DBT-RISE-TGC/gen_input/templates/tcc/CORENAME.cpp.gtl

334 lines
13 KiB
Plaintext
Raw Normal View History

2020-01-09 19:37:17 +01:00
/*******************************************************************************
* Copyright (C) 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
2020-01-10 07:24:00 +01:00
#include <iss/tcc/vm_base.h>
2020-01-09 19:37:17 +01:00
#include <util/logging.h>
2020-01-10 07:24:00 +01:00
#include <sstream>
2020-01-09 19:37:17 +01:00
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace tcc {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::tcc::vm_base<ARCH> {
2020-01-09 19:37:17 +01:00
public:
2023-05-16 21:51:35 +02:00
using traits = arch::traits<ARCH>;
using super = typename iss::tcc::vm_base<ARCH>;
2020-01-09 19:37:17 +01:00
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
2023-05-16 21:51:35 +02:00
using mem_type_e = typename traits::mem_type_e;
using addr_t = typename super::addr_t;
2020-04-17 19:23:43 +02:00
using tu_builder = typename super::tu_builder;
2020-01-09 19:37:17 +01:00
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
2020-04-17 19:23:43 +02:00
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
2020-01-09 19:37:17 +01:00
2023-05-16 21:51:35 +02:00
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
2020-01-09 19:37:17 +01:00
void setup_module(std::string m) override {
2020-01-09 19:37:17 +01:00
super::setup_module(m);
}
2020-04-17 19:23:43 +02:00
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_trap_behavior(tu_builder& tu) override;
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_leave_trap(tu_builder& tu, unsigned lvl);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_wait(tu_builder& tu, unsigned type);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
inline void gen_trap_check(tu_builder& tu) {
tu("if(*trap_state!=0) goto trap_entry;");
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) {
2020-04-12 12:44:30 +02:00
switch(reg_num){
2023-05-16 21:51:35 +02:00
case traits::NEXT_PC:
2020-04-17 19:23:43 +02:00
tu("*next_pc = {:#x};", pc.val);
2020-04-12 12:44:30 +02:00
break;
2023-05-16 21:51:35 +02:00
case traits::PC:
2020-04-17 19:23:43 +02:00
tu("*pc = {:#x};", pc.val);
2020-04-12 12:44:30 +02:00
break;
default:
2020-04-13 17:03:50 +02:00
if(!tu.defined_regs[reg_num]){
2020-04-17 19:23:43 +02:00
tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast<uintptr_t>(get_reg_ptr(reg_num)));
2020-04-12 12:44:30 +02:00
tu.defined_regs[reg_num]=true;
2020-04-13 17:03:50 +02:00
}
2020-04-17 19:23:43 +02:00
tu("*reg{:02d} = {:#x};", reg_num, pc.val);
2020-04-12 12:44:30 +02:00
}
2020-01-09 19:37:17 +01:00
}
2023-05-16 21:51:35 +02:00
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
2020-01-09 19:37:17 +01:00
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
2020-01-09 19:37:17 +01:00
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
2020-01-09 19:37:17 +01:00
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
2020-01-09 19:37:17 +01:00
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
2020-06-18 06:18:59 +02:00
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
2023-05-16 21:51:35 +02:00
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
2020-01-09 19:37:17 +01:00
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
2023-05-16 21:51:35 +02:00
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("${instr.name}_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
2023-05-16 21:51:35 +02:00
tu.open_scope();<%instr.behavior.eachLine{%>
2020-04-13 17:03:50 +02:00
${it}<%}%>
tu.close_scope();
2023-05-16 21:51:35 +02:00
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
gen_trap_check(tu);
return returnValue;
2020-01-09 19:37:17 +01:00
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
2020-04-17 19:23:43 +02:00
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
2020-04-12 12:44:30 +02:00
vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size());
2020-01-09 19:37:17 +01:00
pc = pc + ((instr & 3) == 3 ? 4 : 2);
2020-04-13 17:03:50 +02:00
gen_raise_trap(tu, 0, 2); // illegal instruction trap
2020-04-12 12:44:30 +02:00
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
2020-01-09 19:37:17 +01:00
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
2020-01-09 19:37:17 +01:00
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
2020-01-09 19:37:17 +01:00
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
2020-01-09 19:37:17 +01:00
}
populate_decoding_tree(root);
2020-01-09 19:37:17 +01:00
}
template <typename ARCH>
std::tuple<continuation_e>
2020-04-17 19:23:43 +02:00
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
2020-01-09 19:37:17 +01:00
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
2020-01-09 19:37:17 +01:00
phys_addr_t paddr(pc);
paddr = this->core.v2p(pc);
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
2020-01-09 19:37:17 +01:00
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
2020-01-09 19:37:17 +01:00
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, tu);
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
2020-04-13 17:03:50 +02:00
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
2023-05-16 21:51:35 +02:00
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
2023-05-16 21:51:35 +02:00
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
2023-05-16 21:51:35 +02:00
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
2020-04-17 19:23:43 +02:00
tu("return *next_pc;");
2020-01-09 19:37:17 +01:00
}
} // namespace ${coreDef.name.toLowerCase()}
2020-01-09 19:37:17 +01:00
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namesapce tcc
2020-01-09 19:37:17 +01:00
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
namespace iss {
namespace {
2023-07-09 20:13:26 +02:00
volatile std::array<bool, 2> dummy = {
2023-07-14 11:11:03 +02:00
core_factory::instance().register_creator<core_factory::CPP>("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
2023-07-14 11:11:03 +02:00
core_factory::instance().register_creator<core_factory::CPP>("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}