16 Commits

Author SHA1 Message Date
1720bd4aaa adds support for compressed instructions 2022-05-20 15:17:58 +02:00
df16378605 update template for changed code generator 2022-05-18 19:10:34 +02:00
1438f0f373 add backannotation to pc trace plugin 2022-05-17 15:29:04 +02:00
766f3ba9ee fix assertion in compressed pctrace writer 2022-05-13 12:38:12 +02:00
5da4e6b424 fix alignment check for unaligned debugger accesses 2022-05-13 12:37:47 +02:00
e382217e04 update vm_tgc_c due reworked CoreDSL generator 2022-05-11 18:52:15 +02:00
9db4e3fd87 fix assertion 2022-05-10 16:13:21 +02:00
bb658be3b4 Merge branch 'develop' of https://git.minres.com/DBT-RISE/DBT-RISE-TGC into develop 2022-05-08 15:25:56 +02:00
6579780dc9 add call column in output 2022-05-08 15:24:26 +02:00
e56bc12788 fix non-lz4 build of plugin 2022-05-07 17:27:11 +02:00
e88f309ea2 add lz4 compression to pctrace 2022-05-07 17:22:06 +02:00
03bec27376 implement extended instrumentation interface 2022-04-26 17:14:33 +02:00
9d9008a3a2 fix pointer mess 2022-04-26 15:35:17 +02:00
5f6d462973 check that no interrupts are pending before entering the wfi wait 2022-04-26 13:58:20 +02:00
a92b84bef4 add code word access for ISS plugins 2022-04-25 14:18:19 +02:00
477c530847 extend debug mode handling 2022-04-13 11:41:01 +02:00
18 changed files with 962 additions and 803 deletions

View File

@ -83,6 +83,10 @@ elseif(TARGET elfio::elfio)
else()
message(FATAL_ERROR "No elfio library found, maybe a find_package() call is missing")
endif()
if(TARGET lz4::lz4)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_LZ4)
target_link_libraries(${PROJECT_NAME} PUBLIC lz4::lz4)
endif()
if(TARGET RapidJSON)
target_link_libraries(${PROJECT_NAME} PUBLIC RapidJSON)
endif()

View File

@ -1,6 +1,6 @@
import "CoreDSL-Instruction-Set-Description/RV32I.core_desc"
import "CoreDSL-Instruction-Set-Description/RVM.core_desc"
import "CoreDSL-Instruction-Set-Description/RVC.core_desc"
import "RV32I.core_desc"
import "RVM.core_desc"
import "RVC.core_desc"
Core TGC_C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
architectural_state {

View File

@ -33,7 +33,7 @@
def getRegisterSizes(){
def regs = registers.collect{it.size}
regs[-1]=64 // correct for NEXT_PC
regs+=[32, 32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET
//regs+=[32, 32, 64, 64, 64, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION
return regs
}
%>
@ -51,9 +51,7 @@ constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::a
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() = default;
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
@ -64,8 +62,8 @@ void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.PRIV=0x3;
reg.trap_state=0;
reg.icount=0;
trap_state=0;
icount=0;
}
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {

View File

@ -37,7 +37,7 @@ def nativeTypeSize(int size){
}
def getRegisterSizes(){
def regs = registers.collect{nativeTypeSize(it.size)}
regs+=[32,32, 64, 64, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET
// regs+=[32,32, 64, 64, 64, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION
return regs
}
def getRegisterOffsets(){
@ -91,12 +91,7 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS,
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
${registers.collect{it.name}.join(', ')}, NUM_REGS
};
using reg_t = uint${addrDataWidth}_t;
@ -141,7 +136,7 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline uint64_t get_icount() { return icount; }
inline bool should_stop() { return interrupt_sim; }
@ -159,7 +154,7 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
inline uint32_t get_last_branch() { return last_branch; }
#pragma pack(push, 1)
@ -167,12 +162,14 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
}}%>
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t instret = 0;
uint32_t last_branch;
} reg;
#pragma pack(pop)
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;

View File

@ -121,7 +121,7 @@ protected:
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
this->core.trap_state = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
}
@ -141,39 +141,39 @@ protected:
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint8_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
return ret;
}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint16_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
return ret;
}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint32_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
return ret;
}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint64_t>(space, addr);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
return ret;
}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){
super::write_mem(space, addr, data);
if(this->template get_reg<uint32_t>(traits::TRAP_STATE)) throw 0;
if(this->core.trap_state) throw 0;
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
@ -277,16 +277,16 @@ typename arch::traits<ARCH>::opcode_e vm_impl<ARCH>::decode_inst_id(code_word_t
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
// we fetch at max 4 byte, alignment is 2
code_word_t instr = 0;
auto *const data = (uint8_t *)&instr;
auto pc=start;
auto* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
auto* icount = reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::ICOUNT]);
auto* instret = reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::INSTRET]);
auto& trap_state = this->core.trap_state;
auto& icount = this->core.icount;
auto& cycle = this->core.cycle;
auto& instret = this->core.instret;
auto& instr = this->core.instruction;
// we fetch at max 4 byte, alignment is 2
auto *const data = reinterpret_cast<uint8_t*>(&instr);
while(!this->core.should_stop() &&
!(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){
@ -314,11 +314,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
try {
<%instr.behavior.eachLine{%>${it}
<%}%>} catch(...){}
}
break;<%}%>
<%}%>TRAP_${instr.name}:break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
@ -328,16 +326,16 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(inst_id));
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val, instr);
if(trap_state!=0){
super::core.enter_trap(trap_state, pc.val, instr);
} else {
(*icount)++;
(*instret)++;
icount++;
instret++;
}
(*reinterpret_cast<uint64_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::CYCLE]))++;
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC;
this->core.reg.trap_state = this->core.reg.pending_trap;
this->core.trap_state = this->core.pending_trap;
}
}
return pc;

View File

@ -188,7 +188,7 @@ enum {
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3 };
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4};
enum {
ISA_A = 1,

View File

@ -203,7 +203,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount + cycle_offset);
pc, instr, (reg_t)state.mstatus, this->icount + cycle_offset);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -235,13 +235,17 @@ protected:
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.get_pc(); };
uint64_t get_pc() override { return arch.reg.PC; };
uint64_t get_next_pc() override { return arch.get_next_pc(); };
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; };
uint64_t get_instr_count() { return arch.reg.icount; }
uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_instr_count() override { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
void set_curr_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; };
@ -249,8 +253,6 @@ protected:
};
friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
@ -565,22 +567,22 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const acce
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
if (is_debug(access)) throw trap_access(0, addr);
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto alignment = access == iss::access_type::FETCH? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if(alignment>1 && (addr&(alignment-1))){
this->reg.trap_state = 1<<31 | 4<<16;
if(!is_debug(access) && (addr&(alignment-1))){
this->trap_state = 1<<31 | 4<<16;
fault_data=addr;
return iss::Err;
}
auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr});
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()){
if(!is_fetch(access) && memfn_range.size()){
auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a){
return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val;
});
@ -593,12 +595,12 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const acce
res = read_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -624,7 +626,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const acce
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -662,12 +664,12 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const acc
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){
this->reg.trap_state = 1<<31 | 6<<16;
this->trap_state = 1<<31 | 6<<16;
fault_data=addr;
return iss::Err;
}
@ -686,12 +688,12 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const acc
res = write_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -751,7 +753,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const acc
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -797,7 +799,7 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
@ -819,16 +821,16 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) {
if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret);
val = static_cast<reg_t>(this->instret);
} else if ((addr&0xff) == (minstreth&0xff)) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(this->reg.instret >> 32);
val = static_cast<reg_t>(this->instret >> 32);
}
return iss::Ok;
}
@ -837,20 +839,20 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>
if (sizeof(typename traits<BASE>::reg_t) != 4) {
if ((addr&0xff) == (minstreth&0xff))
return iss::Err;
this->reg.instret = static_cast<uint64_t>(val);
this->instret = static_cast<uint64_t>(val);
} else {
if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
this->instret = (this->instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff);
this->instret = (static_cast<uint64_t>(val)<<32) + (this->instret & 0xffffffff);
}
}
this->reg.instret--;
this->instret--;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
@ -969,7 +971,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned len
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
if (this->icount > 30000) data[3] |= 0x80;
} break;
default: {
for(auto offs=0U; offs<length; ++offs) {
@ -1029,7 +1031,7 @@ iss::status riscv_hart_m_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned le
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
@ -1117,7 +1119,7 @@ template <typename BASE, features_e FEAT> void riscv_hart_m_p<BASE, FEAT>::check
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
@ -1127,6 +1129,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
// calculate effective privilege level
unsigned new_priv = PRIV_M;
if (trap_id == 0) { // exception
if (cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
// store ret addr in xepc register
@ -1146,10 +1149,13 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
csr[mtval] = (instr & 0x3)==3?instr:instr&0xffff;
break;
case 3:
//TODO: implement debug mode behavior
// csr[dpc] = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[mtval] = addr;
}
break;
case 4:
case 6:
@ -1161,7 +1167,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
this->pending_trap = 0;
}
csr[mcause] = (trap_id << (traits<BASE>::XLEN-1)) + cause;
// update mstatus
@ -1182,8 +1188,8 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::e
this->reg.NEXT_PC = ivec & ~0x3UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state
this->reg.PRIV = PRIV_M;
this->reg.trap_state = 0;
this->reg.PRIV = new_priv;
this->trap_state = 0;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);

View File

@ -307,7 +307,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]",
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->reg.ccount + cycle_offset);
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->icount + cycle_offset);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -340,9 +340,13 @@ protected:
virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
uint64_t get_instr_count() { return arch.reg.icount; }
uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_instr_count() { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
@ -607,13 +611,19 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if(!is_debug(access) && (addr&(alignment-1))){
this->trap_state = 1<<31 | 4<<16;
fault_data=addr;
return iss::Err;
}
if (unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = hart_state_type::decode_vm_info(this->reg.PRIV, state.satp);
if (vm.levels != 0) { // VM is active
@ -629,12 +639,12 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data):
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -650,7 +660,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
case 3: { // SFENCE:VMA upper
auto tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
@ -671,7 +681,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const address_type type, const access_
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -709,7 +719,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
@ -728,12 +738,12 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
write_mem(phys_addr_t{access, space, addr}, length, data):
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -782,7 +792,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
ptw.clear();
auto tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
@ -798,7 +808,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -844,7 +854,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_reg(unsigned
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
@ -866,7 +876,7 @@ template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_cycle(unsigned
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok;
}
@ -897,7 +907,7 @@ template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_instret(unsigne
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
@ -966,7 +976,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_epc(unsigned
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t &val) {
reg_t tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
@ -977,7 +987,7 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) {
reg_t tvm = state.mstatus.TVM;
if (this->reg.PRIV == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
@ -1033,7 +1043,7 @@ iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr_t paddr, unsigned length
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
if (this->icount > 30000) data[3] |= 0x80;
} break;
default: {
for(auto offs=0U; offs<length; ++offs) {
@ -1093,7 +1103,7 @@ iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned lengt
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
@ -1162,7 +1172,7 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++;
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
@ -1306,7 +1316,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
if (cur_priv != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
this->pending_trap = 0;
}
size_t adr = ucause | (new_priv << 8);
csr[adr] = (trap_id << 31) + cause;
@ -1351,7 +1361,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
<< lvl[cur_priv] << " to " << lvl[new_priv];
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
this->trap_state = 0;
update_vm_info();
return this->reg.NEXT_PC;
}
@ -1363,7 +1373,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t f
auto tsr = state.mstatus.TSR;
if (cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return this->reg.PC;
}
@ -1402,7 +1412,7 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::wait_until(uint64_t flags
auto status = state.mstatus;
auto tw = status.TW;
if (this->reg.PRIV == PRIV_S && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
}
}

View File

@ -218,7 +218,7 @@ public:
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]",
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->reg.icount + cycle_offset);
pc, instr, lvl[this->reg.PRIV], (reg_t)state.mstatus, this->icount + cycle_offset);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
@ -254,9 +254,13 @@ protected:
virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
uint64_t get_instr_count() { return arch.reg.icount; }
uint64_t get_instr_word() override { return arch.instruction; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
uint64_t get_instr_count() { return arch.icount; }
uint64_t get_pendig_traps() override { return arch.trap_state; }
uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; }
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
@ -701,23 +705,23 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read(const address_type type, const acc
switch (space) {
case traits<BASE>::MEM: {
if(FEAT & FEAT_PMP){
if(!pmp_check(access, addr, length) && (access&access_type::DEBUG) != access_type::DEBUG) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31) | ((access==access_type::FETCH?1:5) << 16); // issue trap 1
if (is_debug(access)) throw trap_access(0, addr);
this->trap_state = (1 << 31) | ((access==access_type::FETCH?1:5) << 16); // issue trap 1
return iss::Err;
}
}
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
auto alignment = is_fetch(access)? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if (unlikely(is_fetch(access) && (addr&(alignment-1)))) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
if (is_debug(access)) throw trap_access(0, addr);
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto alignment = access == iss::access_type::FETCH? (traits<BASE>::MISA_VAL&0x100? 2 : 4) : length;
if(alignment>1 && (addr&(alignment-1))){
this->reg.trap_state = 1<<31 | 4<<16;
if(!is_debug(access) && (addr&(alignment-1))){
this->trap_state = 1<<31 | 4<<16;
fault_data=addr;
return iss::Err;
}
@ -736,12 +740,12 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read(const address_type type, const acc
res = read_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)){
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -767,7 +771,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read(const address_type type, const acc
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -806,19 +810,19 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write(const address_type type, const ac
if(!pmp_check(access, addr, length) && (access&access_type::DEBUG) != access_type::DEBUG) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 1
this->trap_state = (1 << 31) | (7 << 16); // issue trap 1
return iss::Err;
}
}
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
this->trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){
this->reg.trap_state = 1<<31 | 6<<16;
this->trap_state = 1<<31 | 6<<16;
fault_data=addr;
return iss::Err;
}
@ -837,12 +841,12 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write(const address_type type, const ac
res = write_mem( phys_addr, length, data);
}
if (unlikely(res != iss::Ok)) {
this->reg.trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault)
fault_data=addr;
}
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -902,7 +906,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write(const address_type type, const ac
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
this->trap_state = (1 << 31) | ta.id;
fault_data=ta.addr;
return iss::Err;
}
@ -948,7 +952,7 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
auto cycle_val = this->icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
@ -970,16 +974,16 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
mcycle_csr = (static_cast<uint64_t>(val)<<32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around
cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_instret(unsigned addr, reg_t &val) {
if ((addr&0xff) == (minstret&0xff)) {
val = static_cast<reg_t>(this->reg.instret);
val = static_cast<reg_t>(this->instret);
} else if ((addr&0xff) == (minstreth&0xff)) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(this->reg.instret >> 32);
val = static_cast<reg_t>(this->instret >> 32);
}
return iss::Ok;
}
@ -988,20 +992,20 @@ template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT
if (sizeof(typename traits<BASE>::reg_t) != 4) {
if ((addr&0xff) == (minstreth&0xff))
return iss::Err;
this->reg.instret = static_cast<uint64_t>(val);
this->instret = static_cast<uint64_t>(val);
} else {
if ((addr&0xff) == (minstret&0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
this->instret = (this->instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val)<<32) + (this->reg.instret & 0xffffffff);
this->instret = (static_cast<uint64_t>(val)<<32) + (this->instret & 0xffffffff);
}
}
this->reg.instret--;
this->instret--;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_mu_p<BASE, FEAT>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
@ -1137,7 +1141,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned le
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
if (this->icount > 30000) data[3] |= 0x80;
} break;
default: {
for(auto offs=0U; offs<length; ++offs) {
@ -1196,7 +1200,7 @@ iss::status riscv_hart_mu_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned l
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
@ -1284,19 +1288,19 @@ template <typename BASE, features_e FEAT> void riscv_hart_mu_p<BASE, FEAT>::chec
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
if(flags==std::numeric_limits<uint64_t>::max()) flags=this->reg.trap_state;
if(flags==std::numeric_limits<uint64_t>::max()) flags=this->trap_state;
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + this->reg.PRIV; // adjust environment call cause
// calculate effective privilege level
auto new_priv = PRIV_M;
unsigned new_priv = PRIV_M;
if (trap_id == 0) { // exception
if (this->reg.PRIV != PRIV_M && ((csr[medeleg] >> cause) & 0x1) != 0)
new_priv = PRIV_U;
@ -1317,10 +1321,13 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
csr[utval | (new_priv << 8)] = (instr & 0x3)==3?instr:instr&0xffff;
break;
case 3:
//TODO: implement debug mode behavior
// csr[dpc] = addr;
// csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[utval | (new_priv << 8)] = addr;
}
break;
case 4:
case 6:
@ -1335,7 +1342,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
if (this->reg.PRIV != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = PRIV_U;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
this->pending_trap = 0;
}
size_t adr = ucause | (new_priv << 8);
csr[adr] = (trap_id << (traits<BASE>::XLEN-1)) + cause;
@ -1375,7 +1382,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
<< lvl[this->reg.PRIV] << " to " << lvl[new_priv];
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
this->trap_state = 0;
return this->reg.NEXT_PC;
}
@ -1384,7 +1391,7 @@ template <typename BASE, features_e FEAT> uint64_t riscv_hart_mu_p<BASE, FEAT>::
auto inst_priv = (flags & 0x3)? 3:0;
if(inst_priv>cur_priv){
auto trap_val = 0x80ULL << 24 | (2 << 16); // illegal instruction
this->reg.trap_state = trap_val;
this->trap_state = trap_val;
this->reg.NEXT_PC = std::numeric_limits<uint32_t>::max();
} else {
auto status = state.mstatus;

View File

@ -58,12 +58,7 @@ template <> struct traits<tgc_c> {
constexpr static unsigned FP_REGS_SIZE = 0;
enum reg_e {
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, PC, NEXT_PC, PRIV, DPC, NUM_REGS,
TRAP_STATE=NUM_REGS,
PENDING_TRAP,
ICOUNT,
CYCLE,
INSTRET
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, PC, NEXT_PC, PRIV, DPC, NUM_REGS
};
using reg_t = uint32_t;
@ -76,11 +71,11 @@ template <> struct traits<tgc_c> {
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, 41> reg_bit_widths{
{32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32,32,32,64,64,64}};
static constexpr std::array<const uint32_t, 36> reg_bit_widths{
{32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32}};
static constexpr std::array<const uint32_t, 41> reg_byte_offsets{
{0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137,141,145,149,157,165}};
static constexpr std::array<const uint32_t, 36> reg_byte_offsets{
{0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
@ -197,7 +192,7 @@ struct tgc_c: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline uint64_t get_icount() { return icount; }
inline bool should_stop() { return interrupt_sim; }
@ -215,7 +210,7 @@ struct tgc_c: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
inline uint32_t get_last_branch() { return last_branch; }
#pragma pack(push, 1)
@ -256,12 +251,14 @@ struct tgc_c: public arch_if {
uint32_t NEXT_PC = 0;
uint8_t PRIV = 0;
uint32_t DPC = 0;
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t instret = 0;
uint32_t last_branch;
} reg;
#pragma pack(pop)
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;

View File

@ -81,7 +81,7 @@ public:
void callback(instr_info_t instr_info, exec_info const&) override;
private:
iss::instrumentation_if *arch_instr;
iss::instrumentation_if *instr_if;
std::vector<instr_desc> delays;
struct pair_hash {
size_t operator()(const std::pair<uint64_t, uint64_t> &p) const {

View File

@ -44,7 +44,7 @@
namespace iss {
namespace plugin {
class lz4compress_steambuf;
class cov : public iss::vm_plugin {
struct instr_delay {
std::string instr_name;
@ -88,10 +88,13 @@ public:
private:
iss::instrumentation_if *instr_if {nullptr};
std::ofstream output;
#ifdef WITH_LZ4
std::unique_ptr<lz4compress_steambuf> strbuf;
std::ostream ostr;
#endif
std::string filename;
std::vector<instr_desc> delays;
bool jumped, first;
bool jumped{false}, first{true};
};
}
}

View File

@ -41,12 +41,10 @@ using namespace iss::arch;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_aliases;
constexpr std::array<const uint32_t, 41> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 41> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
constexpr std::array<const uint32_t, 36> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 36> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
tgc_c::tgc_c() {
reg.icount = 0;
}
tgc_c::tgc_c() = default;
tgc_c::~tgc_c() = default;
@ -57,8 +55,8 @@ void tgc_c::reset(uint64_t address) {
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.PRIV=0x3;
reg.trap_state=0;
reg.icount=0;
trap_state=0;
icount=0;
}
uint8_t *tgc_c::get_regs_base_ptr() {

View File

@ -60,13 +60,13 @@ int main(int argc, char *argv[]) {
desc.add_options()
("help,h", "Print help message")
("verbose,v", po::value<int>()->implicit_value(0), "Sets logging verbosity")
("logfile,f", po::value<std::string>(), "Sets default log file.")
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the memory input file")

View File

@ -48,7 +48,7 @@ using namespace rapidjson;
using namespace std;
iss::plugin::cycle_estimate::cycle_estimate(string const& config_file_name)
: arch_instr(nullptr)
: instr_if(nullptr)
, config_file_name(config_file_name)
{
}
@ -57,9 +57,9 @@ iss::plugin::cycle_estimate::~cycle_estimate() {
}
bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) {
arch_instr = vm.get_arch()->get_instrumentation_if();
if(!arch_instr) return false;
const string core_name = arch_instr->core_type_name();
instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if) return false;
const string core_name = instr_if->core_type_name();
if (config_file_name.length() > 0) {
ifstream is(config_file_name);
if (is.is_open()) {
@ -108,11 +108,11 @@ bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if&
}
void iss::plugin::cycle_estimate::callback(instr_info_t instr_info, exec_info const& exc_info) {
assert(arch_instr && "No instrumentation interface available but callback executed");
assert(instr_if && "No instrumentation interface available but callback executed");
auto entry = delays[instr_info.instr_id];
bool taken = exc_info.branch_taken;
if (exc_info.branch_taken && (entry.taken > 1))
arch_instr->set_curr_instr_cycles(entry.taken);
instr_if->set_curr_instr_cycles(entry.taken);
else if (entry.not_taken > 1)
arch_instr->set_curr_instr_cycles(entry.not_taken);
instr_if->set_curr_instr_cycles(entry.not_taken);
}

View File

@ -1,6 +1,7 @@
#include <iss/arch_if.h>
#include <iss/plugin/pctrace.h>
#include <util/logging.h>
#include <util/ities.h>
#include <rapidjson/document.h>
#include <rapidjson/istreamwrapper.h>
#include "rapidjson/writer.h"
@ -8,27 +9,99 @@
#include <rapidjson/ostreamwrapper.h>
#include <rapidjson/error/en.h>
#include <fstream>
#include <iostream>
#ifdef WITH_LZ4
#include <lz4frame.h>
#endif
namespace iss {
namespace plugin {
using namespace rapidjson;
using namespace std;
iss::plugin::cov::cov(std::string const &filename)
#ifdef WITH_LZ4
class lz4compress_steambuf: public std::streambuf {
public:
lz4compress_steambuf(const lz4compress_steambuf&) = delete;
lz4compress_steambuf& operator=(const lz4compress_steambuf&) = delete;
lz4compress_steambuf(std::ostream &sink, size_t buf_size)
: sink(sink)
, src_buf(buf_size)
, dest_buf(LZ4F_compressBound(buf_size, nullptr))
{
auto errCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
if (LZ4F_isError(errCode) != 0)
throw std::runtime_error(std::string("Failed to create LZ4 context: ") + LZ4F_getErrorName(errCode));
size_t ret = LZ4F_compressBegin(ctx, &dest_buf.front(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to start LZ4 compression: ") + LZ4F_getErrorName(ret));
setp(src_buf.data(), src_buf.data() + src_buf.size() - 1);
sink.write(dest_buf.data(), ret);
}
~lz4compress_steambuf() {
close();
}
void close() {
if (closed)
return;
sync();
auto ret = LZ4F_compressEnd(ctx, dest_buf.data(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to finish LZ4 compression: ") + LZ4F_getErrorName(ret));
sink.write(dest_buf.data(), ret);
LZ4F_freeCompressionContext(ctx);
closed = true;
}
private:
int_type overflow(int_type ch) override {
compress_and_write();
*pptr() = static_cast<char_type>(ch);
pbump(1);
return ch;
}
int_type sync() override {
compress_and_write();
return 0;
}
void compress_and_write() {
if (closed)
throw std::runtime_error("Cannot write to closed stream");
if(auto orig_size = pptr() - pbase()){
auto ret = LZ4F_compressUpdate(ctx, dest_buf.data(), dest_buf.capacity(), pbase(), orig_size, nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("LZ4 compression failed: ") + LZ4F_getErrorName(ret));
if(ret) sink.write(dest_buf.data(), ret);
pbump(-orig_size);
}
}
std::ostream &sink;
std::vector<char> src_buf;
std::vector<char> dest_buf;
LZ4F_compressionContext_t ctx{ nullptr };
bool closed{ false };
};
#endif
cov::cov(std::string const &filename)
: instr_if(nullptr)
, filename(filename)
{
output.open("output.trc");
jumped = false;
first = true;
}
, output("output.trc")
#ifdef WITH_LZ4
, strbuf(new lz4compress_steambuf(output, 4096))
, ostr(strbuf.get())
#endif
{ }
iss::plugin::cov::~cov() {
output.close();
}
cov::~cov() { }
bool iss::plugin::cov::registration(const char *const version, vm_if& vm) {
bool cov::registration(const char *const version, vm_if& vm) {
instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if) return false;
const string core_name = instr_if->core_type_name();
@ -77,57 +150,31 @@ bool iss::plugin::cov::registration(const char *const version, vm_if& vm) {
}
}
return true;
}
inline string formatPC(uint64_t pc) {
stringstream stream;
stream << "0x" << std::hex << pc;
return stream.str();
}
void iss::plugin::cov::callback(instr_info_t iinfo, const exec_info& einfo) {
// auto delay = 0;
// auto entry = delays[iinfo.instr_id];
// bool taken = einfo.branch_taken;
// if (einfo.branch_taken)
// delay = entry.taken;
// else
// delay = entry.not_taken;
//
// if (first){
// output << formatPC(instr_if->get_pc()) << "," << delay;
// first = false;
// }
// if(instr_if->get_next_pc()-instr_if->get_pc() != delays[iinfo.instr_id].size/8){
// //The goal is to keep the output in start-target pairs, so after a jump the target address needs to get written
// //to the output. If the target happens to also be a start, we keep the pairing by adding a 0-delay entry.
// if (jumped)
// output <<"\n" <<formatPC(instr_if->get_pc()) << "," << 0;
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// jumped = true;
// }
// else{
// if (jumped){
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// jumped = false;
// }
// else if(delay!=1){
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << delay;
// output <<"\n" << formatPC(instr_if->get_pc()) << "," << 0;
// }
//
// }
//source code for the full output
void cov::callback(instr_info_t iinfo, const exec_info& einfo) {
auto delay = 0;
auto entry = delays[iinfo.instr_id];
size_t id = iinfo.instr_id;
auto entry = delays[id];
auto instr = instr_if->get_instr_word();
auto call = id==65 || id ==86 || ((id==2 || id==3) && bit_sub<7,5>(instr)!=0) ;//not taking care of tail calls (jalr with loading x6)
bool taken = einfo.branch_taken;
if (einfo.branch_taken)
bool compressed = (instr&0x3)!=0x3;
if (einfo.branch_taken) {
delay = entry.taken;
else
if(entry.taken > 1)
instr_if->set_curr_instr_cycles(entry.taken);
} else {
delay = entry.not_taken;
output<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay << "\n";
if (entry.not_taken > 1)
instr_if->set_curr_instr_cycles(entry.not_taken);
}
#ifndef WITH_LZ4
output<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#else
auto rdbuf=ostr.rdbuf();
ostr<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#endif
}
}
}

View File

@ -105,7 +105,7 @@ public:
heart_state_t &get_state() { return this->state; }
void notify_phase(iss::arch_if::exec_phase p) override {
if (p == iss::arch_if::ISTART) owner->sync(this->reg.icount);
if (p == iss::arch_if::ISTART) owner->sync(this->icount);
}
sync_type needed_sync() const override { return PRE_SYNC; }
@ -115,7 +115,7 @@ public:
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:"
<< this->reg.icount + this->cycle_offset << "]";
<< this->icount + this->cycle_offset << "]";
SCCDEBUG(owner->name())<<"disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
@ -175,9 +175,9 @@ public:
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
do {
while(this->pending_trap == 0 && (this->csr[arch::mip] & this->csr[arch::mie]) == 0) {
sc_core::wait(wfi_evt);
} while (this->reg.pending_trap == 0);
}
PLAT::wait_until(flags);
}
@ -204,7 +204,7 @@ public:
this->csr[arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->pending_trap;
}
private:

File diff suppressed because it is too large Load Diff