
}; };
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{ const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */ {${instr.length}, ${instr.encoding}, ${instr.mask}, arch::traits<ARCH>::opcode_e::${instr.instruction.name}},<%}%>
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}}; }};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
// pre execution stuff
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, ${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
auto* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto* NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
try {
<%instr.behavior.eachLine{%>${it}
<%}%>} catch(...){}
// post execution stuff
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val, instr);
} else {
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::ICOUNT]))++;
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::INSTRET]))++;
}
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::CYCLE]))++;
pc.val=*NEXT_PC;
return pc;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
this->do_sync(PRE_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
uint32_t* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
uint32_t* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val, instr);
}
pc.val=*NEXT_PC;
return pc;
}
//static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK; //static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){ iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
auto phys_pc = this->core.v2p(pc); auto phys_pc = this->core.v2p(pc);
@ -307,6 +247,7 @@ constexpr size_t bit_count(uint32_t u) {
template <typename ARCH> template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) { : vm_base<ARCH>(core, core_id, cluster_id) {
unsigned id=0;
for (auto instr : instr_descr) { for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3; auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op}); qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
@ -327,39 +268,80 @@ inline bool is_jump_to_self_enabled(finish_cond_e cond){
} }
template <typename ARCH> template <typename ARCH>
typename vm_impl<ARCH>::compile_func vm_impl<ARCH>::decode_inst(code_word_t instr){ typename arch::traits<ARCH>::opcode_e vm_impl<ARCH>::decode_inst_id(code_word_t instr){
for(auto& e: qlut[instr&0x3]){ for(auto& e: qlut[instr&0x3]){
if(!((instr&e.mask) ^ e.value )) return e.opc; if(!((instr&e.mask) ^ e.value )) return e.id;
} }
return &this_class::illegal_intruction; return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
} }
template <typename ARCH> template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
// we fetch at max 4 byte, alignment is 2
code_word_t insn = 0;
auto *const data = (uint8_t *)&insn;
auto pc=start; auto pc=start;
auto* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
auto& trap_state = this->core.trap_state;
auto& icount = this->core.icount;
auto& cycle = this->core.cycle;
auto& instret = this->core.instret;
auto& instr = this->core.instruction;
// we fetch at max 4 byte, alignment is 2
auto *const data = reinterpret_cast<uint8_t*>(&instr);
while(!this->core.should_stop() && while(!this->core.should_stop() &&
!(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){ !(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){
auto res = fetch_ins(pc, data); if(fetch_ins(pc, data)!=iss::Ok){
if(res!=iss::Ok){
this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max()); this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0); pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0);
} else { } else {
if (is_jump_to_self_enabled(cond) && if (is_jump_to_self_enabled(cond) &&
(insn == 0x0000006f || (insn&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0' (instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto f = decode_inst(insn); auto inst_id = decode_inst_id(instr);
auto old_pc = pc.val; // pre execution stuff
pc = (this->*f)(pc, insn); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast<unsigned>(inst_id));
switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %>
case arch::traits<ARCH>::opcode_e::${instr.name}: {
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
<%instr.behavior.eachLine{%>${it}
<%}%>TRAP_${instr.name}:break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
}
}
// post execution stuff
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(inst_id));
// trap check
if(trap_state!=0){
super::core.enter_trap(trap_state, pc.val, instr);
} else {
icount++;
instret++;
}
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC; this->core.reg.PC = this->core.reg.NEXT_PC;
this->core.reg.trap_state = this->core.reg.pending_trap; this->core.trap_state = this->core.pending_trap;
} }
} }
return pc; return pc;
} }
} // namespace mnrv32 }
template <> template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {

100
incl/iss/arch/hwl.h Normal file
View File

@ -0,0 +1,100 @@
/*******************************************************************************
* Copyright (C) 2022 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_HWL_H
#define _RISCV_HART_M_P_HWL_H
#include <iss/vm_types.h>
namespace iss {
namespace arch {
template <typename BASE> class hwl : public BASE {
public:
using base_class = BASE;
using this_class = hwl<BASE>;
using reg_t = typename BASE::reg_t;
hwl();
virtual ~hwl() = default;
protected:
iss::status read_custom_csr_reg(unsigned addr, reg_t &val) override;
iss::status write_custom_csr_reg(unsigned addr, reg_t val) override;
};
template<typename BASE>
inline hwl<BASE>::hwl() {
for (unsigned addr = 0x800; addr < 0x803; ++addr){
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
for (unsigned addr = 0x804; addr < 0x807; ++addr){
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
}
template<typename BASE>
inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t &val) {
switch(addr){
case 0x800: val = this->reg.lpstart0; break;
case 0x801: val = this->reg.lpend0; break;
case 0x802: val = this->reg.lpcount0; break;
case 0x804: val = this->reg.lpstart1; break;
case 0x805: val = this->reg.lpend1; break;
case 0x806: val = this->reg.lpcount1; break;
}
return iss::Ok;
}
template<typename BASE>
inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
switch(addr){
case 0x800: this->reg.lpstart0 = val; break;
case 0x801: this->reg.lpend0 = val; break;
case 0x802: this->reg.lpcount0 = val; break;
case 0x804: this->reg.lpstart1 = val; break;
case 0x805: this->reg.lpend1 = val; break;
case 0x806: this->reg.lpcount1 = val; break;
}
return iss::Ok;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */

View File

@ -43,7 +43,7 @@ namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 }; enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e{FEAT_NONE, FEAT_PMP=1, FEAT_EXT_N=2, FEAT_CLIC=4, FEAT_DEBUG=8}; enum features_e{FEAT_NONE, FEAT_PMP=1, FEAT_EXT_N=2, FEAT_CLIC=4, FEAT_DEBUG=8, FEAT_TCM=16};
enum riscv_csr { enum riscv_csr {
/* user-level CSR */ /* user-level CSR */
@ -188,7 +188,7 @@ enum {
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); } template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3 }; enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4};
enum { enum {
ISA_A = 1, ISA_A = 1,
@ -214,6 +214,14 @@ struct vm_info {
bool is_active() { return levels; } bool is_active() { return levels; }
}; };
struct feature_config {
uint64_t clic_base{0xc0000000};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
};
class trap_load_access_fault : public trap_access { class trap_load_access_fault : public trap_access {
public: public:
trap_load_access_fault(uint64_t badaddr) trap_load_access_fault(uint64_t badaddr)
@ -239,6 +247,49 @@ public:
trap_store_page_fault(uint64_t badaddr) trap_store_page_fault(uint64_t badaddr)
: trap_access(15 << 16, badaddr) {} : trap_access(15 << 16, badaddr) {}
}; };
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch (offs & 0x3) {
case 0:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch (offs & 0x3) {
case 0:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data ;
break;
}
}
} }
} }

View File

@ -97,8 +97,10 @@ public:
using reg_t = typename core::reg_t; using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t; using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &); using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t); using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t *const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const *const);
// primary template // primary template
template <class T, class Enable = void> struct hart_state {}; template <class T, class Enable = void> struct hart_state {};
@ -201,7 +203,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override { void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount + cycle_offset); pc, instr, (reg_t)state.mstatus, this->icount + cycle_offset);
}; };
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; } iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -233,13 +235,17 @@ protected:
*/ */
const std::string core_type_name() const override { return traits<BASE>::core_type; } const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.get_pc(); }; uint64_t get_pc() override { return arch.reg.PC; };
uint64_t get_next_pc() override { return arch.get_next_pc(); }; uint64_t get_next_pc() override { return arch.reg.NEXT_PC; };
uint64_t get_instr_count() { return arch.reg.icount; } uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; } uint64_t get_instr_count() override { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
void set_curr_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }; void set_curr_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; };
@ -247,8 +253,6 @@ protected:
}; };
friend struct riscv_instrumentation_if; friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data); virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data); virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
@ -294,6 +298,8 @@ protected:
}; };
std::vector<clic_int_reg_t> clic_int_reg; std::vector<clic_int_reg_t> clic_int_reg;
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t &val); iss::status read_csr_reg(unsigned addr, reg_t &val);
iss::status write_csr_reg(unsigned addr, reg_t val); iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t &val); iss::status read_null(unsigned addr, reg_t &val);
@ -310,7 +316,6 @@ protected:
iss::status read_ie(unsigned addr, reg_t &val); iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val); iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val); iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val); iss::status read_hartid(unsigned addr, reg_t &val);
iss::status write_epc(unsigned addr, reg_t val); iss::status write_epc(unsigned addr, reg_t val);
iss::status write_intstatus(unsigned addr, reg_t val); iss::status write_intstatus(unsigned addr, reg_t val);
@ -321,12 +326,26 @@ protected:
iss::status read_dpc_reg(unsigned addr, reg_t &val); iss::status read_dpc_reg(unsigned addr, reg_t &val);
iss::status write_dpc_reg(unsigned addr, reg_t val); iss::status write_dpc_reg(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t &val) {return iss::status::Err;};
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) {return iss::status::Err;};
void register_custom_csr_rd(unsigned addr){
csr_rd_cb[addr] = &this_class::read_custom_csr_reg;
}
void register_custom_csr_wr(unsigned addr){
csr_wr_cb[addr] = &this_class::write_custom_csr_reg;
}
reg_t mhartid_reg{0x0}; reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb; std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb; std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
void check_interrupt(); void check_interrupt();
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len); bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
std::vector<std::tuple<uint64_t, uint64_t>> memfn_range;
std::vector<std::function<mem_read_f>> memfn_read;
std::vector<std::function<mem_write_f>> memfn_write;
void insert_mem_range(uint64_t, uint64_t, std::function<mem_read_f>, std::function<mem_write_f>);
uint64_t clic_base_addr{0}; uint64_t clic_base_addr{0};
unsigned clic_num_irq{0}; unsigned clic_num_irq{0};
unsigned clic_num_trigger{0}; unsigned clic_num_trigger{0};
@ -393,7 +412,7 @@ riscv_hart_m_p<BASE, FEAT>::riscv_hart_m_p()
csr_rd_cb[mtvec] = &this_class::read_tvec; csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc; csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip; csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_ip; csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie; csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie; csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid; csr_rd_cb[mhartid] = &this_class::read_hartid;
@ -401,6 +420,46 @@ riscv_hart_m_p<BASE, FEAT>::riscv_hart_m_p()
csr_wr_cb[mvendorid] = &this_class::write_null; csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null; csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null; csr_wr_cb[mimpid] = &this_class::write_null;
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_csr_reg;
csr_wr_cb[mtvt] = &this_class::write_csr_reg;
csr_rd_cb[mxnti] = &this_class::read_csr_reg;
csr_wr_cb[mxnti] = &this_class::write_csr_reg;
csr_rd_cb[mintstatus] = &this_class::read_csr_reg;
csr_wr_cb[mintstatus] = &this_class::write_null;
csr_rd_cb[mscratchcsw] = &this_class::read_csr_reg;
csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_csr_reg;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
csr_rd_cb[mclicbase] = &this_class::read_csr_reg;
csr_wr_cb[mclicbase] = &this_class::write_null;
clic_base_addr=0xC0000000;
clic_num_irq=16;
clic_int_reg.resize(clic_num_irq);
clic_cfg_reg=0x20;
clic_info_reg = (/*CLICINTCTLBITS*/ 4U<<21) + clic_num_irq;
mcause_max_irq=clic_num_irq+16;
insert_mem_range(clic_base_addr, 0x5000UL,
[this](phys_addr_t addr, unsigned length, uint8_t * const data) { return read_clic(addr.val, length, data);},
[this](phys_addr_t addr, unsigned length, uint8_t const * const data) {return write_clic(addr.val, length, data);});
}
if(FEAT & FEAT_TCM) {
tcm.resize(0x8000);
std::function<mem_read_f> read_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t * const data) {
auto offset=addr.val-0x10000000;
std::copy(tcm.data() + offset, tcm.data() + offset + length, data);
return iss::Ok;
};
std::function<mem_write_f> write_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t const * const data) {
auto offset=addr.val-0x10000000;
std::copy(data, data + length, tcm.data() + offset);
return iss::Ok;
};
insert_mem_range(0x10000000, 0x8000UL, read_clic_cb, write_clic_cb);
}
if(FEAT & FEAT_DEBUG){ if(FEAT & FEAT_DEBUG){
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg; csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg; csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg;
@ -479,6 +538,20 @@ template <typename BASE, features_e FEAT> std::pair<uint64_t, bool> riscv_hart_m
throw std::runtime_error("memory load file not found"); throw std::runtime_error("memory load file not found");
} }
template<typename BASE, features_e FEAT>
inline void riscv_hart_m_p<BASE, FEAT>::insert_mem_range(uint64_t base, uint64_t size, std::function<mem_read_f> rd_f,
std::function<mem_write_f> wr_fn) {
std::tuple<uint64_t, uint64_t> entry{base, size};
auto it = std::upper_bound( memfn_range.begin(), memfn_range.end(), entry,
[](std::tuple<uint64_t, uint64_t> const& a, std::tuple<uint64_t, uint64_t> const& b){
return std::get<0>(a)<std::get<0>(b);
});
auto idx = std::distance(memfn_range.begin(), it);
memfn_range.insert(it, entry);
memfn_read.insert(std::begin(memfn_read)+idx, rd_f);
memfn_write.insert(std::begin(memfn_write)+idx, wr_fn);
}
template <typename BASE, features_e FEAT> template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const access_type access, const uint32_t space, iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) { const uint64_t addr, const unsigned length, uint8_t *const data) {
@ -494,29 +567,40 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const acce
try { try {
switch (space) { switch (space) {
case traits<BASE>::MEM: { case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) { auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (is_debug(access)) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
auto alignment = access == iss::access_type::FETCH? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length; if(!is_debug(access) && (addr&(alignment-1))){
if(alignment>1 && (addr&(alignment-1))){ this->trap_state = 1<<31 | 4<<16;
this->reg.trap_state = 1<<31 | 4<<16;
fault_data=addr; fault_data=addr;
return iss::Err; return iss::Err;
} }
auto res = type==iss::address_type::PHYSICAL? auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data): auto res = iss::Err;
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); if(!is_fetch(access) && memfn_range.size()){
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_read[idx](phys_addr, length, data);
} else
res = read_mem( phys_addr, length, data);
} else {
res = read_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)){ if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -542,7 +626,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const acce
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -580,25 +664,36 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const acc
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
if(!(access && iss::access_type::DEBUG) && length>1 && (addr&(length-1))){ if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){
this->reg.trap_state = 1<<31 | 6<<16; this->trap_state = 1<<31 | 6<<16;
fault_data=addr; fault_data=addr;
return iss::Err; return iss::Err;
} }
auto res = type==iss::address_type::PHYSICAL? auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
write_mem(phys_addr_t{access, space, addr}, length, data): auto res = iss::Err;
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); if(access != access_type::FETCH && memfn_range.size()){
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_write[idx]( phys_addr, length, data);
} else
res = write_mem( phys_addr, length, data);
} else {
res = write_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)) { if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault) this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -658,7 +753,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const acc
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -704,7 +799,7 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset; auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) { if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val); val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) { } else if (addr == mcycleh) {
@ -726,16 +821,16 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff); mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
} }
} }
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) {
if ((addr&0xff) == (minstret&0xff)) { if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret); val = static_cast<reg_t>(this->instret);
} else if ((addr&0xff) == (minstreth&0xff)) { } else if ((addr&0xff) == (minstreth&0xff)) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err; if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(this->reg.instret >> 32); val = static_cast<reg_t>(this->instret >> 32);
} }
return iss::Ok; return iss::Ok;
} }
@ -744,20 +839,20 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
if (sizeof(typename traits<BASE>::reg_t) != 4) { if (sizeof(typename traits<BASE>::reg_t) != 4) {
if ((addr&0xff) == (minstreth&0xff)) if ((addr&0xff) == (minstreth&0xff))
return iss::Err; return iss::Err;
this->reg.instret = static_cast<uint64_t>(val); this->instret = static_cast<uint64_t>(val);
} else { } else {
if ((addr&0xff) == (minstret&0xff)) { if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val; this->instret = (this->instret & 0xffffffff00000000) + val;
} else { } else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff); this->instret = (static_cast<uint64_t>(val)<<32) + (this->instret & 0xffffffff);
} }
} }
this->reg.instret--; this->instret--;
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052; uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) { if (addr == time) {
val = static_cast<reg_t>(time_val); val = static_cast<reg_t>(time_val);
} else if (addr == timeh) { } else if (addr == timeh) {
@ -812,14 +907,6 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_ip(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
mask &= 0xf; // only xSIP is writable
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_epc(unsigned addr, reg_t val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask(); csr[addr] = val & get_pc_mask();
return iss::Ok; return iss::Ok;
@ -864,6 +951,12 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
return iss::Ok; return iss::Ok;
} }
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_intthresh(unsigned addr, reg_t val) {
csr[addr]= val &0xff;
return iss::Ok;
}
template <typename BASE, features_e FEAT> template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) { iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
if(mem_read_cb) return mem_read_cb(paddr, length, data); if(mem_read_cb) return mem_read_cb(paddr, length, data);
@ -878,7 +971,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned len
const mem_type::page_type &p = mem(paddr.val / mem.page_size); const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask; uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data); std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80; if (this->icount > 30000) data[3] |= 0x80;
} break; } break;
default: { default: {
for(auto offs=0U; offs<length; ++offs) { for(auto offs=0U; offs<length; ++offs) {
@ -938,7 +1031,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned le
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation"; << "), stopping simulation";
} }
this->reg.trap_state=std::numeric_limits<uint32_t>::max(); this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar; this->interrupt_sim=hostvar;
break; break;
//throw(iss::simulation_stopped(hostvar)); //throw(iss::simulation_stopped(hostvar));
@ -967,6 +1060,42 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned le
return iss::Ok; return iss::Ok;
} }
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned length, uint8_t *const data) {
if(addr==clic_base_addr) { // cliccfg
*data=clic_cfg_reg;
for(auto i=1; i<length; ++i) *(data+i)=0;
} else if(addr>=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+8)){ // clicinfo
read_reg_uint32(addr, clic_info_reg, data, length);
} else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0x40+clic_num_trigger*4)){ // clicinttrig
auto offset = ((addr&0x7fff)-0x40)/4;
read_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr&0x7fff)-0x1000)/4;
read_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
} else {
for(auto i = 0U; i<length; ++i) *(data+i)=0;
}
return iss::Ok;
}
template<typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_clic(uint64_t addr, unsigned length, const uint8_t *const data) {
if(addr==clic_base_addr) { // cliccfg
clic_cfg_reg = *data;
clic_cfg_reg&= 0x7e;
// } else if(addr>=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+4)){ // clicinfo
// write_uint32(addr, clic_info_reg, data, length);
} else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0xC0)){ // clicinttrig
auto offset = ((addr&0x7fff)-0x40)/4;
write_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr&0x7fff)-0x1000)/4;
write_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> inline void riscv_hart_m_p<BASE, FEAT>::reset(uint64_t address) { template <typename BASE, features_e FEAT> inline void riscv_hart_m_p<BASE, FEAT>::reset(uint64_t address) {
BASE::reset(address); BASE::reset(address);
state.mstatus = hart_state_type::mstatus_reset_val; state.mstatus = hart_state_type::mstatus_reset_val;
@ -990,7 +1119,7 @@ template <typename BASE, features_e FEAT> void riscv_hart_m_p<BASE, FEAT>::check
enabled_interrupts >>= 1; enabled_interrupts >>= 1;
res++; res++;
} }
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
} }
} }
@ -1000,6 +1129,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
auto trap_id = bit_sub<0, 16>(flags); auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags); auto cause = bit_sub<16, 15>(flags);
// calculate effective privilege level // calculate effective privilege level
unsigned new_priv = PRIV_M;
if (trap_id == 0) { // exception if (trap_id == 0) { // exception
if (cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause if (cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
// store ret addr in xepc register // store ret addr in xepc register
@ -1019,10 +1149,13 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
csr[mtval] = (instr & 0x3)==3?instr:instr&0xffff; csr[mtval] = (instr & 0x3)==3?instr:instr&0xffff;
break; break;
case 3: case 3:
//TODO: implement debug mode behavior if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
// csr[dpc] = addr; this->reg.DPC = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi) csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
csr[mtval] = addr; new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[mtval] = addr;
}
break; break;
case 4: case 4:
case 6: case 6:
@ -1034,7 +1167,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
fault_data = 0; fault_data = 0;
} else { } else {
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0; this->pending_trap = 0;
} }
csr[mcause] = (trap_id << (traits<BASE>::XLEN-1)) + cause; csr[mcause] = (trap_id << (traits<BASE>::XLEN-1)) + cause;
// update mstatus // update mstatus
@ -1055,8 +1188,8 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
this->reg.NEXT_PC = ivec & ~0x3UL; this->reg.NEXT_PC = ivec & ~0x3UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause; if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state // reset trap state
this->reg.PRIV = PRIV_M; this->reg.PRIV = new_priv;
this->reg.trap_state = 0; this->trap_state = 0;
std::array<char, 32> buffer; std::array<char, 32> buffer;
#if defined(_MSC_VER) #if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr); sprintf(buffer.data(), "0x%016llx", addr);

View File

@ -307,7 +307,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override { void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]",
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->reg.ccount + cycle_offset); pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->icount + cycle_offset);
}; };
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; } iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -340,9 +340,13 @@ protected:
virtual uint64_t get_next_pc() { return arch.get_next_pc(); }; virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
uint64_t get_instr_count() { return arch.reg.icount; } uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; } uint64_t get_instr_count() { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; }; virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
@ -400,7 +404,6 @@ private:
iss::status read_ie(unsigned addr, reg_t &val); iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val); iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val); iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val); iss::status read_hartid(unsigned addr, reg_t &val);
iss::status write_epc(unsigned addr, reg_t val); iss::status write_epc(unsigned addr, reg_t val);
iss::status read_satp(unsigned addr, reg_t &val); iss::status read_satp(unsigned addr, reg_t &val);
@ -408,6 +411,16 @@ private:
iss::status read_fcsr(unsigned addr, reg_t &val); iss::status read_fcsr(unsigned addr, reg_t &val);
iss::status write_fcsr(unsigned addr, reg_t val); iss::status write_fcsr(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t &val) {return iss::status::Err;};
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) {return iss::status::Err;};
void register_custom_csr_rd(unsigned addr){
csr_rd_cb[addr] = &this_class::read_custom_csr_reg;
}
void register_custom_csr_wr(unsigned addr){
csr_wr_cb[addr] = &this_class::write_custom_csr_reg;
}
reg_t mhartid_reg{0x0}; reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb; std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb; std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
@ -489,11 +502,11 @@ riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
csr_wr_cb[sepc] = &this_class::write_epc; csr_wr_cb[sepc] = &this_class::write_epc;
csr_wr_cb[uepc] = &this_class::write_epc; csr_wr_cb[uepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip; csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_ip; csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[sip] = &this_class::read_ip; csr_rd_cb[sip] = &this_class::read_ip;
csr_wr_cb[sip] = &this_class::write_ip; csr_wr_cb[sip] = &this_class::write_null;
csr_rd_cb[uip] = &this_class::read_ip; csr_rd_cb[uip] = &this_class::read_ip;
csr_wr_cb[uip] = &this_class::write_ip; csr_wr_cb[uip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie; csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie; csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[sie] = &this_class::read_ie; csr_rd_cb[sie] = &this_class::read_ie;
@ -598,13 +611,19 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
try { try {
switch (space) { switch (space) {
case traits<BASE>::MEM: { case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) { auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
if(!is_debug(access) && (addr&(alignment-1))){
this->trap_state = 1<<31 | 4<<16;
fault_data=addr;
return iss::Err;
}
if (unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary if (unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = hart_state_type::decode_vm_info(this->reg.PRIV, state.satp); vm_info vm = hart_state_type::decode_vm_info(this->reg.PRIV, state.satp);
if (vm.levels != 0) { // VM is active if (vm.levels != 0) { // VM is active
@ -620,12 +639,12 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data): read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data):
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)){ if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -641,7 +660,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
case 3: { // SFENCE:VMA upper case 3: { // SFENCE:VMA upper
auto tvm = state.mstatus.TVM; auto tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) { if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
return iss::Err; return iss::Err;
} }
@ -662,7 +681,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -700,7 +719,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
@ -719,12 +738,12 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
write_mem(phys_addr_t{access, space, addr}, length, data): write_mem(phys_addr_t{access, space, addr}, length, data):
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)) { if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault) this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -773,7 +792,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
ptw.clear(); ptw.clear();
auto tvm = state.mstatus.TVM; auto tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) { if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
return iss::Err; return iss::Err;
} }
@ -789,7 +808,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -835,7 +854,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_reg(unsigned
} }
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) { template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset; auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) { if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val); val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) { } else if (addr == mcycleh) {
@ -857,7 +876,7 @@ template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_cycle(unsigned
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff); mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
} }
} }
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok; return iss::Ok;
} }
@ -888,7 +907,7 @@ template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_instret(unsigne
} }
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_time(unsigned addr, reg_t &val) { template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052; uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) { if (addr == time) {
val = static_cast<reg_t>(time_val); val = static_cast<reg_t>(time_val);
} else if (addr == timeh) { } else if (addr == timeh) {
@ -949,15 +968,6 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned a
return iss::Ok; return iss::Ok;
} }
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ip(unsigned addr, reg_t val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
auto mask = get_irq_mask(req_priv_lvl);
mask &= ~(1 << 7); // MTIP is read only
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_epc(unsigned addr, reg_t val) { template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask(); csr[addr] = val & get_pc_mask();
return iss::Ok; return iss::Ok;
@ -966,7 +976,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_epc(unsigned
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t &val) { template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t &val) {
reg_t tvm = state.mstatus.TVM; reg_t tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) { if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
return iss::Err; return iss::Err;
} }
@ -977,7 +987,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) { template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) {
reg_t tvm = state.mstatus.TVM; reg_t tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) { if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
return iss::Err; return iss::Err;
} }
@ -1033,7 +1043,7 @@ iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr_t paddr, unsigned length
const mem_type::page_type &p = mem(paddr.val / mem.page_size); const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask; uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data); std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80; if (this->icount > 30000) data[3] |= 0x80;
} break; } break;
default: { default: {
for(auto offs=0U; offs<length; ++offs) { for(auto offs=0U; offs<length; ++offs) {
@ -1093,7 +1103,7 @@ iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned lengt
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation"; << "), stopping simulation";
} }
this->reg.trap_state=std::numeric_limits<uint32_t>::max(); this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar; this->interrupt_sim=hostvar;
break; break;
//throw(iss::simulation_stopped(hostvar)); //throw(iss::simulation_stopped(hostvar));
@ -1162,7 +1172,7 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
if (enabled_interrupts != 0) { if (enabled_interrupts != 0) {
int res = 0; int res = 0;
while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++; while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++;
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
} }
} }
@ -1306,7 +1316,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
if (cur_priv != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0) if (cur_priv != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S; new_priv = (csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0; this->pending_trap = 0;
} }
size_t adr = ucause | (new_priv << 8); size_t adr = ucause | (new_priv << 8);
csr[adr] = (trap_id << 31) + cause; csr[adr] = (trap_id << 31) + cause;
@ -1351,7 +1361,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
<< lvl[cur_priv] << " to " << lvl[new_priv]; << lvl[cur_priv] << " to " << lvl[new_priv];
// reset trap state // reset trap state
this->reg.PRIV = new_priv; this->reg.PRIV = new_priv;
this->reg.trap_state = 0; this->trap_state = 0;
update_vm_info(); update_vm_info();
return this->reg.NEXT_PC; return this->reg.NEXT_PC;
} }
@ -1363,7 +1373,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t f
auto tsr = state.mstatus.TSR; auto tsr = state.mstatus.TSR;
if (cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) { if (cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
return this->reg.PC; return this->reg.PC;
} }
@ -1402,7 +1412,7 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::wait_until(uint64_t flags
auto status = state.mstatus; auto status = state.mstatus;
auto tw = status.TW; auto tw = status.TW;
if (this->reg.PRIV == PRIV_S && tw != 0) { if (this->reg.PRIV == PRIV_S && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16); this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC; this->fault_data = this->reg.PC;
} }
} }

View File

@ -97,8 +97,10 @@ public:
using reg_t = typename core::reg_t; using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t; using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &); using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t); using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t *const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const *const);
// primary template // primary template
template <class T, class Enable = void> struct hart_state {}; template <class T, class Enable = void> struct hart_state {};
@ -195,7 +197,7 @@ public:
return traits<BASE>::MISA_VAL&0b0100?~1:~3; return traits<BASE>::MISA_VAL&0b0100?~1:~3;
} }
riscv_hart_mu_p(); riscv_hart_mu_p(feature_config cfg = feature_config{});
virtual ~riscv_hart_mu_p() = default; virtual ~riscv_hart_mu_p() = default;
void reset(uint64_t address) override; void reset(uint64_t address) override;
@ -216,7 +218,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override { void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]",
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->reg.icount + cycle_offset); pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->icount + cycle_offset);
}; };
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; } iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -252,9 +254,13 @@ protected:
virtual uint64_t get_next_pc() { return arch.get_next_pc(); }; virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
uint64_t get_instr_count() { return arch.reg.icount; } uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; } uint64_t get_instr_count() { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; }; virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
@ -309,6 +315,8 @@ protected:
}; };
std::vector<clic_int_reg_t> clic_int_reg; std::vector<clic_int_reg_t> clic_int_reg;
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t &val); iss::status read_csr_reg(unsigned addr, reg_t &val);
iss::status write_csr_reg(unsigned addr, reg_t val); iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t &val); iss::status read_null(unsigned addr, reg_t &val);
@ -325,7 +333,6 @@ protected:
iss::status read_ie(unsigned addr, reg_t &val); iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val); iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val); iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status write_ideleg(unsigned addr, reg_t val); iss::status write_ideleg(unsigned addr, reg_t val);
iss::status write_edeleg(unsigned addr, reg_t val); iss::status write_edeleg(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val); iss::status read_hartid(unsigned addr, reg_t &val);
@ -339,29 +346,42 @@ protected:
iss::status write_dpc_reg(unsigned addr, reg_t val); iss::status write_dpc_reg(unsigned addr, reg_t val);
iss::status write_pmpcfg_reg(unsigned addr, reg_t val); iss::status write_pmpcfg_reg(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t &val) {return iss::status::Err;};
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) {return iss::status::Err;};
void register_custom_csr_rd(unsigned addr){
csr_rd_cb[addr] = &this_class::read_custom_csr_reg;
}
void register_custom_csr_wr(unsigned addr){
csr_wr_cb[addr] = &this_class::write_custom_csr_reg;
}
reg_t mhartid_reg{0x0}; reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb; std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb; std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
void check_interrupt(); void check_interrupt();
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len); bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
uint64_t clic_base_addr{0}; std::vector<std::tuple<uint64_t, uint64_t>> memfn_range;
unsigned clic_num_irq{0}; std::vector<std::function<mem_read_f>> memfn_read;
unsigned clic_num_trigger{0}; std::vector<std::function<mem_write_f>> memfn_write;
void insert_mem_range(uint64_t, uint64_t, std::function<mem_read_f>, std::function<mem_write_f>);
feature_config cfg;
unsigned mcause_max_irq{16}; unsigned mcause_max_irq{16};
inline bool debug_mode_active() {return this->reg.PRIV&0x4;} inline bool debug_mode_active() {return this->reg.PRIV&0x4;}
}; };
template <typename BASE, features_e FEAT> template <typename BASE, features_e FEAT>
riscv_hart_mu_p<BASE, FEAT>::riscv_hart_mu_p() riscv_hart_mu_p<BASE, FEAT>::riscv_hart_mu_p(feature_config cfg)
: state() : state()
, instr_if(*this) { , instr_if(*this)
, cfg(cfg) {
// reset values // reset values
csr[misa] = traits<BASE>::MISA_VAL; csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669; csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL; csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1; csr[mimpid] = 1;
csr[mclicbase] = 0xc0000000; // TODO: should be taken from YAML file csr[mclicbase] = cfg.clic_base; // TODO: should be taken from YAML file
uart_buf.str(""); uart_buf.str("");
for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){ for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){
@ -415,7 +435,7 @@ riscv_hart_mu_p<BASE, FEAT>::riscv_hart_mu_p()
csr_rd_cb[mtvec] = &this_class::read_tvec; csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc; csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip; csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_ip; csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie; csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie; csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid; csr_rd_cb[mhartid] = &this_class::read_hartid;
@ -444,7 +464,7 @@ riscv_hart_mu_p<BASE, FEAT>::riscv_hart_mu_p()
csr_rd_cb[uie] = &this_class::read_ie; csr_rd_cb[uie] = &this_class::read_ie;
csr_wr_cb[uie] = &this_class::write_ie; csr_wr_cb[uie] = &this_class::write_ie;
csr_rd_cb[uip] = &this_class::read_ip; csr_rd_cb[uip] = &this_class::read_ip;
csr_wr_cb[uip] = &this_class::write_ip; csr_wr_cb[uip] = &this_class::write_null;
csr_wr_cb[uepc] = &this_class::write_epc; csr_wr_cb[uepc] = &this_class::write_epc;
csr_rd_cb[ustatus] = &this_class::read_status; csr_rd_cb[ustatus] = &this_class::read_status;
csr_wr_cb[ustatus] = &this_class::write_status; csr_wr_cb[ustatus] = &this_class::write_status;
@ -467,12 +487,27 @@ riscv_hart_mu_p<BASE, FEAT>::riscv_hart_mu_p()
csr_rd_cb[mclicbase] = &this_class::read_csr_reg; csr_rd_cb[mclicbase] = &this_class::read_csr_reg;
csr_wr_cb[mclicbase] = &this_class::write_null; csr_wr_cb[mclicbase] = &this_class::write_null;
clic_base_addr=0xC0000000; clic_int_reg.resize(cfg.clic_num_irq);
clic_num_irq=16;
clic_int_reg.resize(clic_num_irq);
clic_cfg_reg=0x20; clic_cfg_reg=0x20;
clic_info_reg = (/*CLICINTCTLBITS*/ 4U<<21) + clic_num_irq; clic_info_reg = (/*CLICINTCTLBITS*/ 4U<<21) + cfg.clic_num_irq;
mcause_max_irq=clic_num_irq+16; mcause_max_irq=cfg.clic_num_irq+16;
insert_mem_range(cfg.clic_base, 0x5000UL,
[this](phys_addr_t addr, unsigned length, uint8_t * const data) { return read_clic(addr.val, length, data);},
[this](phys_addr_t addr, unsigned length, uint8_t const * const data) {return write_clic(addr.val, length, data);});
}
if(FEAT & FEAT_TCM) {
tcm.resize(cfg.tcm_size);
std::function<mem_read_f> read_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t * const data) {
auto offset=addr.val-this->cfg.tcm_base;
std::copy(tcm.data() + offset, tcm.data() + offset + length, data);
return iss::Ok;
};
std::function<mem_write_f> write_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t const * const data) {
auto offset=addr.val-this->cfg.tcm_base;
std::copy(data, data + length, tcm.data() + offset);
return iss::Ok;
};
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
} }
if(FEAT & FEAT_DEBUG){ if(FEAT & FEAT_DEBUG){
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg; csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
@ -552,6 +587,20 @@ template <typename BASE, features_e FEAT> std::pair<uint64_t, bool> riscv_hart_m
throw std::runtime_error("memory load file not found"); throw std::runtime_error("memory load file not found");
} }
template<typename BASE, features_e FEAT>
inline void riscv_hart_mu_p<BASE, FEAT>::insert_mem_range(uint64_t base, uint64_t size, std::function<mem_read_f> rd_f,
std::function<mem_write_f> wr_fn) {
std::tuple<uint64_t, uint64_t> entry{base, size};
auto it = std::upper_bound( memfn_range.begin(), memfn_range.end(), entry,
[](std::tuple<uint64_t, uint64_t> const& a, std::tuple<uint64_t, uint64_t> const& b){
return std::get<0>(a)<std::get<0>(b);
});
auto idx = std::distance(memfn_range.begin(), it);
memfn_range.insert(it, entry);
memfn_read.insert(std::begin(memfn_read)+idx, rd_f);
memfn_write.insert(std::begin(memfn_write)+idx, wr_fn);
}
template<typename BASE, features_e FEAT> template<typename BASE, features_e FEAT>
inline iss::status riscv_hart_mu_p<BASE, FEAT>::write_pmpcfg_reg(unsigned addr, reg_t val) { inline iss::status riscv_hart_mu_p<BASE, FEAT>::write_pmpcfg_reg(unsigned addr, reg_t val) {
csr[addr] = val & 0x9f9f9f9f; csr[addr] = val & 0x9f9f9f9f;
@ -656,40 +705,47 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read(const address_type type, const acc
switch (space) { switch (space) {
case traits<BASE>::MEM: { case traits<BASE>::MEM: {
if(FEAT & FEAT_PMP){ if(FEAT & FEAT_PMP){
if(!pmp_check(access, addr, length) && (access&access_type::DEBUG) != access_type::DEBUG) { if(!pmp_check(access, addr, length) && !is_debug(access)) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (is_debug(access)) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31) | ((access==access_type::FETCH?1:5) << 16); // issue trap 1 this->trap_state = (1 << 31) | ((access==access_type::FETCH?1:5) << 16); // issue trap 1
return iss::Err; return iss::Err;
} }
} }
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) { auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (is_debug(access)) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
auto alignment = access == iss::access_type::FETCH? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length; if(!is_debug(access) && (addr&(alignment-1))){
if(alignment>1 && (addr&(alignment-1))){ this->trap_state = 1<<31 | 4<<16;
this->reg.trap_state = 1<<31 | 4<<16;
fault_data=addr; fault_data=addr;
return iss::Err; return iss::Err;
} }
auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr}); auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
auto res = iss::Err; auto res = iss::Err;
if((FEAT & FEAT_CLIC) && access != access_type::FETCH && phys_addr.val>=clic_base_addr && (phys_addr.val+length)<=(clic_base_addr+0x5000)){ //TODO: should be a constant if(access != access_type::FETCH && memfn_range.size()){
res = read_clic(phys_addr.val, length, data); auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_read[idx](phys_addr, length, data);
} else
res = read_mem( phys_addr, length, data);
} else { } else {
res = read_mem( phys_addr, length, data); res = read_mem( phys_addr, length, data);
} }
if (unlikely(res != iss::Ok)){ if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -715,7 +771,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read(const address_type type, const acc
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -754,32 +810,43 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write(const address_type type, const ac
if(!pmp_check(access, addr, length) && (access&access_type::DEBUG) != access_type::DEBUG) { if(!pmp_check(access, addr, length) && (access&access_type::DEBUG) != access_type::DEBUG) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 1 this->trap_state = (1 << 31) | (7 << 16); // issue trap 1
return iss::Err; return iss::Err;
} }
} }
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr; fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr); if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0 this->trap_state = (1 << 31); // issue trap 0
return iss::Err; return iss::Err;
} }
try { try {
if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){ if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){
this->reg.trap_state = 1<<31 | 6<<16; this->trap_state = 1<<31 | 6<<16;
fault_data=addr; fault_data=addr;
return iss::Err; return iss::Err;
} }
auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr}); auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
auto res = ((FEAT & FEAT_CLIC) && phys_addr.val>=clic_base_addr && (phys_addr.val+length)<=(clic_base_addr+0x5000))? //TODO: should be a constant auto res = iss::Err;
write_clic(phys_addr.val, length, data) : write_mem( phys_addr, length, data); if(access != access_type::FETCH && memfn_range.size()){
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
if(it!=std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_write[idx]( phys_addr, length, data);
} else
res = write_mem( phys_addr, length, data);
} else {
res = write_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)) { if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault) this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr; fault_data=addr;
} }
return res; return res;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -839,7 +906,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write(const address_type type, const ac
} }
return iss::Ok; return iss::Ok;
} catch (trap_access &ta) { } catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id; this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr; fault_data=ta.addr;
return iss::Err; return iss::Err;
} }
@ -885,7 +952,7 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset; auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) { if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val); val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) { } else if (addr == mcycleh) {
@ -907,16 +974,16 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff); mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
} }
} }
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) {
if ((addr&0xff) == (minstret&0xff)) { if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret); val = static_cast<reg_t>(this->instret);
} else if ((addr&0xff) == (minstreth&0xff)) { } else if ((addr&0xff) == (minstreth&0xff)) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err; if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(this->reg.instret >> 32); val = static_cast<reg_t>(this->instret >> 32);
} }
return iss::Ok; return iss::Ok;
} }
@ -925,20 +992,20 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
if (sizeof(typename traits<BASE>::reg_t) != 4) { if (sizeof(typename traits<BASE>::reg_t) != 4) {
if ((addr&0xff) == (minstreth&0xff)) if ((addr&0xff) == (minstreth&0xff))
return iss::Err; return iss::Err;
this->reg.instret = static_cast<uint64_t>(val); this->instret = static_cast<uint64_t>(val);
} else { } else {
if ((addr&0xff) == (minstret&0xff)) { if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val; this->instret = (this->instret & 0xffffffff00000000) + val;
} else { } else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff); this->instret = (static_cast<uint64_t>(val)<<32) + (this->instret & 0xffffffff);
} }
} }
this->reg.instret--; this->instret--;
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052; uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) { if (addr == time) {
val = static_cast<reg_t>(time_val); val = static_cast<reg_t>(time_val);
} else if (addr == timeh) { } else if (addr == timeh) {
@ -998,14 +1065,6 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
return iss::Ok; return iss::Ok;
} }
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::write_ip(unsigned addr, reg_t val) {
auto mask = get_irq_mask((addr >> 8) & 0x3);
mask &= 0xf; // only xSIP is writable
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::write_ideleg(unsigned addr, reg_t val) { template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::write_ideleg(unsigned addr, reg_t val) {
auto mask = 0b000100010001; // only U mode supported auto mask = 0b000100010001; // only U mode supported
csr[mideleg] = (csr[mideleg] & ~mask) | (val & mask); csr[mideleg] = (csr[mideleg] & ~mask) | (val & mask);
@ -1082,7 +1141,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned le
const mem_type::page_type &p = mem(paddr.val / mem.page_size); const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask; uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data); std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80; if (this->icount > 30000) data[3] |= 0x80;
} break; } break;
default: { default: {
for(auto offs=0U; offs<length; ++offs) { for(auto offs=0U; offs<length; ++offs) {
@ -1101,8 +1160,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned l
case 0x10023000: // UART1 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0]; uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) { if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send '"<<uart_buf.str()<<"'";
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str(); std::cout << uart_buf.str();
uart_buf.str(""); uart_buf.str("");
} }
@ -1142,7 +1200,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned l
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation"; << "), stopping simulation";
} }
this->reg.trap_state=std::numeric_limits<uint32_t>::max(); this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar; this->interrupt_sim=hostvar;
break; break;
//throw(iss::simulation_stopped(hostvar)); //throw(iss::simulation_stopped(hostvar));
@ -1171,61 +1229,19 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned l
return iss::Ok; return iss::Ok;
} }
void read_uint32(uint64_t offs, uint32_t& reg, uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch (offs & 0x3) {
case 0:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
void write_uint32(uint64_t offs, uint32_t& reg, const uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch (offs & 0x3) {
case 0:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data ;
break;
}
}
template<typename BASE, features_e FEAT> template<typename BASE, features_e FEAT>
iss::status riscv_hart_mu_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned length, uint8_t *const data) { iss::status riscv_hart_mu_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned length, uint8_t *const data) {
if(addr==clic_base_addr) { // cliccfg if(addr==cfg.clic_base) { // cliccfg
*data=clic_cfg_reg; *data=clic_cfg_reg;
for(auto i=1; i<length; ++i) *(data+i)=0; for(auto i=1; i<length; ++i) *(data+i)=0;
} else if(addr>=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+8)){ // clicinfo } else if(addr>=(cfg.clic_base+4) && (addr+length)<=(cfg.clic_base+8)){ // clicinfo
read_uint32(addr, clic_info_reg, data, length); read_reg_uint32(addr, clic_info_reg, data, length);
} else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0x40+clic_num_trigger*4)){ // clicinttrig } else if(addr>=(cfg.clic_base+0x40) && (addr+length)<=(cfg.clic_base+0x40+cfg.clic_num_trigger*4)){ // clicinttrig
auto offset = ((addr&0x7fff)-0x40)/4; auto offset = ((addr&0x7fff)-0x40)/4;
read_uint32(addr, clic_inttrig_reg[offset], data, length); read_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl } else if(addr>=(cfg.clic_base+0x1000) && (addr+length)<=(cfg.clic_base+0x1000+cfg.clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr&0x7fff)-0x1000)/4; auto offset = ((addr&0x7fff)-0x1000)/4;
read_uint32(addr, clic_int_reg[offset].raw, data, length); read_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
} else { } else {
for(auto i = 0U; i<length; ++i) *(data+i)=0; for(auto i = 0U; i<length; ++i) *(data+i)=0;
} }
@ -1234,17 +1250,17 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned lengt
template<typename BASE, features_e FEAT> template<typename BASE, features_e FEAT>
iss::status riscv_hart_mu_p<BASE, FEAT>::write_clic(uint64_t addr, unsigned length, const uint8_t *const data) { iss::status riscv_hart_mu_p<BASE, FEAT>::write_clic(uint64_t addr, unsigned length, const uint8_t *const data) {
if(addr==clic_base_addr) { // cliccfg if(addr==cfg.clic_base) { // cliccfg
clic_cfg_reg = *data; clic_cfg_reg = *data;
clic_cfg_reg&= 0x7e; clic_cfg_reg&= 0x7e;
// } else if(addr>=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+4)){ // clicinfo // } else if(addr>=(cfg.clic_base+4) && (addr+length)<=(cfg.clic_base+4)){ // clicinfo
// write_uint32(addr, clic_info_reg, data, length); // write_uint32(addr, clic_info_reg, data, length);
} else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0xC0)){ // clicinttrig } else if(addr>=(cfg.clic_base+0x40) && (addr+length)<=(cfg.clic_base+0x40+cfg.clic_num_trigger*4)){ // clicinttrig
auto offset = ((addr&0x7fff)-0x40)/4; auto offset = ((addr&0x7fff)-0x40)/4;
write_uint32(addr, clic_inttrig_reg[offset], data, length); write_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl } else if(addr>=(cfg.clic_base+0x1000) && (addr+length)<=(cfg.clic_base+0x1000+cfg.clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr&0x7fff)-0x1000)/4; auto offset = ((addr&0x7fff)-0x1000)/4;
write_uint32(addr, clic_int_reg[offset].raw, data, length); write_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
} }
return iss::Ok; return iss::Ok;
} }
@ -1272,19 +1288,19 @@ template <typename BASE, features_e FEAT> void riscv_hart_mu_p<BASE, FEAT>::chec
enabled_interrupts >>= 1; enabled_interrupts >>= 1;
res++; res++;
} }
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
} }
} }
template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) { template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0] // flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val // calculate and write mcause val
if(flags==std::numeric_limits<uint64_t>::max()) flags=this->reg.trap_state; if(flags==std::numeric_limits<uint64_t>::max()) flags=this->trap_state;
auto trap_id = bit_sub<0, 16>(flags); auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags); auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + this->reg.PRIV; // adjust environment call cause if (trap_id == 0 && cause == 11) cause = 0x8 + this->reg.PRIV; // adjust environment call cause
// calculate effective privilege level // calculate effective privilege level
auto new_priv = PRIV_M; unsigned new_priv = PRIV_M;
if (trap_id == 0) { // exception if (trap_id == 0) { // exception
if (this->reg.PRIV != PRIV_M && ((csr[medeleg] >> cause) & 0x1) != 0) if (this->reg.PRIV != PRIV_M && ((csr[medeleg] >> cause) & 0x1) != 0)
new_priv = PRIV_U; new_priv = PRIV_U;
@ -1305,10 +1321,13 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
csr[utval | (new_priv << 8)] = (instr & 0x3)==3?instr:instr&0xffff; csr[utval | (new_priv << 8)] = (instr & 0x3)==3?instr:instr&0xffff;
break; break;
case 3: case 3:
//TODO: implement debug mode behavior if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
// csr[dpc] = addr; this->reg.DPC = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi) csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
csr[utval | (new_priv << 8)] = addr; new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[utval | (new_priv << 8)] = addr;
}
break; break;
case 4: case 4:
case 6: case 6:
@ -1323,7 +1342,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
if (this->reg.PRIV != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0) if (this->reg.PRIV != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = PRIV_U; new_priv = PRIV_U;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0; this->pending_trap = 0;
} }
size_t adr = ucause | (new_priv << 8); size_t adr = ucause | (new_priv << 8);
csr[adr] = (trap_id << (traits<BASE>::XLEN-1)) + cause; csr[adr] = (trap_id << (traits<BASE>::XLEN-1)) + cause;
@ -1363,7 +1382,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
<< lvl[this->reg.PRIV] << " to " << lvl[new_priv]; << lvl[this->reg.PRIV] << " to " << lvl[new_priv];
// reset trap state // reset trap state
this->reg.PRIV = new_priv; this->reg.PRIV = new_priv;
this->reg.trap_state = 0; this->trap_state = 0;
return this->reg.NEXT_PC; return this->reg.NEXT_PC;
} }
@ -1372,7 +1391,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
auto inst_priv = (flags & 0x3)? 3:0; auto inst_priv = (flags & 0x3)? 3:0;
if(inst_priv>cur_priv){ if(inst_priv>cur_priv){
auto trap_val = 0x80ULL << 24 | (2 << 16); // illegal instruction auto trap_val = 0x80ULL << 24 | (2 << 16); // illegal instruction
this->reg.trap_state = trap_val; this->trap_state = trap_val;
this->reg.NEXT_PC = std::numeric_limits<uint32_t>::max(); this->reg.NEXT_PC = std::numeric_limits<uint32_t>::max();
} else { } else {
auto status = state.mstatus; auto status = state.mstatus;

View File

@ -53,17 +53,12 @@ template <> struct traits<tgc_c> {
static constexpr std::array<const char*, 36> reg_aliases{ static constexpr std::array<const char*, 36> reg_aliases{
{"ZERO", "RA", "SP", "GP", "TP", "T0", "T1", "T2", "S0", "S1", "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "S11", "T3", "T4", "T5", "T6", "PC", "NEXT_PC", "PRIV", "DPC"}}; {"ZERO", "RA", "SP", "GP", "TP", "T0", "T1", "T2", "S0", "S1", "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "S11", "T3", "T4", "T5", "T6", "PC", "NEXT_PC", "PRIV", "DPC"}};
enum constants {MISA_VAL=0b01000000000000000001000100000100, MARCHID_VAL=0x80000003, XLEN=32, CSR_SIZE=4096, INSTR_ALIGNMENT=2, fence=0, fencei=1, fencevmal=2, fencevmau=3, MUL_LEN=64}; enum constants {MISA_VAL=0b01000000000000000001000100000100, MARCHID_VAL=0x80000003, RFS=32, INSTR_ALIGNMENT=2, XLEN=32, CSR_SIZE=4096, fence=0, fencei=1, fencevmal=2, fencevmau=3, MUL_LEN=64};
constexpr static unsigned FP_REGS_SIZE = 0; constexpr static unsigned FP_REGS_SIZE = 0;
enum reg_e { enum reg_e {
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, PC, NEXT_PC, PRIV, DPC, NUM_REGS, X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, PC, NEXT_PC, PRIV, DPC, NUM_REGS
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
}; };
using reg_t = uint32_t; using reg_t = uint32_t;
@ -76,11 +71,11 @@ template <> struct traits<tgc_c> {
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>; using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, 41> reg_bit_widths{ static constexpr std::array<const uint32_t, 36> reg_bit_widths{
{32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32,32,32,64,64,64}}; {32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32}};
static constexpr std::array<const uint32_t, 41> reg_byte_offsets{ static constexpr std::array<const uint32_t, 36> reg_byte_offsets{
{0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137,141,145,149,157,165}}; {0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1); static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
@ -197,7 +192,7 @@ struct tgc_c: public arch_if {
uint8_t* get_regs_base_ptr() override; uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; } inline uint64_t get_icount() { return icount; }
inline bool should_stop() { return interrupt_sim; } inline bool should_stop() { return interrupt_sim; }
@ -215,7 +210,7 @@ struct tgc_c: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; } virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; } inline uint32_t get_last_branch() { return last_branch; }
#pragma pack(push, 1) #pragma pack(push, 1)
@ -256,12 +251,14 @@ struct tgc_c: public arch_if {
uint32_t NEXT_PC = 0; uint32_t NEXT_PC = 0;
uint8_t PRIV = 0; uint8_t PRIV = 0;
uint32_t DPC = 0; uint32_t DPC = 0;
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t instret = 0;
uint32_t last_branch;
} reg; } reg;
#pragma pack(pop) #pragma pack(pop)
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
std::array<address_type, 4> addr_mode; std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0; uint64_t interrupt_sim=0;

View File

@ -0,0 +1,43 @@
#ifndef _ISS_ARCH_TGC_MAPPER_H
#define _ISS_ARCH_TGC_MAPPER_H
#include "riscv_hart_m_p.h"
#include "tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_B
#include "riscv_hart_m_p.h"
#include "tgc_b.h"
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#endif
#ifdef CORE_TGC_C_XRB_NN
#include "riscv_hart_m_p.h"
#include "tgc_c_xrb_nn.h"
using tgc_c_xrb_nn_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c_xrb_nn>;
#endif
#ifdef CORE_TGC_D
#include "riscv_hart_mu_p.h"
#include "tgc_d.h"
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include "tgc_d_xrb_mac.h"
using tgc_d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_mac, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_NN
#include "riscv_hart_mu_p.h"
#include "tgc_d_xrb_nn.h"
using tgc_d_xrb_nn_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_E
#include "riscv_hart_mu_p.h"
#include "tgc_e.h"
using tgc_e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_X
#include "riscv_hart_mu_p.h"
#include "tgc_x.h"
using tgc_x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#endif
#endif

View File

@ -214,12 +214,26 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
auto start_reg=arch::traits<ARCH>::X0; auto start_reg=arch::traits<ARCH>::X0;
auto *reg_base = core->get_regs_base_ptr(); auto *reg_base = core->get_regs_base_ptr();
auto iter = data.data(); auto iter = data.data();
bool e_ext = arch::traits<ARCH>::PC<32;
for (size_t reg_no = 0; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) { for (size_t reg_no = 0; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8; if(e_ext && reg_no>15){
auto offset = traits<ARCH>::reg_byte_offsets[reg_no]; if(reg_no==32){
std::copy(iter, iter + reg_width, reg_base); auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
iter += 4; auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
reg_base += offset; std::copy(iter, iter + reg_width, reg_base);
} else {
const uint64_t zero_val=0;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[15] / 8;
auto iter = (uint8_t*)&zero_val;
std::copy(iter, iter + reg_width, reg_base);
}
} else {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(iter, iter + reg_width, reg_base);
iter += 4;
reg_base += offset;
}
} }
return Ok; return Ok;
} }

View File

@ -81,7 +81,7 @@ public:
void callback(instr_info_t instr_info, exec_info const&) override; void callback(instr_info_t instr_info, exec_info const&) override;
private: private:
iss::instrumentation_if *arch_instr; iss::instrumentation_if *instr_if;
std::vector<instr_desc> delays; std::vector<instr_desc> delays;
struct pair_hash { struct pair_hash {
size_t operator()(const std::pair<uint64_t, uint64_t> &p) const { size_t operator()(const std::pair<uint64_t, uint64_t> &p) const {

View File

@ -44,7 +44,7 @@
namespace iss { namespace iss {
namespace plugin { namespace plugin {
class lz4compress_steambuf;
class cov : public iss::vm_plugin { class cov : public iss::vm_plugin {
struct instr_delay { struct instr_delay {
std::string instr_name; std::string instr_name;
@ -88,10 +88,13 @@ public:
private: private:
iss::instrumentation_if *instr_if {nullptr}; iss::instrumentation_if *instr_if {nullptr};
std::ofstream output; std::ofstream output;
#ifdef WITH_LZ4
std::unique_ptr<lz4compress_steambuf> strbuf;
std::ostream ostr;
#endif
std::string filename; std::string filename;
std::vector<instr_desc> delays; std::vector<instr_desc> delays;
bool jumped, first; bool jumped{false}, first{true};
}; };
} }
} }

View File

@ -41,12 +41,10 @@ using namespace iss::arch;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_names; constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_aliases; constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_aliases;
constexpr std::array<const uint32_t, 41> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths; constexpr std::array<const uint32_t, 36> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 41> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets; constexpr std::array<const uint32_t, 36> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
tgc_c::tgc_c() { tgc_c::tgc_c() = default;
reg.icount = 0;
}
tgc_c::~tgc_c() = default; tgc_c::~tgc_c() = default;
@ -57,8 +55,8 @@ void tgc_c::reset(uint64_t address) {
reg.PC=address; reg.PC=address;
reg.NEXT_PC=reg.PC; reg.NEXT_PC=reg.PC;
reg.PRIV=0x3; reg.PRIV=0x3;
reg.trap_state=0; trap_state=0;
reg.icount=0; icount=0;
} }
uint8_t *tgc_c::get_regs_base_ptr() { uint8_t *tgc_c::get_regs_base_ptr() {

View File

@ -35,46 +35,14 @@
#include <boost/lexical_cast.hpp> #include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp> #include <boost/program_options.hpp>
#include <iss/arch/riscv_hart_m_p.h> #include <iss/arch/tgc_mapper.h>
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_B
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_b.h"
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#endif
#ifdef CORE_TGC_C_XRB_NN
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c_xrb_nn.h"
using tgc_c_xrb_nn_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c_xrb_nn>;
#endif
#ifdef CORE_TGC_D
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d.h"
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_MAC
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d_xrb_mac.h"
using tgc_d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_mac, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_NN
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d_xrb_nn.h"
using tgc_d_xrb_nn_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_E
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_e.h"
using tgc_e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef WITH_LLVM #ifdef WITH_LLVM
#include <iss/llvm/jit_helper.h> #include <iss/llvm/jit_helper.h>
#endif #endif
#include <iss/log_categories.h> #include <iss/log_categories.h>
#include <iss/plugin/cycle_estimate.h> #include <iss/plugin/cycle_estimate.h>
#include <iss/plugin/instruction_count.h> #include <iss/plugin/instruction_count.h>
#include <iss/plugin/pctrace.h>
#include <iss/plugin/loader.h> #include <iss/plugin/loader.h>
#if defined(HAS_LUA) #if defined(HAS_LUA)
#include <iss/plugin/lua.h> #include <iss/plugin/lua.h>
@ -92,13 +60,13 @@ int main(int argc, char *argv[]) {
desc.add_options() desc.add_options()
("help,h", "Print help message") ("help,h", "Print help message")
("verbose,v", po::value<int>()->implicit_value(0), "Sets logging verbosity") ("verbose,v", po::value<int>()->implicit_value(0), "Sets logging verbosity")
("logfile,f", po::value<std::string>(), "Sets default log file.") ("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly") ("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use") ("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate") ("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address") ("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation") ("dump-ir", "dump the intermediate representation")
("elf", po::value<std::vector<std::string>>(), "ELF file(s) to load") ("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file") ("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate") ("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the memory input file") ("backend", po::value<std::string>()->default_value("interp"), "the memory input file")
@ -208,7 +176,11 @@ int main(int argc, char *argv[]) {
auto *ce_plugin = new iss::plugin::cycle_estimate(filename); auto *ce_plugin = new iss::plugin::cycle_estimate(filename);
vm->register_plugin(*ce_plugin); vm->register_plugin(*ce_plugin);
plugin_list.push_back(ce_plugin); plugin_list.push_back(ce_plugin);
} else { } else if (plugin_name == "pctrace") {
auto *plugin = new iss::plugin::cov(filename);
vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else {
std::array<char const*, 1> a{{filename.c_str()}}; std::array<char const*, 1> a{{filename.c_str()}};
iss::plugin::loader l(plugin_name, {{"initPlugin"}}); iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data()); auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());

View File

@ -48,7 +48,7 @@ using namespace rapidjson;
using namespace std; using namespace std;
iss::plugin::cycle_estimate::cycle_estimate(string const& config_file_name) iss::plugin::cycle_estimate::cycle_estimate(string const& config_file_name)
: arch_instr(nullptr) : instr_if(nullptr)
, config_file_name(config_file_name) , config_file_name(config_file_name)
{ {
} }
@ -57,9 +57,9 @@ iss::plugin::cycle_estimate::~cycle_estimate() {
} }
bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) { bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) {
arch_instr = vm.get_arch()->get_instrumentation_if(); instr_if = vm.get_arch()->get_instrumentation_if();
if(!arch_instr) return false; if(!instr_if) return false;
const string core_name = arch_instr->core_type_name(); const string core_name = instr_if->core_type_name();
if (config_file_name.length() > 0) { if (config_file_name.length() > 0) {
ifstream is(config_file_name); ifstream is(config_file_name);
if (is.is_open()) { if (is.is_open()) {
@ -108,11 +108,11 @@ bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if&
} }
void iss::plugin::cycle_estimate::callback(instr_info_t instr_info, exec_info const& exc_info) { void iss::plugin::cycle_estimate::callback(instr_info_t instr_info, exec_info const& exc_info) {
assert(arch_instr && "No instrumentation interface available but callback executed"); assert(instr_if && "No instrumentation interface available but callback executed");
auto entry = delays[instr_info.instr_id]; auto entry = delays[instr_info.instr_id];
bool taken = exc_info.branch_taken; bool taken = exc_info.branch_taken;
if (exc_info.branch_taken && (entry.taken > 1)) if (exc_info.branch_taken && (entry.taken > 1))
arch_instr->set_curr_instr_cycles(entry.taken); instr_if->set_curr_instr_cycles(entry.taken);
else if (entry.not_taken > 1) else if (entry.not_taken > 1)
arch_instr->set_curr_instr_cycles(entry.not_taken); instr_if->set_curr_instr_cycles(entry.not_taken);
} }

View File

@ -1,6 +1,7 @@
#include <iss/arch_if.h> #include <iss/arch_if.h>
#include <iss/plugin/pctrace.h> #include <iss/plugin/pctrace.h>
#include <util/logging.h> #include <util/logging.h>
#include <util/ities.h>
#include <rapidjson/document.h> #include <rapidjson/document.h>
#include <rapidjson/istreamwrapper.h> #include <rapidjson/istreamwrapper.h>
#include "rapidjson/writer.h" #include "rapidjson/writer.h"
@ -8,27 +9,99 @@
#include <rapidjson/ostreamwrapper.h> #include <rapidjson/ostreamwrapper.h>
#include <rapidjson/error/en.h> #include <rapidjson/error/en.h>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#ifdef WITH_LZ4
#include <lz4frame.h>
#endif
namespace iss {
namespace plugin {
using namespace rapidjson; using namespace rapidjson;
using namespace std; using namespace std;
iss::plugin::cov::cov(std::string const &filename) #ifdef WITH_LZ4
: instr_if(nullptr) class lz4compress_steambuf: public std::streambuf {
, filename(filename) public:
{ lz4compress_steambuf(const lz4compress_steambuf&) = delete;
output.open("output.trc"); lz4compress_steambuf& operator=(const lz4compress_steambuf&) = delete;
jumped = false; lz4compress_steambuf(std::ostream &sink, size_t buf_size)
first = true; : sink(sink)
} , src_buf(buf_size)
, dest_buf(LZ4F_compressBound(buf_size, nullptr))
{
auto errCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
if (LZ4F_isError(errCode) != 0)
throw std::runtime_error(std::string("Failed to create LZ4 context: ") + LZ4F_getErrorName(errCode));
size_t ret = LZ4F_compressBegin(ctx, &dest_buf.front(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to start LZ4 compression: ") + LZ4F_getErrorName(ret));
setp(src_buf.data(), src_buf.data() + src_buf.size() - 1);
sink.write(dest_buf.data(), ret);
}
iss::plugin::cov::~cov() { ~lz4compress_steambuf() {
output.close(); close();
} }
bool iss::plugin::cov::registration(const char *const version, vm_if& vm) { void close() {
if (closed)
return;
sync();
auto ret = LZ4F_compressEnd(ctx, dest_buf.data(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to finish LZ4 compression: ") + LZ4F_getErrorName(ret));
sink.write(dest_buf.data(), ret);
LZ4F_freeCompressionContext(ctx);
closed = true;
}
private:
int_type overflow(int_type ch) override {
compress_and_write();
*pptr() = static_cast<char_type>(ch);
pbump(1);
return ch;
}
int_type sync() override {
compress_and_write();
return 0;
}
void compress_and_write() {
if (closed)
throw std::runtime_error("Cannot write to closed stream");
if(auto orig_size = pptr() - pbase()){
auto ret = LZ4F_compressUpdate(ctx, dest_buf.data(), dest_buf.capacity(), pbase(), orig_size, nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("LZ4 compression failed: ") + LZ4F_getErrorName(ret));
if(ret) sink.write(dest_buf.data(), ret);
pbump(-orig_size);
}
}
std::ostream &sink;
std::vector<char> src_buf;
std::vector<char> dest_buf;
LZ4F_compressionContext_t ctx{ nullptr };
bool closed{ false };
};
#endif
cov::cov(std::string const &filename)
: instr_if(nullptr)
, filename(filename)
, output("output.trc")
#ifdef WITH_LZ4
, strbuf(new lz4compress_steambuf(output, 4096))
, ostr(strbuf.get())
#endif
{ }
cov::~cov() { }
bool cov::registration(const char *const version, vm_if& vm) {
instr_if = vm.get_arch()->get_instrumentation_if(); instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if) return false; if(!instr_if) return false;
const string core_name = instr_if->core_type_name(); const string core_name = instr_if->core_type_name();
@ -62,11 +135,11 @@ bool iss::plugin::cov::registration(const char *const version, vm_if& vm) {
} else { } else {
LOG(ERR)<<"plugin cycle_estimate: could not find an entry for "<<core_name<<" in JSON file"<<endl; LOG(ERR)<<"plugin cycle_estimate: could not find an entry for "<<core_name<<" in JSON file"<<endl;
return false; return false;
} }
} else { } else {
LOG(ERR)<<"plugin cycle_estimate: could not parse in JSON file at "<< ok.Offset()<<": "<<GetParseError_En(ok.Code())<<endl; LOG(ERR)<<"plugin cycle_estimate: could not parse in JSON file at "<< ok.Offset()<<": "<<GetParseError_En(ok.Code())<<endl;
return false; return false;
} }
} catch (runtime_error &e) { } catch (runtime_error &e) {
LOG(ERR) << "Could not parse input file " << filename << ", reason: " << e.what(); LOG(ERR) << "Could not parse input file " << filename << ", reason: " << e.what();
return false; return false;
@ -77,57 +150,31 @@ bool iss::plugin::cov::registration(const char *const version, vm_if& vm) {
} }
} }
return true; return true;
} }
inline string formatPC(uint64_t pc) { void cov::callback(instr_info_t iinfo, const exec_info& einfo) {
stringstream stream;
stream << "0x" << std::hex << pc;
return stream.str();
}
void iss::plugin::cov::callback(instr_info_t iinfo, const exec_info& einfo) {
// auto delay = 0;
// auto entry = delays[iinfo.instr_id];
// bool taken = einfo.branch_taken;
// if (einfo.branch_taken)
// delay = entry.taken;
// else
// delay = entry.not_taken;
//
// if (first){
// output << formatPC(instr_if->get_pc()) << "," << delay;
// first = false;
// }
// if(instr_if->get_next_pc()-instr_if->get_pc() != delays[iinfo.instr_id].size/8){
// //The goal is to keep the output in start-target pairs, so after a jump the target address needs to get written
// //to the output. If the target happens to also be a start, we keep the pairing by adding a 0-delay entry.
// if (jumped)
// output <<"\n" <<formatPC(instr_if->get_pc()) << "," << 0;
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// jumped = true;
// }
// else{
// if (jumped){
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// jumped = false;
// }
// else if(delay!=1){
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << 0;
// }
//
// }
//source code for the full output
auto delay = 0; auto delay = 0;
auto entry = delays[iinfo.instr_id]; size_t id = iinfo.instr_id;
auto entry = delays[id];
auto instr = instr_if->get_instr_word();
auto call = id==65 || id ==86 || ((id==2 || id==3) && bit_sub<7,5>(instr)!=0) ;//not taking care of tail calls (jalr with loading x6)
bool taken = einfo.branch_taken; bool taken = einfo.branch_taken;
if (einfo.branch_taken) bool compressed = (instr&0x3)!=0x3;
if (einfo.branch_taken) {
delay = entry.taken; delay = entry.taken;
else if(entry.taken > 1)
delay = entry.not_taken; instr_if->set_curr_instr_cycles(entry.taken);
output<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay << "\n"; } else {
delay = entry.not_taken;
if (entry.not_taken > 1)
instr_if->set_curr_instr_cycles(entry.not_taken);
}
#ifndef WITH_LZ4
output<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#else
auto rdbuf=ostr.rdbuf();
ostr<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#endif
}
}
} }

View File

@ -31,37 +31,15 @@
*******************************************************************************/ *******************************************************************************/
// clang-format off // clang-format off
#include "iss/debugger/gdb_session.h" #include <iss/debugger/gdb_session.h>
#include "iss/debugger/encoderdecoder.h" #include <iss/debugger/encoderdecoder.h>
#include "iss/debugger/server.h" #include <iss/debugger/server.h>
#include "iss/debugger/target_adapter_if.h" #include <iss/debugger/target_adapter_if.h>
#include "iss/iss.h" #include <iss/iss.h>
#include "iss/vm_types.h" #include <iss/vm_types.h>
#include <iss/plugin/loader.h> #include <iss/plugin/loader.h>
#include "sysc/core_complex.h" #include <sysc/core_complex.h>
#ifdef CORE_TGC_B #include <iss/arch/tgc_mapper.h>
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_b.h"
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#endif
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_D
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d.h"
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, iss::arch::FEAT_PMP>;
#endif
#ifdef CORE_TGC_D_XRB_MAC
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d_xrb_mac.h"
using tgc_d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_mac, iss::arch::FEAT_PMP>;
#endif
#ifdef CORE_TGC_D_XRB_NN
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d_xrb_nn.h"
using tgc_d_xrb_nn_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_nn, iss::arch::FEAT_PMP>;
#endif
#include <scc/report.h> #include <scc/report.h>
#include <util/ities.h> #include <util/ities.h>
#include <iostream> #include <iostream>
@ -127,7 +105,7 @@ public:
heart_state_t &get_state() { return this->state; } heart_state_t &get_state() { return this->state; }
void notify_phase(iss::arch_if::exec_phase p) override { void notify_phase(iss::arch_if::exec_phase p) override {
if (p == iss::arch_if::ISTART) owner->sync(this->reg.icount); if (p == iss::arch_if::ISTART) owner->sync(this->icount);
} }
sync_type needed_sync() const override { return PRE_SYNC; } sync_type needed_sync() const override { return PRE_SYNC; }
@ -137,7 +115,7 @@ public:
std::stringstream s; std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0') s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:" << std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:"
<< this->reg.icount + this->cycle_offset << "]"; << this->icount + this->cycle_offset << "]";
SCCDEBUG(owner->name())<<"disass: " SCCDEBUG(owner->name())<<"disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40) << "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str(); << std::setfill(' ') << std::left << instr << s.str();
@ -197,9 +175,9 @@ public:
void wait_until(uint64_t flags) override { void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt"; SCCDEBUG(owner->name()) << "Sleeping until interrupt";
do { while(this->pending_trap == 0 && (this->csr[arch::mip] & this->csr[arch::mie]) == 0) {
sc_core::wait(wfi_evt); sc_core::wait(wfi_evt);
} while (this->reg.pending_trap == 0); }
PLAT::wait_until(flags); PLAT::wait_until(flags);
} }
@ -226,7 +204,7 @@ public:
this->csr[arch::mip] &= ~mask; this->csr[arch::mip] &= ~mask;
this->check_interrupt(); this->check_interrupt();
if(value) if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap; SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->pending_trap;
} }
private: private:

File diff suppressed because it is too large Load Diff