89 Commits

Author SHA1 Message Date
047e2e12b0 fixes include issue in LLVM vm_base
vm_base.h needs to be included before gdb_session.h as termios.h (via
boost and gdb_server) has a define which clashes with a variable name in
ConstantRange.h (via iss/llvm/vm_base.h)
2025-05-09 20:14:09 +02:00
fe3ed49519 updates asmjit template, removes lots of comments from IR 2025-04-28 15:04:18 +02:00
1afd77a942 changes aes box functions to extern linkage 2025-04-28 15:02:05 +02:00
cdf5038e59 corrects fp functions for llvm 2025-04-03 09:59:22 +02:00
651897e1e4 corrects another oversight in tcc template wrt floating point 2025-04-03 09:19:02 +02:00
a1803c61c1 even more corrections to tcc template 2025-04-02 13:01:25 +02:00
bfa2182f8e corrects mistakes wrt tcc template 2025-04-02 12:20:42 +02:00
b01c9b27e5 corrects tcc template when using floating point 2025-04-02 12:18:45 +02:00
07f394d5ff corrects tcc template when using floating point 2025-04-02 11:53:55 +02:00
7e97329e78 adds UserProvidedFunctions for NaNBoxing, updates generated files, adapts to new fp API 2025-04-02 10:19:11 +02:00
8f5d666b7d corrects mistake from rebasing, adds newly generated templates 2025-03-31 12:50:05 +02:00
cc123939ce configures logger in main 2025-03-31 10:19:16 +02:00
a2e5405e25 small changes regarding vector template 2025-03-31 10:19:16 +02:00
cd3ec0b79d removes conversion functions in favor of more explicit conversions 2025-03-31 10:19:16 +02:00
0e35a2a8c9 adds complete Zfh support, small rework regarding floating point interface 2025-03-31 10:19:16 +02:00
8220c00a3d small correction for floating point h 2025-03-31 10:19:16 +02:00
ec5fb1e87e increases verbosity for file loading errors 2025-03-31 10:19:16 +02:00
453407568c removes carry_t, moves functionality to own functions 2025-03-31 10:19:16 +02:00
0fe9e6ebc8 corrects error for narrowing fp dispatch 2025-03-31 10:19:16 +02:00
484d9dbe08 removes rounding mode lookup as it is not needes 2025-03-31 10:19:15 +02:00
7a7035f267 adds support for half precision float 2025-03-31 10:19:15 +02:00
d9f1e5d31b small refactor 2025-03-31 10:19:15 +02:00
7b35f45a48 changes to make correct oversighst for XLEN=64 in Vector functions 2025-03-31 10:19:15 +02:00
ece6f7290f small bugfixes, adds some half point functionality 2025-03-31 10:19:15 +02:00
2166a6d81e makes widenning function types more explicit 2025-03-31 10:19:15 +02:00
fe9f2a5455 corrects vectorslide, changes all loop index type 2025-03-31 10:19:15 +02:00
42bf6ee380 corrects errors w.r.t. floating point dispatch 2025-03-31 10:19:15 +02:00
f0b582df6c corrects ambiguity in frsqrt 2025-03-31 10:19:15 +02:00
6fcb3dbb66 adds missing floating point instructions 2025-03-31 10:19:15 +02:00
c01eb39a76 reworks merge instrs, adds fp comparisons 2025-03-31 10:19:15 +02:00
08280a094f allows assigning to mask_view elements 2025-03-31 10:19:15 +02:00
ae90adc854 adds most fp functions 2025-03-31 10:19:15 +02:00
cd358198ad expands floating point functions 2025-03-31 10:19:14 +02:00
8746003d3e adds floating point reduction instrs, widening are untested 2025-03-31 10:19:14 +02:00
60d2b45a81 adds floating point Permutation Instructions 2025-03-31 10:19:14 +02:00
0264c5d66f small cleanup 2025-03-31 10:19:14 +02:00
528c2536af removes unused declarations 2025-03-31 10:19:14 +02:00
19e38ec898 corrects bug 2025-03-31 10:19:14 +02:00
fd11ce18c4 changes order of arguments to reflect assembly 2025-03-31 10:19:14 +02:00
9b7a9fa273 updates indexed load to use vreg_views 2025-03-31 10:19:14 +02:00
e24c1874c4 Changes load_store to use vreg_views aswell 2025-03-31 10:19:14 +02:00
221d2ee38c adds whole register moves 2025-03-31 10:19:14 +02:00
877cad27ba adds gather instructions 2025-03-31 10:19:14 +02:00
a26505cb5c adds more functions, up to slide 2025-03-31 10:19:13 +02:00
c1277b6528 adds mask_mask logical instructions 2025-03-31 10:19:13 +02:00
63889b02e7 adds widening reductions 2025-03-31 10:19:13 +02:00
f049d8cbb3 adds Integer Reduction Instructions 2025-03-31 10:19:13 +02:00
28ac169cfe adds narrowing fixed point instructions 2025-03-31 10:19:13 +02:00
a6f24db83a adds vssrl and vssra 2025-03-31 10:19:13 +02:00
e1911bc450 adds vsmul, widens functions parameters for sat_vector operations 2025-03-31 10:19:13 +02:00
75d96bf18d small cleanup, adds first fixed point instrs 2025-03-31 10:19:13 +02:00
e59458aa0e adds the missing vector csrs to the architectural state 2025-03-31 10:18:51 +02:00
77807fec01 adds merge and move instructions 2025-03-31 10:18:10 +02:00
6852d1d299 adds Vector Widening Integer Multiply-Add Instructions 2025-03-31 10:18:10 +02:00
ac1322d66b changes to ternary functions for Multiply-Add Instructions 2025-03-31 10:18:10 +02:00
9ba9d2432c adds Vector Widening Integer Multiply Instructions 2025-03-31 10:18:10 +02:00
c9b7962cd3 adds Vector Integer Divide Instructions 2025-03-31 10:18:10 +02:00
ab31fd27c9 adds single width integer instructins, also small cleanup 2025-03-31 10:18:10 +02:00
b3f189145f adds funct3 to vector functions 2025-03-31 10:18:10 +02:00
dd4416ab15 adds min/max instructions 2025-03-31 10:18:10 +02:00
0027946f90 renames mask operations to distinguish from vector integer compare instructions 2025-03-31 10:18:09 +02:00
feaff8c4a5 adds support for narrowing shifts 2025-03-31 10:18:09 +02:00
af3e76cc98 adds integer extension and add/substract with carry vector instructions 2025-03-31 10:18:09 +02:00
b1ceac2c2a small correction for vector_functions 2025-03-31 10:18:09 +02:00
b5862039e7 changes order of operands to more closely resemble assembly 2025-03-31 10:18:09 +02:00
51f3802394 adds vector_imm instructions to vector_functions, makes size of all involved registers a template parameter 2025-03-31 10:18:09 +02:00
6ce0d97e81 general improvements to vector_functions, adds functions to process arithmetic instructions (working add) 2025-03-31 10:18:09 +02:00
69c8fda5d2 corrects oversight in vector_functions 2025-03-31 10:18:09 +02:00
c1f9328528 corrects vector_functions 2025-03-31 10:18:09 +02:00
2b85748279 adds load_store_index to vector_functions 2025-03-31 10:18:09 +02:00
f7aa51b12e adds small optimization, clarifies variables in vector_functions 2025-03-31 10:18:09 +02:00
3428745a00 small corrections in vector functions 2025-03-31 10:18:09 +02:00
512b79a3e7 makes elem_count an explicit parameter for the softvector functions rather than calculating it from vtype 2025-03-31 10:18:08 +02:00
7a048f8b93 changes wording of returned index to better reflect what it means, cleans up a bit 2025-03-31 10:18:08 +02:00
6f4daf91ed adds explicit RFS to assertions 2025-03-31 10:18:08 +02:00
947d353bbf adds working vector (unit) stride (segmented) loads and stores 2025-03-31 10:18:08 +02:00
b95f518c91 updates templates for interp to make extension specific includes conditonal 2025-03-31 10:18:08 +02:00
4cef0f57c1 updates templates and adds newly generated files 2025-03-31 10:18:05 +02:00
28af695592 adds vector support to m and mu priv wrapper 2025-03-31 10:16:01 +02:00
f6cdd9d07c adds vector csr to riscv_common 2025-03-31 09:54:26 +02:00
9e390971d4 corrects include guard comment for fp_functions 2025-03-31 09:54:26 +02:00
2bb2e56310 adds dependencies for K ISA (Cryptography) 2025-03-31 09:54:26 +02:00
a0eeae7dd6 corrects template for new arch_if changes 2025-03-30 19:12:22 +02:00
8f491ef36b adds superflous exception throwing 2025-03-21 20:28:37 +01:00
cbe4c2d62f adds comment to indicate purpose of arch state members 2025-03-19 12:03:12 +01:00
31c6bb55f4 applies clang format 2025-03-16 14:38:45 +01:00
63d0162119 adds license header 2025-03-16 13:33:01 +01:00
3b294d9da0 fixes sc_core_adapter wrt refactored memory hierarchy 2025-03-16 12:29:03 +01:00
54233b448d moves mmu related code into mmu unit 2025-03-16 08:50:01 +01:00
40 changed files with 5766 additions and 1377 deletions

View File

@ -18,9 +18,10 @@ add_subdirectory(softfloat)
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/iss/mmio/memory_if.cpp
src/iss/mem/memory_if.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/vm/vector_functions.cpp
src/iss/debugger/csr_names.cpp
src/iss/semihosting/semihosting.cpp
)

View File

@ -20,7 +20,7 @@ RVI:
mask: 0b00000000000000000000000001111111
size: 32
branch: true
delay: 1
delay: [1,1]
JALR:
index: 3
encoding: 0b00000000000000000000000001100111

View File

@ -30,11 +30,21 @@
*
*******************************************************************************/
<%
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
def nativeSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
if(size<=128) return 128;
if(size<=256) return 256;
if(size<=512) return 512;
if(size<=1024) return 1024;
if(size<=2048) return 2048;
if(size<=4096) return 4096;
throw new IllegalArgumentException("Unsupported size in nativeSize in CORENAME.h.gtl");
}
def getRegisterSizes(){
def regs = registers.collect{nativeTypeSize(it.size)}
def regs = registers.collect{nativeSize(it.size)}
regs+=[32,32, 64, 64, 64, 32, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
return regs
}
@ -47,13 +57,7 @@ def getRegisterOffsets(){
}
return offsets
}
def byteSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
return 128;
}
def getCString(def val){
return val.toString()+'ULL'
}
@ -84,6 +88,8 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
enum constants {${constants.collect{c -> c.name+"="+getCString(c.value)}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
constexpr static unsigned V_REGS_SIZE = ${constants.find {it.name=='VLEN'}?.value?:0};
enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS, TRAP_STATE=NUM_REGS, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
@ -142,15 +148,17 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%
registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
registers.each { reg -> if(reg.size>64) {%>
uint8_t ${reg.name}[${reg.size/8}] = {0};<%
}else if(reg.size>0) {%>
uint${nativeSize(reg.size)}_t ${reg.name} = 0;<%
}}%>
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
uint64_t icount = 0; // counts number of instructions undisturbed
uint64_t cycle = 0; // counts number of cycles, in functional mode equals icount
uint64_t instret = 0; // counts number of instructions, can be reset via CSR write
uint32_t instruction = 0; // holds op code of currently executed instruction
uint32_t last_branch = 0; // indicates if last branch was taken
} reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode;
@ -164,6 +172,31 @@ if(fcsr != null) {%>
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}
def vstart = registers.find {it.name=='vstart'}
def vl = registers.find {it.name=='vl'}
def vtype = registers.find {it.name=='vtype'}
def vxsat = registers.find {it.name=='vxsat'}
def vxrm = registers.find {it.name=='vxrm'}
if(vtype != null) {%>
uint${vstart.size}_t get_vstart(){return reg.vstart;}
void set_vstart(uint${vstart.size}_t val){reg.vstart = val;}
uint${vl.size}_t get_vl(){return reg.vl;}
uint${vtype.size}_t get_vtype(){return reg.vtype;}
uint${vxsat.size}_t get_vxsat(){return reg.vxsat;}
void set_vxsat(uint${vxsat.size}_t val){reg.vxsat = val;}
uint${vxrm.size}_t get_vxrm(){return reg.vxrm;}
void set_vxrm(uint${vxrm.size}_t val){reg.vxrm = val;}
<%} else { %>
uint32_t get_vstart(){return 0;}
void set_vstart(uint32_t val){}
uint32_t get_vl(){return 0;}
uint32_t get_vtype(){return 0;}
uint32_t get_vxsat(){return 0;}
void set_vxsat(uint32_t val){}
uint32_t get_vxrm(){return 0;}
void set_vxrm(uint32_t val){}
<%}%>
};

View File

@ -40,7 +40,11 @@
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#include <vm/fp_functions.h><%}
def aes = functions.find { it.contains('aes') }
if(aes != null) {%>
#include <vm/aes_sbox.h>
<%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@ -49,6 +53,22 @@ if(fcsr != null) {%>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
#ifndef _MSC_VER
using int128_t = __int128;
using uint128_t = unsigned __int128;
namespace std {
template <> struct make_unsigned<__int128> { typedef unsigned __int128 type; };
template <> class __make_unsigned_selector<__int128 unsigned, false, false> {
public:
typedef unsigned __int128 __type;
};
template <> struct is_signed<int128_t> { static constexpr bool value = true; };
template <> struct is_signed<uint128_t> { static constexpr bool value = false; };
template <> struct is_unsigned<int128_t> { static constexpr bool value = false; };
template <> struct is_unsigned<uint128_t> { static constexpr bool value = true; };
} // namespace std
#endif
namespace iss {
namespace asmjit {
@ -116,9 +136,14 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->core.reg.trap_state = trap_val;
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
${it}<%}
}%>
private:
/****************************************************************************
* start opcode definitions
@ -166,7 +191,6 @@ private:
mov(cc, jh.next_pc, pc.val);
gen_instr_prologue(jh);
cc.comment("//behavior:");
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
@ -197,7 +221,6 @@ private:
pc = pc + ((instr & 3) == 3 ? 4 : 2);
mov(cc, jh.next_pc, pc.val);
gen_instr_prologue(jh);
cc.comment("//behavior:");
gen_raise(jh, 0, 2);
gen_sync(jh, POST_SYNC, instr_descr.size());
gen_instr_epilogue(jh);
@ -226,8 +249,6 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_hold
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return ILLEGAL_FETCH;
@ -245,24 +266,25 @@ template <typename ARCH>
void vm_impl<ARCH>::gen_instr_prologue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_prologue");
x86_reg_t current_trap_state = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
mov(cc, get_ptr_for(jh, traits::PENDING_TRAP), current_trap_state);
cc.comment("//Instruction prologue end");
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_epilogue");
cc.comment("//Instruction epilogue begin");
x86_reg_t current_trap_state = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
cc.comment("//Instruction epilogue end");
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
@ -274,7 +296,7 @@ void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
template <typename ARCH>
void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
x86::Compiler& cc = jh.cc;
cc.comment("//gen_block_epilogue");
cc.comment("//block epilogue begin");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
@ -286,7 +308,6 @@ void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
x86::Gp current_pc = get_reg_for_Gp(cc, traits::PC);
mov(cc, current_pc, get_ptr_for(jh, traits::PC));
cc.comment("//enter trap call;");
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignature::build<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
@ -304,7 +325,6 @@ void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
template <typename ARCH>
inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
auto& cc = jh.cc;
cc.comment("//gen_raise");
auto tmp1 = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
mov(cc, get_ptr_for(jh, traits::TRAP_STATE), tmp1);

View File

@ -30,6 +30,9 @@
*
*******************************************************************************/
<%
def floating_point = registers.find {it.name=='FCSR'}
def vector = registers.find {it.name=='vtype'}
def aes = functions.find { it.contains('aes') }
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
@ -41,7 +44,16 @@ def nativeTypeSize(int size){
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
<%
if(floating_point != null) {%>
#include <vm/fp_functions.h>
<%}
if(vector != null) {%>
#include <vm/vector_functions.h>
<%}
if(aes != null) {%>
#include <vm/aes_sbox.h>
<%}%>
#include <util/logging.h>
#include <boost/coroutine2/all.hpp>
#include <functional>
@ -101,10 +113,48 @@ protected:
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
<%
if(floating_point != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}
if(vector != null) {%>
inline const char* vname(size_t index) { return index < 32 ? name(index + traits::V0) : "illegal"; }
inline const char* sew_name(size_t bits) {
switch(bits) {
case 0b000:
return "e8";
case 0b001:
return "e16";
case 0b010:
return "e32";
case 0b011:
return "e64";
default:
return "illegal";
}
}
inline const char* lmul_name(size_t bits) {
switch(bits) {
case 0b101:
return "mf8";
case 0b110:
return "mf4";
case 0b111:
return "mf2";
case 0b000:
return "m1";
case 0b001:
return "m2";
case 0b010:
return "m4";
case 0b011:
return "m8";
default:
return "illegal";
}
}
inline const char* ma_name(bool ma) { return ma ? "ma" : "mu"; }
inline const char* ta_name(bool ta) { return ta ? "ta" : "tu"; }
<%}%>
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
@ -127,7 +177,792 @@ if(fcsr != null) {%>
inline void set_tval(uint64_t new_tval){
tval = new_tval;
}
<%if(vector != null) {
def xlen = constants.find { it.name == 'XLEN' }?.value ?: 0
def vlen = constants.find { it.name == 'VLEN' }?.value ?: 0 %>
inline void lower(){
this->core.reg.trap_state = 0;
}
uint64_t vlseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vsseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vlsseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size, int64_t stride){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
uint64_t vssseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t width_val, uint8_t segment_size, int64_t stride){
switch(width_val){
case 0b000:
return softvector::vector_load_store<${vlen}, uint8_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b101:
return softvector::vector_load_store<${vlen}, uint16_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b110:
return softvector::vector_load_store<${vlen}, uint32_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
case 0b111:
return softvector::vector_load_store<${vlen}, uint64_t>(this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vd, rs1_val, segment_size, stride, true);
default:
throw new std::runtime_error("Unsupported width bit value");
}
}
using indexed_load_store_t = std::function<uint64_t(void*, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)>, uint8_t*, uint64_t, uint64_t, softvector::vtype_t, bool, uint8_t, uint64_t, uint8_t, uint8_t)>;
template <typename T1, typename T2> indexed_load_store_t getFunction() {
return [this](void* core, std::function<uint64_t(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V, uint64_t vl,
uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t vs2, uint8_t segment_size) {
return softvector::vector_load_store_index<${xlen}, ${vlen}, T1, T2>(core, load_store_fn, V, vl, vstart, vtype, vm, vd, rs1, vs2, segment_size);
};
}
const std::array<std::array<indexed_load_store_t, 4>, 4> functionTable = {{
{getFunction<uint8_t, uint8_t>(), getFunction<uint8_t, uint16_t>(), getFunction<uint8_t, uint32_t>(), getFunction<uint8_t, uint64_t>()},
{getFunction<uint16_t, uint8_t>(), getFunction<uint16_t, uint16_t>(), getFunction<uint16_t, uint32_t>(), getFunction<uint16_t, uint64_t>()},
{getFunction<uint32_t, uint8_t>(), getFunction<uint32_t, uint16_t>(), getFunction<uint32_t, uint32_t>(), getFunction<uint32_t, uint64_t>()},
{getFunction<uint64_t, uint8_t>(), getFunction<uint64_t, uint16_t>(), getFunction<uint64_t, uint32_t>(), getFunction<uint64_t, uint64_t>()}
}};
const size_t map_index_size[9] = { 0, 0, 1, 0, 2, 0, 0, 0, 3 }; // translate number of bytes to index in functionTable
uint64_t vlxseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1_val, uint8_t vs2, uint8_t segment_size, uint8_t index_byte_size, uint8_t data_byte_size, bool ordered){
return functionTable[map_index_size[index_byte_size]][data_byte_size](this->get_arch(), softvector::softvec_read, V, vl, vstart, vtype, vm, vd, rs1_val, vs2, segment_size);
}
uint64_t vsxseg(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vs3, uint64_t rs1_val, uint8_t vs2, uint8_t segment_size, uint8_t index_byte_size, uint8_t data_byte_size, bool ordered){
return functionTable[map_index_size[index_byte_size]][data_byte_size](this->get_arch(), softvector::softvec_write, V, vl, vstart, vtype, vm, vs3, rs1_val, vs2, segment_size);
}
void vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint16_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint16_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_extend(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t target_sew_pow, uint8_t frac_pow){
switch(target_sew_pow){
case 4: // uint16_t target
if(frac_pow != 1) throw new std::runtime_error("Unsupported frac_pow");
return softvector::vector_unary_op<${vlen}, uint16_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 5: // uint32_t target
switch(frac_pow){
case 1:
return softvector::vector_unary_op<${vlen}, uint32_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 2:
return softvector::vector_unary_op<${vlen}, uint32_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported frac_pow");
}
case 6: // uint64_t target
switch(frac_pow){
case 1:
return softvector::vector_unary_op<${vlen}, uint64_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 2:
return softvector::vector_unary_op<${vlen}, uint64_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
case 3:
return softvector::vector_unary_op<${vlen}, uint64_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported frac_pow");
}
default:
throw new std::runtime_error("Unsupported target_sew_pow");
}
}
void vector_vector_carry(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val, int8_t carry){
switch(sew_val){
case 0b000:
return softvector::vector_vector_carry<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b001:
return softvector::vector_vector_carry<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b010:
return softvector::vector_vector_carry<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
case 0b011:
return softvector::vector_vector_carry<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, vs1, carry);
default:
throw new std::runtime_error("Unsupported sew bit value");
} }
void vector_imm_carry(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val, int8_t carry){
switch(sew_val){
case 0b000:
return softvector::vector_imm_carry<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b001:
return softvector::vector_imm_carry<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b010:
return softvector::vector_imm_carry<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
case 0b011:
return softvector::vector_imm_carry<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vd, vs2, imm, carry);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void carry_vector_vector_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::carry_vector_vector_op<${vlen}, uint8_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::carry_vector_vector_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::carry_vector_vector_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::carry_vector_vector_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void carry_vector_imm_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::carry_vector_imm_op<${vlen}, uint8_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::carry_vector_imm_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::carry_vector_imm_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::carry_vector_imm_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_vector_vector_op(uint8_t* V, unsigned funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::mask_vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::mask_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::mask_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::mask_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_vector_imm_op(uint8_t* V, unsigned funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::mask_vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::mask_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::mask_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::mask_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_op<${vlen}, uint8_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_op<${vlen}, uint16_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_op<${vlen}, uint32_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_op<${vlen}, uint8_t, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_op<${vlen}, uint16_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_op<${vlen}, uint32_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_merge<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_merge<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_merge<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_merge<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_merge<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_merge<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_merge<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_merge<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_vector_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b001:
return softvector::sat_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b010:
return softvector::sat_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b011:
return softvector::sat_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_imm_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b001:
return softvector::sat_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b010:
return softvector::sat_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b011:
return softvector::sat_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_vector_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_vector_op<${vlen}, uint8_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b001:
return softvector::sat_vector_vector_op<${vlen}, uint16_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b010:
return softvector::sat_vector_vector_op<${vlen}, uint32_t, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
bool sat_vector_imm_vw(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint64_t vxrm, bool vm, uint8_t vd, uint8_t vs2, int64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::sat_vector_imm_op<${vlen}, uint8_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b001:
return softvector::sat_vector_imm_op<${vlen}, uint16_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b010:
return softvector::sat_vector_imm_op<${vlen}, uint32_t, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vxrm, vm, vd, vs2, imm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_red_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_red_op<${vlen}, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_red_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_red_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_red_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_red_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_red_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_red_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_red_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_mask_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, unsigned vd, unsigned vs2, unsigned vs1){
return softvector::mask_mask_op<${vlen}>(V, funct6, funct3, vl, vstart, vd, vs2, vs1);
}
uint64_t vcpop(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2){
return softvector::vcpop<${vlen}>(V, vl, vstart, vm, vs2);
}
int64_t vfirst(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2){
return softvector::vfirst<${vlen}>(V, vl, vstart, vm, vs2);
}
void mask_set_op(uint8_t* V, unsigned enc, uint64_t vl, uint64_t vstart, bool vm, unsigned vd, unsigned vs2){
return softvector::mask_set_op<${vlen}>(V, enc, vl, vstart, vm, vd, vs2);
}
void viota(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::viota<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b001:
return softvector::viota<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b010:
return softvector::viota<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2);
case 0b011:
return softvector::viota<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vid(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vid<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd);
case 0b001:
return softvector::vid<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd);
case 0b010:
return softvector::vid<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd);
case 0b011:
return softvector::vid<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void scalar_to_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint64_t val, uint8_t sew_val){
switch(sew_val){
case 0b000:
softvector::scalar_move<${vlen}, uint8_t>(V, vtype, vd, val, true);
break;
case 0b001:
softvector::scalar_move<${vlen}, uint16_t>(V, vtype, vd, val, true);
break;
case 0b010:
softvector::scalar_move<${vlen}, uint32_t>(V, vtype, vd, val, true);
break;
case 0b011:
softvector::scalar_move<${vlen}, uint64_t>(V, vtype, vd, val, true);
break;
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
uint64_t scalar_from_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::scalar_move<${vlen}, uint8_t>(V, vtype, vd, 0, false);
case 0b001:
return softvector::scalar_move<${vlen}, uint16_t>(V, vtype, vd, 0, false);
case 0b010:
return softvector::scalar_move<${vlen}, uint32_t>(V, vtype, vd, 0, false);
case 0b011:
return softvector::scalar_move<${vlen}, uint64_t>(V, vtype, vd, 0, false);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slideup(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slideup<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slideup<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slideup<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slideup<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slidedown(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slidedown<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slidedown<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slidedown<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slidedown<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slide1up<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slide1up<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slide1up<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slide1up<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
switch(sew_val){
case 0b000:
return softvector::vector_slide1down<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_slide1down<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_slide1down<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_slide1down<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_gather(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_gather<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_gather<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_gather<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_gather<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_vector_gatherei16(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_vector_gather<${vlen}, uint8_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b001:
return softvector::vector_vector_gather<${vlen}, uint16_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b010:
return softvector::vector_vector_gather<${vlen}, uint32_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
case 0b011:
return softvector::vector_vector_gather<${vlen}, uint64_t, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_imm_gather(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_imm_gather<${vlen}, uint8_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b001:
return softvector::vector_imm_gather<${vlen}, uint16_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b010:
return softvector::vector_imm_gather<${vlen}, uint32_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
case 0b011:
return softvector::vector_imm_gather<${vlen}, uint64_t>(V, vl, vstart, vtype, vm, vd, vs2, imm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_compress(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::vector_compress<${vlen}, uint8_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b001:
return softvector::vector_compress<${vlen}, uint16_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b010:
return softvector::vector_compress<${vlen}, uint32_t>(V, vl, vstart, vtype, vd, vs2, vs1);
case 0b011:
return softvector::vector_compress<${vlen}, uint64_t>(V, vl, vstart, vtype, vd, vs2, vs1);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void vector_whole_move(uint8_t* V, uint8_t vd, uint8_t vs2, uint8_t count){
return softvector::vector_whole_move<${vlen}>(V, vd, vs2, count);
}
uint64_t fp_scalar_from_vector(uint8_t* V, softvector::vtype_t vtype, unsigned vd, uint8_t sew_val){
return scalar_from_vector(V, vtype, vd, sew_val);
}
void fp_vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
return vector_slide1up(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm, uint8_t sew_val) {
return vector_slide1down(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_red_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_red_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_red_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::fp_vector_red_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_red_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_red_op<${vlen}, uint16_t, uint8_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b001:
return softvector::fp_vector_red_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_red_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would require 128 bits vs2 value
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::fp_vector_vector_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_op(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011:
return softvector::fp_vector_imm_op<${vlen}, uint64_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_wv(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint32_t, uint16_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint64_t, uint32_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_vector_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_vector_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::fp_vector_vector_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_ww(uint8_t* V, uint8_t funct6, uint8_t funct3, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_imm_op<${vlen}, uint32_t, uint32_t, uint16_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::fp_vector_imm_op<${vlen}, uint64_t, uint64_t, uint32_t>(V, funct6, funct3, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_unary_op(uint8_t* V, uint8_t encoding_space, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::fp_vector_unary_op<${vlen}, uint16_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_op<${vlen}, uint32_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011:
return softvector::fp_vector_unary_op<${vlen}, uint64_t>(V, encoding_space, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_fp_vector_vector_op(uint8_t* V, uint8_t funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t vs1, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::mask_fp_vector_vector_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b010:
return softvector::mask_fp_vector_vector_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
case 0b011:
return softvector::mask_fp_vector_vector_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, vs1, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void mask_fp_vector_imm_op(uint8_t* V, uint8_t funct6, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
throw new std::runtime_error("Unsupported sew bit value");
case 0b001:
return softvector::mask_fp_vector_imm_op<${vlen}, uint16_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b010:
return softvector::mask_fp_vector_imm_op<${vlen}, uint32_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
case 0b011:
return softvector::mask_fp_vector_imm_op<${vlen}, uint64_t>(V, funct6, vl, vstart, vtype, vm, vd, vs2, imm, rm);
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint64_t imm, uint8_t sew_val){
vector_imm_merge(V, vl, vstart, vtype, vm, vd, vs2, imm, sew_val);
}
void fp_vector_unary_w(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_unary_w<${vlen}, uint16_t, uint8_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b001:
return softvector::fp_vector_unary_w<${vlen}, uint32_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_w<${vlen}, uint64_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011: // would widen to 128 bits
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
void fp_vector_unary_n(uint8_t* V, uint8_t unary_op, uint64_t vl, uint64_t vstart, softvector::vtype_t vtype, bool vm, uint8_t vd, uint8_t vs2, uint8_t rm, uint8_t sew_val){
switch(sew_val){
case 0b000:
return softvector::fp_vector_unary_n<${vlen}, uint8_t, uint16_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b001:
return softvector::fp_vector_unary_n<${vlen}, uint16_t, uint32_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b010:
return softvector::fp_vector_unary_n<${vlen}, uint32_t, uint64_t>(V, unary_op, vl, vstart, vtype, vm, vd, vs2, rm);
case 0b011: // would require 128 bit value to narrow
default:
throw new std::runtime_error("Unsupported sew bit value");
}
}
<%}%>
uint64_t fetch_count{0};
uint64_t tval{0};
@ -175,22 +1010,8 @@ private:
decoder instr_decoder;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
if(this->core.has_mmu()) {
auto phys_pc = this->core.virt2phys(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok)
// return iss::Err;
// } else {
if (this->core.read(phys_pc, 4, data) != iss::Ok)
return iss::Err;
// }
} else {
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
if (this->core.read(iss::address_type::PHYSICAL, pc.access, pc.space, pc.val, 4, data) != iss::Ok)
return iss::Err;
return iss::Ok;
}
};
@ -285,8 +1106,8 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);<%}}%>
// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
${it}<%}%>

View File

@ -31,12 +31,14 @@
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
// vm_base needs to be included before gdb_session as termios.h (via boost and gdb_server) has a define which clashes with a variable
// name in ConstantRange.h
#include <iss/llvm/vm_base.h>
#include <iss/iss.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#include <iss/instruction_decoder.h>
#include <util/logging.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
@ -136,7 +138,28 @@ protected:
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
${it}<%}
}
if(fcsr != null) {%>
Value* NaNBox16(BasicBlock* bb, Value* NaNBox16_val){
if(static_cast<uint32_t>(traits::FLEN) == 16)
return this->gen_ext(NaNBox16_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 32, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 16), this->gen_ext(NaNBox16_val, traits::FLEN))), traits::FLEN, false);
}
Value* NaNBox32(BasicBlock* bb, Value* NaNBox32_val){
if(static_cast<uint32_t>(traits::FLEN) == 32)
return this->gen_ext(NaNBox32_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 64, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 32), this->gen_ext(NaNBox32_val, traits::FLEN))), traits::FLEN, false);
}
Value* NaNBox64(BasicBlock* bb, Value* NaNBox64_val){
if(static_cast<uint32_t>(traits::FLEN) == 64)
return this->gen_ext(NaNBox64_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 128, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 64), this->gen_ext(NaNBox64_val, traits::FLEN))), traits::FLEN, false);
}
<%}%>
private:
/****************************************************************************
@ -251,8 +274,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block)
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);

View File

@ -139,7 +139,34 @@ if(fcsr != null) {%>
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
${it}<%}
}
if(fcsr != null) {%>
value NaNBox16(tu_builder& tu, value NaNBox16_val){
if(static_cast<uint32_t>(traits::FLEN) == 16)
return tu.ext(NaNBox16_val, traits::FLEN, false);
else {
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 32, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 16), NaNBox16_val)), traits::FLEN, false);
}
}
value NaNBox32(tu_builder& tu, value NaNBox32_val){
if(static_cast<uint32_t>(traits::FLEN) == 32)
return tu.ext(NaNBox32_val, traits::FLEN, false);
else {
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 64, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 32), NaNBox32_val)), traits::FLEN, false);
}
}
value NaNBox64(tu_builder& tu, value NaNBox64_val){
if(static_cast<uint32_t>(traits::FLEN) == 64)
return tu.ext(NaNBox64_val, traits::FLEN, false);
else {
throw new std::runtime_error("tcc does not support Registers wider than 64 bits");
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 128, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 64), NaNBox64_val)), traits::FLEN, false);
}
}
<%}%>
private:
/****************************************************************************
@ -181,6 +208,8 @@ private:
this->gen_set_tval(tu, instr);
<%instr.behavior.eachLine{%>${it}
<%}%>
tu("(*icount)++;");
tu("(*instret)++;");
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
gen_trap_check(tu);
@ -232,8 +261,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok)
return ILLEGAL_FETCH;
@ -278,34 +305,75 @@ template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
<%if(fcsr != null) {%>
<%if(fcsr != null) {
def flen = constants.find { it.name == 'FLEN' }?.value ?: 0
%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint16_t (*fadd_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fadd_h << ";\\n";
os << "uint16_t (*fsub_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fsub_h << ";\\n";
os << "uint16_t (*fmul_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fmul_h << ";\\n";
os << "uint16_t (*fdiv_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_h << ";\\n";
os << "uint16_t (*fsqrt_h)(uint16_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_h << ";\\n";
os << "uint16_t (*fcmp_h)(uint16_t v1, uint16_t v2, uint16_t op)=" << (uintptr_t)&fcmp_h << ";\\n";
os << "uint16_t (*fmadd_h)(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode)=" << (uintptr_t)&fmadd_h << ";\\n";
os << "uint16_t (*fsel_h)(uint16_t v1, uint16_t v2, uint16_t op)=" << (uintptr_t)&fsel_h << ";\\n";
os << "uint16_t (*fclass_h)(uint16_t v1)=" << (uintptr_t)&fclass_h << ";\\n";
os << "uint16_t (*unbox_h)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_h << ";\\n";
os << "uint32_t (*f16toi32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toi32 << ";\\n";
os << "uint32_t (*f16toui32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toui32 << ";\\n";
os << "uint16_t (*i32tof16)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof16 << ";\\n";
os << "uint16_t (*ui32tof16)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof16 << ";\\n";
os << "uint64_t (*f16toi64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toi64 <<";\\n";
os << "uint64_t (*f16toui64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toui64 <<";\\n";
os << "uint16_t (*i64tof16)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof16 <<";\\n";
os << "uint16_t (*ui64tof16)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof16 <<";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
os << "uint32_t (*fmul_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fmul_s << ";\\n";
os << "uint32_t (*fdiv_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_s << ";\\n";
os << "uint32_t (*fsqrt_s)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_s << ";\\n";
os << "uint32_t (*fcmp_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fcmp_s << ";\\n";
os << "uint32_t (*fcvt_s)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_s << ";\\n";
os << "uint32_t (*fmadd_s)(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_s << ";\\n";
os << "uint32_t (*fsel_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fsel_s << ";\\n";
os << "uint32_t (*fclass_s)( uint32_t v1 )=" << (uintptr_t)&fclass_s << ";\\n";
os << "uint32_t (*fconv_d2f)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&fconv_d2f << ";\\n";
os << "uint64_t (*fconv_f2d)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&fconv_f2d << ";\\n";
os << "uint32_t (*unbox_s)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
os << "uint32_t (*f32toi32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toi32 << ";\\n";
os << "uint32_t (*f32toui32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toui32 << ";\\n";
os << "uint32_t (*i32tof32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof32 << ";\\n";
os << "uint32_t (*ui32tof32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof32 << ";\\n";
os << "uint64_t (*f32toi64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toi64 <<";\\n";
os << "uint64_t (*f32toui64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toui64 <<";\\n";
os << "uint32_t (*i64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof32 <<";\\n";
os << "uint32_t (*ui64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof32 <<";\\n";
<%if(flen > 32) {%>
os << "uint64_t (*fadd_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fadd_d << ";\\n";
os << "uint64_t (*fsub_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fsub_d << ";\\n";
os << "uint64_t (*fmul_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fmul_d << ";\\n";
os << "uint64_t (*fdiv_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_d << ";\\n";
os << "uint64_t (*fsqrt_d)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_d << ";\\n";
os << "uint64_t (*fcmp_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fcmp_d << ";\\n";
os << "uint64_t (*fcvt_d)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_d << ";\\n";
os << "uint64_t (*fmadd_d)(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_d << ";\\n";
os << "uint64_t (*fsel_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fsel_d << ";\\n";
os << "uint64_t (*fclass_d)(uint64_t v1 )=" << (uintptr_t)&fclass_d << ";\\n";
os << "uint64_t (*fcvt_32_64)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_32_64 << ";\\n";
os << "uint32_t (*fcvt_64_32)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_64_32 << ";\\n";
os << "uint32_t (*unbox_s)(uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
<%}%>
os << "uint64_t (*unbox_d)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_d << ";\\n";
os << "uint32_t (*f64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64tof32 << ";\\n";
os << "uint64_t (*f32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32tof64 << ";\\n";
os << "uint64_t (*f64toi64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toi64 <<";\\n";
os << "uint64_t (*f64toui64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toui64 <<";\\n";
os << "uint64_t (*i64tof64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof64 <<";\\n";
os << "uint64_t (*ui64tof64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof64 <<";\\n";
os << "uint64_t (*i32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof64 <<";\\n";
os << "uint64_t (*ui32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof64 <<";\\n";
os << "uint32_t (*f64toi32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toi32 <<";\\n";
os << "uint32_t (*f64toui32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toui32 <<";\\n";
<%}
}%>
tu.add_prologue(os.str());
}

View File

@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifdef _MSC_VER
#define _SCL_SECURE_NO_WARNINGS
#define ELFIO_NO_INTTYPES
@ -32,4 +66,4 @@ int main(int argc, char** argv) {
dump::segment_datas(std::cout, reader);
return 0;
}
}

View File

@ -35,19 +35,18 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/arch/traits.h"
#include "iss/log_categories.h"
#include "iss/mmio/memory_if.h"
#include "iss/vm_types.h"
#include "mstatus.h"
#include "util/delegate.h"
#include <array>
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/mem/memory_if.h>
#include <iss/semihosting/semihosting.h>
#include <iss/vm_types.h>
#include <limits>
#include <sstream>
#include <string>
@ -195,26 +194,19 @@ enum riscv_csr {
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch0 = 0x7B2,
dscratch1 = 0x7B3
dscratch1 = 0x7B3,
// vector CSR
// URW
vstart = 0x008,
vxsat = 0x009,
vxrm = 0x00A,
vcsr = 0x00F,
// URO
vl = 0xC20,
vtype = 0xC21,
vlenb = 0xC22,
};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4 };
enum {
@ -233,21 +225,6 @@ enum {
ISA_U = 1 << 20
};
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
struct feature_config {
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
@ -281,15 +258,18 @@ template <typename WORD_TYPE> struct priv_if {
std::function<iss::status(unsigned, WORD_TYPE&)> read_csr;
std::function<iss::status(unsigned, WORD_TYPE)> write_csr;
std::function<iss::status(uint8_t const*)> exec_htif;
std::function<void(uint16_t, uint16_t, WORD_TYPE)> raise_trap; // trap_id, cause, fault_data
std::unordered_map<unsigned, rd_csr_f>& csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f>& csr_wr_cb;
hart_state<WORD_TYPE>& mstatus;
hart_state<WORD_TYPE>& state;
uint8_t& PRIV;
WORD_TYPE& PC;
uint64_t& tohost;
uint64_t& fromhost;
unsigned& mcause_max_irq;
unsigned& max_irq;
};
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE, public mmio::memory_elem {
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE, public mem::memory_elem {
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
@ -343,6 +323,19 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
csr_rd_cb[frm] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[frm] = MK_CSR_WR_CB(write_fcsr);
}
if(traits<BASE>::V_REGS_SIZE > 0) {
csr_rd_cb[vstart] = MK_CSR_RD_CB(read_vstart);
csr_wr_cb[vstart] = MK_CSR_WR_CB(write_vstart);
csr_rd_cb[vxsat] = MK_CSR_RD_CB(read_vxsat);
csr_wr_cb[vxsat] = MK_CSR_WR_CB(write_vxsat);
csr_rd_cb[vxrm] = MK_CSR_RD_CB(read_vxrm);
csr_wr_cb[vxrm] = MK_CSR_WR_CB(write_vxrm);
csr_rd_cb[vcsr] = MK_CSR_RD_CB(read_vcsr);
csr_wr_cb[vcsr] = MK_CSR_WR_CB(write_vcsr);
csr_rd_cb[vl] = MK_CSR_RD_CB(read_vl);
csr_rd_cb[vtype] = MK_CSR_RD_CB(read_vtype);
csr_rd_cb[vlenb] = MK_CSR_RD_CB(read_vlenb);
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
@ -394,6 +387,7 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
csr_wr_cb[minstreth] = MK_CSR_WR_CB(write_instret);
csr_rd_cb[mhartid] = MK_CSR_RD_CB(read_hartid);
};
~riscv_hart_common() {
if(io_buf.str().length()) {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
@ -418,8 +412,10 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
// Load ELF data
if(reader.load(name)) {
// check elf properties
if(reader.get_class() != expected_elf_class)
if(reader.get_class() != expected_elf_class) {
CPPLOG(ERR) << "ISA missmatch, selected XLEN does not match supplied file ";
return false;
}
if(reader.get_type() != ELFIO::ET_EXEC)
return false;
if(reader.get_machine() != ELFIO::EM_RISCV)
@ -456,14 +452,12 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
#endif
}
}
try {
tohost = symbol_table.at("tohost");
} catch(std::out_of_range& e) {
}
try {
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
}
auto to_it = symbol_table.find("tohost");
if(to_it != std::end(symbol_table))
tohost = to_it->second;
auto from_it = symbol_table.find("tohost");
if(from_it != std::end(symbol_table))
tohost = from_it->second;
}
return true;
}
@ -714,16 +708,80 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
return iss::Ok;
}
iss::status read_vstart(unsigned addr, reg_t& val) {
val = this->get_vstart();
return iss::Ok;
}
iss::status write_vstart(unsigned addr, reg_t val) {
this->set_vstart(val);
return iss::Ok;
}
iss::status read_vxsat(unsigned addr, reg_t& val) {
val = this->get_vxsat();
return iss::Ok;
}
iss::status write_vxsat(unsigned addr, reg_t val) {
this->set_vxsat(val & 1);
csr[vcsr] = (~1ULL & csr[vcsr]) | (val & 1);
return iss::Ok;
}
iss::status read_vxrm(unsigned addr, reg_t& val) {
val = this->get_vxrm();
return iss::Ok;
}
iss::status write_vxrm(unsigned addr, reg_t val) {
this->set_vxrm(val & 0b11);
csr[vcsr] = (~0b110ULL & csr[vcsr]) | ((val & 0b11) << 1);
return iss::Ok;
}
iss::status read_vcsr(unsigned addr, reg_t& val) {
val = csr[vcsr];
return iss::Ok;
}
iss::status write_vcsr(unsigned addr, reg_t val) {
csr[vcsr] = val;
return iss::Ok;
}
iss::status read_vl(unsigned addr, reg_t& val) {
val = this->get_vl();
return iss::Ok;
}
iss::status read_vtype(unsigned addr, reg_t& val) {
val = this->get_vtype();
return iss::Ok;
}
iss::status read_vlenb(unsigned addr, reg_t& val) {
val = csr[vlenb];
return iss::Ok;
}
priv_if<reg_t> get_priv_if() {
return priv_if<reg_t>{.read_csr = [this](unsigned addr, reg_t& val) -> iss::status { return read_csr(addr, val); },
.write_csr = [this](unsigned addr, reg_t val) -> iss::status { return write_csr(addr, val); },
.exec_htif = [this](uint8_t const* data) -> iss::status { return execute_htif(data); },
.raise_trap =
[this](uint16_t trap_id, uint16_t cause, reg_t fault_data) {
this->reg.trap_state = 0x80ULL << 24 | (cause << 16) | trap_id;
this->fault_data = fault_data;
},
.csr_rd_cb{this->csr_rd_cb},
.csr_wr_cb{csr_wr_cb},
.mstatus{this->state},
.state{this->state},
.PRIV{this->reg.PRIV},
.PC{this->reg.PC},
.tohost{this->tohost},
.fromhost{this->fromhost},
.mcause_max_irq{mcause_max_irq}};
.max_irq{mcause_max_irq}};
}
iss::status execute_htif(uint8_t const* data) {
@ -763,14 +821,14 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
}
}
mmio::memory_hierarchy memories;
mem::memory_hierarchy memories;
virtual mmio::memory_if get_mem_if() override {
assert(false || "This function should nevver be called");
return mmio::memory_if{};
mem::memory_if get_mem_if() override {
assert(false || "This function should never be called");
return mem::memory_if{};
}
virtual void set_next(mmio::memory_if mem_if) { memory = mem_if; };
void set_next(mem::memory_if mem_if) override { memory = mem_if; };
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
@ -789,7 +847,7 @@ protected:
}
}
mmio::memory_if memory;
mem::memory_if memory;
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_common<BASE, LOGCAT>& arch)
@ -846,7 +904,6 @@ protected:
int64_t cycle_offset{0};
int64_t instret_offset{0};
semihosting_cb_t<reg_t> semihosting_cb;
std::array<vm_info, 2> vm;
unsigned mcause_max_irq{16U};
};

View File

@ -48,7 +48,7 @@
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/mmio/memory_with_htif.h>
#include <iss/mem/memory_with_htif.h>
#include <unordered_map>
namespace iss {
@ -111,7 +111,7 @@ public:
return 0b100010001000; // only machine mode is supported
}
riscv_hart_m_p(feature_config cfg = feature_config{});
riscv_hart_m_p();
virtual ~riscv_hart_m_p() = default;
@ -128,15 +128,12 @@ public:
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
void set_num_of_irq(unsigned i) { this->mcause_max_irq = 1 << util::ilog2(i); }
protected:
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
hart_state<reg_t> state;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
iss::status read_status(unsigned addr, reg_t& val);
@ -154,18 +151,15 @@ protected:
iss::status write_dpc(unsigned addr, reg_t val);
void check_interrupt();
feature_config cfg;
mmio::memory_with_htif<reg_t> default_mem;
mem::memory_with_htif<reg_t> default_mem;
};
template <typename BASE, features_e FEAT, typename LOGCAT>
riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
: cfg(cfg)
, default_mem(base::get_priv_if()) {
riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p()
: default_mem(base::get_priv_if()) {
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr : rwaddrs) {
this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
// MK_CSR_RD_CB(read_plain(a,r);};
this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
this->csr_rd_cb[mstatus] = MK_CSR_RD_CB(read_status);
@ -195,7 +189,7 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
}
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->wr_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
this->memories.prepend(*this);
this->memories.root(*this);
this->memories.append(default_mem);
}
@ -300,7 +294,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
try {
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
if(unlikely(is_fetch(access) && (addr & 0x1) == 1)) {
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
@ -403,15 +397,13 @@ template <typename BASE, features_e FEAT, typename LOGCAT> inline void riscv_har
}
template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_m_p<BASE, FEAT, LOGCAT>::check_interrupt() {
// TODO: Implement CLIC functionality
// auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = this->csr[mip] & this->csr[mie];
bool mstatus_mie = this->state.mstatus.MIE;
bool mstatus_mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie;
auto enabled_interrupts = m_enabled ? ena_irq : 0;
@ -525,9 +517,6 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
if((xtvec & 0x1) == 1 && trap_id != 0)
this->reg.NEXT_PC += 4 * cause;
}
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
@ -538,6 +527,9 @@ uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
return this->reg.NEXT_PC;
}

View File

@ -40,23 +40,25 @@
#include "riscv_hart_common.h"
#include "util/logging.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <elfio/elf_types.hpp>
#include <elfio/elfio.hpp>
#include <limits>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <iss/mem/memory_with_htif.h>
#include <iss/mem/mmu.h>
#include <fmt/format.h>
#include <type_traits>
#include <unordered_map>
#include <util/bit_field.h>
namespace iss {
namespace arch {
template <typename BASE> class riscv_hart_msu_vp : public riscv_hart_common<BASE> {
template <typename BASE, features_e FEAT = FEAT_NONE, typename LOGCAT = logging::disass>
class riscv_hart_msu_vp : public riscv_hart_common<BASE> {
public:
using core = BASE;
using base = riscv_hart_common<BASE>;
@ -65,10 +67,6 @@ public:
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
static constexpr reg_t get_misa() {
return (sizeof(reg_t) == 4 ? (1UL << 30) : (2ULL << 62)) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M;
}
static constexpr reg_t get_mstatus_mask(unsigned priv_lvl) {
if(sizeof(reg_t) == 4) {
#if __cplusplus < 201402L
@ -76,21 +74,21 @@ public:
#else
switch(priv_lvl) {
case PRIV_U:
return 0x80000011UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001
return 0x80000000UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001
case PRIV_S:
return 0x800de133UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011
return 0x800de122UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011
default:
return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011
return 0x807ff9aaUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011
}
#endif
} else if(sizeof(reg_t) == 8) {
switch(priv_lvl) {
case PRIV_U:
return 0x8000000f00000011ULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
return 0x8000000f00000000ULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
case PRIV_S:
return 0x8000000f000de133ULL; // 0b1...0 0011 0000 0000 0000 1101 1110 0001 0011 0011
return 0x8000000f000de122ULL; // 0b1...0 0011 0000 0000 0000 1101 1110 0001 0011 0011
default:
return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
return 0x8000000f007ff9aaULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
}
} else
assert(false && "Unsupported XLEN value");
@ -117,48 +115,6 @@ public:
}
this->state.mstatus = new_val;
}
reg_t satp;
static inline vm_info decode_vm_info(uint32_t state, uint32_t sptbr) {
if(state == PRIV_M)
return {0, 0, 0, 0};
if(state <= PRIV_S)
switch(bit_sub<31, 1>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 1:
return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
static inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr) {
if(state == PRIV_M)
return {0, 0, 0, 0};
if(state <= PRIV_S)
switch(bit_sub<60, 4>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 8:
return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV39
case 9:
return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV48
case 10:
return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV57
case 11:
return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV64
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
const typename core::reg_t PGSIZE = 1 << PGSHIFT;
const typename core::reg_t PGMASK = PGSIZE - 1;
constexpr reg_t get_irq_mask(size_t mode) {
std::array<const reg_t, 4> m = {{
@ -176,8 +132,6 @@ public:
void reset(uint64_t address) override;
phys_addr_t virt2phys(const iss::addr_t& addr) override;
iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
uint8_t* const data);
iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
@ -190,22 +144,14 @@ public:
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
void set_irq_num(unsigned i) { this->mcause_max_irq = 1 << util::ilog2(i); }
protected:
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
hart_state<reg_t> state;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
mem_type mem;
void update_vm_info();
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::vector<uint8_t> tcm;
iss::status read_status(unsigned addr, reg_t& val);
iss::status write_status(unsigned addr, reg_t val);
iss::status write_cause(unsigned addr, reg_t val);
@ -214,26 +160,17 @@ protected:
iss::status read_ip(unsigned addr, reg_t& val);
iss::status write_ideleg(unsigned addr, reg_t val);
iss::status write_edeleg(unsigned addr, reg_t val);
iss::status read_satp(unsigned addr, reg_t& val);
iss::status write_satp(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_custom_csr_reg); }
void register_custom_csr_wr(unsigned addr) { this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_custom_csr_reg); }
reg_t mhartid_reg{0x0};
void check_interrupt();
mem::mmu<reg_t> mmu;
mem::memory_with_htif<reg_t> default_mem;
};
template <typename BASE>
riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
: state() {
this->mmu = true;
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->rd_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
template <typename BASE, features_e FEAT, typename LOGCAT>
riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::riscv_hart_msu_vp()
: state()
, mmu(base::get_priv_if())
, default_mem(base::get_priv_if()) {
// common regs
const std::array<unsigned, 17> rwaddrs{{mepc, mtvec, mscratch, mtval, mscratch, sepc, stvec, sscratch, scause, stval, sscratch, uepc,
utvec, uscratch, ucause, utval, uscratch}};
@ -272,17 +209,32 @@ riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
this->csr_wr_cb[mvendorid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[marchid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mimpid] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[satp] = MK_CSR_RD_CB(read_satp);
this->csr_wr_cb[satp] = MK_CSR_WR_CB(write_satp);
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->wr_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
if(FEAT & FEAT_DEBUG) {
this->csr_wr_cb[dscratch0] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch0] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dscratch1] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch1] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dpc] = MK_CSR_WR_CB(write_dpc);
this->csr_rd_cb[dpc] = MK_CSR_RD_CB(read_dpc);
this->csr_wr_cb[dcsr] = MK_CSR_WR_CB(write_dcsr);
this->csr_rd_cb[dcsr] = MK_CSR_RD_CB(read_debug);
}
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->wr_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
this->set_next(mmu.get_mem_if());
this->memories.root(mmu);
this->memories.append(default_mem);
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr,
const unsigned length, uint8_t* const data) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t* const data) {
#ifndef NDEBUG
if(access && iss::access_type::DEBUG) {
CPPLOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH) {
} else if(is_fetch(access)) {
CPPLOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
CPPLOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
@ -294,31 +246,20 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
auto alignment = is_fetch(access) ? (this->has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) {
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
if(is_debug(access))
throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
try {
if(!is_debug(access) && (addr & (alignment - 1))) {
this->reg.trap_state = 1 << 31 | 4 << 16;
this->reg.trap_state = (1UL << 31) | 4 << 16;
this->fault_data = addr;
return iss::Err;
}
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(this->reg.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = read(type, access, space, addr, len1, data);
if(res == iss::Ok)
res = read(type, access, space, split_addr, length - len1, data + len1);
return res;
}
}
auto res = read_mem(virt2phys(iss::addr_t{access, type, space, addr}), length, data);
auto res = this->memory.rd_mem(access, addr, length, data);
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault
this->fault_data = addr;
}
return res;
@ -336,8 +277,6 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
return this->read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
return iss::Err;
switch(addr) {
case 2: // SFENCE:VMA lower
case 3: { // SFENCE:VMA upper
@ -372,9 +311,9 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
}
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr,
const unsigned length, const uint8_t* const data) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t* const data) {
#ifndef NDEBUG
const char* prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch(length) {
@ -401,29 +340,22 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
try {
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
if(unlikely(is_fetch(access) && (addr & 0x1) == 1)) {
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
phys_addr_t paddr = virt2phys(iss::addr_t{access, type, space, addr});
try {
// TODO: There is no check for alignment
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(this->reg.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = write(type, access, space, addr, len1, data);
if(res == iss::Ok)
res = write(type, access, space, split_addr, length - len1, data + len1);
return res;
}
auto alignment = std::min<unsigned>(length, sizeof(reg_t));
if(length > 1 && (addr & (alignment - 1)) && !is_debug(access)) {
this->reg.trap_state = (1UL << 31) | 6 << 16;
this->fault_data = addr;
return iss::Err;
}
auto res = write_mem(paddr, length, data);
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
auto res = this->memory.wr_mem(access, addr, length, data);
if(unlikely(res != iss::Ok && !is_debug(access))) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
this->fault_data = addr;
}
@ -440,12 +372,9 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
return this->write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
return iss::Err;
switch(addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
if(this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
@ -472,26 +401,29 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
}
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_status(unsigned addr, reg_t& val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::read_status(unsigned addr, reg_t& val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
val = state.mstatus & get_mstatus_mask(req_priv_lvl);
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_status(unsigned addr, reg_t val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::write_status(unsigned addr, reg_t val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
write_mstatus(val, req_priv_lvl);
check_interrupt();
update_vm_info();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_cause(unsigned addr, reg_t val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::write_cause(unsigned addr, reg_t val) {
this->csr[addr] = val & ((1UL << (traits<BASE>::XLEN - 1)) | 0xf); // TODO: make exception code size configurable
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ie(unsigned addr, reg_t& val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::read_ie(unsigned addr, reg_t& val) {
val = this->csr[mie];
if(addr < mie)
val &= this->csr[mideleg];
@ -500,7 +432,8 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ie(unsigned a
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ie(unsigned addr, reg_t val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::write_ie(unsigned addr, reg_t val) {
auto req_priv_lvl = (addr >> 8) & 0x3;
auto mask = get_irq_mask(req_priv_lvl);
this->csr[mie] = (this->csr[mie] & ~mask) | (val & mask);
@ -508,7 +441,8 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ie(unsigned
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned addr, reg_t& val) {
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::read_ip(unsigned addr, reg_t& val) {
val = this->csr[mip];
if(addr < mip)
val &= this->csr[mideleg];
@ -517,111 +451,12 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned a
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t& val) {
reg_t tvm = state.mstatus.TVM;
if(this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
val = satp;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) {
reg_t tvm = state.mstatus.TVM;
if(this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
satp = val;
update_vm_info();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t* const data) {
switch(paddr.val) {
default: {
for(auto offs = 0U; offs < length; ++offs) {
*(data + offs) = mem[(paddr.val + offs) % mem.size()];
}
}
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 24
: (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32
? *reinterpret_cast<uint32_t*>(p.data() + ((this->tohost + 4) & mem.page_addr_mask)) >> 16
: (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
} else if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
if(read(address_type::PHYSICAL, access_type::DEBUG_READ, traits<BASE>::MEM, payload_addr, 8 * sizeof(uint64_t),
reinterpret_cast<uint8_t*>(loaded_payload.data())) == iss::Err)
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == this->fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == this->fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (this->fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (this->tohost & mem.page_addr_mask)) = fhostvar;
}
}
return iss::Ok;
}
template <typename BASE> inline void riscv_hart_msu_vp<BASE>::reset(uint64_t address) {
template <typename BASE, features_e FEAT, typename LOGCAT> inline void riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state<reg_t>::mstatus_reset_val;
update_vm_info();
}
template <typename BASE> inline void riscv_hart_msu_vp<BASE>::update_vm_info() {
this->vm[1] = decode_vm_info(this->reg.PRIV, satp);
BASE::addr_mode[3] = BASE::addr_mode[2] = this->vm[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
if(state.mstatus.MPRV)
this->vm[0] = decode_vm_info(state.mstatus.MPP, satp);
else
this->vm[0] = this->vm[1];
BASE::addr_mode[1] = BASE::addr_mode[0] = this->vm[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
ptw.clear();
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::check_interrupt() {
auto status = state.mstatus;
auto ip = this->csr[mip];
auto ie = this->csr[mie];
@ -649,101 +484,8 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
}
}
template <typename BASE> typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_hart_msu_vp<BASE>::virt2phys(const iss::addr_t& addr) {
const auto type = addr.access & iss::access_type::FUNC;
auto it = ptw.find(addr.val >> PGSHIFT);
if(it != ptw.end()) {
const reg_t pte = it->second;
const reg_t ad = PTE_A | (type == iss::access_type::WRITE) * PTE_D;
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) == ad)
return {addr.access, addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
else
ptw.erase(it); // throw an exception
#endif
} else {
uint32_t mode = type != iss::access_type::FETCH && state.mstatus.MPRV ? // MPRV
state.mstatus.MPP
: this->reg.PRIV;
const vm_info& vm = this->vm[static_cast<uint16_t>(type) / 2];
const bool s_mode = mode == PRIV_S;
const bool sum = state.mstatus.SUM;
const bool mxr = state.mstatus.MXR;
// verify bits xlen-1:va_bits-1 are all equal
const int va_bits = PGSHIFT + vm.levels * vm.idxbits;
const reg_t mask = (reg_t(1) << (traits<BASE>::XLEN > -(va_bits - 1))) - 1;
const reg_t masked_msbs = (addr.val >> (va_bits - 1)) & mask;
const int levels = (masked_msbs != 0 && masked_msbs != mask) ? 0 : vm.levels;
reg_t base = vm.ptbase;
for(int i = levels - 1; i >= 0; i--) {
const int ptshift = i * vm.idxbits;
const reg_t idx = (addr.val >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
reg_t pte = 0;
const uint8_t res = this->read(iss::address_type::PHYSICAL, addr.access, traits<BASE>::MEM, base + idx * vm.ptesize, vm.ptesize,
(uint8_t*)&pte);
if(res != 0)
throw trap_load_access_fault(addr.val);
const reg_t ppn = pte >> PTE_PPN_SHIFT;
if(PTE_TABLE(pte)) { // next level of page table
base = ppn << PGSHIFT;
} else if((pte & PTE_U) ? s_mode && (type == iss::access_type::FETCH || !sum) : !s_mode) {
break;
} else if(!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if(type == (type == iss::access_type::FETCH ? !(pte & PTE_X)
: type == iss::access_type::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W)))) {
break;
} else if((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
const reg_t ad = PTE_A | ((type == iss::access_type::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) != ad)
break;
#endif
// for superpage mappings, make a fake leaf PTE for the TLB's benefit.
const reg_t vpn = addr.val >> PGSHIFT;
const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
const reg_t offset = addr.val & PGMASK;
ptw[vpn] = value | (pte & 0xff);
return {addr.access, addr.space, value | offset};
}
}
}
switch(type) {
case access_type::FETCH:
this->fault_data = addr.val;
throw trap_instruction_page_fault(addr.val);
case access_type::READ:
this->fault_data = addr.val;
throw trap_load_page_fault(addr.val);
case access_type::WRITE:
this->fault_data = addr.val;
throw trap_store_page_fault(addr.val);
default:
abort();
}
}
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
auto cur_priv = this->reg.PRIV;
template <typename BASE, features_e FEAT, typename LOGCAT>
uint64_t riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
if(flags == std::numeric_limits<uint64_t>::max())
@ -751,11 +493,11 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if(trap_id == 0 && cause == 11)
cause = 0x8 + cur_priv; // adjust environment call cause
cause = 0x8 + this->reg.PRIV; // adjust environment call cause
// calculate effective privilege level
auto new_priv = PRIV_M;
unsigned new_priv = PRIV_M;
if(trap_id == 0) { // exception
if(cur_priv != PRIV_M && ((this->csr[medeleg] >> cause) & 0x1) != 0)
if(this->reg.PRIV != PRIV_M && ((this->csr[medeleg] >> cause) & 0x1) != 0)
new_priv = (this->csr[sedeleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
// store ret addr in xepc register
this->csr[uepc | (new_priv << 8)] = static_cast<reg_t>(addr); // store actual address instruction of exception
@ -771,21 +513,23 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
this->csr[utval | (new_priv << 8)] = static_cast<reg_t>(addr);
break;
case 2:
this->csr[utval | (new_priv << 8)] = (instr & 0x3) == 3 ? instr : instr & 0xffff;
this->csr[utval | (new_priv << 8)] = (!this->has_compressed() || (instr & 0x3) == 3) ? instr : instr & 0xffff;
break;
case 3:
// TODO: implement debug mode behavior
// csr[dpc] = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
this->csr[utval | (new_priv << 8)] = addr;
if((FEAT & FEAT_DEBUG) && (this->csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
this->csr[dcsr] = (this->csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
this->csr[utval | (new_priv << 8)] = addr;
}
if(this->semihosting_cb) {
// Check for semihosting call
phys_addr_t p_addr(access_type::DEBUG_READ, traits<BASE>::MEM, addr - 4);
std::array<uint8_t, 8> data;
// check for SLLI_X0_X0_0X1F and SRAI_X0_X0_0X07
this->read_mem(p_addr, 4, data.data());
p_addr.val += 8;
this->read_mem(p_addr, 4, data.data() + 4);
this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data());
addr += 8;
this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data() + 4);
const std::array<uint8_t, 8> ref_data = {0x13, 0x10, 0xf0, 0x01, 0x13, 0x50, 0x70, 0x40};
if(data == ref_data) {
@ -797,7 +541,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
CLOG(INFO, disass) << "Semihosting call at address " << buffer.data() << " occurred ";
NSCLOG(INFO, LOGCAT) << "Semihosting call at address " << buffer.data() << " occurred ";
this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
return this->reg.NEXT_PC;
@ -814,7 +558,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
}
this->fault_data = 0;
} else {
if(cur_priv != PRIV_M && ((this->csr[mideleg] >> cause) & 0x1) != 0)
if(this->reg.PRIV != PRIV_M && ((this->csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (this->csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
this->csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
@ -830,12 +574,12 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
// store the actual privilege level in yPP and store interrupt enable flags
switch(new_priv) {
case PRIV_M:
state.mstatus.MPP = cur_priv;
state.mstatus.MPP = this->reg.PRIV;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
break;
case PRIV_S:
state.mstatus.SPP = cur_priv;
state.mstatus.SPP = this->reg.PRIV;
state.mstatus.SPIE = state.mstatus.SIE;
state.mstatus.SIE = false;
break;
@ -848,71 +592,82 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
}
// get trap vector
auto ivec = this->csr[utvec | (new_priv << 8)];
auto xtvec = this->csr[utvec | (new_priv << 8)];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x3UL;
if((ivec & 0x1) == 1 && trap_id != 0)
this->reg.NEXT_PC += 4 * cause;
this->reg.NEXT_PC = xtvec & ~0x3UL;
if(trap_id != 0) {
if((xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, this->csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else if((xtvec & 0x3UL) == 1UL)
this->reg.NEXT_PC += 4 * cause;
}
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags & 0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << this->lvl[cur_priv]
<< " to " << this->lvl[new_priv];
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << this->lvl[this->reg.PRIV]
<< " to " << this->lvl[new_priv];
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
update_vm_info();
return this->reg.NEXT_PC;
}
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t flags) {
template <typename BASE, features_e FEAT, typename LOGCAT> uint64_t riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::leave_trap(uint64_t flags) {
auto cur_priv = this->reg.PRIV;
auto inst_priv = flags & 0x3;
auto status = state.mstatus;
auto tsr = state.mstatus.TSR;
if(cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return this->reg.PC;
this->reg.trap_state = 0x80ULL << 24 | (2 << 16); // illegal instruction
this->reg.NEXT_PC = std::numeric_limits<uint32_t>::max();
} else {
auto status = state.mstatus;
// pop the relevant lower-privilege interrupt enable and privilege mode stack
// clear respective yIE
switch(inst_priv) {
case PRIV_M:
this->reg.PRIV = state.mstatus.MPP;
state.mstatus.MPP = 0; // clear mpp to U mode
state.mstatus.MIE = state.mstatus.MPIE;
state.mstatus.MPIE = 1;
break;
case PRIV_S:
this->reg.PRIV = state.mstatus.SPP;
state.mstatus.SPP = 0; // clear spp to U mode
state.mstatus.SIE = state.mstatus.SPIE;
state.mstatus.SPIE = 1;
break;
case PRIV_U:
this->reg.PRIV = 0;
state.mstatus.UIE = state.mstatus.UPIE;
state.mstatus.UPIE = 1;
break;
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = this->csr[uepc | inst_priv << 8];
NSCLOG(INFO, LOGCAT) << "Executing xRET , changing privilege level from " << this->lvl[cur_priv] << " to "
<< this->lvl[this->reg.PRIV];
check_interrupt();
}
// pop the relevant lower-privilege interrupt enable and privilege mode stack
// clear respective yIE
switch(inst_priv) {
case PRIV_M:
this->reg.PRIV = state.mstatus.MPP;
state.mstatus.MPP = 0; // clear mpp to U mode
state.mstatus.MIE = state.mstatus.MPIE;
state.mstatus.MPIE = 1;
break;
case PRIV_S:
this->reg.PRIV = state.mstatus.SPP;
state.mstatus.SPP = 0; // clear spp to U mode
state.mstatus.SIE = state.mstatus.SPIE;
state.mstatus.SPIE = 1;
break;
case PRIV_U:
this->reg.PRIV = 0;
state.mstatus.UIE = state.mstatus.UPIE;
state.mstatus.UPIE = 1;
break;
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = this->csr[uepc | inst_priv << 8];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << this->lvl[cur_priv] << " to " << this->lvl[this->reg.PRIV];
update_vm_info();
check_interrupt();
this->reg.trap_state = this->reg.pending_trap;
return this->reg.NEXT_PC;
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::wait_until(uint64_t flags) {
template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_msu_vp<BASE, FEAT, LOGCAT>::wait_until(uint64_t flags) {
auto status = state.mstatus;
auto tw = status.TW;
if(this->reg.PRIV == PRIV_S && tw != 0) {
if(this->reg.PRIV < PRIV_M && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
}

View File

@ -40,15 +40,15 @@
#include "riscv_hart_common.h"
#include "util/logging.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <elfio/elf_types.hpp>
#include <elfio/elfio.hpp>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/mmio/memory_with_htif.h>
#include <iss/mem/memory_with_htif.h>
#include <unordered_map>
namespace iss {
@ -71,7 +71,7 @@ public:
#else
switch(priv_lvl) {
case PRIV_U:
return 0x00000011UL; // 0b1...0 0001 0001
return FEAT & features_e::FEAT_EXT_N ? 0x00000011UL : 0UL; // 0b1...0 0001 0001
default:
// +-SD
// | +-TSR
@ -88,7 +88,7 @@ public:
// | |||||| | | | || +-UPIE
// | ||||||/|/|/| || |+-MIE
// | ||||||/|/|/| || || +-UIE
return 0b00000000000000000001100010011001;
return 0b10000000001000000001100010011001;
}
#endif
} else if(sizeof(reg_t) == 8) {
@ -97,24 +97,23 @@ public:
#else
switch(priv_lvl) {
case PRIV_U:
return 0x00000011UL; // 0b1...0 0001 0001
return FEAT & features_e::FEAT_EXT_N ? 0x8000000000000011ULL : 0ULL; // 0b1...0 0001 0001
default:
// +-SD
// | +-TSR
// | |+-TW
// | ||+-TVM
// | |||+-MXR
// | ||||+-SUM
// | |||||+-MPRV
// | |||||| +-XS
// | |||||| | +-FS
// | |||||| | | +-MPP
// | |||||| | | | +-SPP
// | |||||| | | | |+-MPIE
// | |||||| | | | || +-UPIE
// | ||||||/|/|/| || |+-MIE
// | ||||||/|/|/| || || +-UIE
return 0b00000000000000000001100010011001;
// +-TSR
// |+-TW
// ||+-TVM
// |||+-MXR
// ||||+-SUM
// |||||+-MPRV
// |||||| +-XS
// |||||| | +-FS
// |||||| | | +-MPP
// |||||| | | | +-SPP
// |||||| | | | |+-MPIE
// |||||| | | | || +-UPIE
// ||||||/|/|/| || |+-MIE
// ||||||/|/|/| || || +-UIE
return 0b00000000001000000001100010011001 | 0x8000000000000000ULL;
}
#endif
} else
@ -137,7 +136,7 @@ public:
return m[mode];
}
riscv_hart_mu_p(feature_config cfg = feature_config{});
riscv_hart_mu_p();
virtual ~riscv_hart_mu_p() = default;
@ -151,6 +150,7 @@ public:
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_mu_p::enter_trap(flags, this->fault_data, this->fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
void wait_until(uint64_t flags) override;
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
@ -160,7 +160,6 @@ protected:
hart_state<reg_t> state;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
iss::status read_status(unsigned addr, reg_t& val);
@ -180,14 +179,12 @@ protected:
iss::status write_edeleg(unsigned addr, reg_t val);
void check_interrupt();
feature_config cfg;
mmio::memory_with_htif<reg_t> default_mem;
mem::memory_with_htif<reg_t> default_mem;
};
template <typename BASE, features_e FEAT, typename LOGCAT>
riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p()
: state()
, cfg(cfg)
, default_mem(base::get_priv_if()) {
const std::array<unsigned, 8> rwaddrs{{
mepc,
@ -248,7 +245,7 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
}
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->wr_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
this->memories.prepend(*this);
this->memories.root(*this);
this->memories.append(default_mem);
}
@ -384,16 +381,8 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write(const address_type type,
return iss::Err;
return this->write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
switch(addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
return iss::Ok;
}
}
} break;
case traits<BASE>::FENCE:
break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
@ -505,12 +494,12 @@ template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_mu_p<
}
template <typename BASE, features_e FEAT, typename LOGCAT>
uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t tval) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
if(flags == std::numeric_limits<uint64_t>::max())
flags = this->reg.trap_state;
auto trap_id = bit_sub<0, 16>(flags);
auto const trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if(trap_id == 0 && cause == 11)
cause = 0x8 + this->reg.PRIV; // adjust environment call cause
@ -533,7 +522,7 @@ uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_
this->csr[utval | (new_priv << 8)] = static_cast<reg_t>(addr);
break;
case 2:
this->csr[utval | (new_priv << 8)] = (!this->has_compressed() || (instr & 0x3) == 3) ? instr : instr & 0xffff;
this->csr[utval | (new_priv << 8)] = (!this->has_compressed() || (tval & 0x3) == 3) ? tval : tval & 0xffff;
break;
case 3:
if((FEAT & FEAT_DEBUG) && (this->csr[dcsr] & 0x8000)) {
@ -545,7 +534,6 @@ uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_
}
if(this->semihosting_cb) {
// Check for semihosting call
phys_addr_t p_addr(access_type::DEBUG_READ, traits<BASE>::MEM, addr - 4);
std::array<uint8_t, 8> data;
// check for SLLI_X0_X0_0X1F and SRAI_X0_X0_0X07
this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data());
@ -562,7 +550,7 @@ uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
CLOG(INFO, disass) << "Semihosting call at address " << buffer.data() << " occurred ";
NSCLOG(INFO, LOGCAT) << "Semihosting call at address " << buffer.data() << " occurred ";
this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
return this->reg.NEXT_PC;
@ -611,15 +599,15 @@ uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_
auto xtvec = this->csr[utvec | (new_priv << 8)];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
if(trap_id != 0 && (xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, this->csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else {
this->reg.NEXT_PC = xtvec & ~0x3UL;
if((xtvec & 0x1) == 1 && trap_id != 0)
this->reg.NEXT_PC = xtvec & ~0x3UL;
if(trap_id != 0) {
if((xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, this->csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else if((xtvec & 0x3UL) == 1UL)
this->reg.NEXT_PC += 4 * cause;
}
std::array<char, 32> buffer;
@ -629,10 +617,10 @@ uint64_t riscv_hart_mu_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags & 0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << this->lvl[this->reg.PRIV]
<< " to " << this->lvl[new_priv];
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred, changing privilege level from " << this->lvl[this->reg.PRIV]
<< " to " << this->lvl[new_priv];
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
@ -643,8 +631,7 @@ template <typename BASE, features_e FEAT, typename LOGCAT> uint64_t riscv_hart_m
auto cur_priv = this->reg.PRIV;
auto inst_priv = (flags & 0x3) ? 3 : 0;
if(inst_priv > cur_priv) {
auto trap_val = 0x80ULL << 24 | (2 << 16); // illegal instruction
this->reg.trap_state = trap_val;
this->reg.trap_state = 0x80ULL << 24 | (2 << 16); // illegal instruction
this->reg.NEXT_PC = std::numeric_limits<uint32_t>::max();
} else {
auto status = state.mstatus;
@ -665,13 +652,22 @@ template <typename BASE, features_e FEAT, typename LOGCAT> uint64_t riscv_hart_m
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = this->csr[uepc | inst_priv << 8];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << this->lvl[cur_priv] << " to "
<< this->lvl[this->reg.PRIV];
NSCLOG(INFO, LOGCAT) << "Executing xRET , changing privilege level from " << this->lvl[cur_priv] << " to "
<< this->lvl[this->reg.PRIV];
check_interrupt();
}
this->reg.trap_state = this->reg.pending_trap;
return this->reg.NEXT_PC;
}
template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_mu_p<BASE, FEAT, LOGCAT>::wait_until(uint64_t flags) {
auto status = state.mstatus;
auto tw = status.TW;
if(this->reg.PRIV == PRIV_S && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
}
}
} // namespace arch
} // namespace iss

File diff suppressed because one or more lines are too long

View File

@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _ISS_ARCH_TGC_MAPPER_H
#define _ISS_ARCH_TGC_MAPPER_H
@ -23,35 +57,29 @@ using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arc
#ifdef CORE_TGC5D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type =
iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
using tgc5d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac(iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_NN
#include "hwl.h"
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type =
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC5E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
#endif
#endif

View File

@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include <array>
// generated from:
// * /scratch/eyck/workarea/Other/riscv-opcodes/csrs.csv

View File

@ -1,11 +1,44 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
namespace iss {
namespace mmio {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
@ -199,12 +232,12 @@ template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_cause(unsigned a
switch(mode) {
case 0:
val |= clic_uprev_lvl << 16;
val |= hart_if.mstatus.UPIE << 27;
val |= hart_if.state.mstatus.UPIE << 27;
break;
default:
val |= clic_mprev_lvl << 16;
val |= hart_if.mstatus.MPIE << 27;
val |= hart_if.mstatus.MPP << 28;
val |= hart_if.state.mstatus.MPIE << 27;
val |= hart_if.state.mstatus.MPP << 28;
break;
}
} else
@ -220,12 +253,12 @@ template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_cause(unsigned
switch(mode) {
case 0:
clic_uprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.mstatus.UPIE = (val >> 27) & 0x1;
hart_if.state.mstatus.UPIE = (val >> 27) & 0x1;
break;
default:
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.mstatus.MPIE = (val >> 27) & 0x1;
hart_if.mstatus.MPP = (val >> 28) & 0x3;
hart_if.state.mstatus.MPIE = (val >> 27) & 0x1;
hart_if.state.mstatus.MPP = (val >> 28) & 0x3;
break;
}
} else {
@ -248,5 +281,5 @@ template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_intthresh(unsig
return iss::Ok;
}
} // namespace mmio
} // namespace mem
} // namespace iss

101
src/iss/mem/memory_if.cpp Normal file
View File

@ -0,0 +1,101 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include <algorithm>
namespace iss {
namespace mem {
void memory_hierarchy::root(memory_elem& e) {
hierarchy.push_front(&e);
root_set = true;
update_chain();
}
void memory_hierarchy::prepend(memory_elem& e) {
if(root_set)
hierarchy.insert(hierarchy.begin() + 1, &e);
else
hierarchy.push_front(&e);
update_chain();
}
void memory_hierarchy::append(memory_elem& e) {
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::insert_before(memory_elem&) {}
void memory_hierarchy::insert_after(memory_elem&) {}
void memory_hierarchy::replace_last(memory_elem& e) {
auto old = hierarchy.back();
auto it = std::find_if(std::begin(owned_elems), std::end(owned_elems),
[old](std::unique_ptr<memory_elem> const& p) { return p.get() == old; });
hierarchy.pop_back();
if(it != std::end(owned_elems))
owned_elems.erase(it);
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::update_chain() {
bool tail = false;
for(size_t i = 1; i < hierarchy.size(); ++i) {
hierarchy[i - 1]->set_next(hierarchy[i]->get_mem_if());
}
}
void memory_hierarchy::prepend(std::unique_ptr<memory_elem>&& p) {
prepend(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::append(std::unique_ptr<memory_elem>&& p) {
append(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_before(std::unique_ptr<memory_elem>&& p) {
insert_before(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_after(std::unique_ptr<memory_elem>&& p) {
insert_after(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::replace_last(std::unique_ptr<memory_elem>&& p) {
replace_last(*p);
owned_elems.push_back(std::move(p));
}
} // namespace mem
} // namespace iss

View File

@ -39,10 +39,12 @@
#include <deque>
#include <functional>
#include <limits>
#include <memory>
#include <util/delegate.h>
#include <vector>
namespace iss {
namespace mmio {
namespace mem {
using rd_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t*);
using wr_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t const*);
@ -53,24 +55,32 @@ struct memory_if {
};
struct memory_elem {
virtual ~memory_elem() = default;
virtual memory_if get_mem_if() = 0;
virtual void set_next(memory_if) = 0;
virtual void register_csrs() {}
virtual std::tuple<uint64_t, uint64_t> get_range() { return {0, std::numeric_limits<uint64_t>::max()}; }
};
struct memory_hierarchy {
void root(memory_elem&);
void prepend(memory_elem&);
void append(memory_elem&);
void insert_before(memory_elem&);
void insert_after(memory_elem&);
void replace_last(memory_elem&);
void prepend(std::unique_ptr<memory_elem>&&);
void append(std::unique_ptr<memory_elem>&&);
void insert_before(std::unique_ptr<memory_elem>&&);
void insert_after(std::unique_ptr<memory_elem>&&);
void replace_last(std::unique_ptr<memory_elem>&&);
protected:
void update_chain();
std::deque<std::reference_wrapper<memory_elem>> hierarchy;
std::deque<memory_elem*> hierarchy;
std::vector<std::unique_ptr<memory_elem>> owned_elems;
bool root_set{false};
};
} // namespace mmio
} // namespace mem
} // namespace iss
#endif
#endif

View File

@ -1,14 +1,48 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_WITH_HTIF_
#define _MEMORY_WITH_HTIF_
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
#include <util/sparse_array.h>
namespace iss {
namespace mmio {
namespace mem {
template <typename WORD_TYPE> struct memory_with_htif : public memory_elem {
using this_class = memory_with_htif<WORD_TYPE>;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
@ -51,6 +85,6 @@ protected:
mem_type mem;
arch::priv_if<WORD_TYPE> hart_if;
};
} // namespace mmio
} // namespace mem
} // namespace iss
#endif // _MEMORY_WITH_HTIF_

353
src/iss/mem/mmu.h Normal file
View File

@ -0,0 +1,353 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
// TODO: update vminfo on trap enter and leave as well as mstatus write, reset
template <typename WORD_TYPE> struct mmu : public memory_elem {
using this_class = mmu<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
constexpr static reg_t PGSIZE = 1 << PGSHIFT;
constexpr static reg_t PGMASK = PGSIZE - 1;
mmu(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
hart_if.csr_rd_cb[satp] = MK_CSR_RD_CB(read_satp);
hart_if.csr_wr_cb[satp] = MK_CSR_WR_CB(write_satp);
}
virtual ~mmu() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.rd_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.rd_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.wr_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.wr_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.wr_mem(access, virt2phys(access, addr), length, data);
}
void update_vm_info();
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status read_satp(unsigned addr, reg_t& val) {
auto tvm = bit_sub<20, 1>(hart_if.state.mstatus());
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
val = satp;
return iss::Ok;
}
iss::status write_satp(unsigned addr, reg_t val) {
reg_t tvm = hart_if.state.mstatus.TVM;
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
satp = val;
update_vm_info();
return iss::Ok;
}
uint64_t virt2phys(iss::access_type access, uint64_t addr);
static inline vm_info decode_vm_info(uint32_t state, uint32_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<31, 1>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 1:
return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
static inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<60, 4>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 8:
return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV39
case 9:
return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV48
case 10:
return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV57
case 11:
return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV64
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
protected:
reg_t satp;
std::unordered_map<reg_t, uint64_t> ptw;
std::array<vm_info, 2> vmt;
std::array<address_type, 4> addr_mode;
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> uint64_t mmu<WORD_TYPE>::virt2phys(iss::access_type access, uint64_t addr) {
const auto type = access & iss::access_type::FUNC;
auto it = ptw.find(addr >> PGSHIFT);
if(it != ptw.end()) {
const reg_t pte = it->second;
const reg_t ad = PTE_A | (type == iss::access_type::WRITE) * PTE_D;
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) == ad)
return {(pte & (~PGMASK)) | (addr & PGMASK)};
else
ptw.erase(it); // throw an exception
#endif
} else {
uint32_t mode = type != iss::access_type::FETCH && hart_if.state.mstatus.MPRV ? // MPRV
hart_if.state.mstatus.MPP
: hart_if.PRIV;
const vm_info& vm = vmt[static_cast<uint16_t>(type) / 2];
const bool s_mode = mode == arch::PRIV_S;
const bool sum = hart_if.state.mstatus.SUM;
const bool mxr = hart_if.state.mstatus.MXR;
// verify bits xlen-1:va_bits-1 are all equal
const int va_bits = PGSHIFT + vm.levels * vm.idxbits;
const reg_t mask = (reg_t(1) << (sizeof(reg_t) * 8 - (va_bits - 1))) - 1;
const reg_t masked_msbs = (addr >> (va_bits - 1)) & mask;
const int levels = (masked_msbs != 0 && masked_msbs != mask) ? 0 : vm.levels;
reg_t base = vm.ptbase;
for(int i = levels - 1; i >= 0; i--) {
const int ptshift = i * vm.idxbits;
const reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
reg_t pte = 0;
const uint8_t res = down_stream_mem.rd_mem(iss::access_type::READ, base + idx * vm.ptesize, vm.ptesize, (uint8_t*)&pte);
if(res != 0)
throw arch::trap_load_access_fault(addr);
const reg_t ppn = pte >> PTE_PPN_SHIFT;
if(PTE_TABLE(pte)) { // next level of page table
base = ppn << PGSHIFT;
} else if((pte & PTE_U) ? s_mode && (type == iss::access_type::FETCH || !sum) : !s_mode) {
break;
} else if(!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if(type == (type == iss::access_type::FETCH ? !(pte & PTE_X)
: type == iss::access_type::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W)))) {
break;
} else if((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
const reg_t ad = PTE_A | ((type == iss::access_type::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) != ad)
break;
#endif
// for superpage mappings, make a fake leaf PTE for the TLB's benefit.
const reg_t vpn = addr >> PGSHIFT;
const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
const reg_t offset = addr & PGMASK;
ptw[vpn] = value | (pte & 0xff);
return value | offset;
}
}
}
switch(type) {
case access_type::FETCH:
hart_if.raise_trap(12, 0, addr);
throw arch::trap_instruction_page_fault(addr);
case access_type::READ:
hart_if.raise_trap(13, 0, addr);
throw arch::trap_load_page_fault(addr);
case access_type::WRITE:
hart_if.raise_trap(15, 0, addr);
throw arch::trap_store_page_fault(addr);
default:
abort();
}
}
template <typename WORD_TYPE> inline void mmu<WORD_TYPE>::update_vm_info() {
vmt[1] = decode_vm_info(hart_if.PRIV, satp);
addr_mode[3] = addr_mode[2] = vmt[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
if(hart_if.state.mstatus.MPRV)
vmt[0] = decode_vm_info(hart_if.state.mstatus.MPP, satp);
else
vmt[0] = vmt[1];
addr_mode[1] = addr_mode[0] = vmt[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
ptw.clear();
}
} // namespace mem
} // namespace iss

View File

@ -1,11 +1,44 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
namespace iss {
namespace mmio {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
@ -61,9 +94,8 @@ template <typename WORD_TYPE> struct pmp : public memory_elem {
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
pmp(arch::priv_if<WORD_TYPE> hart_if, clic_config cfg)
: hart_if(hart_if)
, cfg(cfg) {
pmp(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
for(size_t i = arch::pmpaddr0; i <= arch::pmpaddr15; ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_plain);
@ -74,7 +106,7 @@ template <typename WORD_TYPE> struct pmp : public memory_elem {
}
}
~pmp() = default;
virtual ~pmp() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
@ -208,5 +240,5 @@ template <typename WORD_TYPE> bool pmp<WORD_TYPE>::pmp_check(const access_type t
return !any_active || hart_if.reg.PRIV == arch::PRIV_M;
}
} // namespace mmio
} // namespace mem
} // namespace iss

View File

@ -1,26 +0,0 @@
#include "memory_if.h"
namespace iss {
namespace mmio {
void memory_hierarchy::prepend(memory_elem& e) {
hierarchy.push_front(e);
update_chain();
}
void memory_hierarchy::append(memory_elem& e) {
hierarchy.push_back(e);
update_chain();
}
void memory_hierarchy::insert_before(memory_elem&) {}
void memory_hierarchy::insert_after(memory_elem&) {}
void memory_hierarchy::replace_last(memory_elem&) {}
void memory_hierarchy::update_chain() {
bool tail = false;
for(size_t i = 0; i < hierarchy.size(); ++i) {
hierarchy[i].get().register_csrs();
if(i)
hierarchy[i - 1].get().set_next(hierarchy[i].get().get_mem_if());
}
}
} // namespace mmio
} // namespace iss

View File

@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "semihosting.h"
#include <chrono>
#include <cstdint>

View File

@ -1,3 +1,37 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SEMIHOSTING_H_
#define _SEMIHOSTING_H_
#include <chrono>
@ -58,4 +92,4 @@ template <typename T> struct semihosting_callback {
};
template <typename T> using semihosting_cb_t = std::function<void(iss::arch_if*, T*, T*)>;
#endif
#endif

View File

@ -40,6 +40,7 @@
#include <vector>
#include "iss/arch/tgc_mapper.h"
#include "util/logging.h"
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#ifdef WITH_LLVM
@ -258,6 +259,7 @@ int main(int argc, char* argv[]) {
LOG(ERR) << "Error opening file " << filename << std::endl;
return 1;
}
LOGGER(DEFAULT)::reporting_level() = logging::ERR;
for(auto addr = start_addr; addr < end_addr; addr += data.size()) {
vm->get_arch()->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0 /*MEM*/, addr, data.size(),
data.data()); // FIXME: get space from iss::arch::traits<ARCH>::mem_type_e::MEM

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -419,7 +419,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t
gp.set_extension(preExt);
}
auto pre_delay = delay;
dbus->b_transport(gp, delay);
sckt->b_transport(gp, delay);
if(pre_delay > delay) {
quantum_keeper.reset();
} else {

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017-2021 MINRES Technologies GmbH
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,9 +1,36 @@
/*
* sc_core_adapter.h
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Created on: Jul 5, 2023
* Author: eyck
*/
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SYSC_SC_CORE_ADAPTER_H_
#define _SYSC_SC_CORE_ADAPTER_H_
@ -11,6 +38,7 @@
#include "sc_core_adapter_if.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/mem/memory_if.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
@ -18,11 +46,16 @@
namespace sysc {
template <typename PLAT> class sc_core_adapter : public PLAT, public sc_core_adapter_if {
public:
using this_class = sc_core_adapter<PLAT>;
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex_if* owner)
: owner(owner) {}
: owner(owner) {
this->csr_rd_cb[iss::arch::time] = MK_CSR_RD_CB(read_time);
if(sizeof(reg_t) == 4)
this->csr_rd_cb[iss::arch::timeh] = MK_CSR_RD_CB(read_time);
this->memories.replace_last(*this);
}
iss::arch_if* get_arch_if() override { return this; }
@ -60,18 +93,23 @@ public:
}
};
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
iss::mem::memory_if get_mem_if() override {
return iss::mem::memory_if{.rd_mem{util::delegate<iss::mem::rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<iss::mem::wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
else {
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? iss::Ok : iss::Err;
return owner->read_mem(addr, length, data, is_fetch(access)) ? iss::Ok : iss::Err;
}
}
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
if(addr.val == this->tohost) {
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
if(addr == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = sizeof(reg_t) == 4 ? 0 : (cur_data >> 56) & 0xFF;
@ -89,9 +127,6 @@ public:
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
#ifndef WITH_TCC
throw(iss::simulation_stopped(payload_addr));
#endif
return iss::Ok;
}
if(device == 0 && command == 0) {
@ -117,39 +152,28 @@ public:
this->interrupt_sim = payload_addr;
return iss::Ok;
}
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
auto res = owner->write_mem(addr, length, data) ? iss::Ok : iss::Err;
return res;
}
iss::status read_csr(unsigned addr, reg_t& val) override {
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
} else {
return PLAT::read_csr(addr, val);
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->hier_name()) << "Sleeping until interrupt";
PLAT::wait_until(flags);
while(this->reg.pending_trap == 0 && (this->csr[iss::arch::mip] & this->csr[iss::arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) override {

View File

@ -1,9 +1,36 @@
/*
* sc_core_adapter.h
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Created on: Jul 5, 2023
* Author: eyck
*/
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SYSC_SC_CORE_ADAPTER_IF_H_
#define _SYSC_SC_CORE_ADAPTER_IF_H_

70
src/vm/aes_sbox.h Normal file
View File

@ -0,0 +1,70 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// ales@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#ifndef _VM_AES_SBOX_H_
#define _VM_AES_SBOX_H_
#include <cstdint>
extern "C" {
const uint8_t AES_ENC_SBOX[] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59,
0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1,
0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83,
0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C,
0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE,
0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6,
0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9,
0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1,
0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16};
uint8_t inline aes_sbox_fwd(uint8_t index) { return AES_ENC_SBOX[index]; }
const uint8_t AES_DEC_SBOX[] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F,
0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B,
0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8,
0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3,
0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9,
0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07,
0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F,
0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B,
0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D};
uint8_t inline aes_sbox_inv(uint8_t index) { return AES_DEC_SBOX[index]; }
}
#endif /* _VM_AES_SBOX_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -33,7 +33,9 @@
////////////////////////////////////////////////////////////////////////////////
#include "fp_functions.h"
#include "softfloat_types.h"
#include <array>
#include <cstdint>
extern "C" {
#include "internals.h"
@ -44,21 +46,375 @@ extern "C" {
#include <limits>
using this_t = uint8_t*;
// this does not inlcude any reserved rm or the DYN rm, as DYN rm should be taken care of in the vm_impl
const std::array<uint8_t, 5> rmm_map = {
softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/,
softfloat_round_near_maxMag /*RMM*/
};
template <typename T> T constexpr defaultNaN();
template <> uint16_t constexpr defaultNaN<uint16_t>() { return defaultNaNF16UI; }
template <> uint32_t constexpr defaultNaN<uint32_t>() { return defaultNaNF32UI; }
template <> uint64_t constexpr defaultNaN<uint64_t>() { return defaultNaNF64UI; }
template <typename T> T constexpr posInf();
template <> uint16_t constexpr posInf<uint16_t>() { return 0x7C00; }
template <> uint32_t constexpr posInf<uint32_t>() { return 0x7F800000; }
template <> uint64_t constexpr posInf<uint64_t>() { return 0x7FF0000000000000; }
template <typename T> T constexpr negInf();
template <> uint16_t constexpr negInf<uint16_t>() { return 0xFC00; }
template <> uint32_t constexpr negInf<uint32_t>() { return 0xFF800000; }
template <> uint64_t constexpr negInf<uint64_t>() { return 0xFFF0000000000000; }
template <typename T> T constexpr negZero();
template <> uint16_t constexpr negZero<uint16_t>() { return 0x8000; }
template <> uint32_t constexpr negZero<uint32_t>() { return 0x80000000; }
template <> uint64_t constexpr negZero<uint64_t>() { return 0x8000000000000000; }
const uint32_t quiet_nan32 = 0x7fC00000;
template <typename T> bool rsqrt_check(T fclass_val, bool& subnormal, T& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0002: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0020: {
subnormal = true;
}
default:
return false;
}
}
static constexpr std::array<std::array<uint64_t, 64>, 2> rsqrt_table{
{{
52, 51, 50, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20,
19, 19, 18, 17, 16, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 7, 7, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0,
},
{127, 125, 123, 121, 119, 118, 116, 114, 113, 111, 109, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93,
92, 91, 90, 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 70,
69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 53}}};
uint64_t constexpr frsqrt7_general(const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal) {
int64_t normalized_exp = exp;
uint64_t normalized_sig = sig;
if(subnormal) {
signed nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
normalized_exp = -nr_leadingzeros;
normalized_sig = (sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1);
}
unsigned exp_idx = normalized_exp & 1;
unsigned sig_idx = (normalized_sig >> (s - 6)) & 0x3f;
// The output of the table becomes the seven high bits of the result significand (after the leading one); the remainder of the
// result significand is zero.
uint64_t out_sig = rsqrt_table[exp_idx][sig_idx] << (s - 7);
// The output exponent equals floor((3*B - 1 - the normalized input exponent) / 2), where B is the exponent bias.
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t out_exp = (3 * bias - 1 - normalized_exp) / 2;
// The output sign equals the input sign.
return (sign << (s + e)) | (out_exp << s) | out_sig;
}
template <typename T> bool recip_check(T fclass_val, bool& subnormal, uint64_t& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
ret_val = negZero<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
subnormal = true;
return false;
}
case 0x0020: {
subnormal = true;
return false;
}
default: {
subnormal = false;
return false;
}
}
}
static constexpr std::array<uint64_t, 128> rec_table{
{127, 125, 123, 121, 119, 117, 116, 114, 112, 110, 109, 107, 105, 104, 102, 100, 99, 97, 96, 94, 93, 91, 90, 88, 87, 85,
84, 83, 81, 80, 79, 77, 76, 75, 74, 72, 71, 70, 69, 68, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, 32, 31,
31, 30, 29, 28, 28, 27, 26, 25, 25, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 14,
13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0}};
bool frec_general(uint64_t& res, const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal, uint8_t mode) {
int nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
int64_t normalized_exp = subnormal ? -nr_leadingzeros : exp;
uint64_t normalized_sig = subnormal ? ((sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1)) : sig;
unsigned idx = (normalized_sig >> (s - 7)) & 0x7f;
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t mid_exp = 2 * (bias)-1 - normalized_exp;
uint64_t mid_sig = rec_table[idx] << (s - 7);
uint64_t out_exp = mid_exp;
uint64_t out_sig = mid_sig;
if(mid_exp == 0) {
out_exp = mid_exp;
out_sig = (mid_sig >> 1) | (1ULL << (s - 1));
} else if(mid_exp == (1ULL << e) - 1) {
out_exp = 0;
out_sig = (mid_sig >> 2) | (1ULL << (s - 2));
}
if(subnormal && nr_leadingzeros > 1) {
if((mode == 0b001) || (mode == 0b010 && sign == 0b0) || (mode == 0b011 && sign == 0b1)) {
res = (sign << (s + e)) | ((1ULL << (e - 1)) - 1) << s | ((1ULL << s) - 1);
return true;
} else {
res = (sign << (s + e)) | ((1ULL << e) - 1) << s;
return true;
}
}
res = (sign << (s + e)) | (out_exp << s) | out_sig;
return false;
}
extern "C" {
uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; }
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_add(v1f, v2f);
return r.v;
}
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sub(v1f, v2f);
return r.v;
}
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_mul(v1f, v2f);
return r.v;
}
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_div(v1f, v2f);
return r.v;
}
uint16_t fsqrt_h(uint16_t v1, uint8_t mode) {
float16_t v1f{v1};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sqrt(v1f);
return r.v;
}
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op) {
float16_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = v1 == defaultNaNF16UI || v2 & defaultNaNF16UI;
bool snan = softfloat_isSigNaNF16UI(v1) || softfloat_isSigNaNF16UI(v2);
switch(op) {
case 0:
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_eq(v1f, v2f) ? 1 : 0;
case 1:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_le(v1f, v2f) ? 1 : 0;
case 2:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_lt(v1f, v2f) ? 1 : 0;
default:
break;
}
return -1;
}
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode) {
uint16_t F16_SIGN = 1UL << 15;
switch(op) {
case 0: // FMADD_S
break;
case 1: // FMSUB_S
v3 ^= F16_SIGN;
break;
case 2: // FNMADD_S
v1 ^= F16_SIGN;
v3 ^= F16_SIGN;
break;
case 3: // FNMSUB_S
v1 ^= F16_SIGN;
break;
}
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t res = softfloat_mulAddF16(v1, v2, v3, 0);
return res.v;
}
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op) {
softfloat_exceptionFlags = 0;
bool v1_nan = (v1 & defaultNaNF16UI) == defaultNaNF16UI;
bool v2_nan = (v2 & defaultNaNF16UI) == defaultNaNF16UI;
bool v1_snan = softfloat_isSigNaNF16UI(v1);
bool v2_snan = softfloat_isSigNaNF16UI(v2);
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF16UI : v2;
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & 0x7fff) == 0 && (v2 & 0x7fff) == 0) {
return op == 0 ? ((v1 & 0x8000) ? v1 : v2) : ((v1 & 0x8000) ? v2 : v1);
} else {
float16_t v1f{v1}, v2f{v2};
return op == 0 ? (f16_lt(v1f, v2f) ? v1 : v2) : (f16_lt(v1f, v2f) ? v2 : v1);
}
}
}
uint16_t fclass_h(uint16_t v1) {
float16_t a{v1};
union ui16_f16 uA;
uint_fast16_t uiA;
uA.f = a;
uiA = uA.ui;
bool infOrNaN = expF16UI(uiA) == 0x1F;
bool subnormalOrZero = expF16UI(uiA) == 0;
bool sign = signF16UI(uiA);
bool fracZero = fracF16UI(uiA) == 0;
bool isNaN = isNaNF16UI(uiA);
bool isSNaN = softfloat_isSigNaNF16UI(uiA);
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint16_t frsqrt7_h(uint16_t v) {
bool subnormal = false;
uint16_t ret_val = 0;
if(rsqrt_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF64UI(v);
int16_t exp = expF64UI(v);
uint16_t sign = signF64UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint16_t frec7_h(uint16_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF16UI(v);
int exp = expF16UI(v);
uint16_t sign = signF16UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint16_t unbox_h(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
mask = std::numeric_limits<uint32_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
return defaultNaNF16UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_add(v1f, v2f);
return r.v;
@ -66,7 +422,7 @@ uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_sub(v1f, v2f);
return r.v;
@ -74,7 +430,7 @@ uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_mul(v1f, v2f);
return r.v;
@ -82,7 +438,7 @@ uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_div(v1f, v2f);
return r.v;
@ -90,7 +446,7 @@ uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
float32_t v1f{v1};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t r = f32_sqrt(v1f);
return r.v;
@ -99,7 +455,7 @@ uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
float32_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32;
bool nan = v1 == defaultNaNF32UI || v2 == defaultNaNF32UI;
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
switch(op) {
case 0:
@ -127,29 +483,6 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
return -1;
}
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float32_t r;
switch(op) {
case 0: { // FCVT__W__S
uint_fast32_t res = f32_to_i32(v1f, rmm_map.at(mode), true);
return (uint32_t)res;
}
case 1: { // FCVT__WU__S
uint_fast32_t res = f32_to_ui32(v1f, rmm_map.at(mode), true);
return (uint32_t)res;
}
case 2: // FCVT__S__W
r = i32_to_f32((int32_t)v1);
return r.v;
case 3: // FCVT__S__WU
r = ui32_to_f32(v1);
return r.v;
}
return 0;
}
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
uint32_t F32_SIGN = 1UL << 31;
switch(op) {
@ -166,7 +499,7 @@ uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mod
v1 ^= F32_SIGN;
break;
}
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, 0);
return res.v;
@ -216,37 +549,60 @@ uint32_t fclass_s(uint32_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
bool isNan = isNaNF64UI(v1);
bool isSNaN = softfloat_isSigNaNF64UI(v1);
softfloat_roundingMode = rmm_map.at(mode);
softfloat_exceptionFlags = 0;
if(isNan) {
if(isSNaN)
softfloat_raiseFlags(softfloat_flag_invalid);
return defaultNaNF32UI;
} else {
float32_t res = f64_to_f32(float64_t{v1});
return res.v;
uint32_t frsqrt7_s(uint32_t v) {
bool subnormal = false;
uint32_t ret_val = 0;
if(rsqrt_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool infOrNaN = expF32UI(v1) == 0xFF;
bool subnormalOrZero = expF32UI(v1) == 0;
if(infOrNaN || subnormalOrZero) {
return defaultNaNF64UI;
} else {
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
uint32_t frec7_s(uint32_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint32_t unbox_s(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
return v;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
return defaultNaNF32UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32;
bool nan = v1 == defaultNaNF32UI;
bool snan = softfloat_isSigNaNF32UI(v1);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_add(v1f, v2f);
return r.v;
@ -254,7 +610,7 @@ uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_sub(v1f, v2f);
return r.v;
@ -262,7 +618,7 @@ uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_mul(v1f, v2f);
return r.v;
@ -270,7 +626,7 @@ uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_div(v1f, v2f);
return r.v;
@ -278,7 +634,7 @@ uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
float64_t v1f{v1};
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t r = f64_sqrt(v1f);
return r.v;
@ -287,7 +643,7 @@ uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
float64_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32;
bool nan = v1 == defaultNaNF64UI || v2 == defaultNaNF64UI;
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
switch(op) {
case 0:
@ -315,30 +671,6 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
return -1;
}
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: { // l from d
int64_t res = f64_to_i64(v1f, rmm_map.at(mode), true);
return (uint64_t)res;
}
case 1: { // lu from d
uint64_t res = f64_to_ui64(v1f, rmm_map.at(mode), true);
return res;
}
case 2: // d from l
r = i64_to_f64(v1);
return r.v;
case 3: // d from lu
r = ui64_to_f64(v1);
return r.v;
}
return 0;
}
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
uint64_t F64_SIGN = 1ULL << 63;
switch(op) {
@ -355,7 +687,7 @@ uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mod
v1 ^= F64_SIGN;
break;
}
softfloat_roundingMode = rmm_map.at(mode);
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, 0);
return res.v;
@ -406,52 +738,211 @@ uint64_t fclass_d(uint64_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: // l->s, fp to int32
return f32_to_i64(v1f, rmm_map.at(mode), true);
case 1: // wu->s
return f32_to_ui64(v1f, rmm_map.at(mode), true);
case 2: // s->w
r = i32_to_f64(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f64(v1);
return r.v;
uint64_t frsqrt7_d(uint64_t v) {
bool subnormal = false;
uint64_t ret_val = 0;
if(rsqrt_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
}
return 0;
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) {
softfloat_exceptionFlags = 0;
float32_t r;
switch(op) {
case 0: { // wu->s
int32_t r = f64_to_i32(float64_t{v1}, rmm_map.at(mode), true);
return r;
uint64_t frec7_d(uint64_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
}
case 1: { // wu->s
uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map.at(mode), true);
return r;
}
case 2: // l->s, fp to int32
r = i64_to_f32(v1);
return r.v;
case 3: // wu->s
r = ui64_to_f32(v1);
return r.v;
}
return 0;
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint32_t unbox_s(uint64_t v) {
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
uint64_t unbox_d(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 64: {
return v;
break;
}
default:
break;
}
if((v & mask) != mask)
return 0x7fc00000;
return defaultNaNF64UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f32(float16_t{val}).v;
}
uint64_t f16tof64(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f64(float16_t{val}).v;
}
uint16_t f32tof16(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f16(float32_t{val}).v;
}
uint64_t f32tof64(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f64(float32_t{val}).v;
}
uint16_t f64tof16(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f16(float64_t{val}).v;
}
uint32_t f64tof32(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f32(float64_t{val}).v;
}
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui32(float16_t{v}, rm, true);
}
uint64_t f16toui64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui64(float16_t{v}, rm, true);
}
uint32_t f32toui32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui32(float32_t{v}, rm, true);
}
uint64_t f32toui64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui64(float32_t{v}, rm, true);
}
uint32_t f64toui32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui32(float64_t{v}, rm, true);
}
uint64_t f64toui64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui64(float64_t{v}, rm, true);
}
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i32(float16_t{v}, rm, true);
}
uint64_t f16toi64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i64(float16_t{v}, rm, true);
}
uint32_t f32toi32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i32(float32_t{v}, rm, true);
}
uint64_t f32toi64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i64(float32_t{v}, rm, true);
}
uint32_t f64toi32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i32(float64_t{v}, rm, true);
}
uint64_t f64toi64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i64(float64_t{v}, rm, true);
}
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f16(v).v;
}
uint16_t ui64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f16(v).v;
}
uint32_t ui32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f32(v).v;
}
uint32_t ui64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f32(v).v;
}
uint64_t ui32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f64(v).v;
}
uint64_t ui64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f64(v).v;
}
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f16(v).v;
}
uint16_t i64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f16(v).v;
}
uint32_t i32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f32(v).v;
}
uint32_t i64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f32(v).v;
}
uint64_t i32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f64(v).v;
}
uint64_t i64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f64(v).v;
}
}

View File

@ -39,30 +39,87 @@
extern "C" {
uint32_t fget_flags();
// half precision
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsqrt_h(uint16_t v1, uint8_t mode);
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode);
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fclass_h(uint16_t v1);
uint16_t frsqrt7_h(uint16_t v);
uint16_t frec7_h(uint16_t v, uint8_t mode);
uint16_t unbox_h(uint8_t FLEN, uint64_t v);
// single precision
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsqrt_s(uint32_t v1, uint8_t mode);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode);
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fclass_s(uint32_t v1);
uint32_t fconv_d2f(uint64_t v1, uint8_t mode);
uint64_t fconv_f2d(uint32_t v1, uint8_t mode);
uint32_t frsqrt7_s(uint32_t v);
uint32_t frec7_s(uint32_t v, uint8_t mode);
uint32_t unbox_s(uint8_t FLEN, uint64_t v);
// double precision
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsqrt_d(uint64_t v1, uint8_t mode);
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode);
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fclass_d(uint64_t v1);
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode);
uint32_t unbox_s(uint64_t v);
uint64_t frsqrt7_d(uint64_t v);
uint64_t frec7_d(uint64_t v, uint8_t mode);
uint64_t unbox_d(uint8_t FLEN, uint64_t v);
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm);
uint64_t f16tof64(uint16_t val, uint8_t rm);
uint16_t f32tof16(uint32_t val, uint8_t rm);
uint64_t f32tof64(uint32_t val, uint8_t rm);
uint16_t f64tof16(uint64_t val, uint8_t rm);
uint32_t f64tof32(uint64_t val, uint8_t rm);
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm);
uint64_t f16toui64(uint16_t v, uint8_t rm);
uint32_t f32toui32(uint32_t v, uint8_t rm);
uint64_t f32toui64(uint32_t v, uint8_t rm);
uint32_t f64toui32(uint64_t v, uint8_t rm);
uint64_t f64toui64(uint64_t v, uint8_t rm);
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm);
uint64_t f16toi64(uint16_t v, uint8_t rm);
uint32_t f32toi32(uint32_t v, uint8_t rm);
uint64_t f32toi64(uint32_t v, uint8_t rm);
uint32_t f64toi32(uint64_t v, uint8_t rm);
uint64_t f64toi64(uint64_t v, uint8_t rm);
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm);
uint16_t ui64tof16(uint64_t v, uint8_t rm);
uint32_t ui32tof32(uint32_t v, uint8_t rm);
uint32_t ui64tof32(uint64_t v, uint8_t rm);
uint64_t ui32tof64(uint32_t v, uint8_t rm);
uint64_t ui64tof64(uint64_t v, uint8_t rm);
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm);
uint16_t i64tof16(uint64_t v, uint8_t rm);
uint32_t i32tof32(uint32_t v, uint8_t rm);
uint32_t i64tof32(uint64_t v, uint8_t rm);
uint64_t i32tof64(uint32_t v, uint8_t rm);
uint64_t i64tof64(uint64_t v, uint8_t rm);
}
#endif /* RISCV_SRC_VM_FP_FUNCTIONS_H_ */
#endif /* _VM_FP_FUNCTIONS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -72,32 +72,70 @@ using namespace ::llvm;
void add_fp_functions_2_module(Module* mod, uint32_t flen, uint32_t xlen) {
if(flen) {
FDECL(fget_flags, INT_TYPE(32));
FDECL(fadd_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsub_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fmul_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fdiv_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsqrt_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fcmp_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16));
FDECL(fmadd_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsel_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16));
FDECL(fclass_h, INT_TYPE(16), INT_TYPE(16));
FDECL(unbox_h, INT_TYPE(16), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
FDECL(f16toi32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toui32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8))
FDECL(i32tof16, INT_TYPE(16), INT_TYPE(32), INT_TYPE(8))
FDECL(ui32tof16, INT_TYPE(16), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toi64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toui64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8))
FDECL(i64tof16, INT_TYPE(16), INT_TYPE(64), INT_TYPE(8))
FDECL(ui64tof16, INT_TYPE(16), INT_TYPE(64), INT_TYPE(8))
FDECL(fadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsub_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmul_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fdiv_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsqrt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcmp_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fclass_s, INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_32_64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcvt_64_32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
FDECL(f32toi32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toui32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(i32tof32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(ui32tof32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toi64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toui64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(i64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(ui64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
if(flen > 32) {
FDECL(fconv_d2f, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(fconv_f2d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsub_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fmul_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fdiv_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsqrt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fcmp_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fcvt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fclass_d, INT_TYPE(64), INT_TYPE(64));
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(64));
FDECL(f64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(f32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f64toi64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(f64toui64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(i64tof64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(ui64tof64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(i32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(ui32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f64toi32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(f64toui32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(unbox_d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
}
}
}

View File

@ -31,10 +31,12 @@
*******************************************************************************/
// clang-format off
#include <iss/arch/tgc5c.h>
// vm_base needs to be included before gdb_session as termios.h (via boost and gdb_server) has a define which clashes with a variable
// name in ConstantRange.h
#include <iss/llvm/vm_base.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#include <iss/instruction_decoder.h>
@ -353,7 +355,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -399,7 +401,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -446,7 +448,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto new_pc =(uint32_t)(PC+(int32_t)sext<21>(imm));
@ -503,7 +505,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask =(uint32_t)- 2;
@ -584,7 +586,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -649,7 +651,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -714,7 +716,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -783,7 +785,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -852,7 +854,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -917,7 +919,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -981,7 +983,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address =this->gen_ext(
@ -1039,7 +1041,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address =this->gen_ext(
@ -1097,7 +1099,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address =this->gen_ext(
@ -1155,7 +1157,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address =this->gen_ext(
@ -1211,7 +1213,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address =this->gen_ext(
@ -1267,7 +1269,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address =this->gen_ext(
@ -1320,7 +1322,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address =this->gen_ext(
@ -1373,7 +1375,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address =this->gen_ext(
@ -1426,7 +1428,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1478,7 +1480,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1532,7 +1534,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1585,7 +1587,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1635,7 +1637,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1685,7 +1687,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1735,7 +1737,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1785,7 +1787,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1835,7 +1837,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1887,7 +1889,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1939,7 +1941,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1991,7 +1993,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2044,7 +2046,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2099,7 +2101,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2152,7 +2154,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2202,7 +2204,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2255,7 +2257,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2311,7 +2313,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2361,7 +2363,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2553,10 +2555,10 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
std::vector<Value*> wait_231_args{
std::vector<Value*> wait_57_args{
this->gen_ext(this->gen_const(8,1), 32)
};
this->builder.CreateCall(this->mod->getFunction("wait"), wait_231_args);
this->builder.CreateCall(this->mod->getFunction("wait"), wait_57_args);
bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk);
auto returnValue = std::make_tuple(CONT,bb);
@ -2595,7 +2597,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrs1 =this->gen_reg_load(traits::X0+ rs1);
@ -2651,7 +2653,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd =this->gen_read_mem(traits::CSR, csr, 4);
@ -2708,7 +2710,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd =this->gen_read_mem(traits::CSR, csr, 4);
@ -2765,7 +2767,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd =this->gen_read_mem(traits::CSR, csr, 4);
@ -2816,7 +2818,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd =this->gen_read_mem(traits::CSR, csr, 4);
@ -2872,7 +2874,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd =this->gen_read_mem(traits::CSR, csr, 4);
@ -2968,7 +2970,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res =this->builder.CreateMul(
@ -3023,7 +3025,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res =this->builder.CreateMul(
@ -3081,7 +3083,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res =this->builder.CreateMul(
@ -3138,7 +3140,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res =this->builder.CreateMul(
@ -3194,7 +3196,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto dividend =this->gen_ext(
@ -3298,7 +3300,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -3371,7 +3373,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -3479,7 +3481,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
{
@ -3561,7 +3563,7 @@ private:
get_reg_ptr(rd+8 + traits::X0), false);
}
else{
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk);
auto returnValue = std::make_tuple(CONT,bb);
@ -3698,7 +3700,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
@ -3825,7 +3827,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -3871,7 +3873,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(imm==0||rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
if(rd!=0) {
this->builder.CreateStore(
@ -3924,7 +3926,7 @@ private:
get_reg_ptr(2 + traits::X0), false);
}
else{
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk);
auto returnValue = std::make_tuple(CONT,bb);
@ -3960,7 +3962,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk);
auto returnValue = std::make_tuple(CONT,bb);
@ -4459,7 +4461,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
@ -4508,7 +4510,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rd==0) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs =this->gen_ext(
@ -4562,7 +4564,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -4689,7 +4691,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -4740,7 +4742,7 @@ private:
/*generate behavior*/
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(NO_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
if(rs1>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask =(uint32_t)- 2;
@ -4826,7 +4828,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)) {
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs =this->gen_ext(
@ -4874,7 +4876,7 @@ private:
this->gen_instr_prologue();
/*generate behavior*/
this->gen_raise_trap(0, static_cast<int32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(0, static_cast<uint32_t>(traits::RV_CAUSE_ILLEGAL_INSTRUCTION));
bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk);
auto returnValue = std::make_tuple(CONT,bb);
@ -4944,8 +4946,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block)
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);

View File

@ -348,7 +348,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -384,7 +384,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -421,7 +421,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto new_pc = (uint32_t)(PC+(int32_t)sext<21>(imm));
@ -468,7 +468,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask = (uint32_t)- 2;
@ -526,7 +526,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_EQ,
@ -576,7 +576,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
@ -626,7 +626,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SLT,
@ -676,7 +676,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SGE,
@ -726,7 +726,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_ULT,
@ -776,7 +776,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_UGE,
@ -825,7 +825,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
@ -866,7 +866,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
@ -907,7 +907,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
@ -948,7 +948,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
@ -989,7 +989,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
@ -1030,7 +1030,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
@ -1068,7 +1068,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
@ -1106,7 +1106,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
@ -1144,7 +1144,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1183,7 +1183,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1222,7 +1222,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1261,7 +1261,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1300,7 +1300,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1339,7 +1339,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1378,7 +1378,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1417,7 +1417,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1456,7 +1456,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1495,7 +1495,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1534,7 +1534,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1573,7 +1573,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1614,7 +1614,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1653,7 +1653,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1692,7 +1692,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1731,7 +1731,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1772,7 +1772,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1813,7 +1813,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -1852,7 +1852,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2030,7 +2030,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0),32);
@ -2072,7 +2072,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
@ -2116,7 +2116,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
@ -2160,7 +2160,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
@ -2199,7 +2199,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
@ -2242,7 +2242,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
@ -2315,7 +2315,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
@ -2355,7 +2355,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
@ -2397,7 +2397,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
@ -2439,7 +2439,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
@ -2481,7 +2481,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto dividend = tu.assignment(tu.ext(tu.load(rs1 + traits::X0, 0),32,true),32);
@ -2546,7 +2546,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
@ -2597,7 +2597,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
@ -2665,7 +2665,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
@ -2720,7 +2720,7 @@ private:
tu.constant(imm,16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = CONT;
@ -2817,7 +2817,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
@ -2913,7 +2913,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -2949,7 +2949,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(imm==0||rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)sext<18>(imm)),32));
@ -2987,7 +2987,7 @@ private:
tu.constant((int16_t)sext<10>(nzimm),16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = CONT;
@ -3015,7 +3015,7 @@ private:
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = CONT;
tu.close_scope();
@ -3376,7 +3376,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
@ -3414,7 +3414,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rd==0) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
@ -3451,7 +3451,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -3551,7 +3551,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
@ -3589,7 +3589,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask = (uint32_t)- 2;
@ -3656,7 +3656,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
@ -3689,7 +3689,7 @@ private:
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_raise_trap(tu, 0, static_cast<uint32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = CONT;
tu.close_scope();
@ -3743,8 +3743,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok)
return ILLEGAL_FETCH;

101
src/vm/vector_functions.cpp Normal file
View File

@ -0,0 +1,101 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// alex@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#include "vector_functions.h"
#include "iss/vm_types.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <math.h>
#include <stdexcept>
#include <vector>
namespace softvector {
bool softvec_read(void* core, uint64_t addr, uint64_t length, uint8_t* data) {
// Read length bytes from addr into *data
iss::status status = static_cast<iss::arch_if*>(core)->read(iss::address_type::PHYSICAL, iss::access_type::READ,
0 /*traits<ARCH>::MEM*/, addr, length, data);
return status == iss::Ok;
}
bool softvec_write(void* core, uint64_t addr, uint64_t length, uint8_t* data) {
// Write length bytes from addr into *data
iss::status status = static_cast<iss::arch_if*>(core)->write(iss::address_type::PHYSICAL, iss::access_type::READ,
0 /*traits<ARCH>::MEM*/, addr, length, data);
return status == iss::Ok;
}
vtype_t::vtype_t(uint32_t vtype_val) { underlying = (vtype_val & 0x8000) << 32 | (vtype_val & ~0x8000); }
vtype_t::vtype_t(uint64_t vtype_val) { underlying = vtype_val; }
bool vtype_t::vill() { return underlying >> 63; }
bool vtype_t::vma() { return (underlying >> 7) & 1; }
bool vtype_t::vta() { return (underlying >> 6) & 1; }
unsigned vtype_t::sew() {
uint8_t vsew = (underlying >> 3) & 0b111;
// pow(2, 3 + vsew);
return 1 << (3 + vsew);
}
double vtype_t::lmul() {
uint8_t vlmul = underlying & 0b111;
assert(vlmul != 0b100); // reserved encoding
int8_t signed_vlmul = (vlmul >> 2) ? 0b11111000 | vlmul : vlmul;
return pow(2, signed_vlmul);
}
mask_bit_reference& mask_bit_reference::operator=(const bool new_value) {
*start = *start & ~(1U << pos) | static_cast<unsigned>(new_value) << pos;
return *this;
}
mask_bit_reference::mask_bit_reference(uint8_t* start, uint8_t pos)
: start(start)
, pos(pos) {
assert(pos < 8 && "Bit reference can only be initialized for bytes");
};
mask_bit_reference::operator bool() const { return *(start) & (1U << (pos)); }
mask_bit_reference vmask_view::operator[](size_t idx) const {
assert(idx < elem_count);
return {start + idx / 8, static_cast<uint8_t>(idx % 8)};
}
vmask_view read_vmask(uint8_t* V, uint16_t VLEN, uint16_t elem_count, uint8_t reg_idx) {
uint8_t* mask_start = V + VLEN / 8 * reg_idx;
assert(mask_start + elem_count / 8 <= V + VLEN * RFS / 8);
return {mask_start, elem_count};
}
} // namespace softvector

172
src/vm/vector_functions.h Normal file
View File

@ -0,0 +1,172 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// alex@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#ifndef _VM_VECTOR_FUNCTIONS_H_
#define _VM_VECTOR_FUNCTIONS_H_
#include "iss/arch_if.h"
#include "iss/vm_types.h"
#include <cstdint>
#include <functional>
#include <stdint.h>
namespace softvector {
const unsigned RFS = 32;
struct vtype_t {
uint64_t underlying;
vtype_t(uint32_t vtype_val);
vtype_t(uint64_t vtype_val);
unsigned sew();
double lmul();
bool vill();
bool vma();
bool vta();
};
class mask_bit_reference {
uint8_t* start;
uint8_t pos;
public:
mask_bit_reference& operator=(const bool new_value);
mask_bit_reference(uint8_t* start, uint8_t pos);
operator bool() const;
};
struct vmask_view {
uint8_t* start;
size_t elem_count;
mask_bit_reference operator[](size_t) const;
};
vmask_view read_vmask(uint8_t* V, uint16_t VLEN, uint16_t elem_count, uint8_t reg_idx = 0);
template <unsigned VLEN> vmask_view read_vmask(uint8_t* V, uint16_t elem_count, uint8_t reg_idx = 0);
bool softvec_read(void* core, uint64_t addr, uint64_t length, uint8_t* data);
bool softvec_write(void* core, uint64_t addr, uint64_t length, uint8_t* data);
template <unsigned VLEN, typename eew_t>
uint64_t vector_load_store(void* core, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V, uint64_t vl,
uint64_t vstart, vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t segment_size, int64_t stride = 0,
bool use_stride = false);
template <unsigned XLEN, unsigned VLEN, typename eew_t, typename sew_t>
uint64_t vector_load_store_index(void* core, std::function<bool(void*, uint64_t, uint64_t, uint8_t*)> load_store_fn, uint8_t* V,
uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, uint8_t vd, uint64_t rs1, uint8_t vs2,
uint8_t segment_size);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, typename std::make_signed<src1_elem_t>::type imm);
template <unsigned VLEN, typename elem_t>
void vector_vector_carry(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd,
unsigned vs2, unsigned vs1, signed carry);
template <unsigned VLEN, typename elem_t>
void vector_imm_carry(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd, unsigned vs2,
typename std::make_signed<elem_t>::type imm, signed carry);
template <unsigned VLEN, typename scr_elem_t>
void vector_vector_merge(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename scr_elem_t>
void vector_imm_merge(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t>
void vector_unary_op(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename elem_t>
void mask_vector_vector_op(uint8_t* V, unsigned funct, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename elem_t>
void mask_vector_imm_op(uint8_t* V, unsigned funct, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, typename std::make_signed<elem_t>::type imm);
void carry_vector_vector_op(uint8_t* V, unsigned funct, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
unsigned vs1);
template <unsigned VLEN, typename elem_t>
void carry_vector_imm_op(uint8_t* V, unsigned funct, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
typename std::make_signed<elem_t>::type imm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = dest_elem_t>
bool sat_vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, int64_t vxrm, bool vm,
unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = dest_elem_t>
bool sat_vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, int64_t vxrm, bool vm,
unsigned vd, unsigned vs2, typename std::make_signed<src1_elem_t>::type imm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t = dest_elem_t>
void vector_red_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1);
template <unsigned VLEN>
void mask_mask_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN> uint64_t vcpop(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2);
template <unsigned VLEN> uint64_t vfirst(uint8_t* V, uint64_t vl, uint64_t vstart, bool vm, unsigned vs2);
template <unsigned VLEN> void mask_set_op(uint8_t* V, unsigned enc, uint64_t vl, uint64_t vstart, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename src_elem_t>
void viota(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2);
template <unsigned VLEN, typename src_elem_t> void vid(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd);
template <unsigned VLEN, typename src_elem_t> uint64_t scalar_move(uint8_t* V, vtype_t vtype, unsigned vd, uint64_t val, bool to_vector);
template <unsigned VLEN, typename src_elem_t>
void vector_slideup(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slidedown(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slide1up(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename src_elem_t>
void vector_slide1down(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename dest_elem_t, typename scr_elem_t = dest_elem_t>
void vector_vector_gather(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN, typename scr_elem_t>
void vector_imm_gather(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2, uint64_t imm);
template <unsigned VLEN, typename scr_elem_t>
void vector_compress(uint8_t* V, uint64_t vl, uint64_t vstart, vtype_t vtype, unsigned vd, unsigned vs2, unsigned vs1);
template <unsigned VLEN> void vector_whole_move(uint8_t* V, unsigned vd, unsigned vs2, unsigned count);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t = dest_elem_t>
void fp_vector_red_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void fp_vector_vector_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src2_elem_t = dest_elem_t, typename src1_elem_t = src2_elem_t>
void fp_vector_imm_op(uint8_t* V, unsigned funct6, unsigned funct3, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd,
unsigned vs2, src1_elem_t imm, uint8_t rm);
template <unsigned VLEN, typename elem_t>
void fp_vector_unary_op(uint8_t* V, unsigned encoding_space, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm,
unsigned vd, unsigned vs2, uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t>
void fp_vector_unary_w(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
uint8_t rm);
template <unsigned VLEN, typename dest_elem_t, typename src_elem_t>
void fp_vector_unary_n(uint8_t* V, unsigned unary_op, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
uint8_t rm);
template <unsigned VLEN, typename elem_t>
void mask_fp_vector_vector_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
unsigned vs1, uint8_t rm);
template <unsigned VLEN, typename elem_t>
void mask_fp_vector_imm_op(uint8_t* V, unsigned funct6, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, unsigned vd, unsigned vs2,
elem_t imm, uint8_t rm);
} // namespace softvector
#include "vm/vector_functions.hpp"
#endif /* _VM_VECTOR_FUNCTIONS_H_ */

1942
src/vm/vector_functions.hpp Normal file

File diff suppressed because it is too large Load Diff