Compare commits

..

1 Commits

Author SHA1 Message Date
a6c7b1427e fixes missing namespaces 2023-07-09 20:15:12 +02:00
91 changed files with 13024 additions and 19758 deletions

View File

@ -1,3 +1,4 @@
---
Language: Cpp
# BasedOnStyle: LLVM
# should be in line with IndentWidth
@ -12,8 +13,8 @@ AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AllowShortIfStatementsOnASingleLine: true
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
@ -38,8 +39,8 @@ BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: true
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 140
CommentPragmas: '^( IWYU pragma:| @suppress)'
ColumnLimit: 120
CommentPragmas: '^ IWYU pragma:'
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 0
ContinuationIndentWidth: 4
@ -75,13 +76,13 @@ PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Left
PointerAlignment: Right
ReflowComments: true
SortIncludes: true
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: Never
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false

2
.gitignore vendored
View File

@ -1,6 +1,5 @@
.DS_Store
/*.il
/.settings
/avr-instr.html
/blink.S
/flash.*
@ -15,6 +14,7 @@
/*.ods
/build*/
/*.logs
language.settings.xml
/*.gtkw
/Debug wo LLVM/
/*.txdb

View File

@ -0,0 +1,73 @@
eclipse.preferences.version=1
org.eclipse.cdt.codan.checkers.errnoreturn=Warning
org.eclipse.cdt.codan.checkers.errnoreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return\\")",implicit\=>false}
org.eclipse.cdt.codan.checkers.errreturnvalue=Error
org.eclipse.cdt.codan.checkers.errreturnvalue.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused return value\\")"}
org.eclipse.cdt.codan.checkers.nocommentinside=-Error
org.eclipse.cdt.codan.checkers.nocommentinside.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Nesting comments\\")"}
org.eclipse.cdt.codan.checkers.nolinecomment=-Error
org.eclipse.cdt.codan.checkers.nolinecomment.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Line comments\\")"}
org.eclipse.cdt.codan.checkers.noreturn=Error
org.eclipse.cdt.codan.checkers.noreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return value\\")",implicit\=>false}
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation=Error
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Abstract class cannot be instantiated\\")"}
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem=Error
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Ambiguous problem\\")"}
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment in condition\\")"}
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem=Error
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment to itself\\")"}
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem=Warning
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No break at end of case\\")",no_break_comment\=>"no break",last_case_param\=>false,empty_case_param\=>false,enable_fallthrough_quickfix_param\=>false}
org.eclipse.cdt.codan.internal.checkers.CatchByReference=Warning
org.eclipse.cdt.codan.internal.checkers.CatchByReference.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Catching by reference is recommended\\")",unknown\=>false,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem=Error
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Circular inheritance\\")"}
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization=Warning
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class members should be properly initialized\\")",skip\=>true}
org.eclipse.cdt.codan.internal.checkers.DecltypeAutoProblem=Error
org.eclipse.cdt.codan.internal.checkers.DecltypeAutoProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid 'decltype(auto)' specifier\\")"}
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Field cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Function cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.InvalidArguments=Error
org.eclipse.cdt.codan.internal.checkers.InvalidArguments.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid arguments\\")"}
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem=Error
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid template argument\\")"}
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Label statement not found\\")"}
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Member declaration not found\\")"}
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Method cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker=-Info
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Name convention for function\\")",pattern\=>"^[a-z]",macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem=Warning
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class has a virtual method and non-virtual destructor\\")"}
org.eclipse.cdt.codan.internal.checkers.OverloadProblem=Error
org.eclipse.cdt.codan.internal.checkers.OverloadProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid overload\\")"}
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redeclaration\\")"}
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redefinition\\")"}
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Return with parenthesis\\")"}
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Format String Vulnerability\\")"}
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem=Warning
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Statement has no effect\\")",macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suggested parenthesis around expression\\")",paramNot\=>false}
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suspicious semicolon\\")",else\=>false,afterelse\=>false}
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Type cannot be resolved\\")"}
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused function declaration\\")",macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused static function\\")",macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused variable declaration in file scope\\")",macro\=>true,exceptions\=>("@(\#)","$Id")}
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Symbol is not resolved\\")"}

View File

@ -0,0 +1,13 @@
eclipse.preferences.version=1
environment/project/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/project/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/delimiter=\:
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/operation=append
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LLVM_HOME/value=/usr/lib/llvm-6.0
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/delimiter=\:
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/operation=append
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/LLVM_HOME/value=/usr/lib/llvm-6.0
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/project/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true

View File

@ -0,0 +1,37 @@
eclipse.preferences.version=1
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPLUS_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/CPLUS_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/C_INCLUDE_PATH/delimiter=\:
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/C_INCLUDE_PATH/operation=remove
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/buildEnvironmentInclude/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.debug.1751741082/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171.1259602404/appendContributed=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/LIBRARY_PATH/delimiter=\:
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/LIBRARY_PATH/operation=remove
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/append=true
environment/buildEnvironmentLibrary/cdt.managedbuild.config.gnu.exe.release.1745230171/appendContributed=true

View File

@ -1,152 +1,140 @@
cmake_minimum_required(VERSION 3.18)
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
# ##############################################################################
cmake_minimum_required(VERSION 3.12)
###############################################################################
#
# ##############################################################################
###############################################################################
project(dbt-rise-tgc VERSION 1.0.0)
include(GNUInstallDirs)
include(flink)
find_package(elfio QUIET)
find_package(Boost COMPONENTS coroutine)
find_package(jsoncpp)
find_package(Boost COMPONENTS coroutine REQUIRED)
if(WITH_LLVM)
if(DEFINED ENV{LLVM_HOME})
find_path (LLVM_DIR LLVM-Config.cmake $ENV{LLVM_HOME}/lib/cmake/llvm)
endif(DEFINED ENV{LLVM_HOME})
find_package(LLVM REQUIRED CONFIG)
message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")
llvm_map_components_to_libnames(llvm_libs support core mcjit x86codegen x86asmparser)
endif()
#Mac needed variables (adapt for your needs - http://www.cmake.org/Wiki/CMake_RPATH_handling#Mac_OS_X_and_the_RPATH)
#set(CMAKE_MACOSX_RPATH ON)
#set(CMAKE_SKIP_BUILD_RPATH FALSE)
#set(CMAKE_BUILD_WITH_INSTALL_RPATH FALSE)
#set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
#set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
add_subdirectory(softfloat)
set(LIB_SOURCES
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/iss/semihosting/semihosting.cpp
src/iss/arch/tgc_c.cpp
src/vm/interp/vm_tgc_c.cpp
src/vm/fp_functions.cpp
)
if(WITH_TCC)
list(APPEND LIB_SOURCES
src/vm/tcc/vm_tgc5c.cpp
)
endif()
if(WITH_LLVM)
list(APPEND LIB_SOURCES
src/vm/llvm/vm_tgc5c.cpp
src/vm/llvm/fp_impl.cpp
)
endif()
if(WITH_ASMJIT)
list(APPEND LIB_SOURCES
src/vm/asmjit/vm_tgc5c.cpp
)
endif()
# library files
FILE(GLOB GEN_ISS_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp)
FILE(GLOB GEN_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp)
FILE(GLOB GEN_YAML_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/contrib/instr/*.yaml)
list(APPEND LIB_SOURCES ${GEN_ISS_SOURCES} ${GEN_VM_SOURCES})
if(TARGET ${CORE_NAME}_cpp)
list(APPEND LIB_SOURCES ${${CORE_NAME}_OUTPUT_FILES})
else()
FILE(GLOB GEN_ISS_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp)
FILE(GLOB GEN_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp)
list(APPEND LIB_SOURCES ${GEN_ISS_SOURCES} ${GEN_VM_SOURCES})
foreach(FILEPATH ${GEN_ISS_SOURCES})
get_filename_component(CORE ${FILEPATH} NAME_WE)
string(TOUPPER ${CORE} CORE)
list(APPEND LIB_DEFINES CORE_${CORE})
endforeach()
message("Defines are ${LIB_DEFINES}")
endif()
foreach(FILEPATH ${GEN_ISS_SOURCES})
get_filename_component(CORE ${FILEPATH} NAME_WE)
string(TOUPPER ${CORE} CORE)
list(APPEND LIB_DEFINES CORE_${CORE})
endforeach()
message(STATUS "Core defines are ${LIB_DEFINES}")
if(TARGET RapidJSON OR TARGET RapidJSON::RapidJSON)
list(APPEND LIB_SOURCES src/iss/plugin/cycle_estimate.cpp src/iss/plugin/pctrace.cpp)
endif()
if(WITH_LLVM)
FILE(GLOB LLVM_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/llvm/vm_*.cpp)
list(APPEND LIB_SOURCES ${LLVM_GEN_SOURCES})
FILE(GLOB LLVM_GEN_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/llvm/vm_*.cpp
)
list(APPEND LIB_SOURCES ${LLVM_GEN_SOURCES})
endif()
if(WITH_TCC)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/tcc/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(WITH_ASMJIT)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/asmjit/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(TARGET yaml-cpp::yaml-cpp)
list(APPEND LIB_SOURCES
src/iss/plugin/cycle_estimate.cpp
src/iss/plugin/instruction_count.cpp
)
FILE(GLOB TCC_GEN_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/src/vm/tcc/vm_*.cpp
)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
# Define the library
add_library(${PROJECT_NAME} SHARED ${LIB_SOURCES})
add_library(${PROJECT_NAME} ${LIB_SOURCES})
# list code gen dependencies
if(TARGET ${CORE_NAME}_cpp)
add_dependencies(${PROJECT_NAME} ${CORE_NAME}_cpp)
endif()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
target_compile_options(${PROJECT_NAME} PRIVATE -Wno-shift-count-overflow)
target_compile_options(${PROJECT_NAME} PRIVATE -Wno-shift-count-overflow)
elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
target_compile_options(${PROJECT_NAME} PRIVATE /wd4293)
endif()
target_include_directories(${PROJECT_NAME} PUBLIC src)
target_include_directories(${PROJECT_NAME} PUBLIC src-gen)
target_force_link_libraries(${PROJECT_NAME} PRIVATE dbt-rise-core)
# only re-export the include paths
get_target_property(DBT_CORE_INCL dbt-rise-core INTERFACE_INCLUDE_DIRECTORIES)
target_include_directories(${PROJECT_NAME} INTERFACE ${DBT_CORE_INCL})
get_target_property(DBT_CORE_DEFS dbt-rise-core INTERFACE_COMPILE_DEFINITIONS)
if(NOT(DBT_CORE_DEFS STREQUAL DBT_CORE_DEFS-NOTFOUND))
target_compile_definitions(${PROJECT_NAME} INTERFACE ${DBT_CORE_DEFS})
target_link_libraries(${PROJECT_NAME} PUBLIC softfloat scc-util Boost::coroutine)
if(TARGET jsoncpp::jsoncpp)
target_link_libraries(${PROJECT_NAME} PUBLIC jsoncpp::jsoncpp)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC jsoncpp)
endif()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC -Wl,--whole-archive dbt-rise-core -Wl,--no-whole-archive)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-core)
endif()
if(TARGET elfio::elfio)
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio)
else()
message(FATAL_ERROR "No elfio library found, maybe a find_package() call is missing")
endif()
if(TARGET lz4::lz4)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_LZ4)
target_link_libraries(${PROJECT_NAME} PUBLIC lz4::lz4)
endif()
if(TARGET RapidJSON::RapidJSON)
target_link_libraries(${PROJECT_NAME} PUBLIC RapidJSON::RapidJSON)
elseif(TARGET RapidJSON)
target_link_libraries(${PROJECT_NAME} PUBLIC RapidJSON)
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio softfloat scc-util Boost::coroutine)
if(TARGET yaml-cpp::yaml-cpp)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_PLUGINS)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
)
install(TARGETS ${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss COMPONENT ${PROJECT_NAME}
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # target directory
FILES_MATCHING # install only matched files
PATTERN "*.h" # select header files
)
install(FILES ${GEN_YAML_SOURCES} DESTINATION share/tgc-vp)
# ##############################################################################
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # target directory
FILES_MATCHING # install only matched files
PATTERN "*.h" # select header files
)
###############################################################################
#
# ##############################################################################
set(CMAKE_INSTALL_RPATH $ORIGIN/../${CMAKE_INSTALL_LIBDIR})
###############################################################################
project(tgc-sim)
find_package(Boost COMPONENTS program_options thread REQUIRED)
add_executable(${PROJECT_NAME} src/main.cpp)
if(TARGET ${CORE_NAME}_cpp)
list(APPEND TGC_SOURCES ${${CORE_NAME}_OUTPUT_FILES})
else()
@ -158,106 +146,78 @@ else()
endif()
foreach(F IN LISTS TGC_SOURCES)
if(${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
if (${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
string(TOUPPER ${CORE_NAME_LC} CORE_NAME)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
endif()
endforeach()
# if(WITH_LLVM)
# target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_LLVM)
# #target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
# endif()
# if(WITH_TCC)
# target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_TCC)
# endif()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc fmt::fmt)
if(WITH_LLVM)
target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_LLVM)
target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
endif()
if(WITH_TCC)
target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_TCC)
endif()
# Links the target exe against the libraries
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc)
if(TARGET Boost::program_options)
target_link_libraries(${PROJECT_NAME} PUBLIC Boost::program_options)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC ${BOOST_program_options_LIBRARY})
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC ${CMAKE_DL_LIBS})
if(Tcmalloc_FOUND)
if (Tcmalloc_FOUND)
target_link_libraries(${PROJECT_NAME} PUBLIC ${Tcmalloc_LIBRARIES})
endif(Tcmalloc_FOUND)
install(TARGETS tgc-sim
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME} # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
if(BUILD_TESTING)
# ... CMake code to create tests ...
add_test(NAME tgc-sim-interp
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend interp)
if(WITH_TCC)
add_test(NAME tgc-sim-tcc
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend tcc)
endif()
if(WITH_LLVM)
add_test(NAME tgc-sim-llvm
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend llvm)
endif()
if(WITH_ASMJIT)
add_test(NAME tgc-sim-asmjit
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend asmjit)
endif()
endif()
# ##############################################################################
###############################################################################
#
# ##############################################################################
###############################################################################
if(TARGET scc-sysc)
project(dbt-rise-tgc_sc VERSION 1.0.0)
set(LIB_SOURCES
src/sysc/core_complex.cpp
src/sysc/register_tgc_c.cpp
project(dbt-rise-tgc_sc VERSION 1.0.0)
add_library(${PROJECT_NAME}
src/sysc/core_complex.cpp
src/sysc/register_tgc_c.cpp
)
FILE(GLOB GEN_SC_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/sysc/register_*.cpp)
list(APPEND LIB_SOURCES ${GEN_SC_SOURCES})
add_library(${PROJECT_NAME} ${LIB_SOURCES})
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_SYSTEMC)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
foreach(F IN LISTS TGC_SOURCES)
if(${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
if (${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
string(TOUPPER ${CORE_NAME_LC} CORE_NAME)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
endif()
endforeach()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc scc-sysc)
# if(WITH_LLVM)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
# endif()
set(LIB_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/src/sysc/core_complex.h)
if(WITH_LLVM)
target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
endif()
set(LIB_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/src/sysc/core_complex.h)
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
PUBLIC_HEADER "${LIB_HEADERS}" # specify the public headers
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
PUBLIC_HEADER "${LIB_HEADERS}" # specify the public headers
)
install(TARGETS ${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/sysc # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} # static lib
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} # binaries
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/sysc # headers for mac (note the different component -> different package)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} # headers
)
endif()

View File

@ -1,623 +1,536 @@
RVI:
LUI:
index: 0
RV32I:
- LUI:
encoding: 0b00000000000000000000000000110111
mask: 0b00000000000000000000000001111111
size: 32
branch: false
delay: 1
AUIPC:
index: 1
- AUIPC:
encoding: 0b00000000000000000000000000010111
mask: 0b00000000000000000000000001111111
size: 32
branch: false
delay: 1
JAL:
index: 2
- JAL:
encoding: 0b00000000000000000000000001101111
mask: 0b00000000000000000000000001111111
attributes: [[name:no_cont]]
size: 32
branch: true
delay: 1
JALR:
index: 3
- JALR:
encoding: 0b00000000000000000000000001100111
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont]]
size: 32
branch: true
delay: [1,1]
BEQ:
index: 4
delay: 1
- BEQ:
encoding: 0b00000000000000000000000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
BNE:
index: 5
- BNE:
encoding: 0b00000000000000000001000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
BLT:
index: 6
- BLT:
encoding: 0b00000000000000000100000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
BGE:
index: 7
- BGE:
encoding: 0b00000000000000000101000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
BLTU:
index: 8
- BLTU:
encoding: 0b00000000000000000110000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
BGEU:
index: 9
- BGEU:
encoding: 0b00000000000000000111000001100011
mask: 0b00000000000000000111000001111111
attributes: [[name:no_cont], [name:cond]]
size: 32
branch: true
delay: [1,1]
LB:
index: 10
- LB:
encoding: 0b00000000000000000000000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LH:
index: 11
- LH:
encoding: 0b00000000000000000001000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LW:
index: 12
- LW:
encoding: 0b00000000000000000010000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LBU:
index: 13
- LBU:
encoding: 0b00000000000000000100000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
LHU:
index: 14
- LHU:
encoding: 0b00000000000000000101000000000011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SB:
index: 15
- SB:
encoding: 0b00000000000000000000000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SH:
index: 16
- SH:
encoding: 0b00000000000000000001000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SW:
index: 17
- SW:
encoding: 0b00000000000000000010000000100011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ADDI:
index: 18
- ADDI:
encoding: 0b00000000000000000000000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLTI:
index: 19
- SLTI:
encoding: 0b00000000000000000010000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLTIU:
index: 20
- SLTIU:
encoding: 0b00000000000000000011000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
XORI:
index: 21
- XORI:
encoding: 0b00000000000000000100000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ORI:
index: 22
- ORI:
encoding: 0b00000000000000000110000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ANDI:
index: 23
- ANDI:
encoding: 0b00000000000000000111000000010011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
SLLI:
index: 24
- SLLI:
encoding: 0b00000000000000000001000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRLI:
index: 25
- SRLI:
encoding: 0b00000000000000000101000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRAI:
index: 26
- SRAI:
encoding: 0b01000000000000000101000000010011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
ADD:
index: 27
- ADD:
encoding: 0b00000000000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SUB:
index: 28
- SUB:
encoding: 0b01000000000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLL:
index: 29
- SLL:
encoding: 0b00000000000000000001000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLT:
index: 30
- SLT:
encoding: 0b00000000000000000010000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SLTU:
index: 31
- SLTU:
encoding: 0b00000000000000000011000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
XOR:
index: 32
- XOR:
encoding: 0b00000000000000000100000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRL:
index: 33
- SRL:
encoding: 0b00000000000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
SRA:
index: 34
- SRA:
encoding: 0b01000000000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
OR:
index: 35
- OR:
encoding: 0b00000000000000000110000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
AND:
index: 36
- AND:
encoding: 0b00000000000000000111000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
FENCE:
index: 37
- FENCE:
encoding: 0b00000000000000000000000000001111
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
ECALL:
index: 38
- ECALL:
encoding: 0b00000000000000000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
EBREAK:
index: 39
- EBREAK:
encoding: 0b00000000000100000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
MRET:
index: 40
- MRET:
encoding: 0b00110000001000000000000001110011
mask: 0b11111111111111111111111111111111
attributes: [[name:no_cont]]
size: 32
branch: false
delay: 1
WFI:
index: 41
- WFI:
encoding: 0b00010000010100000000000001110011
mask: 0b11111111111111111111111111111111
size: 32
branch: false
delay: 1
Zicsr:
CSRRW:
index: 42
- CSRRW:
encoding: 0b00000000000000000001000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRS:
index: 43
- CSRRS:
encoding: 0b00000000000000000010000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRC:
index: 44
- CSRRC:
encoding: 0b00000000000000000011000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRWI:
index: 45
- CSRRWI:
encoding: 0b00000000000000000101000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRSI:
index: 46
- CSRRSI:
encoding: 0b00000000000000000110000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
CSRRCI:
index: 47
- CSRRCI:
encoding: 0b00000000000000000111000001110011
mask: 0b00000000000000000111000001111111
size: 32
branch: false
delay: 1
Zifencei:
FENCE_I:
index: 48
- FENCE_I:
encoding: 0b00000000000000000001000000001111
mask: 0b00000000000000000111000001111111
attributes: [[name:flush]]
size: 32
branch: false
delay: 1
RVM:
MUL:
index: 49
RV32M:
- MUL:
encoding: 0b00000010000000000000000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULH:
index: 50
- MULH:
encoding: 0b00000010000000000001000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULHSU:
index: 51
- MULHSU:
encoding: 0b00000010000000000010000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
MULHU:
index: 52
- MULHU:
encoding: 0b00000010000000000011000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
DIV:
index: 53
- DIV:
encoding: 0b00000010000000000100000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
DIVU:
index: 54
- DIVU:
encoding: 0b00000010000000000101000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
REM:
index: 55
- REM:
encoding: 0b00000010000000000110000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
REMU:
index: 56
- REMU:
encoding: 0b00000010000000000111000000110011
mask: 0b11111110000000000111000001111111
size: 32
branch: false
delay: 1
Zca:
C__ADDI4SPN:
index: 57
RV32IC:
- CADDI4SPN:
encoding: 0b0000000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__LW:
index: 58
- CLW:
encoding: 0b0100000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__SW:
index: 59
- CSW:
encoding: 0b1100000000000000
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__ADDI:
index: 60
- CADDI:
encoding: 0b0000000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__NOP:
index: 61
- CNOP:
encoding: 0b0000000000000001
mask: 0b1110111110000011
size: 16
branch: false
delay: 1
C__JAL:
index: 62
- CJAL:
encoding: 0b0010000000000001
mask: 0b1110000000000011
attributes: [[name:enable, value:1]]
attributes: [[name:no_cont]]
size: 16
branch: true
delay: 1
C__LI:
index: 63
- CLI:
encoding: 0b0100000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__LUI:
index: 64
- CLUI:
encoding: 0b0110000000000001
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__ADDI16SP:
index: 65
- CADDI16SP:
encoding: 0b0110000100000001
mask: 0b1110111110000011
size: 16
branch: false
delay: 1
__reserved_clui:
index: 66
encoding: 0b0110000000000001
mask: 0b1111000001111111
size: 16
branch: false
delay: 1
C__SRLI:
index: 67
- CSRLI:
encoding: 0b1000000000000001
mask: 0b1111110000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__SRAI:
index: 68
- CSRAI:
encoding: 0b1000010000000001
mask: 0b1111110000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__ANDI:
index: 69
- CANDI:
encoding: 0b1000100000000001
mask: 0b1110110000000011
size: 16
branch: false
delay: 1
C__SUB:
index: 70
- CSUB:
encoding: 0b1000110000000001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__XOR:
index: 71
- CXOR:
encoding: 0b1000110000100001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__OR:
index: 72
- COR:
encoding: 0b1000110001000001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__AND:
index: 73
- CAND:
encoding: 0b1000110001100001
mask: 0b1111110001100011
size: 16
branch: false
delay: 1
C__J:
index: 74
- CJ:
encoding: 0b1010000000000001
mask: 0b1110000000000011
attributes: [[name:no_cont]]
size: 16
branch: true
delay: 1
C__BEQZ:
index: 75
- CBEQZ:
encoding: 0b1100000000000001
mask: 0b1110000000000011
attributes: [[name:no_cont], [name:cond]]
size: 16
branch: true
delay: [1,1]
C__BNEZ:
index: 76
- CBNEZ:
encoding: 0b1110000000000001
mask: 0b1110000000000011
attributes: [[name:no_cont], [name:cond]]
size: 16
branch: true
delay: [1,1]
C__SLLI:
index: 77
- CSLLI:
encoding: 0b0000000000000010
mask: 0b1111000000000011
attributes: [[name:enable, value:1]]
size: 16
branch: false
delay: 1
C__LWSP:
index: 78
- CLWSP:
encoding: 0b0100000000000010
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
C__MV:
index: 79
- CMV:
encoding: 0b1000000000000010
mask: 0b1111000000000011
size: 16
branch: false
delay: 1
C__JR:
index: 80
- CJR:
encoding: 0b1000000000000010
mask: 0b1111000001111111
attributes: [[name:no_cont]]
size: 16
branch: true
delay: 1
__reserved_cmv:
index: 81
encoding: 0b1000000000000010
mask: 0b1111111111111111
size: 16
branch: false
delay: 1
C__ADD:
index: 82
- CADD:
encoding: 0b1001000000000010
mask: 0b1111000000000011
size: 16
branch: false
delay: 1
C__JALR:
index: 83
- CJALR:
encoding: 0b1001000000000010
mask: 0b1111000001111111
attributes: [[name:no_cont]]
size: 16
branch: true
delay: 1
C__EBREAK:
index: 84
- CEBREAK:
encoding: 0b1001000000000010
mask: 0b1111111111111111
attributes: [[name:no_cont]]
size: 16
branch: false
delay: 1
C__SWSP:
index: 85
- CSWSP:
encoding: 0b1100000000000010
mask: 0b1110000000000011
size: 16
branch: false
delay: 1
DII:
index: 86
- DII:
encoding: 0b0000000000000000
mask: 0b1111111111111111
attributes: [[name:no_cont]]
size: 16
branch: false
delay: 1

View File

@ -1,35 +0,0 @@
# according to https://github.com/horance-liu/flink.cmake/tree/master
# SPDX-License-Identifier: Apache-2.0
include(CMakeParseArguments)
function(target_do_force_link_libraries target visibility lib)
if(MSVC)
target_link_libraries(${target} ${visibility} "/WHOLEARCHIVE:${lib}")
elseif(APPLE)
target_link_libraries(${target} ${visibility} -Wl,-force_load ${lib})
else()
target_link_libraries(${target} ${visibility} -Wl,--whole-archive ${lib} -Wl,--no-whole-archive)
endif()
endfunction()
function(target_force_link_libraries target)
cmake_parse_arguments(FLINK
""
""
"PUBLIC;INTERFACE;PRIVATE"
${ARGN}
)
foreach(lib IN LISTS FLINK_PUBLIC)
target_do_force_link_libraries(${target} PUBLIC ${lib})
endforeach()
foreach(lib IN LISTS FLINK_INTERFACE)
target_do_force_link_libraries(${target} INTERFACE ${lib})
endforeach()
foreach(lib IN LISTS FLINK_PRIVATE)
target_do_force_link_libraries(${target} PRIVATE ${lib})
endforeach()
endfunction()

View File

@ -19,7 +19,7 @@ setenv CXX $COWAREHOME/SLS/linux/common/bin/g++
cmake -S . -B build/PA -DCMAKE_BUILD_TYPE=Debug -DUSE_CWR_SYSTEMC=ON -DBUILD_SHARED_LIBS=ON \
-DCODEGEN=OFF -DCMAKE_INSTALL_PREFIX=${TGFS_INSTALL_ROOT}
cmake --build build/PA --target install -j16
cd dbt-rise-tgc/contrib/pa
cd dbt-rise-tgc/contrib
# import the TGC core itself
pct tgc_import_tb.tcl
```
@ -37,7 +37,7 @@ export CXX=$COWAREHOME/SLS/linux/common/bin/g++
cmake -S . -B build/PA -DCMAKE_BUILD_TYPE=Debug -DUSE_CWR_SYSTEMC=ON -DBUILD_SHARED_LIBS=ON \
-DCODEGEN=OFF -DCMAKE_INSTALL_PREFIX=${TGFS_INSTALL_ROOT}
cmake --build build/PA --target install -j16
cd dbt-rise-tgc/contrib/pa
cd dbt-rise-tgc/contrib
# import the TGC core itself
pct tgc_import_tb.tcl
```

View File

@ -1 +0,0 @@
/*.yaml

View File

@ -1,650 +0,0 @@
RV32I:
ADD:
branch: false
delay: 1
encoding: 51
index: 27
mask: 4261441663
size: 32
ADDI:
branch: false
delay: 1
encoding: 19
index: 18
mask: 28799
size: 32
AND:
branch: false
delay: 1
encoding: 28723
index: 36
mask: 4261441663
size: 32
ANDI:
branch: false
delay: 1
encoding: 28691
index: 23
mask: 28799
size: 32
AUIPC:
branch: false
delay: 1
encoding: 23
index: 1
mask: 127
size: 32
BEQ:
branch: true
delay:
- 1
- 2
encoding: 99
index: 4
mask: 28799
size: 32
BGE:
branch: true
delay:
- 1
- 2
encoding: 20579
index: 7
mask: 28799
size: 32
BGEU:
branch: true
delay:
- 1
- 2
encoding: 28771
index: 9
mask: 28799
size: 32
BLT:
branch: true
delay:
- 1
- 2
encoding: 16483
index: 6
mask: 28799
size: 32
BLTU:
branch: true
delay:
- 1
- 2
encoding: 24675
index: 8
mask: 28799
size: 32
BNE:
branch: true
delay:
- 1
- 2
encoding: 4195
index: 5
mask: 28799
size: 32
EBREAK:
attributes:
- - name:no_cont
branch: false
delay: 3
encoding: 1048691
index: 39
mask: 4294967295
size: 32
ECALL:
attributes:
- - name:no_cont
branch: false
delay: 1
encoding: 115
index: 38
mask: 4294967295
size: 32
FENCE:
branch: false
delay: 1
encoding: 15
index: 37
mask: 28799
size: 32
JAL:
branch: true
delay: 2
encoding: 111
index: 2
mask: 127
size: 32
JALR:
branch: true
delay: 2
encoding: 103
index: 3
mask: 28799
size: 32
LB:
branch: false
delay: 2
encoding: 3
index: 10
mask: 28799
size: 32
LBU:
branch: false
delay: 2
encoding: 16387
index: 13
mask: 28799
size: 32
LH:
branch: false
delay: 2
encoding: 4099
index: 11
mask: 28799
size: 32
LHU:
branch: false
delay: 2
encoding: 20483
index: 14
mask: 28799
size: 32
LUI:
branch: false
delay: 1
encoding: 55
index: 0
mask: 127
size: 32
LW:
branch: false
delay: 2
encoding: 8195
index: 12
mask: 28799
size: 32
MRET:
attributes:
- - name:no_cont
branch: false
delay: 2
encoding: 807403635
index: 40
mask: 4294967295
size: 32
OR:
branch: false
delay: 1
encoding: 24627
index: 35
mask: 4261441663
size: 32
ORI:
branch: false
delay: 1
encoding: 24595
index: 22
mask: 28799
size: 32
SB:
branch: false
delay: 1
encoding: 35
index: 15
mask: 28799
size: 32
SH:
branch: false
delay: 1
encoding: 4131
index: 16
mask: 28799
size: 32
SLL:
branch: false
delay: X_24:20
encoding: 4147
index: 29
mask: 4261441663
size: 32
SLLI:
branch: false
delay: u_24:20
encoding: 4115
index: 24
mask: 4261441663
size: 32
SLT:
branch: false
delay: 1
encoding: 8243
index: 30
mask: 4261441663
size: 32
SLTI:
branch: false
delay: 1
encoding: 8211
index: 19
mask: 28799
size: 32
SLTIU:
branch: false
delay: 1
encoding: 12307
index: 20
mask: 28799
size: 32
SLTU:
branch: false
delay: 1
encoding: 12339
index: 31
mask: 4261441663
size: 32
SRA:
branch: false
delay: X_24:20
encoding: 1073762355
index: 34
mask: 4261441663
size: 32
SRAI:
branch: false
delay: u_24:20
encoding: 1073762323
index: 26
mask: 4261441663
size: 32
SRL:
branch: false
delay: X_24:20
encoding: 20531
index: 33
mask: 4261441663
size: 32
SRLI:
branch: false
delay: u_24:20
encoding: 20499
index: 25
mask: 4261441663
size: 32
SUB:
branch: false
delay: 1
encoding: 1073741875
index: 28
mask: 4261441663
size: 32
SW:
branch: false
delay: 1
encoding: 8227
index: 17
mask: 28799
size: 32
WFI:
branch: false
delay: 1
encoding: 273678451
index: 41
mask: 4294967295
size: 32
XOR:
branch: false
delay: 1
encoding: 16435
index: 32
mask: 4261441663
size: 32
XORI:
branch: false
delay: 1
encoding: 16403
index: 21
mask: 28799
size: 32
RV32M:
DIV:
branch: false
delay: 33
encoding: 33570867
index: 53
mask: 4261441663
size: 32
DIVU:
branch: false
delay: 33
encoding: 33574963
index: 54
mask: 4261441663
size: 32
MUL:
branch: false
delay: 32
encoding: 33554483
index: 49
mask: 4261441663
size: 32
MULH:
branch: false
delay: 32
encoding: 33558579
index: 50
mask: 4261441663
size: 32
MULHSU:
branch: false
delay: 32
encoding: 33562675
index: 51
mask: 4261441663
size: 32
MULHU:
branch: false
delay: 32
encoding: 33566771
index: 52
mask: 4261441663
size: 32
REM:
branch: false
delay: 33
encoding: 33579059
index: 55
mask: 4261441663
size: 32
REMU:
branch: false
delay: 33
encoding: 33583155
index: 56
mask: 4261441663
size: 32
Zca:
C__ADD:
branch: false
delay: 1
encoding: 36866
index: 82
mask: 61443
size: 16
C__ADDI:
branch: false
delay: 1
encoding: 1
index: 60
mask: 57347
size: 16
C__ADDI16SP:
branch: false
delay: 1
encoding: 24833
index: 65
mask: 61315
size: 16
C__ADDI4SPN:
branch: false
delay: 1
encoding: 0
index: 57
mask: 57347
size: 16
C__AND:
branch: false
delay: 1
encoding: 35937
index: 73
mask: 64611
size: 16
C__ANDI:
branch: false
delay: 1
encoding: 34817
index: 69
mask: 60419
size: 16
C__BEQZ:
branch: true
delay:
- 1
- 2
encoding: 49153
index: 75
mask: 57347
size: 16
C__BNEZ:
branch: true
delay:
- 1
- 2
encoding: 57345
index: 76
mask: 57347
size: 16
C__EBREAK:
branch: false
delay: 3
encoding: 36866
index: 84
mask: 65535
size: 16
C__J:
branch: true
delay: 1
encoding: 40961
index: 74
mask: 57347
size: 16
C__JAL:
attributes:
- - name:enable
- value:1
branch: true
delay: 1
encoding: 8193
index: 62
mask: 57347
size: 16
C__JALR:
branch: true
delay: 1
encoding: 36866
index: 83
mask: 61567
size: 16
C__JR:
branch: true
delay: 1
encoding: 32770
index: 80
mask: 61567
size: 16
C__LI:
branch: false
delay: 1
encoding: 16385
index: 63
mask: 57347
size: 16
C__LUI:
branch: false
delay: 1
encoding: 24577
index: 64
mask: 57347
size: 16
C__LW:
branch: false
delay: 2
encoding: 16384
index: 58
mask: 57347
size: 16
C__LWSP:
branch: false
delay: 2
encoding: 16386
index: 78
mask: 57347
size: 16
C__MV:
branch: false
delay: 1
encoding: 32770
index: 79
mask: 61443
size: 16
C__NOP:
branch: false
delay: 1
encoding: 1
index: 61
mask: 61315
size: 16
C__OR:
branch: false
delay: 1
encoding: 35905
index: 72
mask: 64611
size: 16
C__SLLI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 2
index: 77
mask: 61443
size: 16
C__SRAI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 33793
index: 68
mask: 64515
size: 16
C__SRLI:
attributes:
- - name:enable
- value:1
branch: false
delay: u_12:12*16+u_6:2
encoding: 32769
index: 67
mask: 64515
size: 16
C__SUB:
branch: false
delay: 1
encoding: 35841
index: 70
mask: 64611
size: 16
C__SW:
branch: false
delay: 1
encoding: 49152
index: 59
mask: 57347
size: 16
C__SWSP:
branch: false
delay: 1
encoding: 49154
index: 85
mask: 57347
size: 16
C__XOR:
branch: false
delay: 1
encoding: 35873
index: 71
mask: 64611
size: 16
DII:
branch: false
delay: 1
encoding: 0
index: 86
mask: 65535
size: 16
__reserved_clui:
branch: false
delay: 1
encoding: 24577
index: 66
mask: 61567
size: 16
__reserved_cmv:
branch: false
delay: 1
encoding: 32770
index: 81
mask: 65535
size: 16
Zicsr:
CSRRC:
branch: false
delay: 1
encoding: 12403
index: 44
mask: 28799
size: 32
CSRRCI:
branch: false
delay: 1
encoding: 28787
index: 47
mask: 28799
size: 32
CSRRS:
branch: false
delay: 1
encoding: 8307
index: 43
mask: 28799
size: 32
CSRRSI:
branch: false
delay: 1
encoding: 24691
index: 46
mask: 28799
size: 32
CSRRW:
branch: false
delay: 1
encoding: 4211
index: 42
mask: 28799
size: 32
CSRRWI:
branch: false
delay: 1
encoding: 20595
index: 45
mask: 28799
size: 32
Zifencei:
FENCE_I:
attributes:
- - name:flush
branch: false
delay: 1
encoding: 4111
index: 48
mask: 28799
size: 32

View File

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -1,8 +1,8 @@
import "ISA/RVI.core_desc"
import "ISA/RV32I.core_desc"
import "ISA/RVM.core_desc"
import "ISA/RVC.core_desc"
Core TGC5C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
Core TGC_C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
architectural_state {
XLEN=32;
// definitions for the architecture wrapper

View File

@ -37,7 +37,6 @@ def getRegisterSizes(){
return regs
}
%>
// clang-format off
#include "${coreDef.name.toLowerCase()}.h"
#include "util/ities.h"
#include <util/logging.h>
@ -71,7 +70,7 @@ uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &addr) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}
// clang-format on

View File

@ -55,12 +55,12 @@ def byteSize(int size){
return 128;
}
def getCString(def val){
return val.toString()+'ULL'
return val.toString()
}
%>
#ifndef _${coreDef.name.toUpperCase()}_H_
#define _${coreDef.name.toUpperCase()}_H_
// clang-format off
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
@ -76,10 +76,10 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${registers.size}> reg_names{
{"${registers.collect{it.name.toLowerCase()}.join('", "')}"}};
{"${registers.collect{it.name}.join('", "')}"}};
static constexpr std::array<const char*, ${registers.size}> reg_aliases{
{"${registers.collect{it.alias.toLowerCase()}.join('", "')}"}};
{"${registers.collect{it.alias}.join('", "')}"}};
enum constants {${constants.collect{c -> c.name+"="+getCString(c.value)}.join(', ')}};
@ -109,7 +109,7 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')}, IMEM = MEM };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')} };
enum class opcode_e {<%instructions.eachWithIndex{instr, index -> %>
${instr.instruction.name} = ${index},<%}%>
@ -137,6 +137,14 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<${coreDef.name.toLowerCase()}>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
@ -174,4 +182,3 @@ if(fcsr != null) {%>
}
}
#endif /* _${coreDef.name.toUpperCase()}_H_ */
// clang-format on

View File

@ -0,0 +1,86 @@
#include "${coreDef.name.toLowerCase()}.h"
#include <vector>
#include <array>
#include <cstdlib>
#include <algorithm>
namespace iss {
namespace arch {
namespace {
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__
constexpr size_t bit_count(uint32_t u) { return __builtin_popcount(u); }
#elif __cplusplus < 201402L
constexpr size_t uCount(uint32_t u) { return u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); }
constexpr size_t bit_count(uint32_t u) { return ((uCount(u) + (uCount(u) >> 3)) & 030707070707) % 63; }
#else
constexpr size_t bit_count(uint32_t u) {
size_t uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
#endif
using opcode_e = traits<${coreDef.name.toLowerCase()}>::opcode_e;
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_desriptor {
size_t length;
uint32_t value;
uint32_t mask;
opcode_e op;
};
const std::array<instruction_desriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
{${instr.length}, ${instr.encoding}, ${instr.mask}, opcode_e::${instr.instruction.name}},<%}%>
}};
}
template<>
struct instruction_decoder<${coreDef.name.toLowerCase()}> {
using opcode_e = traits<${coreDef.name.toLowerCase()}>::opcode_e;
using code_word_t=traits<${coreDef.name.toLowerCase()}>::code_word_t;
struct instruction_pattern {
uint32_t value;
uint32_t mask;
opcode_e id;
};
std::array<std::vector<instruction_pattern>, 4> qlut;
template<typename T>
unsigned decode_instruction(T);
instruction_decoder() {
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) < bit_count(b.mask);
});
}
}
};
template<>
unsigned instruction_decoder<${coreDef.name.toLowerCase()}>::decode_instruction<traits<${coreDef.name.toLowerCase()}>::code_word_t>(traits<${coreDef.name.toLowerCase()}>::code_word_t instr){
auto res = std::find_if(std::begin(qlut[instr&0x3]), std::end(qlut[instr&0x3]), [instr](instruction_pattern const& e){
return !((instr&e.mask) ^ e.value );
});
return static_cast<unsigned>(res!=std::end(qlut[instr&0x3])? res->id : opcode_e::MAX_OPCODE);
}
std::unique_ptr<instruction_decoder<${coreDef.name.toLowerCase()}>> traits<${coreDef.name.toLowerCase()}>::get_decoder(){
return std::make_unique<instruction_decoder<${coreDef.name.toLowerCase()}>>();
}
}
}

View File

@ -8,10 +8,9 @@
instrGroups[groupName]+=it;
}
instrGroups
}%><%int index = 0; getInstructionGroups().each{name, instrList -> %>
${name}: <% instrList.each { %>
${it.instruction.name}:
index: ${index++}
}%><%getInstructionGroups().each{name, instrList -> %>
${name}: <% instrList.findAll{!it.instruction.name.startsWith("__")}.each { %>
- ${it.instruction.name}:
encoding: ${it.encoding}
mask: ${it.mask}<%if(it.attributes.size) {%>
attributes: ${it.attributes}<%}%>

View File

@ -1,131 +0,0 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <sysc/iss_factory.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <sysc/sc_core_adapter.h>
#include <sysc/core_complex.h>
#include <array>
<%
def array_count = coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e"? 3 : 2;
%>
namespace iss {
namespace interp {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#if defined(WITH_LLVM)
namespace llvm {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
#if defined(WITH_TCC)
namespace tcc {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
#if defined(WITH_ASMJIT)
namespace asmjit {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
};
}
#endif
}
// clang-format on

View File

@ -1,384 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/asmjit/vm_base.h>
#include <asmjit/asmjit.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace asmjit {
namespace ${coreDef.name.toLowerCase()} {
using namespace ::asmjit;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::asmjit::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::asmjit::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename super::mem_type_e;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using super::get_ptr_for;
using super::get_reg;
using super::get_reg_for;
using super::load_reg_from_mem;
using super::write_reg_to_mem;
using super::gen_ext;
using super::gen_read_mem;
using super::gen_write_mem;
using super::gen_wait;
using super::gen_leave;
using super::gen_operation;
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void gen_instr_prologue(jit_holder& jh);
void gen_instr_epilogue(jit_holder& jh);
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause);
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
continuation_e __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate disass */
<%instr.disass.eachLine{%>
${it}<%}%>
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("${instr.name}_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, ${idx});
cc.mov(jh.pc, pc.val);
pc = pc+${instr.length/8};
cc.mov(jh.next_pc, pc.val);
gen_instr_prologue(jh);
cc.comment("//behavior:");
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, ${idx});
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("illegal_intruction{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, instr_descr.size());
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_instr_prologue(jh);
cc.comment("//behavior:");
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, instr_descr.size());
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr: instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr)
f = &this_class::illegal_intruction;
return (this->*f)(pc, instr, jh);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_prologue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_prologue");
cc.inc(get_ptr_for(jh, traits::ICOUNT));
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cc.mov(get_ptr_for(jh, traits::PENDING_TRAP), current_trap_state);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//gen_instr_epilogue");
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cc.cmp(current_trap_state, 0);
cc.jne(jh.trap_entry);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
jh.pc = load_reg_from_mem(jh, traits::PC);
jh.next_pc = load_reg_from_mem(jh, traits::NEXT_PC);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
x86::Compiler& cc = jh.cc;
cc.comment("//gen_block_epilogue");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
this->write_back(jh);
this->gen_sync(jh, POST_SYNC, -1);
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
x86::Gp current_pc = get_reg_for(jh, traits::PC);
cc.mov(current_pc, get_ptr_for(jh, traits::PC));
x86::Gp instr = cc.newInt32("instr");
cc.mov(instr, 0); // FIXME:this is not correct
cc.comment("//enter trap call;");
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignatureT<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
call_enter_trap->setArg(1, current_trap_state);
call_enter_trap->setArg(2, current_pc);
call_enter_trap->setArg(3, instr);
x86::Gp current_next_pc = get_reg_for(jh, traits::NEXT_PC);
cc.mov(current_next_pc, get_ptr_for(jh, traits::NEXT_PC));
cc.mov(jh.next_pc, current_next_pc);
cc.mov(get_ptr_for(jh, traits::LAST_BRANCH), std::numeric_limits<uint32_t>::max());
cc.ret(jh.next_pc);
}
template <typename ARCH>
inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
auto& cc = jh.cc;
cc.comment("//gen_raise");
auto tmp1 = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
cc.mov(get_ptr_for(jh, traits::TRAP_STATE), tmp1);
cc.mov(jh.next_pc, std::numeric_limits<uint32_t>::max());
}
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace asmjit
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -34,19 +34,15 @@ def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
%>
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
#include <vm/fp_functions.h>
#include <util/logging.h>
#include <sstream>
#include <boost/coroutine2/all.hpp>
#include <functional>
#include <exception>
#include <vector>
#include <sstream>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
@ -63,10 +59,6 @@ using namespace iss::arch;
using namespace iss::debugger;
using namespace std::placeholders;
struct memory_access_exception : public std::exception{
memory_access_exception(){}
};
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
@ -99,9 +91,30 @@ protected:
inline const char *name(size_t index){return index<traits::reg_aliases.size()?traits::reg_aliases[index]:"illegal";}
typename arch::traits<ARCH>::opcode_e decode_inst_id(code_word_t instr);
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum {
LUT_SIZE = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK32)),
LUT_SIZE_C = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK16))
};
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
struct instruction_pattern {
uint32_t value;
uint32_t mask;
typename arch::traits<ARCH>::opcode_e id;
};
std::array<std::vector<instruction_pattern>, 4> qlut;
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
@ -145,96 +158,30 @@ private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
typename arch::traits<ARCH>::opcode_e op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
{${instr.length}, ${instr.encoding}, ${instr.mask}, arch::traits<ARCH>::opcode_e::${instr.instruction.name}},<%}%>
}};
//static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
if(this->core.has_mmu()) {
auto phys_pc = this->core.virt2phys(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok)
// return iss::Err;
// } else {
if (this->core.read(phys_pc, 4, data) != iss::Ok)
return iss::Err;
// }
} else {
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
auto phys_pc = this->core.v2p(pc);
//if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
//} else {
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
//}
return iss::Ok;
}
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
typename arch::traits<ARCH>::opcode_e decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
@ -261,11 +208,16 @@ constexpr size_t bit_count(uint32_t u) {
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
unsigned id=0;
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) > bit_count(b.mask);
});
}
populate_decoding_tree(root);
}
inline bool is_count_limit_enabled(finish_cond_e cond){
@ -276,6 +228,14 @@ inline bool is_jump_to_self_enabled(finish_cond_e cond){
return (cond & finish_cond_e::JUMP_TO_SELF) == finish_cond_e::JUMP_TO_SELF;
}
template <typename ARCH>
typename arch::traits<ARCH>::opcode_e vm_impl<ARCH>::decode_inst_id(code_word_t instr){
for(auto& e: qlut[instr&0x3]){
if(!((instr&e.mask) ^ e.value )) return e.id;
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
auto pc=start;
@ -297,34 +257,32 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
} else {
if (is_jump_to_self_enabled(cond) &&
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto inst_id = decode_instr(root, instr);
auto inst_id = decode_inst_id(instr);
// pre execution stuff
this->core.reg.last_branch = 0;
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast<unsigned>(inst_id));
try{
switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %>
case arch::traits<ARCH>::opcode_e::${instr.name}: {
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %>
case arch::traits<ARCH>::opcode_e::${instr.name}: {
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
}
}
}catch(memory_access_exception& e){}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
${it}<%}%>
TRAP_${instr.name}:break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
}
}
// post execution stuff
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(inst_id));
@ -346,7 +304,7 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
return pc;
}
} // namespace ${coreDef.name.toLowerCase()}
}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
@ -357,33 +315,29 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
} // namespace interp
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on
extern "C" {
bool* get_${coreDef.name.toLowerCase()}_interp_creators() {
return iss::dummy.data();
}
}

View File

@ -1,394 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace llvm {
namespace fp_impl {
void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned);
}
namespace ${coreDef.name.toLowerCase()} {
using namespace ::llvm;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::llvm::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::llvm::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
void setup_module(Module* m) override {
super::setup_module(m);
iss::llvm::fp_impl::add_fp_functions_2_module(m, traits::FP_REGS_SIZE, traits::XLEN);
}
inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) {
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void gen_trap_behavior(BasicBlock *) override;
void gen_instr_epilogue(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(this->get_typeptr(i), get_reg_ptr(i), false);
}
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val),
this->get_type(traits::XLEN));
this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
// some compile time constants
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<continuation_e, BasicBlock *> (this_class::*)(virt_addr_t &pc,
code_word_t instr,
BasicBlock *bb);
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
std::tuple<continuation_e, BasicBlock*> __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
bb->setName(fmt::format("${instr.name}_0x{:X}",pc.val));
this->gen_sync(PRE_SYNC,${idx});
auto cur_pc_val = this->gen_const(32,pc.val);
pc=pc+ ${instr.length/8};
this->gen_set_pc(pc, traits::NEXT_PC);
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
this->gen_instr_epilogue(bb);
this->gen_sync(POST_SYNC, ${idx});
this->builder.CreateBr(bb);
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), true),
get_reg_ptr(traits::PC), true);
this->builder.CreateStore(
this->builder.CreateAdd(this->builder.CreateLoad(this->get_typeptr(traits::ICOUNT), get_reg_ptr(traits::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC, instr_descr.size());
this->gen_instr_epilogue(this->leave_blk);
return std::make_tuple(BRANCH, nullptr);
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((instr & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, this_block);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC),get_reg_ptr(traits::NEXT_PC), false));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) };
this->builder.CreateCall(this->mod->getFunction("leave_trap"), args);
auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8);
this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) };
this->builder.CreateCall(this->mod->getFunction("wait"), args);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
this->gen_sync(POST_SYNC, -1); //TODO get right InstrId
auto *trap_state_val = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(this->get_typeptr(traits::PC), get_reg_ptr(traits::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
auto *trap_addr_val = this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* target_bb = BasicBlock::Create(this->mod->getContext(), "", this->func, bb);
auto *v = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
ICmpInst::ICMP_EQ, v,
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
target_bb, this->trap_blk, 1);
this->builder.SetInsertPoint(target_bb);
}
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace llvm
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on

View File

@ -0,0 +1,9 @@
{
"${coreDef.name}" : [<%instructions.eachWithIndex{instr,index -> %>${index==0?"":","}
{
"name" : "${instr.name}",
"size" : ${instr.length},
"delay" : ${generator.hasAttribute(instr.instruction, com.minres.coredsl.coreDsl.InstrAttribute.COND)?[1,1]:1}
}<%}%>
]
}

View File

@ -0,0 +1,223 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getTypeSize(size){
if(size > 32) 64 else if(size > 16) 32 else if(size > 8) 16 else 8
}
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#ifndef _${coreDef.name.toUpperCase()}_H_
#define _${coreDef.name.toUpperCase()}_H_
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/vm_if.h>
namespace iss {
namespace arch {
struct ${coreDef.name.toLowerCase()};
template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${getRegisterNames().size}> reg_names{
{"${getRegisterNames().join("\", \"")}"}};
static constexpr std::array<const char*, ${getRegisterAliasNames().size}> reg_aliases{
{"${getRegisterAliasNames().join("\", \"")}"}};
enum constants {${coreDef.constants.collect{c -> c.name+"="+c.value}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${coreDef.constants.find {it.name=='FLEN'}?.value?:0};
enum reg_e {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
${reg.name}${it},<%
}
} else if(reg instanceof Register){ %>
${reg.name},<%
}
}%>
NUM_REGS,
NEXT_${pc.name}=NUM_REGS,
TRAP_STATE,
PENDING_TRAP,
MACHINE_STATE,
LAST_BRANCH,
ICOUNT<%
allRegs.each { reg ->
if(reg instanceof RegisterAlias){ def aliasname=getOriginalName(reg)%>,
${reg.name} = ${aliasname}<%
}
}%>
};
using reg_t = uint${regDataWidth}_t;
using addr_t = uint${addrDataWidth}_t;
using code_word_t = uint${addrDataWidth}_t; //TODO: check removal
using virt_addr_t = iss::typed_addr_t<iss::address_type::VIRTUAL>;
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, ${regSizes.size}> reg_bit_widths{
{${regSizes.join(",")}}};
static constexpr std::array<const uint32_t, ${regOffsets.size}> reg_byte_offsets{
{${regOffsets.join(",")}}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${allSpaces.collect{s -> s.name}.join(', ')} };
};
struct ${coreDef.name.toLowerCase()}: public arch_if {
using virt_addr_t = typename traits<${coreDef.name.toLowerCase()}>::virt_addr_t;
using phys_addr_t = typename traits<${coreDef.name.toLowerCase()}>::phys_addr_t;
using reg_t = typename traits<${coreDef.name.toLowerCase()}>::reg_t;
using addr_t = typename traits<${coreDef.name.toLowerCase()}>::addr_t;
${coreDef.name.toLowerCase()}();
~${coreDef.name.toLowerCase()}();
void reset(uint64_t address=0) override;
uint8_t* get_regs_base_ptr() override;
/// deprecated
void get_reg(short idx, std::vector<uint8_t>& value) override {}
void set_reg(short idx, const std::vector<uint8_t>& value) override {}
/// deprecated
bool get_flag(int flag) override {return false;}
void set_flag(int, bool value) override {};
/// deprecated
void update_flags(operations op, uint64_t opr1, uint64_t opr2) override {};
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<${coreDef.name.toLowerCase()}>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<${coreDef.name.toLowerCase()}>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
protected:
struct ${coreDef.name}_regs {<%
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{%>
uint${generator.getSize(reg)}_t ${reg.name}${it} = 0;<%
}
} else if(reg instanceof Register){ %>
uint${generator.getSize(reg)}_t ${reg.name} = 0;<%
}
}%>
uint${generator.getSize(pc)}_t NEXT_${pc.name} = 0;
uint32_t trap_state = 0, pending_trap = 0, machine_state = 0, last_branch = 0;
uint64_t icount = 0;
} reg;
std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0;
<%
def fcsr = allRegs.find {it.name=='FCSR'}
if(fcsr != null) {%>
uint${generator.getSize(fcsr)}_t get_fcsr(){return reg.FCSR;}
void set_fcsr(uint${generator.getSize(fcsr)}_t val){reg.FCSR = val;}
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}%>
};
}
}
#endif /* _${coreDef.name.toUpperCase()}_H_ */

View File

@ -0,0 +1,107 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.coreDsl.Register
import com.minres.coredsl.coreDsl.RegisterFile
import com.minres.coredsl.coreDsl.RegisterAlias
def getOriginalName(reg){
if( reg.original instanceof RegisterFile) {
if( reg.index != null ) {
return reg.original.name+generator.generateHostCode(reg.index)
} else {
return reg.original.name
}
} else if(reg.original instanceof Register){
return reg.original.name
}
}
def getRegisterNames(){
def regNames = []
allRegs.each { reg ->
if( reg instanceof RegisterFile) {
(reg.range.right..reg.range.left).each{
regNames+=reg.name.toLowerCase()+it
}
} else if(reg instanceof Register){
regNames+=reg.name.toLowerCase()
}
}
return regNames
}
def getRegisterAliasNames(){
def regMap = allRegs.findAll{it instanceof RegisterAlias }.collectEntries {[getOriginalName(it), it.name]}
return allRegs.findAll{it instanceof Register || it instanceof RegisterFile}.collect{reg ->
if( reg instanceof RegisterFile) {
return (reg.range.right..reg.range.left).collect{ (regMap[reg.name]?:regMap[reg.name+it]?:reg.name.toLowerCase()+it).toLowerCase() }
} else if(reg instanceof Register){
regMap[reg.name]?:reg.name.toLowerCase()
}
}.flatten()
}
%>
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, ${getRegisterNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${getRegisterAliasNames().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${regSizes.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${regOffsets.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.trap_state=0;
reg.machine_state=0x3;
reg.icount=0;
}
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}

View File

@ -0,0 +1,325 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace llvm {
namespace fp_impl {
void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned);
}
namespace ${coreDef.name.toLowerCase()} {
using namespace ::llvm;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::llvm::vm_base<ARCH> {
public:
using super = typename iss::llvm::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits<ARCH>::reg_aliases.at(index);}
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
void setup_module(Module* m) override {
super::setup_module(m);
iss::llvm::fp_impl::add_fp_functions_2_module(m, traits<ARCH>::FP_REGS_SIZE, traits<ARCH>::XLEN);
}
inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) {
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void gen_trap_behavior(BasicBlock *) override;
void gen_trap_check(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(get_reg_ptr(i), false);
}
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits<ARCH>::XLEN, pc.val),
this->get_type(traits<ARCH>::XLEN));
this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<continuation_e, BasicBlock *> (this_class::*)(virt_addr_t &pc,
code_word_t instr,
BasicBlock *bb);
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.value}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
std::tuple<continuation_e, BasicBlock*> __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){<%instr.code.eachLine{%>
${it}<%}%>
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), true),
get_reg_ptr(traits<ARCH>::PC), true);
this->builder.CreateStore(
this->builder.CreateAdd(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits<ARCH>::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC, instr_descr.size());
this->gen_trap_check(this->leave_blk);
return std::make_tuple(BRANCH, nullptr);
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
auto res = this->core.read(paddr, 2, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
}
} else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, insn, this_block);
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) };
this->builder.CreateCall(this->mod->getFunction("leave_trap"), args);
auto *PC_val = this->gen_read_mem(traits<ARCH>::CSR, (lvl << 8) + 0x41, traits<ARCH>::XLEN / 8);
this->builder.CreateStore(PC_val, get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
}
template <typename ARCH> void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) };
this->builder.CreateCall(this->mod->getFunction("wait"), args);
}
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
auto *trap_state_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
auto *trap_addr_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH> inline void vm_impl<ARCH>::gen_trap_check(BasicBlock *bb) {
auto *v = this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
ICmpInst::ICMP_EQ, v,
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
bb, this->trap_blk, 1);
}
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace llvm
} // namespace iss

View File

@ -29,7 +29,7 @@
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
@ -120,7 +120,57 @@ protected:
}
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK32)), LUT_SIZE_C = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK16)) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
@ -132,23 +182,14 @@ private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
@ -159,7 +200,6 @@ private:
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("${instr.name}_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,${idx});
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
@ -168,12 +208,11 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
<%instr.behavior.eachLine{%>${it}
<%}%>
tu.open_scope();<%instr.behavior.eachLine{%>
${it}<%}%>
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
gen_trap_check(tu);
return returnValue;
}
<%}%>
@ -188,64 +227,11 @@ private:
vm_impl::gen_trap_check(tu);
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
@ -253,11 +239,14 @@ template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
populate_decoding_tree(root);
}
template <typename ARCH>
@ -265,11 +254,11 @@ std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
code_word_t insn = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
@ -277,22 +266,23 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, tu);
return (this->*f)(pc, insn, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
tu.store(traits::NEXT_PC, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
@ -306,13 +296,12 @@ template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned t
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
this->gen_sync(tu, POST_SYNC, -1);
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
tu("return *next_pc;");
}
} // namespace ${coreDef.name.toLowerCase()}
} // namespace mnrv32
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
@ -323,33 +312,29 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
} // namesapce tcc
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on
extern "C" {
bool* get_${coreDef.name.toLowerCase()}_tcc_creators() {
return iss::dummy.data();
}
}

View File

@ -327,7 +327,7 @@ set(OTHERS
set(LIB_SOURCES ${PRIMITIVES} ${SPECIALIZE} ${OTHERS})
add_library(softfloat STATIC ${LIB_SOURCES})
add_library(softfloat ${LIB_SOURCES})
set_property(TARGET softfloat PROPERTY C_STANDARD 99)
target_compile_definitions(softfloat PRIVATE
SOFTFLOAT_ROUND_ODD
@ -347,7 +347,7 @@ set_target_properties(softfloat PROPERTIES
install(TARGETS softfloat
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}/static COMPONENT libs # static lib
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # static lib
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} COMPONENT devel # headers for mac (note the different component -> different package)

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,6 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,6 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,6 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
//#define INLINE inline
#define INLINE static
@ -48,9 +48,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC__
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#endif
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,6 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,6 +47,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -35,11 +35,11 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
@ -47,7 +47,8 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#include "opts-GCC.h"

View File

@ -37,13 +37,14 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Edit lines marked with `==>'. See "SoftFloat-source.html".
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define LITTLEENDIAN 1
*----------------------------------------------------------------------------*/
==> #define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define THREAD_LOCAL _Thread_local
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -37,13 +37,14 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Edit lines marked with `==>'. See "SoftFloat-source.html".
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define LITTLEENDIAN 1
*----------------------------------------------------------------------------*/
==> #define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define INLINE inline
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
==> #define THREAD_LOCAL _Thread_local
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,7 +114,8 @@ uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -126,7 +127,7 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -134,13 +135,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -148,20 +149,20 @@ uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -169,13 +170,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -183,13 +184,14 @@ uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -197,8 +199,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
@ -214,14 +215,16 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -232,13 +235,19 @@ struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -246,8 +255,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -256,13 +264,15 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -273,7 +283,13 @@ struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
#else
@ -288,14 +304,18 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -303,7 +323,12 @@ void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat8
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -311,7 +336,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -321,7 +346,8 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -329,7 +355,8 @@ void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -339,8 +366,11 @@ void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0xFFFFFFFF
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow (-0x7FFFFFFF - 1)
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN (-0x7FFFFFFF - 1)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,7 +114,8 @@ uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -126,7 +127,7 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -134,13 +135,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -148,20 +149,20 @@ uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -169,13 +170,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -183,13 +184,14 @@ uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -197,8 +199,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
@ -214,14 +215,16 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -232,13 +235,19 @@ struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -246,8 +255,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -256,13 +264,15 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -273,7 +283,13 @@ struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
#else
@ -288,14 +304,18 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -303,7 +323,12 @@ void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat8
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -311,7 +336,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -321,7 +346,8 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -329,7 +355,8 @@ void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -339,8 +366,11 @@ void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,29 +53,27 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN {
char _unused;
};
struct commonNaN { char _unused; };
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit floating-point NaN.
@ -87,7 +85,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -95,15 +93,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0200)) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_f16UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x0200) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF16UI(aPtr) ((uint_fast16_t)defaultNaNF16UI)
#define softfloat_commonNaNToF16UI( aPtr ) ((uint_fast16_t) defaultNaNF16UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -111,7 +107,8 @@ struct commonNaN {
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -123,7 +120,7 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -131,15 +128,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f32UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x00400000)) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_f32UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & 0x00400000) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF32UI(aPtr) ((uint_fast32_t)defaultNaNF32UI)
#define softfloat_commonNaNToF32UI( aPtr ) ((uint_fast32_t) defaultNaNF32UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -147,20 +142,20 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -168,15 +163,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f64UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&UINT64_C(0x0008000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_f64UIToCommonNaN( uiA, zPtr ) if ( ! ((uiA) & UINT64_C( 0x0008000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF64UI(aPtr) ((uint_fast64_t)defaultNaNF64UI)
#define softfloat_commonNaNToF64UI( aPtr ) ((uint_fast64_t) defaultNaNF64UI)
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -184,13 +177,14 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -198,8 +192,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
@ -215,25 +208,24 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA0)&UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_extF80UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA0) & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToExtF80UI
#if defined INLINE && ! defined softfloat_commonNaNToExtF80UI
INLINE
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr) {
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr )
{
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
uiZ.v0 = defaultNaNExtF80UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
#endif
/*----------------------------------------------------------------------------
@ -245,13 +237,19 @@ struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -259,8 +257,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -269,24 +266,23 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f128UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA64)&UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_f128UIToCommonNaN( uiA64, uiA0, zPtr ) if ( ! ((uiA64) & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToF128UI
#if defined INLINE && ! defined softfloat_commonNaNToF128UI
INLINE
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN* aPtr) {
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN *aPtr )
{
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
uiZ.v0 = defaultNaNF128UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
#endif
/*----------------------------------------------------------------------------
@ -298,7 +294,13 @@ struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
#else
@ -313,23 +315,26 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80MToCommonNaN(aSPtr, zPtr) \
if(!((aSPtr)->signif & UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_extF80MToCommonNaN( aSPtr, zPtr ) if ( ! ((aSPtr)->signif & UINT64_C( 0x4000000000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToExtF80M
#if defined INLINE && ! defined softfloat_commonNaNToExtF80M
INLINE
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr) {
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr )
{
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
zSPtr->signif = defaultNaNExtF80UI0;
}
#else
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
#endif
/*----------------------------------------------------------------------------
@ -338,7 +343,12 @@ void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat8
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -346,7 +356,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -356,9 +366,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#define softfloat_f128MToCommonNaN(aWPtr, zPtr) \
if(!((aWPtr)[indexWordHi(4)] & UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
#define softfloat_f128MToCommonNaN( aWPtr, zPtr ) if ( ! ((aWPtr)[indexWordHi( 4 )] & UINT64_C( 0x0000800000000000 )) ) softfloat_raiseFlags( softfloat_flag_invalid )
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -366,16 +374,19 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToF128M
#if defined INLINE && ! defined softfloat_commonNaNToF128M
INLINE
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr) {
zWPtr[indexWord(4, 3)] = defaultNaNF128UI96;
zWPtr[indexWord(4, 2)] = defaultNaNF128UI64;
zWPtr[indexWord(4, 1)] = defaultNaNF128UI32;
zWPtr[indexWord(4, 0)] = defaultNaNF128UI0;
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr )
{
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
}
#else
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
#endif
/*----------------------------------------------------------------------------
@ -386,8 +397,11 @@ void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
#define ui32_fromNaN 0
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN 0
#define ui64_fromNaN 0
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF )
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNaN 0
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,7 +114,8 @@ uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -126,7 +127,7 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -134,13 +135,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -148,20 +149,20 @@ uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -169,13 +170,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -183,13 +184,14 @@ uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -197,8 +199,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
@ -214,14 +215,16 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -232,13 +235,19 @@ struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
#define defaultNaNF128UI64 UINT64_C( 0x7FFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -246,8 +255,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -256,13 +264,15 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -273,7 +283,13 @@ struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
#else
@ -288,14 +304,18 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -303,7 +323,12 @@ void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat8
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -311,7 +336,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -321,7 +346,8 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -329,7 +355,8 @@ void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -339,8 +366,11 @@ void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
#endif
#endif

View File

@ -37,10 +37,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef specialize_h
#define specialize_h 1
#include "primitiveTypes.h"
#include "softfloat.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Default value for 'softfloat_detectTininess'.
@ -53,21 +53,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow UINT32_C(0xFFFFFFFF)
#define ui32_fromNegOverflow UINT32_C(0x0)
#define ui32_fromNaN UINT32_C(0xFFFFFFFF)
#define i32_fromPosOverflow INT64_C(0x7FFFFFFF)
#define i32_fromNegOverflow (-INT64_C(0x7FFFFFFF) - 1)
#define i32_fromNaN INT64_C(0x7FFFFFFF)
#define ui32_fromNaN UINT32_C(0xFFFFFFFF)
#define i32_fromPosOverflow INT64_C(0x7FFFFFFF)
#define i32_fromNegOverflow (-INT64_C(0x7FFFFFFF)-1)
#define i32_fromNaN INT64_C(0x7FFFFFFF)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow UINT64_C(0x0)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
#define i64_fromNaN INT64_C(0x7FFFFFFFFFFFFFFF)
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow UINT64_C( 0x0 )
#define ui64_fromNaN UINT64_C( 0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C( 0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C( 0x7FFFFFFFFFFFFFFF)-1)
#define i64_fromNaN INT64_C( 0x7FFFFFFFFFFFFFFF)
/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
@ -92,7 +92,7 @@ struct commonNaN {
| 16-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
#define softfloat_isSigNaNF16UI( uiA ) ((((uiA) & 0x7E00) == 0x7C00) && ((uiA) & 0x01FF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
@ -100,13 +100,13 @@ struct commonNaN {
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -114,7 +114,8 @@ uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
@ -126,7 +127,7 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| 32-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI(uiA) ((((uiA)&0x7FC00000) == 0x7F800000) && ((uiA)&0x003FFFFF))
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 32-bit floating-point NaN, converts
@ -134,13 +135,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -148,20 +149,20 @@ uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C(0x7FF8000000000000)
#define defaultNaNF64UI UINT64_C( 0x7FF8000000000000 )
/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer 'uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI(uiA) \
((((uiA)&UINT64_C(0x7FF8000000000000)) == UINT64_C(0x7FF0000000000000)) && ((uiA)&UINT64_C(0x0007FFFFFFFFFFFF)))
#define softfloat_isSigNaNF64UI( uiA ) ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 64-bit floating-point NaN, converts
@ -169,13 +170,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -183,13 +184,14 @@ uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
| the combined NaN result. If either 'uiA' or 'uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
#define defaultNaNExtF80UI0 UINT64_C( 0xC000000000000000 )
/*----------------------------------------------------------------------------
| Returns true when the 80-bit unsigned integer formed from concatenating
@ -197,8 +199,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| floating-point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNExtF80UI(uiA64, uiA0) \
((((uiA64)&0x7FFF) == 0x7FFF) && !((uiA0)&UINT64_C(0x4000000000000000)) && ((uiA0)&UINT64_C(0x3FFFFFFFFFFFFFFF)))
#define softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ((((uiA64) & 0x7FFF) == 0x7FFF) && ! ((uiA0) & UINT64_C( 0x4000000000000000 )) && ((uiA0) & UINT64_C( 0x3FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
@ -214,14 +215,16 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -232,13 +235,19 @@ struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
| result. If either original floating-point value is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t uiA0, uint_fast16_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNExtF80UI(
uint_fast16_t uiA64,
uint_fast64_t uiA0,
uint_fast16_t uiB64,
uint_fast64_t uiB0
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
#define defaultNaNF128UI64 UINT64_C( 0xFFFF800000000000 )
#define defaultNaNF128UI0 UINT64_C( 0 )
/*----------------------------------------------------------------------------
| Returns true when the 128-bit unsigned integer formed from concatenating
@ -246,8 +255,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| point signaling NaN.
| Note: This macro evaluates its arguments more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF128UI(uiA64, uiA0) \
((((uiA64)&UINT64_C(0x7FFF800000000000)) == UINT64_C(0x7FFF000000000000)) && ((uiA0) || ((uiA64)&UINT64_C(0x00007FFFFFFFFFFF))))
#define softfloat_isSigNaNF128UI( uiA64, uiA0 ) ((((uiA64) & UINT64_C( 0x7FFF800000000000 )) == UINT64_C( 0x7FFF000000000000 )) && ((uiA0) || ((uiA64) & UINT64_C( 0x00007FFFFFFFFFFF ))))
/*----------------------------------------------------------------------------
| Assuming the unsigned integer formed from concatenating 'uiA64' and 'uiA0'
@ -256,13 +264,15 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN * );
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -273,7 +283,13 @@ struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
| If either original floating-point value is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t uiA0, uint_fast64_t uiB64, uint_fast64_t uiB0);
struct uint128
softfloat_propagateNaNF128UI(
uint_fast64_t uiA64,
uint_fast64_t uiA0,
uint_fast64_t uiB64,
uint_fast64_t uiB0
);
#else
@ -288,14 +304,18 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
void
softfloat_commonNaNToExtF80M(
const struct commonNaN *aPtr, struct extFloat80M *zSPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -303,7 +323,12 @@ void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat8
| at the location pointed to by 'zSPtr'. If either original floating-point
| value is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct extFloat80M* bSPtr, struct extFloat80M* zSPtr);
void
softfloat_propagateNaNExtF80M(
const struct extFloat80M *aSPtr,
const struct extFloat80M *bSPtr,
struct extFloat80M *zSPtr
);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
@ -311,7 +336,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
#define defaultNaNF128UI0 0
/*----------------------------------------------------------------------------
| Assuming the 128-bit floating-point value pointed to by 'aWPtr' is a NaN,
@ -321,7 +346,8 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr );
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -329,7 +355,8 @@ void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr );
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
@ -339,8 +366,11 @@ void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void softfloat_propagateNaNF128M(const uint32_t* aWPtr, const uint32_t* bWPtr, uint32_t* zWPtr);
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr );
#endif
#endif

View File

@ -37,205 +37,242 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef internals_h
#define internals_h 1
#include "primitives.h"
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitives.h"
#include "softfloat_types.h"
union ui16_f16 {
uint16_t ui;
float16_t f;
};
union ui32_f32 {
uint32_t ui;
float32_t f;
};
union ui64_f64 {
uint64_t ui;
float64_t f;
};
union ui16_f16 { uint16_t ui; float16_t f; };
union ui32_f32 { uint32_t ui; float32_t f; };
union ui64_f64 { uint64_t ui; float64_t f; };
#ifdef SOFTFLOAT_FAST_INT64
union extF80M_extF80 {
struct extFloat80M fM;
extFloat80_t f;
};
union ui128_f128 {
struct uint128 ui;
float128_t f;
};
union extF80M_extF80 { struct extFloat80M fM; extFloat80_t f; };
union ui128_f128 { struct uint128 ui; float128_t f; };
#endif
enum { softfloat_mulAdd_subC = 1, softfloat_mulAdd_subProd = 2 };
enum {
softfloat_mulAdd_subC = 1,
softfloat_mulAdd_subProd = 2
};
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32(bool, uint_fast64_t, uint_fast8_t, bool);
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_roundToUI32( bool, uint_fast64_t, uint_fast8_t, bool );
#ifdef SOFTFLOAT_FAST_INT64
uint_fast64_t softfloat_roundToUI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
uint_fast64_t
softfloat_roundToUI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
#else
uint_fast64_t softfloat_roundMToUI64(bool, uint32_t*, uint_fast8_t, bool);
uint_fast64_t softfloat_roundMToUI64( bool, uint32_t *, uint_fast8_t, bool );
#endif
int_fast32_t softfloat_roundToI32(bool, uint_fast64_t, uint_fast8_t, bool);
int_fast32_t softfloat_roundToI32( bool, uint_fast64_t, uint_fast8_t, bool );
#ifdef SOFTFLOAT_FAST_INT64
int_fast64_t softfloat_roundToI64(bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);
int_fast64_t
softfloat_roundToI64(
bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool );
#else
int_fast64_t softfloat_roundMToI64(bool, uint32_t*, uint_fast8_t, bool);
int_fast64_t softfloat_roundMToI64( bool, uint32_t *, uint_fast8_t, bool );
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF16UI(a) ((bool)((uint16_t)(a) >> 15))
#define expF16UI(a) ((int_fast8_t)((a) >> 10) & 0x1F)
#define fracF16UI(a) ((a)&0x03FF)
#define packToF16UI(sign, exp, sig) (((uint16_t)(sign) << 15) + ((uint16_t)(exp) << 10) + (sig))
*----------------------------------------------------------------------------*/
#define signF16UI( a ) ((bool) ((uint16_t) (a)>>15))
#define expF16UI( a ) ((int_fast8_t) ((a)>>10) & 0x1F)
#define fracF16UI( a ) ((a) & 0x03FF)
#define packToF16UI( sign, exp, sig ) (((uint16_t) (sign)<<15) + ((uint16_t) (exp)<<10) + (sig))
#define isNaNF16UI(a) (((~(a)&0x7C00) == 0) && ((a)&0x03FF))
#define isNaNF16UI( a ) (((~(a) & 0x7C00) == 0) && ((a) & 0x03FF))
struct exp8_sig16 {
int_fast8_t exp;
uint_fast16_t sig;
};
struct exp8_sig16 softfloat_normSubnormalF16Sig(uint_fast16_t);
struct exp8_sig16 { int_fast8_t exp; uint_fast16_t sig; };
struct exp8_sig16 softfloat_normSubnormalF16Sig( uint_fast16_t );
float16_t softfloat_roundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_normRoundPackToF16(bool, int_fast16_t, uint_fast16_t);
float16_t softfloat_roundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_normRoundPackToF16( bool, int_fast16_t, uint_fast16_t );
float16_t softfloat_addMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_subMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_mulAddF16(uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t);
float16_t softfloat_addMagsF16( uint_fast16_t, uint_fast16_t );
float16_t softfloat_subMagsF16( uint_fast16_t, uint_fast16_t );
float16_t
softfloat_mulAddF16(
uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t );
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF32UI(a) ((bool)((uint32_t)(a) >> 31))
#define expF32UI(a) ((int_fast16_t)((a) >> 23) & 0xFF)
#define fracF32UI(a) ((a)&0x007FFFFF)
#define packToF32UI(sign, exp, sig) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 23) + (sig))
*----------------------------------------------------------------------------*/
#define signF32UI( a ) ((bool) ((uint32_t) (a)>>31))
#define expF32UI( a ) ((int_fast16_t) ((a)>>23) & 0xFF)
#define fracF32UI( a ) ((a) & 0x007FFFFF)
#define packToF32UI( sign, exp, sig ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<23) + (sig))
#define isNaNF32UI(a) (((~(a)&0x7F800000) == 0) && ((a)&0x007FFFFF))
#define isNaNF32UI( a ) (((~(a) & 0x7F800000) == 0) && ((a) & 0x007FFFFF))
struct exp16_sig32 {
int_fast16_t exp;
uint_fast32_t sig;
};
struct exp16_sig32 softfloat_normSubnormalF32Sig(uint_fast32_t);
struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; };
struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t );
float32_t softfloat_roundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_normRoundPackToF32(bool, int_fast16_t, uint_fast32_t);
float32_t softfloat_roundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_normRoundPackToF32( bool, int_fast16_t, uint_fast32_t );
float32_t softfloat_addMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_subMagsF32(uint_fast32_t, uint_fast32_t);
float32_t softfloat_mulAddF32(uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t);
float32_t softfloat_addMagsF32( uint_fast32_t, uint_fast32_t );
float32_t softfloat_subMagsF32( uint_fast32_t, uint_fast32_t );
float32_t
softfloat_mulAddF32(
uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t );
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF64UI(a) ((bool)((uint64_t)(a) >> 63))
#define expF64UI(a) ((int_fast16_t)((a) >> 52) & 0x7FF)
#define fracF64UI(a) ((a)&UINT64_C(0x000FFFFFFFFFFFFF))
#define packToF64UI(sign, exp, sig) ((uint64_t)(((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 52) + (sig)))
*----------------------------------------------------------------------------*/
#define signF64UI( a ) ((bool) ((uint64_t) (a)>>63))
#define expF64UI( a ) ((int_fast16_t) ((a)>>52) & 0x7FF)
#define fracF64UI( a ) ((a) & UINT64_C( 0x000FFFFFFFFFFFFF ))
#define packToF64UI( sign, exp, sig ) ((uint64_t) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<52) + (sig)))
#define isNaNF64UI(a) (((~(a)&UINT64_C(0x7FF0000000000000)) == 0) && ((a)&UINT64_C(0x000FFFFFFFFFFFFF)))
#define isNaNF64UI( a ) (((~(a) & UINT64_C( 0x7FF0000000000000 )) == 0) && ((a) & UINT64_C( 0x000FFFFFFFFFFFFF )))
struct exp16_sig64 {
int_fast16_t exp;
uint_fast64_t sig;
};
struct exp16_sig64 softfloat_normSubnormalF64Sig(uint_fast64_t);
struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; };
struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t );
float64_t softfloat_roundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_normRoundPackToF64(bool, int_fast16_t, uint_fast64_t);
float64_t softfloat_roundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_normRoundPackToF64( bool, int_fast16_t, uint_fast64_t );
float64_t softfloat_addMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_subMagsF64(uint_fast64_t, uint_fast64_t, bool);
float64_t softfloat_mulAddF64(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
float64_t softfloat_addMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t softfloat_subMagsF64( uint_fast64_t, uint_fast64_t, bool );
float64_t
softfloat_mulAddF64(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signExtF80UI64(a64) ((bool)((uint16_t)(a64) >> 15))
#define expExtF80UI64(a64) ((a64)&0x7FFF)
#define packToExtF80UI64(sign, exp) ((uint_fast16_t)(sign) << 15 | (exp))
*----------------------------------------------------------------------------*/
#define signExtF80UI64( a64 ) ((bool) ((uint16_t) (a64)>>15))
#define expExtF80UI64( a64 ) ((a64) & 0x7FFF)
#define packToExtF80UI64( sign, exp ) ((uint_fast16_t) (sign)<<15 | (exp))
#define isNaNExtF80UI(a64, a0) ((((a64)&0x7FFF) == 0x7FFF) && ((a0)&UINT64_C(0x7FFFFFFFFFFFFFFF)))
#define isNaNExtF80UI( a64, a0 ) ((((a64) & 0x7FFF) == 0x7FFF) && ((a0) & UINT64_C( 0x7FFFFFFFFFFFFFFF )))
#ifdef SOFTFLOAT_FAST_INT64
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
struct exp32_sig64 {
int_fast32_t exp;
uint64_t sig;
};
struct exp32_sig64 softfloat_normSubnormalExtF80Sig(uint_fast64_t);
struct exp32_sig64 { int_fast32_t exp; uint64_t sig; };
struct exp32_sig64 softfloat_normSubnormalExtF80Sig( uint_fast64_t );
extFloat80_t softfloat_roundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t softfloat_normRoundPackToExtF80(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
extFloat80_t
softfloat_roundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t
softfloat_normRoundPackToExtF80(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );
extFloat80_t softfloat_addMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
extFloat80_t softfloat_subMagsExtF80(uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool);
extFloat80_t
softfloat_addMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
extFloat80_t
softfloat_subMagsExtF80(
uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool );
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI64(a64) ((bool)((uint64_t)(a64) >> 63))
#define expF128UI64(a64) ((int_fast32_t)((a64) >> 48) & 0x7FFF)
#define fracF128UI64(a64) ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))
#define packToF128UI64(sign, exp, sig64) (((uint_fast64_t)(sign) << 63) + ((uint_fast64_t)(exp) << 48) + (sig64))
*----------------------------------------------------------------------------*/
#define signF128UI64( a64 ) ((bool) ((uint64_t) (a64)>>63))
#define expF128UI64( a64 ) ((int_fast32_t) ((a64)>>48) & 0x7FFF)
#define fracF128UI64( a64 ) ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))
#define packToF128UI64( sign, exp, sig64 ) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<48) + (sig64))
#define isNaNF128UI(a64, a0) (((~(a64)&UINT64_C(0x7FFF000000000000)) == 0) && (a0 || ((a64)&UINT64_C(0x0000FFFFFFFFFFFF))))
#define isNaNF128UI( a64, a0 ) (((~(a64) & UINT64_C( 0x7FFF000000000000 )) == 0) && (a0 || ((a64) & UINT64_C( 0x0000FFFFFFFFFFFF ))))
struct exp32_sig128 {
int_fast32_t exp;
struct uint128 sig;
};
struct exp32_sig128 softfloat_normSubnormalF128Sig(uint_fast64_t, uint_fast64_t);
struct exp32_sig128 { int_fast32_t exp; struct uint128 sig; };
struct exp32_sig128
softfloat_normSubnormalF128Sig( uint_fast64_t, uint_fast64_t );
float128_t softfloat_roundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t);
float128_t softfloat_normRoundPackToF128(bool, int_fast32_t, uint_fast64_t, uint_fast64_t);
float128_t
softfloat_roundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t, uint_fast64_t );
float128_t
softfloat_normRoundPackToF128(
bool, int_fast32_t, uint_fast64_t, uint_fast64_t );
float128_t softfloat_addMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_subMagsF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool);
float128_t softfloat_mulAddF128(uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t);
float128_t
softfloat_addMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_subMagsF128(
uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool );
float128_t
softfloat_mulAddF128(
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast64_t,
uint_fast8_t
);
#else
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
*----------------------------------------------------------------------------*/
bool softfloat_tryPropagateNaNExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*);
void softfloat_invalidExtF80M(struct extFloat80M*);
bool
softfloat_tryPropagateNaNExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *
);
void softfloat_invalidExtF80M( struct extFloat80M * );
int softfloat_normExtF80SigM(uint64_t*);
int softfloat_normExtF80SigM( uint64_t * );
void softfloat_roundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void softfloat_normRoundPackMToExtF80M(bool, int32_t, uint32_t*, uint_fast8_t, struct extFloat80M*);
void
softfloat_roundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void
softfloat_normRoundPackMToExtF80M(
bool, int32_t, uint32_t *, uint_fast8_t, struct extFloat80M * );
void softfloat_addExtF80M(const struct extFloat80M*, const struct extFloat80M*, struct extFloat80M*, bool);
void
softfloat_addExtF80M(
const struct extFloat80M *,
const struct extFloat80M *,
struct extFloat80M *,
bool
);
int softfloat_compareNonnormExtF80M(const struct extFloat80M*, const struct extFloat80M*);
int
softfloat_compareNonnormExtF80M(
const struct extFloat80M *, const struct extFloat80M * );
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF128UI96(a96) ((bool)((uint32_t)(a96) >> 31))
#define expF128UI96(a96) ((int32_t)((a96) >> 16) & 0x7FFF)
#define fracF128UI96(a96) ((a96)&0x0000FFFF)
#define packToF128UI96(sign, exp, sig96) (((uint32_t)(sign) << 31) + ((uint32_t)(exp) << 16) + (sig96))
*----------------------------------------------------------------------------*/
#define signF128UI96( a96 ) ((bool) ((uint32_t) (a96)>>31))
#define expF128UI96( a96 ) ((int32_t) ((a96)>>16) & 0x7FFF)
#define fracF128UI96( a96 ) ((a96) & 0x0000FFFF)
#define packToF128UI96( sign, exp, sig96 ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<16) + (sig96))
bool softfloat_isNaNF128M(const uint32_t*);
bool softfloat_isNaNF128M( const uint32_t * );
bool softfloat_tryPropagateNaNF128M(const uint32_t*, const uint32_t*, uint32_t*);
void softfloat_invalidF128M(uint32_t*);
bool
softfloat_tryPropagateNaNF128M(
const uint32_t *, const uint32_t *, uint32_t * );
void softfloat_invalidF128M( uint32_t * );
int softfloat_shiftNormSigF128M(const uint32_t*, uint_fast8_t, uint32_t*);
int softfloat_shiftNormSigF128M( const uint32_t *, uint_fast8_t, uint32_t * );
void softfloat_roundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void softfloat_normRoundPackMToF128M(bool, int32_t, uint32_t*, uint32_t*);
void softfloat_roundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_normRoundPackMToF128M( bool, int32_t, uint32_t *, uint32_t * );
void softfloat_addF128M(const uint32_t*, const uint32_t*, uint32_t*, bool);
void softfloat_mulAddF128M(const uint32_t*, const uint32_t*, const uint32_t*, uint32_t*, uint_fast8_t);
void
softfloat_addF128M( const uint32_t *, const uint32_t *, uint32_t *, bool );
void
softfloat_mulAddF128M(
const uint32_t *,
const uint32_t *,
const uint32_t *,
uint32_t *,
uint_fast8_t
);
#endif
#endif

View File

@ -39,70 +39,70 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef INLINE
#include "primitiveTypes.h"
#include <stdint.h>
#include "primitiveTypes.h"
#ifdef SOFTFLOAT_BUILTIN_CLZ
INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) { return a ? __builtin_clz(a) - 16 : 16; }
INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
{ return a ? __builtin_clz( a ) - 16 : 16; }
#define softfloat_countLeadingZeros16 softfloat_countLeadingZeros16
INLINE uint_fast8_t softfloat_countLeadingZeros32(uint32_t a) { return a ? __builtin_clz(a) : 32; }
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{ return a ? __builtin_clz( a ) : 32; }
#define softfloat_countLeadingZeros32 softfloat_countLeadingZeros32
INLINE uint_fast8_t softfloat_countLeadingZeros64(uint64_t a) { return a ? __builtin_clzll(a) : 64; }
INLINE uint_fast8_t softfloat_countLeadingZeros64( uint64_t a )
{ return a ? __builtin_clzll( a ) : 64; }
#define softfloat_countLeadingZeros64 softfloat_countLeadingZeros64
#endif
#ifdef SOFTFLOAT_INTRINSIC_INT128
INLINE struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = (unsigned __int128)a * ((uint_fast64_t)b << 32);
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = (unsigned __int128) a * ((uint_fast64_t) b<<32);
return uZ.s;
}
#define softfloat_mul64ByShifted32To128 softfloat_mul64ByShifted32To128
INLINE struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = (unsigned __int128)a * b;
INLINE struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = (unsigned __int128) a * b;
return uZ.s;
}
#define softfloat_mul64To128 softfloat_mul64To128
INLINE
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b) {
union {
unsigned __int128 ui;
struct uint128 s;
} uZ;
uZ.ui = ((unsigned __int128)a64 << 64 | a0) * b;
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
union { unsigned __int128 ui; struct uint128 s; } uZ;
uZ.ui = ((unsigned __int128) a64<<64 | a0) * b;
return uZ.s;
}
#define softfloat_mul128By32 softfloat_mul128By32
INLINE
void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t* zPtr) {
void
softfloat_mul128To256M(
uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr )
{
unsigned __int128 z0, mid1, mid, z128;
z0 = (unsigned __int128)a0 * b0;
mid1 = (unsigned __int128)a64 * b0;
mid = mid1 + (unsigned __int128)a0 * b64;
z128 = (unsigned __int128)a64 * b64;
z128 += (unsigned __int128)(mid < mid1) << 64 | mid >> 64;
z0 = (unsigned __int128) a0 * b0;
mid1 = (unsigned __int128) a64 * b0;
mid = mid1 + (unsigned __int128) a0 * b64;
z128 = (unsigned __int128) a64 * b64;
z128 += (unsigned __int128) (mid < mid1)<<64 | mid>>64;
mid <<= 64;
z0 += mid;
z128 += (z0 < mid);
zPtr[indexWord(4, 0)] = z0;
zPtr[indexWord(4, 1)] = z0 >> 64;
zPtr[indexWord(4, 2)] = z128;
zPtr[indexWord(4, 3)] = z128 >> 64;
zPtr[indexWord( 4, 0 )] = z0;
zPtr[indexWord( 4, 1 )] = z0>>64;
zPtr[indexWord( 4, 2 )] = z128;
zPtr[indexWord( 4, 3 )] = z128>>64;
}
#define softfloat_mul128To256M softfloat_mul128To256M
@ -111,3 +111,4 @@ void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0
#endif
#endif

View File

@ -42,27 +42,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef SOFTFLOAT_FAST_INT64
#ifdef LITTLEENDIAN
struct uint128 {
uint64_t v0, v64;
};
struct uint64_extra {
uint64_t extra, v;
};
struct uint128_extra {
uint64_t extra;
struct uint128 v;
};
struct uint128 { uint64_t v0, v64; };
struct uint64_extra { uint64_t extra, v; };
struct uint128_extra { uint64_t extra; struct uint128 v; };
#else
struct uint128 {
uint64_t v64, v0;
};
struct uint64_extra {
uint64_t v, extra;
};
struct uint128_extra {
struct uint128 v;
uint64_t extra;
};
struct uint128 { uint64_t v64, v0; };
struct uint64_extra { uint64_t v, extra; };
struct uint128_extra { struct uint128 v; uint64_t extra; };
#endif
#endif
@ -73,28 +59,27 @@ struct uint128_extra {
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
#define wordIncr 1
#define indexWord(total, n) (n)
#define indexWordHi(total) ((total)-1)
#define indexWordLo(total) 0
#define indexMultiword(total, m, n) (n)
#define indexMultiwordHi(total, n) ((total) - (n))
#define indexMultiwordLo(total, n) 0
#define indexMultiwordHiBut(total, n) (n)
#define indexMultiwordLoBut(total, n) 0
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v0, v1, v2, v3 }
#define indexWord( total, n ) (n)
#define indexWordHi( total ) ((total) - 1)
#define indexWordLo( total ) 0
#define indexMultiword( total, m, n ) (n)
#define indexMultiwordHi( total, n ) ((total) - (n))
#define indexMultiwordLo( total, n ) 0
#define indexMultiwordHiBut( total, n ) (n)
#define indexMultiwordLoBut( total, n ) 0
#define INIT_UINTM4( v3, v2, v1, v0 ) { v0, v1, v2, v3 }
#else
#define wordIncr -1
#define indexWord(total, n) ((total)-1 - (n))
#define indexWordHi(total) 0
#define indexWordLo(total) ((total)-1)
#define indexMultiword(total, m, n) ((total)-1 - (m))
#define indexMultiwordHi(total, n) 0
#define indexMultiwordLo(total, n) ((total) - (n))
#define indexMultiwordHiBut(total, n) 0
#define indexMultiwordLoBut(total, n) (n)
#define INIT_UINTM4(v3, v2, v1, v0) \
{ v3, v2, v1, v0 }
#define indexWord( total, n ) ((total) - 1 - (n))
#define indexWordHi( total ) 0
#define indexWordLo( total ) ((total) - 1)
#define indexMultiword( total, m, n ) ((total) - 1 - (m))
#define indexMultiwordHi( total, n ) 0
#define indexMultiwordLo( total, n ) ((total) - (n))
#define indexMultiwordHiBut( total, n ) 0
#define indexMultiwordLoBut( total, n ) (n)
#define INIT_UINTM4( v3, v2, v1, v0 ) { v3, v2, v1, v0 }
#endif
#endif

View File

@ -37,9 +37,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef primitives_h
#define primitives_h 1
#include "primitiveTypes.h"
#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"
#ifndef softfloat_shortShiftRightJam64
/*----------------------------------------------------------------------------
@ -50,9 +50,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist) { return a >> dist | ((a & (((uint_fast64_t)1 << dist) - 1)) != 0); }
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist )
{ return a>>dist | ((a & (((uint_fast64_t) 1<<dist) - 1)) != 0); }
#else
uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist);
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist );
#endif
#endif
@ -67,11 +68,13 @@ uint64_t softfloat_shortShiftRightJam64(uint64_t a, uint_fast8_t dist);
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist) {
return (dist < 31) ? a >> dist | ((uint32_t)(a << (-dist & 31)) != 0) : (a != 0);
INLINE uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist )
{
return
(dist < 31) ? a>>dist | ((uint32_t) (a<<(-dist & 31)) != 0) : (a != 0);
}
#else
uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist);
uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist );
#endif
#endif
@ -86,11 +89,13 @@ uint32_t softfloat_shiftRightJam32(uint32_t a, uint_fast16_t dist);
| is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist) {
return (dist < 63) ? a >> dist | ((uint64_t)(a << (-dist & 63)) != 0) : (a != 0);
INLINE uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist )
{
return
(dist < 63) ? a>>dist | ((uint64_t) (a<<(-dist & 63)) != 0) : (a != 0);
}
#else
uint64_t softfloat_shiftRightJam64(uint64_t a, uint_fast32_t dist);
uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist );
#endif
#endif
@ -107,9 +112,10 @@ extern const uint_least8_t softfloat_countLeadingZeros8[256];
| 'a'. If 'a' is zero, 16 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) {
INLINE uint_fast8_t softfloat_countLeadingZeros16( uint16_t a )
{
uint_fast8_t count = 8;
if(0x100 <= a) {
if ( 0x100 <= a ) {
count = 0;
a >>= 8;
}
@ -117,7 +123,7 @@ INLINE uint_fast8_t softfloat_countLeadingZeros16(uint16_t a) {
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros16(uint16_t a);
uint_fast8_t softfloat_countLeadingZeros16( uint16_t a );
#endif
#endif
@ -127,21 +133,22 @@ uint_fast8_t softfloat_countLeadingZeros16(uint16_t a);
| 'a'. If 'a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros32(uint32_t a) {
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{
uint_fast8_t count = 0;
if(a < 0x10000) {
if ( a < 0x10000 ) {
count = 16;
a <<= 16;
}
if(a < 0x1000000) {
if ( a < 0x1000000 ) {
count += 8;
a <<= 8;
}
count += softfloat_countLeadingZeros8[a >> 24];
count += softfloat_countLeadingZeros8[a>>24];
return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros32(uint32_t a);
uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
#endif
#endif
@ -150,7 +157,7 @@ uint_fast8_t softfloat_countLeadingZeros32(uint32_t a);
| Returns the number of leading 0 bits before the most-significant 1 bit of
| 'a'. If 'a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_countLeadingZeros64(uint64_t a);
uint_fast8_t softfloat_countLeadingZeros64( uint64_t a );
#endif
extern const uint16_t softfloat_approxRecip_1k0s[16];
@ -169,9 +176,9 @@ extern const uint16_t softfloat_approxRecip_1k1s[16];
| (units in the last place).
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_DIV64TO32
#define softfloat_approxRecip32_1(a) ((uint32_t)(UINT64_C(0x7FFFFFFFFFFFFFFF) / (uint32_t)(a)))
#define softfloat_approxRecip32_1( a ) ((uint32_t) (UINT64_C( 0x7FFFFFFFFFFFFFFF ) / (uint32_t) (a)))
#else
uint32_t softfloat_approxRecip32_1(uint32_t a);
uint32_t softfloat_approxRecip32_1( uint32_t a );
#endif
#endif
@ -197,7 +204,7 @@ extern const uint16_t softfloat_approxRecipSqrt_1k1s[16];
| returned is also always within the range 0.5 to 1; thus, the most-
| significant bit of the result is always set.
*----------------------------------------------------------------------------*/
uint32_t softfloat_approxRecipSqrt32_1(unsigned int oddExpA, uint32_t a);
uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
#endif
#ifdef SOFTFLOAT_FAST_INT64
@ -215,9 +222,10 @@ uint32_t softfloat_approxRecipSqrt32_1(unsigned int oddExpA, uint32_t a);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (1 <= INLINE_LEVEL)
INLINE
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 == b64) && (a0 == b0); }
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 == b64) && (a0 == b0); }
#else
bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif
@ -229,9 +237,10 @@ bool softfloat_eq128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
#else
bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif
@ -243,9 +252,10 @@ bool softfloat_le128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) { return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{ return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
#else
bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif
@ -256,14 +266,17 @@ bool softfloat_lt128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 z;
z.v64 = a64 << dist | a0 >> (-dist & 63);
z.v0 = a0 << dist;
z.v64 = a64<<dist | a0>>(-dist & 63);
z.v0 = a0<<dist;
return z;
}
#else
struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
struct uint128
softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
#endif
#endif
@ -274,14 +287,17 @@ struct uint128 softfloat_shortShiftLeft128(uint64_t a64, uint64_t a0, uint_fast8
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
struct uint128 z;
z.v64 = a64 >> dist;
z.v0 = a64 << (-dist & 63) | a0 >> dist;
z.v64 = a64>>dist;
z.v0 = a64<<(-dist & 63) | a0>>dist;
return z;
}
#else
struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
struct uint128
softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t dist );
#endif
#endif
@ -292,14 +308,19 @@ struct uint128 softfloat_shortShiftRight128(uint64_t a64, uint64_t a0, uint_fast
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist) {
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist )
{
struct uint64_extra z;
z.v = a >> dist;
z.extra = a << (-dist & 63) | (extra != 0);
z.v = a>>dist;
z.extra = a<<(-dist & 63) | (extra != 0);
return z;
}
#else
struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast8_t dist);
struct uint64_extra
softfloat_shortShiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast8_t dist );
#endif
#endif
@ -313,15 +334,22 @@ struct uint64_extra softfloat_shortShiftRightJam64Extra(uint64_t a, uint64_t ext
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist) {
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
uint_fast8_t negDist = -dist;
struct uint128 z;
z.v64 = a64 >> dist;
z.v0 = a64 << (negDist & 63) | a0 >> dist | ((uint64_t)(a0 << (negDist & 63)) != 0);
z.v64 = a64>>dist;
z.v0 =
a64<<(negDist & 63) | a0>>dist
| ((uint64_t) (a0<<(negDist & 63)) != 0);
return z;
}
#else
struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist);
struct uint128
softfloat_shortShiftRightJam128(
uint64_t a64, uint64_t a0, uint_fast8_t dist );
#endif
#endif
@ -332,16 +360,21 @@ struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_f
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist) {
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist )
{
uint_fast8_t negDist = -dist;
struct uint128_extra z;
z.v.v64 = a64 >> dist;
z.v.v0 = a64 << (negDist & 63) | a0 >> dist;
z.extra = a0 << (negDist & 63) | (extra != 0);
z.v.v64 = a64>>dist;
z.v.v0 = a64<<(negDist & 63) | a0>>dist;
z.extra = a0<<(negDist & 63) | (extra != 0);
return z;
}
#else
struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist);
struct uint128_extra
softfloat_shortShiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t dist );
#endif
#endif
@ -364,11 +397,14 @@ struct uint128_extra softfloat_shortShiftRightJam128Extra(uint64_t a64, uint64_t
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist) {
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist )
{
struct uint64_extra z;
if(dist < 64) {
z.v = a >> dist;
z.extra = a << (-dist & 63);
if ( dist < 64 ) {
z.v = a>>dist;
z.extra = a<<(-dist & 63);
} else {
z.v = 0;
z.extra = (dist == 64) ? a : (a != 0);
@ -377,7 +413,9 @@ struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, u
return z;
}
#else
struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, uint_fast32_t dist);
struct uint64_extra
softfloat_shiftRightJam64Extra(
uint64_t a, uint64_t extra, uint_fast32_t dist );
#endif
#endif
@ -392,7 +430,8 @@ struct uint64_extra softfloat_shiftRightJam64Extra(uint64_t a, uint64_t extra, u
| greater than 128, the result will be either 0 or 1, depending on whether the
| original 128 bits are all zeros.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_shiftRightJam128(uint64_t a64, uint64_t a0, uint_fast32_t dist);
struct uint128
softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t dist );
#endif
#ifndef softfloat_shiftRightJam128Extra
@ -413,7 +452,9 @@ struct uint128 softfloat_shiftRightJam128(uint64_t a64, uint64_t a0, uint_fast32
| is modified as described above and returned in the 'extra' field of the
| result.)
*----------------------------------------------------------------------------*/
struct uint128_extra softfloat_shiftRightJam128Extra(uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist);
struct uint128_extra
softfloat_shiftRightJam128Extra(
uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t dist );
#endif
#ifndef softfloat_shiftRightJam256M
@ -429,7 +470,9 @@ struct uint128_extra softfloat_shiftRightJam128Extra(uint64_t a64, uint64_t a0,
| is greater than 256, the stored result will be either 0 or 1, depending on
| whether the original 256 bits are all zeros.
*----------------------------------------------------------------------------*/
void softfloat_shiftRightJam256M(const uint64_t* aPtr, uint_fast32_t dist, uint64_t* zPtr);
void
softfloat_shiftRightJam256M(
const uint64_t *aPtr, uint_fast32_t dist, uint64_t *zPtr );
#endif
#ifndef softfloat_add128
@ -440,14 +483,17 @@ void softfloat_shiftRightJam256M(const uint64_t* aPtr, uint_fast32_t dist, uint6
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 z;
z.v0 = a0 + b0;
z.v64 = a64 + b64 + (z.v0 < a0);
return z;
}
#else
struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
struct uint128
softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif
@ -459,7 +505,9 @@ struct uint128 softfloat_add128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_
| an array of four 64-bit elements that concatenate in the platform's normal
| endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_add256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
void
softfloat_add256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
#endif
#ifndef softfloat_sub128
@ -470,7 +518,9 @@ void softfloat_add256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPt
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0) {
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
struct uint128 z;
z.v0 = a0 - b0;
z.v64 = a64 - b64;
@ -478,7 +528,8 @@ struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_
return z;
}
#else
struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0);
struct uint128
softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif
@ -491,7 +542,9 @@ struct uint128 softfloat_sub128(uint64_t a64, uint64_t a0, uint64_t b64, uint64_
| 64-bit elements that concatenate in the platform's normal endian order to
| form a 256-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_sub256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPtr);
void
softfloat_sub256M(
const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
#endif
#ifndef softfloat_mul64ByShifted32To128
@ -499,16 +552,17 @@ void softfloat_sub256M(const uint64_t* aPtr, const uint64_t* bPtr, uint64_t* zPt
| Returns the 128-bit product of 'a', 'b', and 2^32.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b) {
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
uint_fast64_t mid;
struct uint128 z;
mid = (uint_fast64_t)(uint32_t)a * b;
z.v0 = mid << 32;
z.v64 = (uint_fast64_t)(uint32_t)(a >> 32) * b + (mid >> 32);
mid = (uint_fast64_t) (uint32_t) a * b;
z.v0 = mid<<32;
z.v64 = (uint_fast64_t) (uint32_t) (a>>32) * b + (mid>>32);
return z;
}
#else
struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b);
struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
#endif
#endif
@ -516,7 +570,7 @@ struct uint128 softfloat_mul64ByShifted32To128(uint64_t a, uint32_t b);
/*----------------------------------------------------------------------------
| Returns the 128-bit product of 'a' and 'b'.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b);
struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
#endif
#ifndef softfloat_mul128By32
@ -527,18 +581,19 @@ struct uint128 softfloat_mul64To128(uint64_t a, uint64_t b);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b) {
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
struct uint128 z;
uint_fast64_t mid;
uint_fast32_t carry;
z.v0 = a0 * b;
mid = (uint_fast64_t)(uint32_t)(a0 >> 32) * b;
carry = (uint32_t)((uint_fast32_t)(z.v0 >> 32) - (uint_fast32_t)mid);
z.v64 = a64 * b + (uint_fast32_t)((mid + carry) >> 32);
mid = (uint_fast64_t) (uint32_t) (a0>>32) * b;
carry = (uint32_t) ((uint_fast32_t) (z.v0>>32) - (uint_fast32_t) mid);
z.v64 = a64 * b + (uint_fast32_t) ((mid + carry)>>32);
return z;
}
#else
struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b);
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
#endif
#endif
@ -550,7 +605,9 @@ struct uint128 softfloat_mul128By32(uint64_t a64, uint64_t a0, uint32_t b);
| Argument 'zPtr' points to an array of four 64-bit elements that concatenate
| in the platform's normal endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t* zPtr);
void
softfloat_mul128To256M(
uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr );
#endif
#else
@ -569,7 +626,7 @@ void softfloat_mul128To256M(uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0
| Each of 'aPtr' and 'bPtr' points to an array of three 32-bit elements that
| concatenate in the platform's normal endian order to form a 96-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t softfloat_compare96M(const uint32_t* aPtr, const uint32_t* bPtr);
int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
#endif
#ifndef softfloat_compare128M
@ -581,7 +638,8 @@ int_fast8_t softfloat_compare96M(const uint32_t* aPtr, const uint32_t* bPtr);
| Each of 'aPtr' and 'bPtr' points to an array of four 32-bit elements that
| concatenate in the platform's normal endian order to form a 128-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t softfloat_compare128M(const uint32_t* aPtr, const uint32_t* bPtr);
int_fast8_t
softfloat_compare128M( const uint32_t *aPtr, const uint32_t *bPtr );
#endif
#ifndef softfloat_shortShiftLeft64To96M
@ -594,14 +652,19 @@ int_fast8_t softfloat_compare128M(const uint32_t* aPtr, const uint32_t* bPtr);
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr) {
zPtr[indexWord(3, 0)] = (uint32_t)a << dist;
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr )
{
zPtr[indexWord( 3, 0 )] = (uint32_t) a<<dist;
a >>= 32 - dist;
zPtr[indexWord(3, 2)] = a >> 32;
zPtr[indexWord(3, 1)] = a;
zPtr[indexWord( 3, 2 )] = a>>32;
zPtr[indexWord( 3, 1 )] = a;
}
#else
void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zPtr);
void
softfloat_shortShiftLeft64To96M(
uint64_t a, uint_fast8_t dist, uint32_t *zPtr );
#endif
#endif
@ -615,7 +678,13 @@ void softfloat_shortShiftLeft64To96M(uint64_t a, uint_fast8_t dist, uint32_t* zP
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
void
softfloat_shortShiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
#endif
#ifndef softfloat_shortShiftLeft96M
@ -623,7 +692,7 @@ void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, ui
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft96M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(3, aPtr, dist, zPtr)
#define softfloat_shortShiftLeft96M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 3, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shortShiftLeft128M
@ -631,7 +700,7 @@ void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, ui
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft128M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(4, aPtr, dist, zPtr)
#define softfloat_shortShiftLeft128M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 4, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shortShiftLeft160M
@ -639,7 +708,7 @@ void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, ui
| This function or macro is the same as 'softfloat_shortShiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft160M(aPtr, dist, zPtr) softfloat_shortShiftLeftM(5, aPtr, dist, zPtr)
#define softfloat_shortShiftLeft160M( aPtr, dist, zPtr ) softfloat_shortShiftLeftM( 5, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftLeftM
@ -653,7 +722,13 @@ void softfloat_shortShiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, ui
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
void
softfloat_shiftLeftM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
#endif
#ifndef softfloat_shiftLeft96M
@ -661,7 +736,7 @@ void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft96M(aPtr, dist, zPtr) softfloat_shiftLeftM(3, aPtr, dist, zPtr)
#define softfloat_shiftLeft96M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 3, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftLeft128M
@ -669,7 +744,7 @@ void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft128M(aPtr, dist, zPtr) softfloat_shiftLeftM(4, aPtr, dist, zPtr)
#define softfloat_shiftLeft128M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 4, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftLeft160M
@ -677,7 +752,7 @@ void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_
| This function or macro is the same as 'softfloat_shiftLeftM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft160M(aPtr, dist, zPtr) softfloat_shiftLeftM(5, aPtr, dist, zPtr)
#define softfloat_shiftLeft160M( aPtr, dist, zPtr ) softfloat_shiftLeftM( 5, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shortShiftRightM
@ -690,7 +765,13 @@ void softfloat_shiftLeftM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint_fast8_t dist, uint32_t* zPtr);
void
softfloat_shortShiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint_fast8_t dist,
uint32_t *zPtr
);
#endif
#ifndef softfloat_shortShiftRight128M
@ -698,7 +779,7 @@ void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, u
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight128M(aPtr, dist, zPtr) softfloat_shortShiftRightM(4, aPtr, dist, zPtr)
#define softfloat_shortShiftRight128M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 4, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shortShiftRight160M
@ -706,7 +787,7 @@ void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, u
| This function or macro is the same as 'softfloat_shortShiftRightM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight160M(aPtr, dist, zPtr) softfloat_shortShiftRightM(5, aPtr, dist, zPtr)
#define softfloat_shortShiftRight160M( aPtr, dist, zPtr ) softfloat_shortShiftRightM( 5, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shortShiftRightJamM
@ -720,7 +801,9 @@ void softfloat_shortShiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, u
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_shortShiftRightJamM(uint_fast8_t, const uint32_t*, uint_fast8_t, uint32_t*);
void
softfloat_shortShiftRightJamM(
uint_fast8_t, const uint32_t *, uint_fast8_t, uint32_t * );
#endif
#ifndef softfloat_shortShiftRightJam160M
@ -728,7 +811,7 @@ void softfloat_shortShiftRightJamM(uint_fast8_t, const uint32_t*, uint_fast8_t,
| This function or macro is the same as 'softfloat_shortShiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRightJam160M(aPtr, dist, zPtr) softfloat_shortShiftRightJamM(5, aPtr, dist, zPtr)
#define softfloat_shortShiftRightJam160M( aPtr, dist, zPtr ) softfloat_shortShiftRightJamM( 5, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftRightM
@ -742,7 +825,13 @@ void softfloat_shortShiftRightJamM(uint_fast8_t, const uint32_t*, uint_fast8_t,
| The value of 'dist' can be arbitrarily large. In particular, if 'dist' is
| greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void softfloat_shiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
void
softfloat_shiftRightM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
#endif
#ifndef softfloat_shiftRight96M
@ -750,7 +839,7 @@ void softfloat_shiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint32
| This function or macro is the same as 'softfloat_shiftRightM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRight96M(aPtr, dist, zPtr) softfloat_shiftRightM(3, aPtr, dist, zPtr)
#define softfloat_shiftRight96M( aPtr, dist, zPtr ) softfloat_shiftRightM( 3, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftRightJamM
@ -767,7 +856,13 @@ void softfloat_shiftRightM(uint_fast8_t size_words, const uint32_t* aPtr, uint32
| is greater than N, the stored result will be either 0 or 1, depending on
| whether the original N bits are all zeros.
*----------------------------------------------------------------------------*/
void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uint32_t dist, uint32_t* zPtr);
void
softfloat_shiftRightJamM(
uint_fast8_t size_words,
const uint32_t *aPtr,
uint32_t dist,
uint32_t *zPtr
);
#endif
#ifndef softfloat_shiftRightJam96M
@ -775,7 +870,7 @@ void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uin
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam96M(aPtr, dist, zPtr) softfloat_shiftRightJamM(3, aPtr, dist, zPtr)
#define softfloat_shiftRightJam96M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 3, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftRightJam128M
@ -783,7 +878,7 @@ void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uin
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam128M(aPtr, dist, zPtr) softfloat_shiftRightJamM(4, aPtr, dist, zPtr)
#define softfloat_shiftRightJam128M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 4, aPtr, dist, zPtr )
#endif
#ifndef softfloat_shiftRightJam160M
@ -791,7 +886,7 @@ void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uin
| This function or macro is the same as 'softfloat_shiftRightJamM' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam160M(aPtr, dist, zPtr) softfloat_shiftRightJamM(5, aPtr, dist, zPtr)
#define softfloat_shiftRightJam160M( aPtr, dist, zPtr ) softfloat_shiftRightJamM( 5, aPtr, dist, zPtr )
#endif
#ifndef softfloat_addM
@ -803,7 +898,13 @@ void softfloat_shiftRightJamM(uint_fast8_t size_words, const uint32_t* aPtr, uin
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
void
softfloat_addM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
#endif
#ifndef softfloat_add96M
@ -811,7 +912,7 @@ void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_add96M(aPtr, bPtr, zPtr) softfloat_addM(3, aPtr, bPtr, zPtr)
#define softfloat_add96M( aPtr, bPtr, zPtr ) softfloat_addM( 3, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_add128M
@ -819,7 +920,7 @@ void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_add128M(aPtr, bPtr, zPtr) softfloat_addM(4, aPtr, bPtr, zPtr)
#define softfloat_add128M( aPtr, bPtr, zPtr ) softfloat_addM( 4, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_add160M
@ -827,7 +928,7 @@ void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_addM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_add160M(aPtr, bPtr, zPtr) softfloat_addM(5, aPtr, bPtr, zPtr)
#define softfloat_add160M( aPtr, bPtr, zPtr ) softfloat_addM( 5, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_addCarryM
@ -839,7 +940,14 @@ void softfloat_addM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_addCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry, uint32_t* zPtr);
uint_fast8_t
softfloat_addCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
#endif
#ifndef softfloat_addComplCarryM
@ -848,8 +956,14 @@ uint_fast8_t softfloat_addCarryM(uint_fast8_t size_words, const uint32_t* aPtr,
| the value of the unsigned integer pointed to by 'bPtr' is bit-wise completed
| before the addition.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_addComplCarryM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint_fast8_t carry,
uint32_t* zPtr);
uint_fast8_t
softfloat_addComplCarryM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint_fast8_t carry,
uint32_t *zPtr
);
#endif
#ifndef softfloat_addComplCarry96M
@ -857,7 +971,7 @@ uint_fast8_t softfloat_addComplCarryM(uint_fast8_t size_words, const uint32_t* a
| This function or macro is the same as 'softfloat_addComplCarryM' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_addComplCarry96M(aPtr, bPtr, carry, zPtr) softfloat_addComplCarryM(3, aPtr, bPtr, carry, zPtr)
#define softfloat_addComplCarry96M( aPtr, bPtr, carry, zPtr ) softfloat_addComplCarryM( 3, aPtr, bPtr, carry, zPtr )
#endif
#ifndef softfloat_negXM
@ -867,7 +981,7 @@ uint_fast8_t softfloat_addComplCarryM(uint_fast8_t size_words, const uint32_t* a
| points to a 'size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
#endif
#ifndef softfloat_negX96M
@ -875,7 +989,7 @@ void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_negX96M(zPtr) softfloat_negXM(3, zPtr)
#define softfloat_negX96M( zPtr ) softfloat_negXM( 3, zPtr )
#endif
#ifndef softfloat_negX128M
@ -883,7 +997,7 @@ void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_negX128M(zPtr) softfloat_negXM(4, zPtr)
#define softfloat_negX128M( zPtr ) softfloat_negXM( 4, zPtr )
#endif
#ifndef softfloat_negX160M
@ -891,7 +1005,7 @@ void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_negX160M(zPtr) softfloat_negXM(5, zPtr)
#define softfloat_negX160M( zPtr ) softfloat_negXM( 5, zPtr )
#endif
#ifndef softfloat_negX256M
@ -899,7 +1013,7 @@ void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_negXM' with 'size_words'
| = 8 (N = 256).
*----------------------------------------------------------------------------*/
#define softfloat_negX256M(zPtr) softfloat_negXM(8, zPtr)
#define softfloat_negX256M( zPtr ) softfloat_negXM( 8, zPtr )
#endif
#ifndef softfloat_sub1XM
@ -910,7 +1024,7 @@ void softfloat_negXM(uint_fast8_t size_words, uint32_t* zPtr);
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
#endif
#ifndef softfloat_sub1X96M
@ -918,7 +1032,7 @@ void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X96M(zPtr) softfloat_sub1XM(3, zPtr)
#define softfloat_sub1X96M( zPtr ) softfloat_sub1XM( 3, zPtr )
#endif
#ifndef softfloat_sub1X160M
@ -926,7 +1040,7 @@ void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
| This function or macro is the same as 'softfloat_sub1XM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X160M(zPtr) softfloat_sub1XM(5, zPtr)
#define softfloat_sub1X160M( zPtr ) softfloat_sub1XM( 5, zPtr )
#endif
#ifndef softfloat_subM
@ -938,7 +1052,13 @@ void softfloat_sub1XM(uint_fast8_t size_words, uint32_t* zPtr);
| array of 32-bit elements that concatenate in the platform's normal endian
| order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
void
softfloat_subM(
uint_fast8_t size_words,
const uint32_t *aPtr,
const uint32_t *bPtr,
uint32_t *zPtr
);
#endif
#ifndef softfloat_sub96M
@ -946,7 +1066,7 @@ void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub96M(aPtr, bPtr, zPtr) softfloat_subM(3, aPtr, bPtr, zPtr)
#define softfloat_sub96M( aPtr, bPtr, zPtr ) softfloat_subM( 3, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_sub128M
@ -954,7 +1074,7 @@ void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_sub128M(aPtr, bPtr, zPtr) softfloat_subM(4, aPtr, bPtr, zPtr)
#define softfloat_sub128M( aPtr, bPtr, zPtr ) softfloat_subM( 4, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_sub160M
@ -962,7 +1082,7 @@ void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| This function or macro is the same as 'softfloat_subM' with 'size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub160M(aPtr, bPtr, zPtr) softfloat_subM(5, aPtr, bPtr, zPtr)
#define softfloat_sub160M( aPtr, bPtr, zPtr ) softfloat_subM( 5, aPtr, bPtr, zPtr )
#endif
#ifndef softfloat_mul64To128M
@ -972,7 +1092,7 @@ void softfloat_subM(uint_fast8_t size_words, const uint32_t* aPtr, const uint32_
| elements that concatenate in the platform's normal endian order to form a
| 128-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul64To128M(uint64_t a, uint64_t b, uint32_t* zPtr);
void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
#endif
#ifndef softfloat_mul128MTo256M
@ -984,7 +1104,9 @@ void softfloat_mul64To128M(uint64_t a, uint64_t b, uint32_t* zPtr);
| Argument 'zPtr' points to an array of eight 32-bit elements that concatenate
| to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul128MTo256M(const uint32_t* aPtr, const uint32_t* bPtr, uint32_t* zPtr);
void
softfloat_mul128MTo256M(
const uint32_t *aPtr, const uint32_t *bPtr, uint32_t *zPtr );
#endif
#ifndef softfloat_remStepMBy32
@ -997,8 +1119,15 @@ void softfloat_mul128MTo256M(const uint32_t* aPtr, const uint32_t* bPtr, uint32_
| to a 'size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uint_fast8_t dist, const uint32_t* bPtr, uint32_t q,
uint32_t* zPtr);
void
softfloat_remStepMBy32(
uint_fast8_t size_words,
const uint32_t *remPtr,
uint_fast8_t dist,
const uint32_t *bPtr,
uint32_t q,
uint32_t *zPtr
);
#endif
#ifndef softfloat_remStep96MBy32
@ -1006,7 +1135,7 @@ void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uin
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_remStep96MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(3, remPtr, dist, bPtr, q, zPtr)
#define softfloat_remStep96MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 3, remPtr, dist, bPtr, q, zPtr )
#endif
#ifndef softfloat_remStep128MBy32
@ -1014,7 +1143,7 @@ void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uin
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_remStep128MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(4, remPtr, dist, bPtr, q, zPtr)
#define softfloat_remStep128MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 4, remPtr, dist, bPtr, q, zPtr )
#endif
#ifndef softfloat_remStep160MBy32
@ -1022,9 +1151,10 @@ void softfloat_remStepMBy32(uint_fast8_t size_words, const uint32_t* remPtr, uin
| This function or macro is the same as 'softfloat_remStepMBy32' with
| 'size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_remStep160MBy32(remPtr, dist, bPtr, q, zPtr) softfloat_remStepMBy32(5, remPtr, dist, bPtr, q, zPtr)
#define softfloat_remStep160MBy32( remPtr, dist, bPtr, q, zPtr ) softfloat_remStepMBy32( 5, remPtr, dist, bPtr, q, zPtr )
#endif
#endif
#endif

View File

@ -34,6 +34,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*============================================================================
| Note: If SoftFloat is made available as a general library for programs to
| use, it is strongly recommended that a platform-specific version of this
@ -41,12 +42,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| eliminates all dependencies on compile-time macros.
*============================================================================*/
#ifndef softfloat_h
#define softfloat_h 1
#include "softfloat_types.h"
#include <stdbool.h>
#include <stdint.h>
#include "softfloat_types.h"
#ifndef THREAD_LOCAL
#define THREAD_LOCAL
@ -56,7 +58,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| Software floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_detectTininess;
enum { softfloat_tininess_beforeRounding = 0, softfloat_tininess_afterRounding = 1 };
enum {
softfloat_tininess_beforeRounding = 0,
softfloat_tininess_afterRounding = 1
};
/*----------------------------------------------------------------------------
| Software floating-point rounding mode. (Mode "odd" is supported only if
@ -64,12 +69,12 @@ enum { softfloat_tininess_beforeRounding = 0, softfloat_tininess_afterRounding =
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_roundingMode;
enum {
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_even = 0,
softfloat_round_minMag = 1,
softfloat_round_min = 2,
softfloat_round_max = 3,
softfloat_round_near_maxMag = 4,
softfloat_round_odd = 6
softfloat_round_odd = 6
};
/*----------------------------------------------------------------------------
@ -77,162 +82,162 @@ enum {
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_exceptionFlags;
enum {
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
};
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software floating-point exception flags.
*----------------------------------------------------------------------------*/
void softfloat_raiseFlags(uint_fast8_t);
void softfloat_raiseFlags( uint_fast8_t );
/*----------------------------------------------------------------------------
| Integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float16_t ui32_to_f16(uint32_t);
float32_t ui32_to_f32(uint32_t);
float64_t ui32_to_f64(uint32_t);
float16_t ui32_to_f16( uint32_t );
float32_t ui32_to_f32( uint32_t );
float64_t ui32_to_f64( uint32_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui32_to_extF80(uint32_t);
float128_t ui32_to_f128(uint32_t);
extFloat80_t ui32_to_extF80( uint32_t );
float128_t ui32_to_f128( uint32_t );
#endif
void ui32_to_extF80M(uint32_t, extFloat80_t*);
void ui32_to_f128M(uint32_t, float128_t*);
float16_t ui64_to_f16(uint64_t);
float32_t ui64_to_f32(uint64_t);
float64_t ui64_to_f64(uint64_t);
void ui32_to_extF80M( uint32_t, extFloat80_t * );
void ui32_to_f128M( uint32_t, float128_t * );
float16_t ui64_to_f16( uint64_t );
float32_t ui64_to_f32( uint64_t );
float64_t ui64_to_f64( uint64_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t ui64_to_extF80(uint64_t);
float128_t ui64_to_f128(uint64_t);
extFloat80_t ui64_to_extF80( uint64_t );
float128_t ui64_to_f128( uint64_t );
#endif
void ui64_to_extF80M(uint64_t, extFloat80_t*);
void ui64_to_f128M(uint64_t, float128_t*);
float16_t i32_to_f16(int32_t);
float32_t i32_to_f32(int32_t);
float64_t i32_to_f64(int32_t);
void ui64_to_extF80M( uint64_t, extFloat80_t * );
void ui64_to_f128M( uint64_t, float128_t * );
float16_t i32_to_f16( int32_t );
float32_t i32_to_f32( int32_t );
float64_t i32_to_f64( int32_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i32_to_extF80(int32_t);
float128_t i32_to_f128(int32_t);
extFloat80_t i32_to_extF80( int32_t );
float128_t i32_to_f128( int32_t );
#endif
void i32_to_extF80M(int32_t, extFloat80_t*);
void i32_to_f128M(int32_t, float128_t*);
float16_t i64_to_f16(int64_t);
float32_t i64_to_f32(int64_t);
float64_t i64_to_f64(int64_t);
void i32_to_extF80M( int32_t, extFloat80_t * );
void i32_to_f128M( int32_t, float128_t * );
float16_t i64_to_f16( int64_t );
float32_t i64_to_f32( int64_t );
float64_t i64_to_f64( int64_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t i64_to_extF80(int64_t);
float128_t i64_to_f128(int64_t);
extFloat80_t i64_to_extF80( int64_t );
float128_t i64_to_f128( int64_t );
#endif
void i64_to_extF80M(int64_t, extFloat80_t*);
void i64_to_f128M(int64_t, float128_t*);
void i64_to_extF80M( int64_t, extFloat80_t * );
void i64_to_f128M( int64_t, float128_t * );
/*----------------------------------------------------------------------------
| 16-bit (half-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f16_to_ui32(float16_t, uint_fast8_t, bool);
uint_fast64_t f16_to_ui64(float16_t, uint_fast8_t, bool);
int_fast32_t f16_to_i32(float16_t, uint_fast8_t, bool);
int_fast64_t f16_to_i64(float16_t, uint_fast8_t, bool);
uint_fast32_t f16_to_ui32_r_minMag(float16_t, bool);
uint_fast64_t f16_to_ui64_r_minMag(float16_t, bool);
int_fast32_t f16_to_i32_r_minMag(float16_t, bool);
int_fast64_t f16_to_i64_r_minMag(float16_t, bool);
float32_t f16_to_f32(float16_t);
float64_t f16_to_f64(float16_t);
uint_fast32_t f16_to_ui32( float16_t, uint_fast8_t, bool );
uint_fast64_t f16_to_ui64( float16_t, uint_fast8_t, bool );
int_fast32_t f16_to_i32( float16_t, uint_fast8_t, bool );
int_fast64_t f16_to_i64( float16_t, uint_fast8_t, bool );
uint_fast32_t f16_to_ui32_r_minMag( float16_t, bool );
uint_fast64_t f16_to_ui64_r_minMag( float16_t, bool );
int_fast32_t f16_to_i32_r_minMag( float16_t, bool );
int_fast64_t f16_to_i64_r_minMag( float16_t, bool );
float32_t f16_to_f32( float16_t );
float64_t f16_to_f64( float16_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f16_to_extF80(float16_t);
float128_t f16_to_f128(float16_t);
extFloat80_t f16_to_extF80( float16_t );
float128_t f16_to_f128( float16_t );
#endif
void f16_to_extF80M(float16_t, extFloat80_t*);
void f16_to_f128M(float16_t, float128_t*);
float16_t f16_roundToInt(float16_t, uint_fast8_t, bool);
float16_t f16_add(float16_t, float16_t);
float16_t f16_sub(float16_t, float16_t);
float16_t f16_mul(float16_t, float16_t);
float16_t f16_mulAdd(float16_t, float16_t, float16_t);
float16_t f16_div(float16_t, float16_t);
float16_t f16_rem(float16_t, float16_t);
float16_t f16_sqrt(float16_t);
bool f16_eq(float16_t, float16_t);
bool f16_le(float16_t, float16_t);
bool f16_lt(float16_t, float16_t);
bool f16_eq_signaling(float16_t, float16_t);
bool f16_le_quiet(float16_t, float16_t);
bool f16_lt_quiet(float16_t, float16_t);
bool f16_isSignalingNaN(float16_t);
void f16_to_extF80M( float16_t, extFloat80_t * );
void f16_to_f128M( float16_t, float128_t * );
float16_t f16_roundToInt( float16_t, uint_fast8_t, bool );
float16_t f16_add( float16_t, float16_t );
float16_t f16_sub( float16_t, float16_t );
float16_t f16_mul( float16_t, float16_t );
float16_t f16_mulAdd( float16_t, float16_t, float16_t );
float16_t f16_div( float16_t, float16_t );
float16_t f16_rem( float16_t, float16_t );
float16_t f16_sqrt( float16_t );
bool f16_eq( float16_t, float16_t );
bool f16_le( float16_t, float16_t );
bool f16_lt( float16_t, float16_t );
bool f16_eq_signaling( float16_t, float16_t );
bool f16_le_quiet( float16_t, float16_t );
bool f16_lt_quiet( float16_t, float16_t );
bool f16_isSignalingNaN( float16_t );
/*----------------------------------------------------------------------------
| 32-bit (single-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f32_to_ui32(float32_t, uint_fast8_t, bool);
uint_fast64_t f32_to_ui64(float32_t, uint_fast8_t, bool);
int_fast32_t f32_to_i32(float32_t, uint_fast8_t, bool);
int_fast64_t f32_to_i64(float32_t, uint_fast8_t, bool);
uint_fast32_t f32_to_ui32_r_minMag(float32_t, bool);
uint_fast64_t f32_to_ui64_r_minMag(float32_t, bool);
int_fast32_t f32_to_i32_r_minMag(float32_t, bool);
int_fast64_t f32_to_i64_r_minMag(float32_t, bool);
float16_t f32_to_f16(float32_t);
float64_t f32_to_f64(float32_t);
uint_fast32_t f32_to_ui32( float32_t, uint_fast8_t, bool );
uint_fast64_t f32_to_ui64( float32_t, uint_fast8_t, bool );
int_fast32_t f32_to_i32( float32_t, uint_fast8_t, bool );
int_fast64_t f32_to_i64( float32_t, uint_fast8_t, bool );
uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool );
uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool );
int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
int_fast64_t f32_to_i64_r_minMag( float32_t, bool );
float16_t f32_to_f16( float32_t );
float64_t f32_to_f64( float32_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f32_to_extF80(float32_t);
float128_t f32_to_f128(float32_t);
extFloat80_t f32_to_extF80( float32_t );
float128_t f32_to_f128( float32_t );
#endif
void f32_to_extF80M(float32_t, extFloat80_t*);
void f32_to_f128M(float32_t, float128_t*);
float32_t f32_roundToInt(float32_t, uint_fast8_t, bool);
float32_t f32_add(float32_t, float32_t);
float32_t f32_sub(float32_t, float32_t);
float32_t f32_mul(float32_t, float32_t);
float32_t f32_mulAdd(float32_t, float32_t, float32_t);
float32_t f32_div(float32_t, float32_t);
float32_t f32_rem(float32_t, float32_t);
float32_t f32_sqrt(float32_t);
bool f32_eq(float32_t, float32_t);
bool f32_le(float32_t, float32_t);
bool f32_lt(float32_t, float32_t);
bool f32_eq_signaling(float32_t, float32_t);
bool f32_le_quiet(float32_t, float32_t);
bool f32_lt_quiet(float32_t, float32_t);
bool f32_isSignalingNaN(float32_t);
void f32_to_extF80M( float32_t, extFloat80_t * );
void f32_to_f128M( float32_t, float128_t * );
float32_t f32_roundToInt( float32_t, uint_fast8_t, bool );
float32_t f32_add( float32_t, float32_t );
float32_t f32_sub( float32_t, float32_t );
float32_t f32_mul( float32_t, float32_t );
float32_t f32_mulAdd( float32_t, float32_t, float32_t );
float32_t f32_div( float32_t, float32_t );
float32_t f32_rem( float32_t, float32_t );
float32_t f32_sqrt( float32_t );
bool f32_eq( float32_t, float32_t );
bool f32_le( float32_t, float32_t );
bool f32_lt( float32_t, float32_t );
bool f32_eq_signaling( float32_t, float32_t );
bool f32_le_quiet( float32_t, float32_t );
bool f32_lt_quiet( float32_t, float32_t );
bool f32_isSignalingNaN( float32_t );
/*----------------------------------------------------------------------------
| 64-bit (double-precision) floating-point operations.
*----------------------------------------------------------------------------*/
uint_fast32_t f64_to_ui32(float64_t, uint_fast8_t, bool);
uint_fast64_t f64_to_ui64(float64_t, uint_fast8_t, bool);
int_fast32_t f64_to_i32(float64_t, uint_fast8_t, bool);
int_fast64_t f64_to_i64(float64_t, uint_fast8_t, bool);
uint_fast32_t f64_to_ui32_r_minMag(float64_t, bool);
uint_fast64_t f64_to_ui64_r_minMag(float64_t, bool);
int_fast32_t f64_to_i32_r_minMag(float64_t, bool);
int_fast64_t f64_to_i64_r_minMag(float64_t, bool);
float16_t f64_to_f16(float64_t);
float32_t f64_to_f32(float64_t);
uint_fast32_t f64_to_ui32( float64_t, uint_fast8_t, bool );
uint_fast64_t f64_to_ui64( float64_t, uint_fast8_t, bool );
int_fast32_t f64_to_i32( float64_t, uint_fast8_t, bool );
int_fast64_t f64_to_i64( float64_t, uint_fast8_t, bool );
uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool );
uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool );
int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
int_fast64_t f64_to_i64_r_minMag( float64_t, bool );
float16_t f64_to_f16( float64_t );
float32_t f64_to_f32( float64_t );
#ifdef SOFTFLOAT_FAST_INT64
extFloat80_t f64_to_extF80(float64_t);
float128_t f64_to_f128(float64_t);
extFloat80_t f64_to_extF80( float64_t );
float128_t f64_to_f128( float64_t );
#endif
void f64_to_extF80M(float64_t, extFloat80_t*);
void f64_to_f128M(float64_t, float128_t*);
float64_t f64_roundToInt(float64_t, uint_fast8_t, bool);
float64_t f64_add(float64_t, float64_t);
float64_t f64_sub(float64_t, float64_t);
float64_t f64_mul(float64_t, float64_t);
float64_t f64_mulAdd(float64_t, float64_t, float64_t);
float64_t f64_div(float64_t, float64_t);
float64_t f64_rem(float64_t, float64_t);
float64_t f64_sqrt(float64_t);
bool f64_eq(float64_t, float64_t);
bool f64_le(float64_t, float64_t);
bool f64_lt(float64_t, float64_t);
bool f64_eq_signaling(float64_t, float64_t);
bool f64_le_quiet(float64_t, float64_t);
bool f64_lt_quiet(float64_t, float64_t);
bool f64_isSignalingNaN(float64_t);
void f64_to_extF80M( float64_t, extFloat80_t * );
void f64_to_f128M( float64_t, float128_t * );
float64_t f64_roundToInt( float64_t, uint_fast8_t, bool );
float64_t f64_add( float64_t, float64_t );
float64_t f64_sub( float64_t, float64_t );
float64_t f64_mul( float64_t, float64_t );
float64_t f64_mulAdd( float64_t, float64_t, float64_t );
float64_t f64_div( float64_t, float64_t );
float64_t f64_rem( float64_t, float64_t );
float64_t f64_sqrt( float64_t );
bool f64_eq( float64_t, float64_t );
bool f64_le( float64_t, float64_t );
bool f64_lt( float64_t, float64_t );
bool f64_eq_signaling( float64_t, float64_t );
bool f64_le_quiet( float64_t, float64_t );
bool f64_lt_quiet( float64_t, float64_t );
bool f64_isSignalingNaN( float64_t );
/*----------------------------------------------------------------------------
| Rounding precision for 80-bit extended double-precision floating-point.
@ -244,118 +249,124 @@ extern THREAD_LOCAL uint_fast8_t extF80_roundingPrecision;
| 80-bit extended double-precision floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t extF80_to_ui32(extFloat80_t, uint_fast8_t, bool);
uint_fast64_t extF80_to_ui64(extFloat80_t, uint_fast8_t, bool);
int_fast32_t extF80_to_i32(extFloat80_t, uint_fast8_t, bool);
int_fast64_t extF80_to_i64(extFloat80_t, uint_fast8_t, bool);
uint_fast32_t extF80_to_ui32_r_minMag(extFloat80_t, bool);
uint_fast64_t extF80_to_ui64_r_minMag(extFloat80_t, bool);
int_fast32_t extF80_to_i32_r_minMag(extFloat80_t, bool);
int_fast64_t extF80_to_i64_r_minMag(extFloat80_t, bool);
float16_t extF80_to_f16(extFloat80_t);
float32_t extF80_to_f32(extFloat80_t);
float64_t extF80_to_f64(extFloat80_t);
float128_t extF80_to_f128(extFloat80_t);
extFloat80_t extF80_roundToInt(extFloat80_t, uint_fast8_t, bool);
extFloat80_t extF80_add(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sub(extFloat80_t, extFloat80_t);
extFloat80_t extF80_mul(extFloat80_t, extFloat80_t);
extFloat80_t extF80_div(extFloat80_t, extFloat80_t);
extFloat80_t extF80_rem(extFloat80_t, extFloat80_t);
extFloat80_t extF80_sqrt(extFloat80_t);
bool extF80_eq(extFloat80_t, extFloat80_t);
bool extF80_le(extFloat80_t, extFloat80_t);
bool extF80_lt(extFloat80_t, extFloat80_t);
bool extF80_eq_signaling(extFloat80_t, extFloat80_t);
bool extF80_le_quiet(extFloat80_t, extFloat80_t);
bool extF80_lt_quiet(extFloat80_t, extFloat80_t);
bool extF80_isSignalingNaN(extFloat80_t);
uint_fast32_t extF80_to_ui32( extFloat80_t, uint_fast8_t, bool );
uint_fast64_t extF80_to_ui64( extFloat80_t, uint_fast8_t, bool );
int_fast32_t extF80_to_i32( extFloat80_t, uint_fast8_t, bool );
int_fast64_t extF80_to_i64( extFloat80_t, uint_fast8_t, bool );
uint_fast32_t extF80_to_ui32_r_minMag( extFloat80_t, bool );
uint_fast64_t extF80_to_ui64_r_minMag( extFloat80_t, bool );
int_fast32_t extF80_to_i32_r_minMag( extFloat80_t, bool );
int_fast64_t extF80_to_i64_r_minMag( extFloat80_t, bool );
float16_t extF80_to_f16( extFloat80_t );
float32_t extF80_to_f32( extFloat80_t );
float64_t extF80_to_f64( extFloat80_t );
float128_t extF80_to_f128( extFloat80_t );
extFloat80_t extF80_roundToInt( extFloat80_t, uint_fast8_t, bool );
extFloat80_t extF80_add( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sub( extFloat80_t, extFloat80_t );
extFloat80_t extF80_mul( extFloat80_t, extFloat80_t );
extFloat80_t extF80_div( extFloat80_t, extFloat80_t );
extFloat80_t extF80_rem( extFloat80_t, extFloat80_t );
extFloat80_t extF80_sqrt( extFloat80_t );
bool extF80_eq( extFloat80_t, extFloat80_t );
bool extF80_le( extFloat80_t, extFloat80_t );
bool extF80_lt( extFloat80_t, extFloat80_t );
bool extF80_eq_signaling( extFloat80_t, extFloat80_t );
bool extF80_le_quiet( extFloat80_t, extFloat80_t );
bool extF80_lt_quiet( extFloat80_t, extFloat80_t );
bool extF80_isSignalingNaN( extFloat80_t );
#endif
uint_fast32_t extF80M_to_ui32(const extFloat80_t*, uint_fast8_t, bool);
uint_fast64_t extF80M_to_ui64(const extFloat80_t*, uint_fast8_t, bool);
int_fast32_t extF80M_to_i32(const extFloat80_t*, uint_fast8_t, bool);
int_fast64_t extF80M_to_i64(const extFloat80_t*, uint_fast8_t, bool);
uint_fast32_t extF80M_to_ui32_r_minMag(const extFloat80_t*, bool);
uint_fast64_t extF80M_to_ui64_r_minMag(const extFloat80_t*, bool);
int_fast32_t extF80M_to_i32_r_minMag(const extFloat80_t*, bool);
int_fast64_t extF80M_to_i64_r_minMag(const extFloat80_t*, bool);
float16_t extF80M_to_f16(const extFloat80_t*);
float32_t extF80M_to_f32(const extFloat80_t*);
float64_t extF80M_to_f64(const extFloat80_t*);
void extF80M_to_f128M(const extFloat80_t*, float128_t*);
void extF80M_roundToInt(const extFloat80_t*, uint_fast8_t, bool, extFloat80_t*);
void extF80M_add(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sub(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_mul(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_div(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_rem(const extFloat80_t*, const extFloat80_t*, extFloat80_t*);
void extF80M_sqrt(const extFloat80_t*, extFloat80_t*);
bool extF80M_eq(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt(const extFloat80_t*, const extFloat80_t*);
bool extF80M_eq_signaling(const extFloat80_t*, const extFloat80_t*);
bool extF80M_le_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_lt_quiet(const extFloat80_t*, const extFloat80_t*);
bool extF80M_isSignalingNaN(const extFloat80_t*);
uint_fast32_t extF80M_to_ui32( const extFloat80_t *, uint_fast8_t, bool );
uint_fast64_t extF80M_to_ui64( const extFloat80_t *, uint_fast8_t, bool );
int_fast32_t extF80M_to_i32( const extFloat80_t *, uint_fast8_t, bool );
int_fast64_t extF80M_to_i64( const extFloat80_t *, uint_fast8_t, bool );
uint_fast32_t extF80M_to_ui32_r_minMag( const extFloat80_t *, bool );
uint_fast64_t extF80M_to_ui64_r_minMag( const extFloat80_t *, bool );
int_fast32_t extF80M_to_i32_r_minMag( const extFloat80_t *, bool );
int_fast64_t extF80M_to_i64_r_minMag( const extFloat80_t *, bool );
float16_t extF80M_to_f16( const extFloat80_t * );
float32_t extF80M_to_f32( const extFloat80_t * );
float64_t extF80M_to_f64( const extFloat80_t * );
void extF80M_to_f128M( const extFloat80_t *, float128_t * );
void
extF80M_roundToInt(
const extFloat80_t *, uint_fast8_t, bool, extFloat80_t * );
void extF80M_add( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sub( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_mul( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_div( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_rem( const extFloat80_t *, const extFloat80_t *, extFloat80_t * );
void extF80M_sqrt( const extFloat80_t *, extFloat80_t * );
bool extF80M_eq( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt( const extFloat80_t *, const extFloat80_t * );
bool extF80M_eq_signaling( const extFloat80_t *, const extFloat80_t * );
bool extF80M_le_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_lt_quiet( const extFloat80_t *, const extFloat80_t * );
bool extF80M_isSignalingNaN( const extFloat80_t * );
/*----------------------------------------------------------------------------
| 128-bit (quadruple-precision) floating-point operations.
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_INT64
uint_fast32_t f128_to_ui32(float128_t, uint_fast8_t, bool);
uint_fast64_t f128_to_ui64(float128_t, uint_fast8_t, bool);
int_fast32_t f128_to_i32(float128_t, uint_fast8_t, bool);
int_fast64_t f128_to_i64(float128_t, uint_fast8_t, bool);
uint_fast32_t f128_to_ui32_r_minMag(float128_t, bool);
uint_fast64_t f128_to_ui64_r_minMag(float128_t, bool);
int_fast32_t f128_to_i32_r_minMag(float128_t, bool);
int_fast64_t f128_to_i64_r_minMag(float128_t, bool);
float16_t f128_to_f16(float128_t);
float32_t f128_to_f32(float128_t);
float64_t f128_to_f64(float128_t);
extFloat80_t f128_to_extF80(float128_t);
float128_t f128_roundToInt(float128_t, uint_fast8_t, bool);
float128_t f128_add(float128_t, float128_t);
float128_t f128_sub(float128_t, float128_t);
float128_t f128_mul(float128_t, float128_t);
float128_t f128_mulAdd(float128_t, float128_t, float128_t);
float128_t f128_div(float128_t, float128_t);
float128_t f128_rem(float128_t, float128_t);
float128_t f128_sqrt(float128_t);
bool f128_eq(float128_t, float128_t);
bool f128_le(float128_t, float128_t);
bool f128_lt(float128_t, float128_t);
bool f128_eq_signaling(float128_t, float128_t);
bool f128_le_quiet(float128_t, float128_t);
bool f128_lt_quiet(float128_t, float128_t);
bool f128_isSignalingNaN(float128_t);
uint_fast32_t f128_to_ui32( float128_t, uint_fast8_t, bool );
uint_fast64_t f128_to_ui64( float128_t, uint_fast8_t, bool );
int_fast32_t f128_to_i32( float128_t, uint_fast8_t, bool );
int_fast64_t f128_to_i64( float128_t, uint_fast8_t, bool );
uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool );
uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool );
int_fast32_t f128_to_i32_r_minMag( float128_t, bool );
int_fast64_t f128_to_i64_r_minMag( float128_t, bool );
float16_t f128_to_f16( float128_t );
float32_t f128_to_f32( float128_t );
float64_t f128_to_f64( float128_t );
extFloat80_t f128_to_extF80( float128_t );
float128_t f128_roundToInt( float128_t, uint_fast8_t, bool );
float128_t f128_add( float128_t, float128_t );
float128_t f128_sub( float128_t, float128_t );
float128_t f128_mul( float128_t, float128_t );
float128_t f128_mulAdd( float128_t, float128_t, float128_t );
float128_t f128_div( float128_t, float128_t );
float128_t f128_rem( float128_t, float128_t );
float128_t f128_sqrt( float128_t );
bool f128_eq( float128_t, float128_t );
bool f128_le( float128_t, float128_t );
bool f128_lt( float128_t, float128_t );
bool f128_eq_signaling( float128_t, float128_t );
bool f128_le_quiet( float128_t, float128_t );
bool f128_lt_quiet( float128_t, float128_t );
bool f128_isSignalingNaN( float128_t );
#endif
uint_fast32_t f128M_to_ui32(const float128_t*, uint_fast8_t, bool);
uint_fast64_t f128M_to_ui64(const float128_t*, uint_fast8_t, bool);
int_fast32_t f128M_to_i32(const float128_t*, uint_fast8_t, bool);
int_fast64_t f128M_to_i64(const float128_t*, uint_fast8_t, bool);
uint_fast32_t f128M_to_ui32_r_minMag(const float128_t*, bool);
uint_fast64_t f128M_to_ui64_r_minMag(const float128_t*, bool);
int_fast32_t f128M_to_i32_r_minMag(const float128_t*, bool);
int_fast64_t f128M_to_i64_r_minMag(const float128_t*, bool);
float16_t f128M_to_f16(const float128_t*);
float32_t f128M_to_f32(const float128_t*);
float64_t f128M_to_f64(const float128_t*);
void f128M_to_extF80M(const float128_t*, extFloat80_t*);
void f128M_roundToInt(const float128_t*, uint_fast8_t, bool, float128_t*);
void f128M_add(const float128_t*, const float128_t*, float128_t*);
void f128M_sub(const float128_t*, const float128_t*, float128_t*);
void f128M_mul(const float128_t*, const float128_t*, float128_t*);
void f128M_mulAdd(const float128_t*, const float128_t*, const float128_t*, float128_t*);
void f128M_div(const float128_t*, const float128_t*, float128_t*);
void f128M_rem(const float128_t*, const float128_t*, float128_t*);
void f128M_sqrt(const float128_t*, float128_t*);
bool f128M_eq(const float128_t*, const float128_t*);
bool f128M_le(const float128_t*, const float128_t*);
bool f128M_lt(const float128_t*, const float128_t*);
bool f128M_eq_signaling(const float128_t*, const float128_t*);
bool f128M_le_quiet(const float128_t*, const float128_t*);
bool f128M_lt_quiet(const float128_t*, const float128_t*);
bool f128M_isSignalingNaN(const float128_t*);
uint_fast32_t f128M_to_ui32( const float128_t *, uint_fast8_t, bool );
uint_fast64_t f128M_to_ui64( const float128_t *, uint_fast8_t, bool );
int_fast32_t f128M_to_i32( const float128_t *, uint_fast8_t, bool );
int_fast64_t f128M_to_i64( const float128_t *, uint_fast8_t, bool );
uint_fast32_t f128M_to_ui32_r_minMag( const float128_t *, bool );
uint_fast64_t f128M_to_ui64_r_minMag( const float128_t *, bool );
int_fast32_t f128M_to_i32_r_minMag( const float128_t *, bool );
int_fast64_t f128M_to_i64_r_minMag( const float128_t *, bool );
float16_t f128M_to_f16( const float128_t * );
float32_t f128M_to_f32( const float128_t * );
float64_t f128M_to_f64( const float128_t * );
void f128M_to_extF80M( const float128_t *, extFloat80_t * );
void f128M_roundToInt( const float128_t *, uint_fast8_t, bool, float128_t * );
void f128M_add( const float128_t *, const float128_t *, float128_t * );
void f128M_sub( const float128_t *, const float128_t *, float128_t * );
void f128M_mul( const float128_t *, const float128_t *, float128_t * );
void
f128M_mulAdd(
const float128_t *, const float128_t *, const float128_t *, float128_t *
);
void f128M_div( const float128_t *, const float128_t *, float128_t * );
void f128M_rem( const float128_t *, const float128_t *, float128_t * );
void f128M_sqrt( const float128_t *, float128_t * );
bool f128M_eq( const float128_t *, const float128_t * );
bool f128M_le( const float128_t *, const float128_t * );
bool f128M_lt( const float128_t *, const float128_t * );
bool f128M_eq_signaling( const float128_t *, const float128_t * );
bool f128M_le_quiet( const float128_t *, const float128_t * );
bool f128M_lt_quiet( const float128_t *, const float128_t * );
bool f128M_isSignalingNaN( const float128_t * );
#endif

View File

@ -47,18 +47,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| the types below may, if desired, be defined as aliases for the native types
| (typically 'float' and 'double', and possibly 'long double').
*----------------------------------------------------------------------------*/
typedef struct {
uint16_t v;
} float16_t;
typedef struct {
uint32_t v;
} float32_t;
typedef struct {
uint64_t v;
} float64_t;
typedef struct {
uint64_t v[2];
} float128_t;
typedef struct { uint16_t v; } float16_t;
typedef struct { uint32_t v; } float32_t;
typedef struct { uint64_t v; } float64_t;
typedef struct { uint64_t v[2]; } float128_t;
/*----------------------------------------------------------------------------
| The format of an 80-bit extended floating-point number in memory. This
@ -66,15 +58,9 @@ typedef struct {
| named 'signif'.
*----------------------------------------------------------------------------*/
#ifdef LITTLEENDIAN
struct extFloat80M {
uint64_t signif;
uint16_t signExp;
};
struct extFloat80M { uint64_t signif; uint16_t signExp; };
#else
struct extFloat80M {
uint16_t signExp;
uint64_t signif;
};
struct extFloat80M { uint16_t signExp; uint64_t signif; };
#endif
/*----------------------------------------------------------------------------
@ -92,3 +78,4 @@ struct extFloat80M {
typedef struct extFloat80M extFloat80_t;
#endif

3
src-gen/.gitignore vendored
View File

@ -1,3 +1,2 @@
/iss
/vm
/sysc
/vm

View File

@ -35,7 +35,6 @@
#ifndef _RISCV_HART_M_P_HWL_H
#define _RISCV_HART_M_P_HWL_H
#include "riscv_hart_common.h"
#include <iss/vm_types.h>
namespace iss {
@ -47,71 +46,49 @@ public:
using this_class = hwl<BASE>;
using reg_t = typename BASE::reg_t;
hwl(feature_config cfg = feature_config{});
hwl();
virtual ~hwl() = default;
protected:
iss::status read_custom_csr_reg(unsigned addr, reg_t& val) override;
iss::status read_custom_csr_reg(unsigned addr, reg_t &val) override;
iss::status write_custom_csr_reg(unsigned addr, reg_t val) override;
};
template <typename BASE>
inline hwl<BASE>::hwl(feature_config cfg)
: BASE(cfg) {
for(unsigned addr = 0x800; addr < 0x803; ++addr) {
template<typename BASE>
inline hwl<BASE>::hwl() {
for (unsigned addr = 0x800; addr < 0x803; ++addr){
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
for(unsigned addr = 0x804; addr < 0x807; ++addr) {
for (unsigned addr = 0x804; addr < 0x807; ++addr){
this->register_custom_csr_rd(addr);
this->register_custom_csr_wr(addr);
}
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t& val) {
switch(addr) {
case 0x800:
val = this->reg.lpstart0;
break;
case 0x801:
val = this->reg.lpend0;
break;
case 0x802:
val = this->reg.lpcount0;
break;
case 0x804:
val = this->reg.lpstart1;
break;
case 0x805:
val = this->reg.lpend1;
break;
case 0x806:
val = this->reg.lpcount1;
break;
template<typename BASE>
inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t &val) {
switch(addr){
case 0x800: val = this->reg.lpstart0; break;
case 0x801: val = this->reg.lpend0; break;
case 0x802: val = this->reg.lpcount0; break;
case 0x804: val = this->reg.lpstart1; break;
case 0x805: val = this->reg.lpend1; break;
case 0x806: val = this->reg.lpcount1; break;
}
return iss::Ok;
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
switch(addr) {
case 0x800:
this->reg.lpstart0 = val;
break;
case 0x801:
this->reg.lpend0 = val;
break;
case 0x802:
this->reg.lpcount0 = val;
break;
case 0x804:
this->reg.lpstart1 = val;
break;
case 0x805:
this->reg.lpend1 = val;
break;
case 0x806:
this->reg.lpcount1 = val;
break;
template<typename BASE>
inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
switch(addr){
case 0x800: this->reg.lpstart0 = val; break;
case 0x801: this->reg.lpend0 = val; break;
case 0x802: this->reg.lpcount0 = val; break;
case 0x804: this->reg.lpstart1 = val; break;
case 0x805: this->reg.lpend1 = val; break;
case 0x806: this->reg.lpcount1 = val; break;
}
return iss::Ok;
}
@ -119,4 +96,5 @@ template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_c
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */

View File

@ -35,21 +35,15 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/arch_if.h"
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <string>
#include <unordered_map>
#include <util/logging.h>
namespace iss {
namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e { FEAT_NONE, FEAT_PMP = 1, FEAT_EXT_N = 2, FEAT_CLIC = 4, FEAT_DEBUG = 8, FEAT_TCM = 16 };
enum features_e{FEAT_NONE, FEAT_PMP=1, FEAT_EXT_N=2, FEAT_CLIC=4, FEAT_DEBUG=8, FEAT_TCM=16};
enum riscv_csr {
/* user-level CSR */
@ -57,17 +51,17 @@ enum riscv_csr {
ustatus = 0x000,
uie = 0x004,
utvec = 0x005,
utvt = 0x007, // CLIC
utvt = 0x007, //CLIC
// User Trap Handling
uscratch = 0x040,
uepc = 0x041,
ucause = 0x042,
utval = 0x043,
uip = 0x044,
uxnti = 0x045, // CLIC
uintstatus = 0xCB1, // MRW Current interrupt levels (CLIC) - addr subject to change
uintthresh = 0x047, // MRW Interrupt-level threshold (CLIC) - addr subject to change
uscratchcsw = 0x048, // MRW Conditional scratch swap on priv mode change (CLIC)
uxnti = 0x045, //CLIC
uintstatus = 0xCB1, // MRW Current interrupt levels (CLIC) - addr subject to change
uintthresh = 0x047, // MRW Interrupt-level threshold (CLIC) - addr subject to change
uscratchcsw = 0x048, // MRW Conditional scratch swap on priv mode change (CLIC)
uscratchcswl = 0x049, // MRW Conditional scratch swap on level change (CLIC)
// User Floating-Point CSRs
fflags = 0x001,
@ -118,17 +112,17 @@ enum riscv_csr {
mie = 0x304,
mtvec = 0x305,
mcounteren = 0x306,
mtvt = 0x307, // CLIC
mtvt = 0x307, //CLIC
// Machine Trap Handling
mscratch = 0x340,
mepc = 0x341,
mcause = 0x342,
mtval = 0x343,
mip = 0x344,
mxnti = 0x345, // CLIC
mintstatus = 0xFB1, // MRW Current interrupt levels (CLIC) - addr subject to change
mintthresh = 0x347, // MRW Interrupt-level threshold (CLIC) - addr subject to change
mscratchcsw = 0x348, // MRW Conditional scratch swap on priv mode change (CLIC)
mxnti = 0x345, //CLIC
mintstatus = 0xFB1, // MRW Current interrupt levels (CLIC) - addr subject to change
mintthresh = 0x347, // MRW Interrupt-level threshold (CLIC) - addr subject to change
mscratchcsw = 0x348, // MRW Conditional scratch swap on priv mode change (CLIC)
mscratchcswl = 0x349, // MRW Conditional scratch swap on level change (CLIC)
// Physical Memory Protection
pmpcfg0 = 0x3A0,
@ -181,6 +175,7 @@ enum riscv_csr {
dscratch1 = 0x7B3
};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
@ -198,7 +193,7 @@ enum {
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4 };
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4};
enum {
ISA_A = 1,
@ -231,8 +226,6 @@ struct feature_config {
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
};
class trap_load_access_fault : public trap_access {
@ -261,104 +254,49 @@ public:
: trap_access(15 << 16, badaddr) {}
};
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t* const data, unsigned length) {
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
switch (offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
break;
case 1:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
break;
case 2:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
break;
case 3:
*data = *(reg_ptr + 3);
break;
break;
}
}
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const data, unsigned length) {
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t *const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
switch (offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
break;
case 1:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
break;
case 2:
for(auto i = 0U; i < length; ++i)
for (auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
break;
case 3:
*(reg_ptr + 3) = *data;
break;
*(reg_ptr + 3) = *data ;
break;
}
}
struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
std::unordered_map<std::string, uint64_t> symbol_table;
std::unordered_map<std::string, uint64_t> get_sym_table(std::string name) {
if(!symbol_table.empty())
return symbol_table;
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
const auto sym_sec = reader.sections[".symtab"];
if(SHT_SYMTAB == sym_sec->get_type() || SHT_DYNSYM == sym_sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sym_sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name != "") {
this->symbol_table[name] = value;
#ifndef NDEBUG
CPPLOG(DEBUG) << "Found Symbol " << name;
#endif
}
}
}
return symbol_table;
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
} else
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
};
};
} // namespace arch
} // namespace iss
}
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -30,8 +30,7 @@
*
*******************************************************************************/
// clang-format off
#include "tgc5c.h"
#include "tgc_c.h"
#include "util/ities.h"
#include <util/logging.h>
#include <cstdio>
@ -40,18 +39,18 @@
using namespace iss::arch;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_aliases;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_bit_widths;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_byte_offsets;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_aliases;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
tgc5c::tgc5c() = default;
tgc_c::tgc_c() = default;
tgc5c::~tgc5c() = default;
tgc_c::~tgc_c() = default;
void tgc5c::reset(uint64_t address) {
auto base_ptr = reinterpret_cast<traits<tgc5c>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<tgc5c>::NUM_REGS; ++i)
void tgc_c::reset(uint64_t address) {
auto base_ptr = reinterpret_cast<traits<tgc_c>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<tgc_c>::NUM_REGS; ++i)
*(base_ptr+i)=0;
reg.PC=address;
reg.NEXT_PC=reg.PC;
@ -60,11 +59,11 @@ void tgc5c::reset(uint64_t address) {
reg.icount=0;
}
uint8_t *tgc5c::get_regs_base_ptr() {
uint8_t *tgc_c::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
tgc5c::phys_addr_t tgc5c::virt2phys(const iss::addr_t &addr) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc5c>::addr_mask);
tgc_c::phys_addr_t tgc_c::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}
// clang-format on

View File

@ -30,9 +30,9 @@
*
*******************************************************************************/
#ifndef _TGC5C_H_
#define _TGC5C_H_
// clang-format off
#ifndef _TGC_C_H_
#define _TGC_C_H_
#include <array>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
@ -41,19 +41,19 @@
namespace iss {
namespace arch {
struct tgc5c;
struct tgc_c;
template <> struct traits<tgc5c> {
template <> struct traits<tgc_c> {
constexpr static char const* const core_type = "TGC5C";
constexpr static char const* const core_type = "TGC_C";
static constexpr std::array<const char*, 36> reg_names{
{"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31", "pc", "next_pc", "priv", "dpc"}};
{"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV", "DPC"}};
static constexpr std::array<const char*, 36> reg_aliases{
{"zero", "ra", "sp", "gp", "tp", "t0", "t1", "t2", "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", "pc", "next_pc", "priv", "dpc"}};
{"ZERO", "RA", "SP", "GP", "TP", "T0", "T1", "T2", "S0", "S1", "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "S11", "T3", "T4", "T5", "T6", "PC", "NEXT_PC", "PRIV", "DPC"}};
enum constants {MISA_VAL=1073746180ULL, MARCHID_VAL=2147483651ULL, CLIC_NUM_IRQ=0ULL, XLEN=32ULL, INSTR_ALIGNMENT=2ULL, RFS=32ULL, fence=0ULL, fencei=1ULL, fencevmal=2ULL, fencevmau=3ULL, CSR_SIZE=4096ULL, MUL_LEN=64ULL};
enum constants {MISA_VAL=1073746180, MARCHID_VAL=2147483651, XLEN=32, INSTR_ALIGNMENT=2, RFS=32, fence=0, fencei=1, fencevmal=2, fencevmau=3, CSR_SIZE=4096, MUL_LEN=64};
constexpr static unsigned FP_REGS_SIZE = 0;
@ -81,7 +81,7 @@ template <> struct traits<tgc5c> {
enum sreg_flag_e { FLAGS };
enum mem_type_e { MEM, FENCE, RES, CSR, IMEM = MEM };
enum mem_type_e { MEM, FENCE, RES, CSR };
enum class opcode_e {
LUI = 0,
@ -141,49 +141,49 @@ template <> struct traits<tgc5c> {
DIVU = 54,
REM = 55,
REMU = 56,
C__ADDI4SPN = 57,
C__LW = 58,
C__SW = 59,
C__ADDI = 60,
C__NOP = 61,
C__JAL = 62,
C__LI = 63,
C__LUI = 64,
C__ADDI16SP = 65,
CADDI4SPN = 57,
CLW = 58,
CSW = 59,
CADDI = 60,
CNOP = 61,
CJAL = 62,
CLI = 63,
CLUI = 64,
CADDI16SP = 65,
__reserved_clui = 66,
C__SRLI = 67,
C__SRAI = 68,
C__ANDI = 69,
C__SUB = 70,
C__XOR = 71,
C__OR = 72,
C__AND = 73,
C__J = 74,
C__BEQZ = 75,
C__BNEZ = 76,
C__SLLI = 77,
C__LWSP = 78,
C__MV = 79,
C__JR = 80,
CSRLI = 67,
CSRAI = 68,
CANDI = 69,
CSUB = 70,
CXOR = 71,
COR = 72,
CAND = 73,
CJ = 74,
CBEQZ = 75,
CBNEZ = 76,
CSLLI = 77,
CLWSP = 78,
CMV = 79,
CJR = 80,
__reserved_cmv = 81,
C__ADD = 82,
C__JALR = 83,
C__EBREAK = 84,
C__SWSP = 85,
CADD = 82,
CJALR = 83,
CEBREAK = 84,
CSWSP = 85,
DII = 86,
MAX_OPCODE
};
};
struct tgc5c: public arch_if {
struct tgc_c: public arch_if {
using virt_addr_t = typename traits<tgc5c>::virt_addr_t;
using phys_addr_t = typename traits<tgc5c>::phys_addr_t;
using reg_t = typename traits<tgc5c>::reg_t;
using addr_t = typename traits<tgc5c>::addr_t;
using virt_addr_t = typename traits<tgc_c>::virt_addr_t;
using phys_addr_t = typename traits<tgc_c>::phys_addr_t;
using reg_t = typename traits<tgc_c>::reg_t;
using addr_t = typename traits<tgc_c>::addr_t;
tgc5c();
~tgc5c();
tgc_c();
~tgc_c();
void reset(uint64_t address=0) override;
@ -195,6 +195,14 @@ struct tgc5c: public arch_if {
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<tgc_c>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc_c>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
@ -203,7 +211,7 @@ struct tgc5c: public arch_if {
#pragma pack(push, 1)
struct TGC5C_regs {
struct TGC_C_regs {
uint32_t X0 = 0;
uint32_t X1 = 0;
uint32_t X2 = 0;
@ -259,5 +267,4 @@ struct tgc5c: public arch_if {
}
}
#endif /* _TGC5C_H_ */
// clang-format on
#endif /* _TGC_C_H_ */

View File

@ -0,0 +1,175 @@
#include "tgc_c.h"
#include <vector>
#include <array>
#include <cstdlib>
#include <algorithm>
namespace iss {
namespace arch {
namespace {
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__
constexpr size_t bit_count(uint32_t u) { return __builtin_popcount(u); }
#elif __cplusplus < 201402L
constexpr size_t uCount(uint32_t u) { return u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); }
constexpr size_t bit_count(uint32_t u) { return ((uCount(u) + (uCount(u) >> 3)) & 030707070707) % 63; }
#else
constexpr size_t bit_count(uint32_t u) {
size_t uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
#endif
using opcode_e = traits<tgc_c>::opcode_e;
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_desriptor {
size_t length;
uint32_t value;
uint32_t mask;
opcode_e op;
};
const std::array<instruction_desriptor, 90> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, opcode_e::LUI},
{32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, opcode_e::AUIPC},
{32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, opcode_e::JAL},
{32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, opcode_e::JALR},
{32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, opcode_e::BEQ},
{32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, opcode_e::BNE},
{32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, opcode_e::BLT},
{32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, opcode_e::BGE},
{32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, opcode_e::BLTU},
{32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, opcode_e::BGEU},
{32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, opcode_e::LB},
{32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, opcode_e::LH},
{32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, opcode_e::LW},
{32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, opcode_e::LBU},
{32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, opcode_e::LHU},
{32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, opcode_e::SB},
{32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, opcode_e::SH},
{32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, opcode_e::SW},
{32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, opcode_e::ADDI},
{32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, opcode_e::SLTI},
{32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, opcode_e::SLTIU},
{32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, opcode_e::XORI},
{32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, opcode_e::ORI},
{32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, opcode_e::ANDI},
{32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, opcode_e::SLLI},
{32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, opcode_e::SRLI},
{32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, opcode_e::SRAI},
{32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, opcode_e::ADD},
{32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, opcode_e::SUB},
{32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, opcode_e::SLL},
{32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, opcode_e::SLT},
{32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, opcode_e::SLTU},
{32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, opcode_e::XOR},
{32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, opcode_e::SRL},
{32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, opcode_e::SRA},
{32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, opcode_e::OR},
{32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, opcode_e::AND},
{32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, opcode_e::FENCE},
{32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, opcode_e::ECALL},
{32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, opcode_e::EBREAK},
{32, 0b00000000001000000000000001110011, 0b11111111111111111111111111111111, opcode_e::URET},
{32, 0b00010000001000000000000001110011, 0b11111111111111111111111111111111, opcode_e::SRET},
{32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, opcode_e::MRET},
{32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, opcode_e::WFI},
{32, 0b01111011001000000000000001110011, 0b11111111111111111111111111111111, opcode_e::DRET},
{32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRW},
{32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRS},
{32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRC},
{32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRWI},
{32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRSI},
{32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, opcode_e::CSRRCI},
{32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, opcode_e::FENCE_I},
{32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, opcode_e::MUL},
{32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, opcode_e::MULH},
{32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, opcode_e::MULHSU},
{32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, opcode_e::MULHU},
{32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, opcode_e::DIV},
{32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, opcode_e::DIVU},
{32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, opcode_e::REM},
{32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, opcode_e::REMU},
{16, 0b0000000000000000, 0b1110000000000011, opcode_e::CADDI4SPN},
{16, 0b0100000000000000, 0b1110000000000011, opcode_e::CLW},
{16, 0b1100000000000000, 0b1110000000000011, opcode_e::CSW},
{16, 0b0000000000000001, 0b1110000000000011, opcode_e::CADDI},
{16, 0b0000000000000001, 0b1110111110000011, opcode_e::CNOP},
{16, 0b0010000000000001, 0b1110000000000011, opcode_e::CJAL},
{16, 0b0100000000000001, 0b1110000000000011, opcode_e::CLI},
{16, 0b0110000000000001, 0b1110000000000011, opcode_e::CLUI},
{16, 0b0110000100000001, 0b1110111110000011, opcode_e::CADDI16SP},
{16, 0b0110000000000001, 0b1111000001111111, opcode_e::__reserved_clui},
{16, 0b1000000000000001, 0b1111110000000011, opcode_e::CSRLI},
{16, 0b1000010000000001, 0b1111110000000011, opcode_e::CSRAI},
{16, 0b1000100000000001, 0b1110110000000011, opcode_e::CANDI},
{16, 0b1000110000000001, 0b1111110001100011, opcode_e::CSUB},
{16, 0b1000110000100001, 0b1111110001100011, opcode_e::CXOR},
{16, 0b1000110001000001, 0b1111110001100011, opcode_e::COR},
{16, 0b1000110001100001, 0b1111110001100011, opcode_e::CAND},
{16, 0b1010000000000001, 0b1110000000000011, opcode_e::CJ},
{16, 0b1100000000000001, 0b1110000000000011, opcode_e::CBEQZ},
{16, 0b1110000000000001, 0b1110000000000011, opcode_e::CBNEZ},
{16, 0b0000000000000010, 0b1111000000000011, opcode_e::CSLLI},
{16, 0b0100000000000010, 0b1110000000000011, opcode_e::CLWSP},
{16, 0b1000000000000010, 0b1111000000000011, opcode_e::CMV},
{16, 0b1000000000000010, 0b1111000001111111, opcode_e::CJR},
{16, 0b1000000000000010, 0b1111111111111111, opcode_e::__reserved_cmv},
{16, 0b1001000000000010, 0b1111000000000011, opcode_e::CADD},
{16, 0b1001000000000010, 0b1111000001111111, opcode_e::CJALR},
{16, 0b1001000000000010, 0b1111111111111111, opcode_e::CEBREAK},
{16, 0b1100000000000010, 0b1110000000000011, opcode_e::CSWSP},
{16, 0b0000000000000000, 0b1111111111111111, opcode_e::DII},
}};
}
template<>
struct instruction_decoder<tgc_c> {
using opcode_e = traits<tgc_c>::opcode_e;
using code_word_t=traits<tgc_c>::code_word_t;
struct instruction_pattern {
uint32_t value;
uint32_t mask;
opcode_e id;
};
std::array<std::vector<instruction_pattern>, 4> qlut;
template<typename T>
unsigned decode_instruction(T);
instruction_decoder() {
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) > bit_count(b.mask);
});
}
}
};
template<>
unsigned instruction_decoder<tgc_c>::decode_instruction<traits<tgc_c>::code_word_t>(traits<tgc_c>::code_word_t instr){
auto res = std::find_if(std::begin(qlut[instr&0x3]), std::end(qlut[instr&0x3]), [instr](instruction_pattern const& e){
return !((instr&e.mask) ^ e.value );
});
return static_cast<unsigned>(res!=std::end(qlut[instr&0x3])? res->id : opcode_e::MAX_OPCODE);
}
std::unique_ptr<instruction_decoder<tgc_c>> traits<tgc_c>::get_decoder(){
return std::make_unique<instruction_decoder<tgc_c>>();
}
}
}

View File

@ -2,56 +2,49 @@
#define _ISS_ARCH_TGC_MAPPER_H
#include "riscv_hart_m_p.h"
#include "tgc5c.h"
using tgc5c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5c>;
#ifdef CORE_TGC5A
#include "tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_A
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5a.h>
using tgc5a_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5a>;
#include <iss/arch/tgc_a.h>
using tgc_a_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_a>;
#endif
#ifdef CORE_TGC5B
#ifdef CORE_TGC_B
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5b.h>
using tgc5b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5b>;
#include <iss/arch/tgc_b.h>
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#endif
#ifdef CORE_TGC5C_XRB_NN
#ifdef CORE_TGC_C_XRB_NN
#include "riscv_hart_m_p.h"
#include "hwl.h"
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc5c_xrb_nn.h>
using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arch::tgc5c_xrb_nn>>;
#include <iss/arch/tgc_c_xrb_nn.h>
using tgc_c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arch::tgc_c_xrb_nn>>;
#endif
#ifdef CORE_TGC5D
#ifdef CORE_TGC_D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc_d.h>
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_MAC
#ifdef CORE_TGC_D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type =
iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc_d_xrb_mac.h>
using tgc_d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_mac, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_NN
#ifdef CORE_TGC_D_XRB_NN
#include "riscv_hart_mu_p.h"
#include "hwl.h"
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type =
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#include <iss/arch/tgc_d_xrb_nn.h>
using tgc_d_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC5E
#ifdef CORE_TGC_E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc_e.h>
using tgc_e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5X
#ifdef CORE_TGC_X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#include <iss/arch/tgc_x.h>
using tgc_x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#endif
#endif

View File

@ -36,27 +36,25 @@
#define _RISCV_HART_M_P_WT_CACHE_H
#include <iss/vm_types.h>
#include <map>
#include <memory>
#include <util/ities.h>
#include <vector>
#include <map>
#include <memory>
namespace iss {
namespace arch {
namespace cache {
enum class state { INVALID, VALID };
enum class state { INVALID, VALID};
struct line {
uint64_t tag_addr{0};
state st{state::INVALID};
std::vector<uint8_t> data;
line(unsigned line_sz)
: data(line_sz) {}
line(unsigned line_sz): data(line_sz) {}
};
struct set {
std::vector<line> ways;
set(unsigned ways_count, line const& l)
: ways(ways_count, l) {}
set(unsigned ways_count, line const& l): ways(ways_count, l) {}
};
struct cache {
std::vector<set> sets;
@ -64,14 +62,14 @@ struct cache {
cache(unsigned size, unsigned line_sz, unsigned ways) {
line const ref_line{line_sz};
set const ref_set{ways, ref_line};
sets.resize(size / (ways * line_sz), ref_set);
sets.resize(size/(ways*line_sz), ref_set);
}
};
struct wt_policy {
bool is_cacheline_hit(cache& c);
bool is_cacheline_hit(cache& c );
};
} // namespace cache
}
// write thru, allocate on read, direct mapped or set-associative with round-robin replacement policy
template <typename BASE> class wt_cache : public BASE {
@ -83,7 +81,7 @@ public:
using mem_write_f = typename BASE::mem_write_f;
using phys_addr_t = typename BASE::phys_addr_t;
wt_cache(feature_config cfg = feature_config{});
wt_cache();
virtual ~wt_cache() = default;
unsigned size{4096};
@ -91,73 +89,74 @@ public:
unsigned ways{1};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
protected:
iss::status read_cache(phys_addr_t addr, unsigned, uint8_t* const);
iss::status write_cache(phys_addr_t addr, unsigned, uint8_t const* const);
iss::status read_cache(phys_addr_t addr, unsigned, uint8_t *const);
iss::status write_cache(phys_addr_t addr, unsigned, uint8_t const *const);
std::function<mem_read_f> cache_mem_rd_delegate;
std::function<mem_write_f> cache_mem_wr_delegate;
std::unique_ptr<cache::cache> dcache_ptr;
std::unique_ptr<cache::cache> icache_ptr;
size_t get_way_select() { return 0; }
size_t get_way_select() {
return 0;
}
};
template <typename BASE>
inline wt_cache<BASE>::wt_cache(feature_config cfg)
: BASE(cfg)
, io_address{cfg.io_address}
, io_addr_mask{cfg.io_addr_mask} {
template<typename BASE>
inline wt_cache<BASE>::wt_cache() {
auto cb = base_class::replace_mem_access(
[this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return read_cache(a, l, d); },
[this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return write_cache(a, l, d); });
[this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return read_cache(a, l,d);},
[this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return write_cache(a, l,d);});
cache_mem_rd_delegate = cb.first;
cache_mem_wr_delegate = cb.second;
}
template <typename BASE> iss::status iss::arch::wt_cache<BASE>::read_cache(phys_addr_t a, unsigned l, uint8_t* const d) {
template<typename BASE>
iss::status iss::arch::wt_cache<BASE>::read_cache(phys_addr_t a, unsigned l, uint8_t* const d) {
if(!icache_ptr) {
icache_ptr.reset(new cache::cache(size, line_sz, ways));
dcache_ptr.reset(new cache::cache(size, line_sz, ways));
}
if((a.val & io_addr_mask) != io_address) {
auto set_addr = (a.val & (size - 1)) >> util::ilog2(line_sz * ways);
auto tag_addr = a.val >> util::ilog2(line_sz);
auto& set = (is_fetch(a.access) ? icache_ptr : dcache_ptr)->sets[set_addr];
for(auto& cl : set.ways) {
if(cl.st == cache::state::VALID && cl.tag_addr == tag_addr) {
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
d[i] = cl.data[start_addr + i];
if((a.val&io_addr_mask) != io_address) {
auto set_addr=(a.val&(size-1))>>util::ilog2(line_sz*ways);
auto tag_addr=a.val>>util::ilog2(line_sz);
auto& set = (is_fetch(a.access)?icache_ptr:dcache_ptr)->sets[set_addr];
for(auto& cl: set.ways) {
if(cl.st==cache::state::VALID && cl.tag_addr==tag_addr) {
auto start_addr = a.val&(line_sz-1);
for(auto i = 0U; i<l; ++i)
d[i] = cl.data[start_addr+i];
return iss::Ok;
}
}
auto& cl = set.ways[get_way_select()];
phys_addr_t cl_addr{a};
cl_addr.val = tag_addr << util::ilog2(line_sz);
cl_addr.val=tag_addr<<util::ilog2(line_sz);
cache_mem_rd_delegate(cl_addr, line_sz, cl.data.data());
cl.tag_addr = tag_addr;
cl.st = cache::state::VALID;
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
d[i] = cl.data[start_addr + i];
cl.tag_addr=tag_addr;
cl.st=cache::state::VALID;
auto start_addr = a.val&(line_sz-1);
for(auto i = 0U; i<l; ++i)
d[i] = cl.data[start_addr+i];
return iss::Ok;
} else
return cache_mem_rd_delegate(a, l, d);
}
template <typename BASE> iss::status iss::arch::wt_cache<BASE>::write_cache(phys_addr_t a, unsigned l, const uint8_t* const d) {
template<typename BASE>
iss::status iss::arch::wt_cache<BASE>::write_cache(phys_addr_t a, unsigned l, const uint8_t* const d) {
if(!dcache_ptr)
dcache_ptr.reset(new cache::cache(size, line_sz, ways));
auto res = cache_mem_wr_delegate(a, l, d);
if(res == iss::Ok && ((a.val & io_addr_mask) != io_address)) {
auto set_addr = (a.val & (size - 1)) >> util::ilog2(line_sz * ways);
auto tag_addr = a.val >> util::ilog2(line_sz);
if(res == iss::Ok && ((a.val&io_addr_mask) != io_address)) {
auto set_addr=(a.val&(size-1))>>util::ilog2(line_sz*ways);
auto tag_addr=a.val>>util::ilog2(line_sz);
auto& set = dcache_ptr->sets[set_addr];
for(auto& cl : set.ways) {
if(cl.st == cache::state::VALID && cl.tag_addr == tag_addr) {
auto start_addr = a.val & (line_sz - 1);
for(auto i = 0U; i < l; ++i)
cl.data[start_addr + i] = d[i];
for(auto& cl: set.ways) {
if(cl.st==cache::state::VALID && cl.tag_addr==tag_addr) {
auto start_addr = a.val&(line_sz-1);
for(auto i = 0U; i<l; ++i)
cl.data[start_addr+i] = d[i];
break;
}
}
@ -165,6 +164,8 @@ template <typename BASE> iss::status iss::arch::wt_cache<BASE>::write_cache(phys
return res;
}
} // namespace arch
} // namespace iss

View File

@ -53,20 +53,20 @@ using namespace iss::debugger;
template <typename ARCH> class riscv_target_adapter : public target_adapter_base {
public:
riscv_target_adapter(server_if* srv, iss::arch_if* core)
riscv_target_adapter(server_if *srv, iss::arch_if *core)
: target_adapter_base(srv)
, core(core) {}
/*============== Thread Control ===============================*/
/* Set generic thread */
status set_gen_thread(rp_thread_ref& thread) override;
status set_gen_thread(rp_thread_ref &thread) override;
/* Set control thread */
status set_ctrl_thread(rp_thread_ref& thread) override;
status set_ctrl_thread(rp_thread_ref &thread) override;
/* Get thread status */
status is_thread_alive(rp_thread_ref& thread, bool& alive) override;
status is_thread_alive(rp_thread_ref &thread, bool &alive) override;
/*============= Register Access ================================*/
@ -74,77 +74,79 @@ public:
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) override;
status read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) override;
/* Write all registers. buf is 4-byte aligned and it is in target
byte order */
status write_registers(const std::vector<uint8_t>& data) override;
status write_registers(const std::vector<uint8_t> &data) override;
/* Read one register. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_single_register(unsigned int reg_no, std::vector<uint8_t>& buf, std::vector<uint8_t>& avail_buf) override;
status read_single_register(unsigned int reg_no, std::vector<uint8_t> &buf,
std::vector<uint8_t> &avail_buf) override;
/* Write one register. buf is 4-byte aligned and it is in target byte
order */
status write_single_register(unsigned int reg_no, const std::vector<uint8_t>& buf) override;
status write_single_register(unsigned int reg_no, const std::vector<uint8_t> &buf) override;
/*=================== Memory Access =====================*/
/* Read memory, buf is 4-bytes aligned and it is in target
byte order */
status read_mem(uint64_t addr, std::vector<uint8_t>& buf) override;
status read_mem(uint64_t addr, std::vector<uint8_t> &buf) override;
/* Write memory, buf is 4-bytes aligned and it is in target
byte order */
status write_mem(uint64_t addr, const std::vector<uint8_t>& buf) override;
status write_mem(uint64_t addr, const std::vector<uint8_t> &buf) override;
status process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) override;
status process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) override;
status thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num, size_t& num,
bool& done) override;
status thread_list_query(int first, const rp_thread_ref &arg, std::vector<rp_thread_ref> &result, size_t max_num,
size_t &num, bool &done) override;
status current_thread_query(rp_thread_ref& thread) override;
status current_thread_query(rp_thread_ref &thread) override;
status offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) override;
status offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) override;
status crc_query(uint64_t addr, size_t len, uint32_t& val) override;
status crc_query(uint64_t addr, size_t len, uint32_t &val) override;
status raw_query(std::string in_buf, std::string& out_buf) override;
status raw_query(std::string in_buf, std::string &out_buf) override;
status threadinfo_query(int first, std::string& out_buf) override;
status threadinfo_query(int first, std::string &out_buf) override;
status threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) override;
status threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) override;
status packetsize_query(std::string& out_buf) override;
status packetsize_query(std::string &out_buf) override;
status add_break(break_type type, uint64_t addr, unsigned int length) override;
status remove_break(break_type type, uint64_t addr, unsigned int length) override;
status resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread, std::function<void(unsigned)> stop_callback) override;
status resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread,
std::function<void(unsigned)> stop_callback) override;
status target_xml_query(std::string& out_buf) override;
status target_xml_query(std::string &out_buf) override;
protected:
static inline constexpr addr_t map_addr(const addr_t& i) { return i; }
static inline constexpr addr_t map_addr(const addr_t &i) { return i; }
iss::arch_if* core;
iss::arch_if *core;
rp_thread_ref thread_idx;
};
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref &thread) {
thread_idx = thread;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref& thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref &thread) {
thread_idx = thread;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_thread_ref& thread, bool& alive) {
template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_thread_ref &thread, bool &alive) {
alive = 1;
return Ok;
}
@ -156,9 +158,10 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_t
* set if all threads are processed.
*/
template <typename ARCH>
status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result,
size_t max_num, size_t& num, bool& done) {
if(first == 0) {
status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref &arg,
std::vector<rp_thread_ref> &result, size_t max_num, size_t &num,
bool &done) {
if (first == 0) {
result.clear();
result.push_back(thread_idx);
num = 1;
@ -168,22 +171,23 @@ status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query(rp_thread_ref& thread) {
template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query(rp_thread_ref &thread) {
thread = thread_idx;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
CPPLOG(TRACE) << "reading target registers";
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) {
LOG(TRACE) << "reading target registers";
// return idx<0?:;
data.clear();
avail.clear();
const uint8_t* reg_base = core->get_regs_base_ptr();
auto start_reg = arch::traits<ARCH>::X0;
for(size_t reg_no = start_reg; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
const uint8_t *reg_base = core->get_regs_base_ptr();
auto start_reg=arch::traits<ARCH>::X0;
for (size_t reg_no = start_reg; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < reg_width; ++j) {
for (size_t j = 0; j < reg_width; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
}
@ -206,19 +210,19 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(const std::vector<uint8_t>& data) {
auto start_reg = arch::traits<ARCH>::X0;
auto* reg_base = core->get_regs_base_ptr();
template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(const std::vector<uint8_t> &data) {
auto start_reg=arch::traits<ARCH>::X0;
auto *reg_base = core->get_regs_base_ptr();
auto iter = data.data();
bool e_ext = arch::traits<ARCH>::PC < 32;
for(size_t reg_no = 0; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
if(e_ext && reg_no > 15) {
if(reg_no == 32) {
bool e_ext = arch::traits<ARCH>::PC<32;
for (size_t reg_no = 0; reg_no < start_reg+33/*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
if(e_ext && reg_no>15){
if(reg_no==32){
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
std::copy(iter, iter + reg_width, reg_base);
} else {
const uint64_t zero_val = 0;
const uint64_t zero_val=0;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[15] / 8;
auto iter = (uint8_t*)&zero_val;
std::copy(iter, iter + reg_width, reg_base);
@ -235,11 +239,12 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
if(reg_no < 65) {
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t> &data,
std::vector<uint8_t> &avail) {
if (reg_no < 65) {
// auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename
// arch::traits<ARCH>::reg_e>(reg_no))/8;
auto* reg_base = core->get_regs_base_ptr();
auto *reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
data.resize(reg_width);
avail.resize(reg_width);
@ -256,9 +261,10 @@ status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std
return data.size() > 0 ? Ok : Err;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) {
if(reg_no < 65) {
auto* reg_base = core->get_regs_base_ptr();
template <typename ARCH>
status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t> &data) {
if (reg_no < 65) {
auto *reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[static_cast<typename arch::traits<ARCH>::reg_e>(reg_no)] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(data.begin(), data.begin() + reg_width, reg_base + offset);
@ -269,36 +275,41 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_registe
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t>& data) {
template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t> &data) {
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->read(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) {
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t> &data) {
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->write(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
template <typename ARCH>
status riscv_target_adapter<ARCH>::process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) {
status riscv_target_adapter<ARCH>::process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) {
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) {
template <typename ARCH>
status riscv_target_adapter<ARCH>::offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) {
text = 0;
data = 0;
bss = 0;
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t& val) { return NotSupported; }
template <typename ARCH> status riscv_target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t &val) {
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::raw_query(std::string in_buf, std::string& out_buf) { return NotSupported; }
template <typename ARCH> status riscv_target_adapter<ARCH>::raw_query(std::string in_buf, std::string &out_buf) {
return NotSupported;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int first, std::string& out_buf) {
if(first) {
template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int first, std::string &out_buf) {
if (first) {
out_buf = fmt::format("m{:x}", thread_idx.val);
} else {
out_buf = "l";
@ -306,7 +317,8 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) {
template <typename ARCH>
status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) {
std::array<char, 20> buf;
memset(buf.data(), 0, 20);
sprintf(buf.data(), "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0);
@ -314,7 +326,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::threadextrainfo_quer
return Ok;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::packetsize_query(std::string& out_buf) {
template <typename ARCH> status riscv_target_adapter<ARCH>::packetsize_query(std::string &out_buf) {
out_buf = "PacketSize=1000";
return Ok;
}
@ -328,9 +340,9 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::add_break(break_type
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
auto eaddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr + length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val);
CPPLOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val
<< std::dec;
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex
<< saddr.val << std::dec;
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
}
@ -344,14 +356,15 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(break_t
case HW_EXEC: {
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val);
if(handle) {
CPPLOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec;
if (handle) {
LOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val
<< std::dec;
// TODO: check length of addr range
target_adapter_base::bp_lut.removeEntry(handle);
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Err;
}
}
@ -359,53 +372,53 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(break_t
template <typename ARCH>
status riscv_target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread,
std::function<void(unsigned)> stop_callback) {
auto* reg_base = core->get_regs_base_ptr();
std::function<void(unsigned)> stop_callback) {
auto *reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
const uint8_t* iter = reinterpret_cast<const uint8_t*>(&addr);
const uint8_t *iter = reinterpret_cast<const uint8_t *>(&addr);
std::copy(iter, iter + reg_width, reg_base);
return resume_from_current(step, sig, thread, stop_callback);
}
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string& out_buf) {
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string &out_buf) {
const std::string res{"<?xml version=\"1.0\"?><!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target><architecture>riscv:rv32</architecture>"
//" <feature name=\"org.gnu.gdb.riscv.rv32i\">\n"
//" <reg name=\"x0\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x1\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x2\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x3\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x4\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x5\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x6\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x7\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x8\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x9\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x10\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x11\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x12\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x13\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x14\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x15\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x16\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x17\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x18\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x19\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x20\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x21\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x22\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x23\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x24\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x25\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x26\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x27\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x28\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x29\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x30\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x31\" bitsize=\"32\" group=\"general\"/>\n"
//" </feature>\n"
"</target>"};
"<target><architecture>riscv:rv32</architecture>"
//" <feature name=\"org.gnu.gdb.riscv.rv32i\">\n"
//" <reg name=\"x0\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x1\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x2\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x3\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x4\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x5\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x6\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x7\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x8\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x9\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x10\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x11\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x12\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x13\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x14\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x15\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x16\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x17\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x18\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x19\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x20\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x21\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x22\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x23\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x24\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x25\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x26\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x27\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x28\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x29\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x30\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x31\" bitsize=\"32\" group=\"general\"/>\n"
//" </feature>\n"
"</target>"};
out_buf = res;
return Ok;
}
@ -455,7 +468,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std
</target>
*/
} // namespace debugger
} // namespace iss
}
}
#endif /* _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */

View File

@ -33,20 +33,21 @@
#ifndef _ISS_FACTORY_H_
#define _ISS_FACTORY_H_
#include <algorithm>
#include <functional>
#include <iss/iss.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <functional>
#include <string>
#include <algorithm>
#include <vector>
namespace iss {
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
using vm_ptr= std::unique_ptr<iss::vm_if>;
template <typename PLAT> std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string const& backend, unsigned gdb_port) {
template<typename PLAT>
std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string const& backend, unsigned gdb_port){
using core_type = typename PLAT::core;
core_type* lcpu = new PLAT();
if(backend == "interp")
@ -62,45 +63,48 @@ template <typename PLAT> std::tuple<cpu_ptr, vm_ptr> create_cpu(std::string cons
return {nullptr, nullptr};
}
class core_factory {
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
using vm_ptr= std::unique_ptr<iss::vm_if>;
using base_t = std::tuple<cpu_ptr, vm_ptr>;
using create_fn = std::function<base_t(unsigned, void*)>;
using registry_t = std::unordered_map<std::string, create_fn>;
using create_fn = std::function<base_t(unsigned, void*) >;
using registry_t = std::unordered_map<std::string, create_fn> ;
registry_t registry;
core_factory() = default;
core_factory(const core_factory&) = delete;
core_factory& operator=(const core_factory&) = delete;
core_factory(const core_factory &) = delete;
core_factory & operator=(const core_factory &) = delete;
public:
static core_factory& instance() {
static core_factory bf;
return bf;
}
static core_factory & instance() { static core_factory bf; return bf; }
bool register_creator(const std::string& className, create_fn const& fn) {
registry[className] = fn;
return true;
}
bool register_creator(const std::string &, create_fn const&);
base_t create(std::string const& className, unsigned gdb_port = 0, void* init_data = nullptr) const {
registry_t::const_iterator regEntry = registry.find(className);
if(regEntry != registry.end())
return regEntry->second(gdb_port, init_data);
return {nullptr, nullptr};
}
base_t create(const std::string &, unsigned gdb_port=0, void* init_data=nullptr) const;
std::vector<std::string> get_names() {
std::vector<std::string> keys{registry.size()};
std::transform(std::begin(registry), std::end(registry), std::begin(keys),
[](std::pair<std::string, create_fn> const& p) { return p.first; });
std::transform(std::begin(registry), std::end(registry), std::begin(keys), [](std::pair<std::string, create_fn> const& p){
return p.first;
});
return keys;
}
};
} // namespace iss
inline bool core_factory::register_creator(const std::string & className, create_fn const& fn) {
registry[className] = fn;
return true;
}
inline core_factory::base_t core_factory::create(const std::string &className, unsigned gdb_port, void* data) const {
registry_t::const_iterator regEntry = registry.find(className);
if (regEntry != registry.end())
return regEntry->second(gdb_port, data);
return {nullptr, nullptr};
}
}
#endif /* _ISS_FACTORY_H_ */

View File

@ -1,8 +0,0 @@
# pctrace
Trace functionality to allow visualizing coverage in lcov and cachegrind tools. Use environment variables NOCOMPRES and REGDUMP to toggle functionality.
- NOCOMPRES: any value turns off the LZ4 compression
- REGDUMP: any value switches to tracing the registers instead. Also turns off compression.
Known Bugs:
- currently does not work correctly with jit backends, the plugin cant tell if instructions are compressed. Additionaly the cost of instrs that raise a trap is not known. It takes the cost of the instrid -1 (0 at the moment).

View File

@ -33,82 +33,86 @@
******************************************************************************/
#include "cycle_estimate.h"
#include <iss/plugin/calculator.h>
#include <yaml-cpp/yaml.h>
#include <fstream>
#include <iss/arch_if.h>
#include <util/logging.h>
#include <rapidjson/document.h>
#include <rapidjson/istreamwrapper.h>
#include <rapidjson/writer.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/ostreamwrapper.h>
#include <rapidjson/error/en.h>
#include <fstream>
using namespace rapidjson;
using namespace std;
iss::plugin::cycle_estimate::cycle_estimate(string const& config_file_name)
: instr_if(nullptr)
, config_file_name(config_file_name) {}
, config_file_name(config_file_name)
{
}
iss::plugin::cycle_estimate::~cycle_estimate() = default;
iss::plugin::cycle_estimate::~cycle_estimate() {
}
bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if& vm) {
instr_if = vm.get_arch()->get_instrumentation_if();
assert(instr_if && "No instrumentation interface available but callback executed");
reg_base_ptr = reinterpret_cast<uint32_t*>(vm.get_arch()->get_regs_base_ptr());
if(!instr_if)
return false;
const string core_name = instr_if->core_type_name();
if(config_file_name.length() > 0) {
std::ifstream is(config_file_name);
if(is.is_open()) {
if(!instr_if) return false;
const string core_name = instr_if->core_type_name();
if (config_file_name.length() > 0) {
ifstream is(config_file_name);
if (is.is_open()) {
try {
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many root nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
auto instructions = p.second;
for(auto const& instr : instructions) {
auto idx = instr.second["index"].as<unsigned>();
if(delays.size() <= idx)
delays.resize(idx + 1);
auto& res = delays[idx];
res.is_branch = instr.second["branch"].as<bool>();
auto delay = instr.second["delay"];
if(delay.IsSequence()) {
res.not_taken = delay[0].as<uint64_t>();
res.taken = delay[1].as<uint64_t>();
} else {
try {
res.not_taken = delay.as<uint64_t>();
res.taken = res.not_taken;
} catch(const YAML::BadConversion& e) {
res.f = iss::plugin::calculator(reg_base_ptr, delay.as<std::string>());
}
}
}
}
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
IStreamWrapper isw(is);
Document d;
ParseResult ok = d.ParseStream(isw);
if(ok) {
Value& val = d[core_name.c_str()];
if(val.IsArray()){
delays.reserve(val.Size());
for (auto it = val.Begin(); it != val.End(); ++it) {
auto& name = (*it)["name"];
auto& size = (*it)["size"];
auto& delay = (*it)["delay"];
auto& branch = (*it)["branch"];
if(delay.IsArray()) {
auto dt = delay[0].Get<unsigned>();
auto dnt = delay[1].Get<unsigned>();
delays.push_back(instr_desc{size.Get<unsigned>(), dt, dnt, branch.Get<bool>()});
} else if(delay.Is<unsigned>()) {
auto d = delay.Get<unsigned>();
delays.push_back(instr_desc{size.Get<unsigned>(), d, d, branch.Get<bool>()});
} else
throw runtime_error("JSON parse error");
}
} else {
LOG(ERR)<<"plugin cycle_estimate: could not find an entry for "<<core_name<<" in JSON file"<<endl;
return false;
}
} else {
LOG(ERR)<<"plugin cycle_estimate: could not parse in JSON file at "<< ok.Offset()<<": "<<GetParseError_En(ok.Code())<<endl;
return false;
}
} catch (runtime_error &e) {
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
return false;
}
} else {
CPPLOG(ERR) << "Could not open input file " << config_file_name;
LOG(ERR) << "Could not open input file " << config_file_name;
return false;
}
}
return true;
}
void iss::plugin::cycle_estimate::callback(instr_info_t instr_info) {
size_t instr_id = instr_info.instr_id;
auto& entry = instr_id < delays.size() ? delays[instr_id] : illegal_desc;
if(instr_info.phase_id == PRE_SYNC) {
if(entry.f)
current_delay = entry.f(instr_if->get_instr_word());
} else {
if(!entry.f)
current_delay = instr_if->is_branch_taken() ? entry.taken : entry.not_taken;
if(current_delay > 1)
instr_if->update_last_instr_cycles(current_delay);
current_delay = 1;
}
assert(instr_if && "No instrumentation interface available but callback executed");
auto entry = delays[instr_info.instr_id];
bool taken = instr_if->is_branch_taken();
if (taken && (entry.taken > 1))
instr_if->update_last_instr_cycles(entry.taken);
else if (entry.not_taken > 1)
instr_if->update_last_instr_cycles(entry.not_taken);
}

View File

@ -37,7 +37,6 @@
#include "iss/instrumentation_if.h"
#include "iss/vm_plugin.h"
#include <functional>
#include <string>
#include <unordered_map>
#include <vector>
@ -46,44 +45,46 @@ namespace iss {
namespace plugin {
class cycle_estimate : public vm_plugin {
struct instr_desc {
size_t size{0};
bool is_branch{false};
unsigned not_taken{1};
unsigned taken{1};
std::function<unsigned(uint64_t)> f;
};
class cycle_estimate: public vm_plugin {
BEGIN_BF_DECL(instr_desc, uint32_t)
BF_FIELD(taken, 24, 8)
BF_FIELD(not_taken, 16, 8)
BF_FIELD(is_branch, 8, 8)
BF_FIELD(size, 0, 8)
instr_desc(uint32_t size, uint32_t taken, uint32_t not_taken, bool branch): instr_desc() {
this->size=size;
this->taken=taken;
this->not_taken=not_taken;
this->is_branch=branch;
}
END_BF_DECL();
public:
cycle_estimate() = delete;
cycle_estimate(const cycle_estimate&) = delete;
cycle_estimate(const cycle_estimate &) = delete;
cycle_estimate(const cycle_estimate&&) = delete;
cycle_estimate(const cycle_estimate &&) = delete;
cycle_estimate(std::string const& config_file_name);
virtual ~cycle_estimate();
cycle_estimate& operator=(const cycle_estimate&) = delete;
cycle_estimate &operator=(const cycle_estimate &) = delete;
cycle_estimate& operator=(const cycle_estimate&&) = delete;
cycle_estimate &operator=(const cycle_estimate &&) = delete;
bool registration(const char* const version, vm_if& arch) override;
bool registration(const char *const version, vm_if &arch) override;
sync_type get_sync() override { return ALL_SYNC; };
sync_type get_sync() override { return POST_SYNC; };
void callback(instr_info_t instr_info) override;
private:
iss::instrumentation_if* instr_if{nullptr};
uint32_t* reg_base_ptr{nullptr};
instr_desc illegal_desc{};
iss::instrumentation_if *instr_if;
std::vector<instr_desc> delays;
unsigned current_delay{0};
struct pair_hash {
size_t operator()(const std::pair<uint64_t, uint64_t>& p) const {
size_t operator()(const std::pair<uint64_t, uint64_t> &p) const {
std::hash<uint64_t> hash;
return hash(p.first) + hash(p.second);
}
@ -91,7 +92,7 @@ private:
std::unordered_map<std::pair<uint64_t, uint64_t>, uint64_t, pair_hash> blocks;
std::string config_file_name;
};
} // namespace plugin
} // namespace iss
}
}
#endif /* _ISS_PLUGIN_CYCLE_ESTIMATE_H_ */

View File

@ -34,63 +34,62 @@
#include "instruction_count.h"
#include <iss/instrumentation_if.h>
#include <yaml-cpp/yaml.h>
#include <fstream>
#include <iss/arch_if.h>
#include <util/logging.h>
#include <fstream>
iss::plugin::instruction_count::instruction_count(std::string config_file_name) {
if(config_file_name.length() > 0) {
if (config_file_name.length() > 0) {
std::ifstream is(config_file_name);
if(is.is_open()) {
if (is.is_open()) {
try {
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many rro nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
auto instructions = p.second;
for(auto const& instr : instructions) {
instr_delay res;
res.instr_name = instr.first.as<std::string>();
res.size = instr.second["encoding"].as<std::string>().size() - 2; // not counting 0b
auto delay = instr.second["delay"];
if(delay.IsSequence()) {
res.not_taken_delay = delay[0].as<uint64_t>();
res.taken_delay = delay[1].as<uint64_t>();
} else {
res.not_taken_delay = delay.as<uint64_t>();
res.taken_delay = res.not_taken_delay;
}
delays.push_back(std::move(res));
}
}
rep_counts.resize(delays.size());
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
is >> root;
} catch (Json::RuntimeError &e) {
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
}
} else {
CPPLOG(ERR) << "Could not open input file " << config_file_name;
LOG(ERR) << "Could not open input file " << config_file_name;
}
}
}
iss::plugin::instruction_count::~instruction_count() {
size_t idx = 0;
for(auto it : delays) {
if(rep_counts[idx] > 0 && it.instr_name.find("__" != 0))
CPPLOG(INFO) << it.instr_name << ";" << rep_counts[idx];
idx++;
}
size_t idx=0;
for(auto it:delays){
if(rep_counts[idx]>0)
LOG(INFO)<<it.instr_name<<";"<<rep_counts[idx];
idx++;
}
}
bool iss::plugin::instruction_count::registration(const char* const version, vm_if& vm) {
auto instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if)
return false;
return true;
if(!instr_if) return false;
const std::string core_name = instr_if->core_type_name();
Json::Value &val = root[core_name];
if(!val.isNull() && val.isArray()){
delays.reserve(val.size());
for(auto it:val){
auto name = it["name"];
auto size = it["size"];
auto delay = it["delay"];
if(!name.isString() || !size.isUInt() || !(delay.isUInt() || delay.isArray())) throw std::runtime_error("JSON parse error");
if(delay.isUInt()){
const instr_delay entry{name.asCString(), size.asUInt(), delay.asUInt(), 0};
delays.push_back(entry);
} else {
const instr_delay entry{name.asCString(), size.asUInt(), delay[0].asUInt(), delay[1].asUInt()};
delays.push_back(entry);
}
}
rep_counts.resize(delays.size());
} else {
LOG(ERR)<<"plugin instruction_count: could not find an entry for "<<core_name<<" in JSON file"<<std::endl;
}
return true;
}
void iss::plugin::instruction_count::callback(instr_info_t instr_info) { rep_counts[instr_info.instr_id]++; }
void iss::plugin::instruction_count::callback(instr_info_t instr_info) {
rep_counts[instr_info.instr_id]++;
}

View File

@ -36,8 +36,8 @@
#define _ISS_PLUGIN_INSTRUCTION_COUNTER_H_
#include <iss/vm_plugin.h>
#include <json/json.h>
#include <string>
#include <vector>
namespace iss {
namespace plugin {
@ -53,29 +53,30 @@ class instruction_count : public iss::vm_plugin {
public:
instruction_count() = delete;
instruction_count(const instruction_count&) = delete;
instruction_count(const instruction_count &) = delete;
instruction_count(const instruction_count&&) = delete;
instruction_count(const instruction_count &&) = delete;
instruction_count(std::string config_file_name);
virtual ~instruction_count();
instruction_count& operator=(const instruction_count&) = delete;
instruction_count &operator=(const instruction_count &) = delete;
instruction_count& operator=(const instruction_count&&) = delete;
instruction_count &operator=(const instruction_count &&) = delete;
bool registration(const char* const version, vm_if& arch) override;
bool registration(const char *const version, vm_if &arch) override;
sync_type get_sync() override { return POST_SYNC; };
void callback(instr_info_t) override;
private:
Json::Value root;
std::vector<instr_delay> delays;
std::vector<uint64_t> rep_counts;
};
} // namespace plugin
} // namespace iss
}
}
#endif /* _ISS_PLUGIN_INSTRUCTION_COUNTER_H_ */

214
src/iss/plugin/pctrace.cpp Normal file
View File

@ -0,0 +1,214 @@
/*******************************************************************************
* Copyright (C) 2017 - 2023, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* alex.com - initial implementation
******************************************************************************/
#include <iss/arch_if.h>
#include <iss/plugin/pctrace.h>
#include <util/logging.h>
#include <util/ities.h>
#include <rapidjson/document.h>
#include <rapidjson/istreamwrapper.h>
#include <rapidjson/writer.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/ostreamwrapper.h>
#include <rapidjson/error/en.h>
#include <fstream>
#include <iostream>
#ifdef WITH_LZ4
#include <lz4frame.h>
#endif
namespace iss {
namespace plugin {
using namespace rapidjson;
using namespace std;
#ifdef WITH_LZ4
class lz4compress_steambuf: public std::streambuf {
public:
lz4compress_steambuf(const lz4compress_steambuf&) = delete;
lz4compress_steambuf& operator=(const lz4compress_steambuf&) = delete;
lz4compress_steambuf(std::ostream &sink, size_t buf_size)
: sink(sink)
, src_buf(buf_size)
, dest_buf(LZ4F_compressBound(buf_size, nullptr))
{
auto errCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION);
if (LZ4F_isError(errCode) != 0)
throw std::runtime_error(std::string("Failed to create LZ4 context: ") + LZ4F_getErrorName(errCode));
size_t ret = LZ4F_compressBegin(ctx, &dest_buf.front(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to start LZ4 compression: ") + LZ4F_getErrorName(ret));
setp(src_buf.data(), src_buf.data() + src_buf.size() - 1);
sink.write(dest_buf.data(), ret);
}
~lz4compress_steambuf() {
close();
}
void close() {
if (closed)
return;
sync();
auto ret = LZ4F_compressEnd(ctx, dest_buf.data(), dest_buf.capacity(), nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("Failed to finish LZ4 compression: ") + LZ4F_getErrorName(ret));
sink.write(dest_buf.data(), ret);
LZ4F_freeCompressionContext(ctx);
closed = true;
}
private:
int_type overflow(int_type ch) override {
compress_and_write();
*pptr() = static_cast<char_type>(ch);
pbump(1);
return ch;
}
int_type sync() override {
compress_and_write();
return 0;
}
void compress_and_write() {
if (closed)
throw std::runtime_error("Cannot write to closed stream");
if(auto orig_size = pptr() - pbase()){
auto ret = LZ4F_compressUpdate(ctx, dest_buf.data(), dest_buf.capacity(), pbase(), orig_size, nullptr);
if (LZ4F_isError(ret) != 0)
throw std::runtime_error(std::string("LZ4 compression failed: ") + LZ4F_getErrorName(ret));
if(ret) sink.write(dest_buf.data(), ret);
pbump(-orig_size);
}
}
std::ostream &sink;
std::vector<char> src_buf;
std::vector<char> dest_buf;
LZ4F_compressionContext_t ctx{ nullptr };
bool closed{ false };
};
#endif
pctrace::pctrace(std::string const &filename)
: instr_if(nullptr)
, filename(filename)
, output("output.trc")
#ifdef WITH_LZ4
, strbuf(new lz4compress_steambuf(output, 4096))
, ostr(strbuf.get())
#endif
{ }
pctrace::~pctrace() { }
bool pctrace::registration(const char *const version, vm_if& vm) {
instr_if = vm.get_arch()->get_instrumentation_if();
if(!instr_if) return false;
const string core_name = instr_if->core_type_name();
if (filename.length() > 0) {
ifstream is(filename);
if (is.is_open()) {
try {
IStreamWrapper isw(is);
Document d;
ParseResult ok = d.ParseStream(isw);
if(ok) {
Value& val = d[core_name.c_str()];
if(val.IsArray()){
delays.reserve(val.Size());
for (auto it = val.Begin(); it != val.End(); ++it) {
auto& name = (*it)["name"];
auto& size = (*it)["size"];
auto& delay = (*it)["delay"];
auto& branch = (*it)["branch"];
if(delay.IsArray()) {
auto dt = delay[0].Get<unsigned>();
auto dnt = delay[1].Get<unsigned>();
delays.push_back(instr_desc{size.Get<unsigned>(), dt, dnt, branch.Get<bool>()});
} else if(delay.Is<unsigned>()) {
auto d = delay.Get<unsigned>();
delays.push_back(instr_desc{size.Get<unsigned>(), d, d, branch.Get<bool>()});
} else
throw runtime_error("JSON parse error");
}
} else {
LOG(ERR)<<"plugin cycle_estimate: could not find an entry for "<<core_name<<" in JSON file"<<endl;
return false;
}
} else {
LOG(ERR)<<"plugin cycle_estimate: could not parse in JSON file at "<< ok.Offset()<<": "<<GetParseError_En(ok.Code())<<endl;
return false;
}
} catch (runtime_error &e) {
LOG(ERR) << "Could not parse input file " << filename << ", reason: " << e.what();
return false;
}
} else {
LOG(ERR) << "Could not open input file " << filename;
return false;
}
}
return true;
}
void pctrace::callback(instr_info_t iinfo) {
auto delay = 0;
size_t id = iinfo.instr_id;
auto entry = delays[id];
auto instr = instr_if->get_instr_word();
auto call = id==65 || id ==86 || ((id==2 || id==3) && bit_sub<7,5>(instr)!=0) ;//not taking care of tail calls (jalr with loading x6)
bool taken = instr_if->is_branch_taken();
bool compressed = (instr&0x3)!=0x3;
if (taken) {
delay = entry.taken;
if(entry.taken > 1)
instr_if->update_last_instr_cycles(entry.taken);
} else {
delay = entry.not_taken;
if (entry.not_taken > 1)
instr_if->update_last_instr_cycles(entry.not_taken);
}
#ifndef WITH_LZ4
output<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#else
auto rdbuf=ostr.rdbuf();
ostr<<std::hex <<"0x" << instr_if->get_pc() <<"," << delay <<"," << call<<","<<(compressed?2:4) <<"\n";
#endif
}
}
}

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* Copyright (C) 2017 - 2023, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -28,63 +28,75 @@
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
* Contributors:
* eyck@minres.com - initial API and implementation
******************************************************************************/
#ifndef _ISS_FACTORY_H_
#define _ISS_FACTORY_H_
#ifndef _ISS_PLUGIN_COV_H_
#define _ISS_PLUGIN_COV_H_
#include "sc_core_adapter_if.h"
#include <algorithm>
#include <functional>
#include <iss/iss.h>
#include <memory>
#include <iss/vm_plugin.h>
#include "iss/instrumentation_if.h"
#include <json/json.h>
#include <string>
#include <unordered_map>
#include <vector>
#include <fstream>
namespace sysc {
using sc_cpu_ptr = std::unique_ptr<sc_core_adapter_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
namespace iss {
namespace plugin {
class lz4compress_steambuf;
class pctrace : public iss::vm_plugin {
struct instr_delay {
std::string instr_name;
size_t size;
size_t not_taken_delay;
size_t taken_delay;
};
BEGIN_BF_DECL(instr_desc, uint32_t)
BF_FIELD(taken, 24, 8)
BF_FIELD(not_taken, 16, 8)
BF_FIELD(is_branch, 8, 8)
BF_FIELD(size, 0, 8)
instr_desc(uint32_t size, uint32_t taken, uint32_t not_taken, bool branch): instr_desc() {
this->size=size;
this->taken=taken;
this->not_taken=not_taken;
this->is_branch=branch;
}
END_BF_DECL();
class iss_factory {
public:
using base_t = std::tuple<sc_cpu_ptr, vm_ptr>;
using create_fn = std::function<base_t(unsigned, void*)>;
using registry_t = std::unordered_map<std::string, create_fn>;
iss_factory() = default;
iss_factory(const iss_factory&) = delete;
iss_factory& operator=(const iss_factory&) = delete;
pctrace(const pctrace &) = delete;
static iss_factory& instance() {
static iss_factory bf;
return bf;
}
pctrace(const pctrace &&) = delete;
bool register_creator(const std::string& className, create_fn const& fn) {
registry[className] = fn;
return true;
}
pctrace(std::string const &);
base_t create(std::string const& className, unsigned gdb_port = 0, void* init_data = nullptr) const {
registry_t::const_iterator regEntry = registry.find(className);
if(regEntry != registry.end())
return regEntry->second(gdb_port, init_data);
return {nullptr, nullptr};
}
virtual ~pctrace();
std::vector<std::string> get_names() {
std::vector<std::string> keys{registry.size()};
std::transform(std::begin(registry), std::end(registry), std::begin(keys),
[](std::pair<std::string, create_fn> const& p) { return p.first; });
return keys;
}
pctrace &operator=(const pctrace &) = delete;
pctrace &operator=(const pctrace &&) = delete;
bool registration(const char *const version, vm_if &arch) override;
sync_type get_sync() override { return POST_SYNC; };
void callback(instr_info_t) override;
private:
registry_t registry;
iss::instrumentation_if *instr_if {nullptr};
std::ofstream output;
#ifdef WITH_LZ4
std::unique_ptr<lz4compress_steambuf> strbuf;
std::ostream ostr;
#endif
std::string filename;
std::vector<instr_desc> delays;
bool jumped{false}, first{true};
};
}
}
} // namespace sysc
#endif /* _ISS_FACTORY_H_ */
#endif /* _ISS_PLUGIN_COV_H_ */

View File

@ -1,297 +0,0 @@
#include "semihosting.h"
#include <chrono>
#include <cstdint>
#include <iss/vm_types.h>
#include <map>
#include <stdexcept>
// explanation of syscalls can be found at https://github.com/SpinalHDL/openocd_riscv/blob/riscv_spinal/src/target/semihosting_common.h
const char* SYS_OPEN_MODES_STRS[] = {"r", "rb", "r+", "r+b", "w", "wb", "w+", "w+b", "a", "ab", "a+", "a+b"};
template <typename T> T sh_read_field(iss::arch_if* arch_if_ptr, T addr, int len = 4) {
uint8_t bytes[4];
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr, 4, &bytes[0]);
// auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok) {
return 0; // TODO THROW ERROR
} else
return static_cast<T>(bytes[0]) | (static_cast<T>(bytes[1]) << 8) | (static_cast<T>(bytes[2]) << 16) |
(static_cast<T>(bytes[3]) << 24);
}
template <typename T> std::string sh_read_string(iss::arch_if* arch_if_ptr, T addr, T str_len) {
std::vector<uint8_t> buffer(str_len);
for(int i = 0; i < str_len; i++) {
buffer[i] = sh_read_field(arch_if_ptr, addr + i, 1);
}
std::string str(buffer.begin(), buffer.end());
return str;
}
template <typename T> void semihosting_callback<T>::operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter) {
static std::map<T, FILE*> openFiles;
static T file_count = 3;
static T semihostingErrno;
switch(static_cast<semihosting_syscalls>(*call_number)) {
case semihosting_syscalls::SYS_CLOCK: {
auto end = std::chrono::high_resolution_clock::now(); // end measurement
auto elapsed = end - timeVar;
auto millis = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();
*call_number = millis; // TODO get time now
break;
}
case semihosting_syscalls::SYS_CLOSE: {
T file_handle = *parameter;
if(openFiles.size() <= file_handle && file_handle < 0) {
semihostingErrno = EBADF;
return;
}
auto file = openFiles[file_handle];
openFiles.erase(file_handle);
if(!(file == stdin || file == stdout || file == stderr)) {
int i = fclose(file);
*call_number = i;
} else {
*call_number = -1;
semihostingErrno = EINTR;
}
break;
}
case semihosting_syscalls::SYS_ELAPSED: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ERRNO: {
*call_number = semihostingErrno;
break;
}
case semihosting_syscalls::SYS_EXIT: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT");
break;
}
case semihosting_syscalls::SYS_EXIT_EXTENDED: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT_EXTENDED");
break;
}
case semihosting_syscalls::SYS_FLEN: {
T file_handle = *parameter;
auto file = openFiles[file_handle];
size_t currentPos = ftell(file);
if(currentPos < 0)
throw std::runtime_error("SYS_FLEN negative value");
fseek(file, 0, SEEK_END);
size_t length = ftell(file);
fseek(file, currentPos, SEEK_SET);
*call_number = (T)length;
break;
}
case semihosting_syscalls::SYS_GET_CMDLINE: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_HEAPINFO: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ISERROR: {
T value = *parameter;
*call_number = (value != 0);
break;
}
case semihosting_syscalls::SYS_ISTTY: {
T file_handle = *parameter;
*call_number = (file_handle == 0 || file_handle == 1 || file_handle == 2);
break;
}
case semihosting_syscalls::SYS_OPEN: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T mode = sh_read_field<T>(arch_if_ptr, 4 + (*parameter));
T path_len = sh_read_field<T>(arch_if_ptr, 8 + (*parameter));
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
// TODO LOG INFO
if(mode >= 12) {
// TODO throw ERROR
return;
}
FILE* file = nullptr;
if(path_str == ":tt") {
if(mode < 4)
file = stdin;
else if(mode < 8)
file = stdout;
else
file = stderr;
} else {
file = fopen(path_str.c_str(), SYS_OPEN_MODES_STRS[mode]);
if(file == nullptr) {
// TODO throw error
return;
}
}
T file_handle = file_count++;
openFiles[file_handle] = file;
*call_number = file_handle;
break;
}
case semihosting_syscalls::SYS_READ: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::vector<uint8_t> buffer(count);
size_t num_read = 0;
if(file == stdin) {
// when reading from stdin: mimic behaviour from read syscall
// and return on newline.
while(num_read < count) {
char c = fgetc(file);
buffer[num_read] = c;
num_read++;
if(c == '\n')
break;
}
} else {
num_read = fread(buffer.data(), 1, count, file);
}
buffer.resize(num_read);
for(int i = 0; i < num_read; i++) {
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr + i, 1, &buffer[i]);
if(res != iss::Ok)
return;
}
*call_number = count - num_read;
break;
}
case semihosting_syscalls::SYS_READC: {
uint8_t character = getchar();
// character = getchar();
/*if(character != iss::Ok)
std::cout << "Not OK";
return;*/
*call_number = character;
break;
}
case semihosting_syscalls::SYS_REMOVE: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
if(remove(path_str.c_str()) < 0)
*call_number = -1;
break;
}
case semihosting_syscalls::SYS_RENAME: {
T path_str_addr_old = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len_old = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T path_str_addr_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
T path_len_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 12);
std::string path_str_old = sh_read_string<T>(arch_if_ptr, path_str_addr_old, path_len_old);
std::string path_str_new = sh_read_string<T>(arch_if_ptr, path_str_addr_new, path_len_new);
rename(path_str_old.c_str(), path_str_new.c_str());
break;
}
case semihosting_syscalls::SYS_SEEK: {
T file_handle = sh_read_field<T>(arch_if_ptr, *parameter);
T pos = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
auto file = openFiles[file_handle];
int retval = fseek(file, pos, SEEK_SET);
if(retval < 0)
throw std::runtime_error("SYS_SEEK negative return value");
break;
}
case semihosting_syscalls::SYS_SYSTEM: {
T cmd_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T cmd_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
std::string cmd = sh_read_string<T>(arch_if_ptr, cmd_addr, cmd_len);
system(cmd.c_str());
break;
}
case semihosting_syscalls::SYS_TICKFREQ: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_TIME: {
// returns time in seconds scince 01.01.1970 00:00
*call_number = time(NULL);
break;
}
case semihosting_syscalls::SYS_TMPNAM: {
T buffer_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T identifier = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
T buffer_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 2);
if(identifier > 255) {
*call_number = -1;
return;
}
std::stringstream ss;
ss << "tmp/file-" << std::setfill('0') << std::setw(3) << identifier;
std::string filename = ss.str();
for(int i = 0; i < buffer_len; i++) {
uint8_t character = filename[i];
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, (*parameter) + i, 1, &character);
if(res != iss::Ok)
return;
}
break;
}
case semihosting_syscalls::SYS_WRITE: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::string str = sh_read_string<T>(arch_if_ptr, addr, count);
fwrite(&str[0], 1, count, file);
break;
}
case semihosting_syscalls::SYS_WRITEC: {
uint8_t character;
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
putchar(character);
break;
}
case semihosting_syscalls::SYS_WRITE0: {
uint8_t character;
while(1) {
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
if(character == 0)
break;
putchar(character);
(*parameter)++;
}
break;
}
case semihosting_syscalls::USER_CMD_0x100: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::USER_CMD_0x1FF: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
default:
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
}
template class semihosting_callback<uint32_t>;
template class semihosting_callback<uint64_t>;

View File

@ -1,61 +0,0 @@
#ifndef _SEMIHOSTING_H_
#define _SEMIHOSTING_H_
#include <chrono>
#include <functional>
#include <iss/arch_if.h>
/*
* According to:
* "Semihosting for AArch32 and AArch64, Release 2.0"
* https://static.docs.arm.com/100863/0200/semihosting.pdf
* from ARM Ltd.
*
* The available semihosting operation numbers passed in A0 are allocated
* as follows:
* - 0x00-0x31 Used by ARM.
* - 0x32-0xFF Reserved for future use by ARM.
* - 0x100-0x1FF Reserved for user applications. These are not used by ARM.
* However, if you are writing your own SVC operations, you are advised
* to use a different SVC number rather than using the semihosted
* SVC number and these operation type numbers.
* - 0x200-0xFFFFFFFF Undefined and currently unused. It is recommended
* that you do not use these.
*/
enum class semihosting_syscalls {
SYS_OPEN = 0x01,
SYS_CLOSE = 0x02,
SYS_WRITEC = 0x03,
SYS_WRITE0 = 0x04,
SYS_WRITE = 0x05,
SYS_READ = 0x06,
SYS_READC = 0x07,
SYS_ISERROR = 0x08,
SYS_ISTTY = 0x09,
SYS_SEEK = 0x0A,
SYS_FLEN = 0x0C,
SYS_TMPNAM = 0x0D,
SYS_REMOVE = 0x0E,
SYS_RENAME = 0x0F,
SYS_CLOCK = 0x10,
SYS_TIME = 0x11,
SYS_SYSTEM = 0x12,
SYS_ERRNO = 0x13,
SYS_GET_CMDLINE = 0x15,
SYS_HEAPINFO = 0x16,
SYS_EXIT = 0x18,
SYS_EXIT_EXTENDED = 0x20,
SYS_ELAPSED = 0x30,
SYS_TICKFREQ = 0x31,
USER_CMD_0x100 = 0x100,
USER_CMD_0x1FF = 0x1FF,
};
template <typename T> struct semihosting_callback {
std::chrono::high_resolution_clock::time_point timeVar;
semihosting_callback()
: timeVar(std::chrono::high_resolution_clock::now()) {}
void operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter);
};
template <typename T> using semihosting_cb_t = std::function<void(iss::arch_if*, T*, T*)>;
#endif

View File

@ -1,260 +1,222 @@
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <array>
#include <cstdint>
#include <iostream>
#include <iss/factory.h>
#include <iss/semihosting/semihosting.h>
#include <string>
#include <unordered_map>
#include <vector>
#include "iss/arch/tgc_mapper.h"
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#ifdef WITH_LLVM
#include <iss/llvm/jit_init.h>
#endif
#include "iss/plugin/cycle_estimate.h"
#include "iss/plugin/instruction_count.h"
#include <iss/log_categories.h>
#ifndef WIN32
#include <iss/plugin/loader.h>
#endif
#if defined(HAS_LUA)
#include <iss/plugin/lua.h>
#endif
namespace po = boost::program_options;
int main(int argc, char* argv[]) {
/*
* Define and parse the program options
*/
po::variables_map clim;
po::options_description desc("Options");
// clang-format off
desc.add_options()
("help,h", "Print help message")
("verbose,v", po::value<int>()->default_value(4), "Sets logging verbosity")
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the ISS backend to use, options are: interp, llvm, tcc, asmjit")
("isa", po::value<std::string>()->default_value("tgc5c"), "core or isa name to use for simulation, use '?' to get list");
// clang-format on
auto parsed = po::command_line_parser(argc, argv).options(desc).allow_unregistered().run();
try {
po::store(parsed, clim); // can throw
// --help option
if(clim.count("help")) {
std::cout << "DBT-RISE-TGC simulator for TGC RISC-V cores" << std::endl << desc << std::endl;
return 0;
}
po::notify(clim); // throws on error, so do after help in case
} catch(po::error& e) {
// there are problems
std::cerr << "ERROR: " << e.what() << std::endl << std::endl;
std::cerr << desc << std::endl;
return 1;
}
std::vector<std::string> args = collect_unrecognized(parsed.options, po::include_positional);
LOGGER(DEFAULT)::print_time() = false;
LOGGER(connection)::print_time() = false;
auto l = logging::as_log_level(clim["verbose"].as<int>());
LOGGER(DEFAULT)::reporting_level() = l;
LOGGER(connection)::reporting_level() = l;
if(clim.count("logfile")) {
// configure the connection logger
auto f = fopen(clim["logfile"].as<std::string>().c_str(), "w");
LOG_OUTPUT(DEFAULT)::stream() = f;
LOG_OUTPUT(connection)::stream() = f;
}
std::vector<iss::vm_plugin*> plugin_list;
auto res = 0;
try {
#ifdef WITH_LLVM
// application code comes here //
iss::init_jit_debug(argc, argv);
#endif
bool dump = clim.count("dump-ir");
auto& f = iss::core_factory::instance();
// instantiate the simulator
iss::vm_ptr vm{nullptr};
iss::cpu_ptr cpu{nullptr};
semihosting_callback<uint32_t> cb{};
semihosting_cb_t<uint32_t> semihosting_cb = [&cb](iss::arch_if* i, uint32_t* a0, uint32_t* a1) { cb(i, a0, a1); };
std::string isa_opt(clim["isa"].as<std::string>());
if(isa_opt.size() == 0 || isa_opt == "?") {
auto list = f.get_names();
std::sort(std::begin(list), std::end(list));
std::cout << "Available implementations (core|platform|backend):\n - " << util::join(list, "\n - ") << std::endl;
return 0;
} else if(isa_opt.find('|') != std::string::npos) {
std::tie(cpu, vm) =
f.create(isa_opt + "|" + clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>(), &semihosting_cb);
} else {
auto base_isa = isa_opt.substr(0, 5);
if(base_isa == "tgc5d" || base_isa == "tgc5e") {
isa_opt += "|mu_p_clic_pmp|" + clim["backend"].as<std::string>();
} else {
isa_opt += "|m_p|" + clim["backend"].as<std::string>();
}
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>(), &semihosting_cb);
}
if(!cpu) {
CPPLOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if(!vm) {
CPPLOG(ERR) << "Could not create vm for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if(clim.count("plugin")) {
for(std::string const& opt_val : clim["plugin"].as<std::vector<std::string>>()) {
std::string plugin_name = opt_val;
std::string arg{""};
std::size_t found = opt_val.find('=');
if(found != std::string::npos) {
plugin_name = opt_val.substr(0, found);
arg = opt_val.substr(found + 1, opt_val.size());
}
#if defined(WITH_PLUGINS)
if(plugin_name == "ic") {
auto* ic_plugin = new iss::plugin::instruction_count(arg);
vm->register_plugin(*ic_plugin);
plugin_list.push_back(ic_plugin);
} else if(plugin_name == "ce") {
auto* ce_plugin = new iss::plugin::cycle_estimate(arg);
vm->register_plugin(*ce_plugin);
plugin_list.push_back(ce_plugin);
} else
#endif
{
#if !defined(WIN32)
std::vector<char const*> a{};
if(arg.length())
a.push_back({arg.c_str()});
iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());
if(plugin) {
vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else
#endif
{
CPPLOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
return 127;
}
}
}
}
if(clim.count("disass")) {
vm->setDisassEnabled(true);
LOGGER(disass)::reporting_level() = logging::INFO;
LOGGER(disass)::print_time() = false;
auto file_name = clim["disass"].as<std::string>();
if(file_name.length() > 0) {
LOG_OUTPUT(disass)::stream() = fopen(file_name.c_str(), "w");
LOGGER(disass)::print_severity() = false;
}
}
uint64_t start_address = 0;
if(clim.count("mem"))
vm->get_arch()->load_file(clim["mem"].as<std::string>());
if(clim.count("elf"))
for(std::string input : clim["elf"].as<std::vector<std::string>>()) {
auto start_addr = vm->get_arch()->load_file(input);
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
start_address = start_addr.first;
}
for(std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
start_address = start_addr.first;
}
if(clim.count("reset")) {
auto str = clim["reset"].as<std::string>();
start_address = str.find("0x") == 0 ? std::stoull(str.substr(2), nullptr, 16) : std::stoull(str, nullptr, 10);
}
vm->reset(start_address);
auto cycles = clim["instructions"].as<uint64_t>();
res = vm->start(cycles, dump);
auto instr_if = vm->get_arch()->get_instrumentation_if();
// this assumes a single input file
std::unordered_map<std::string, uint64_t> sym_table;
if(args.empty())
sym_table = instr_if->get_symbol_table(clim["elf"].as<std::vector<std::string>>()[0]);
else
sym_table = instr_if->get_symbol_table(args[0]);
if(sym_table.find("begin_signature") != std::end(sym_table) && sym_table.find("end_signature") != std::end(sym_table)) {
auto start_addr = sym_table["begin_signature"];
auto end_addr = sym_table["end_signature"];
std::array<uint8_t, 4> data;
std::ofstream file;
std::string filename = fmt::format("{}.signature", isa_opt);
std::replace(std::begin(filename), std::end(filename), '|', '_');
// default riscof requires this filename
filename = "DUT-tgc.signature";
file.open(filename, std::ios::out);
if(!file.is_open()) {
LOG(ERR) << "Error opening file " << filename << std::endl;
return 1;
}
for(auto addr = start_addr; addr < end_addr; addr += data.size()) {
vm->get_arch()->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0 /*MEM*/, addr, data.size(),
data.data()); // FIXME: get space from iss::arch::traits<ARCH>::mem_type_e::MEM
// TODO : obey Target endianess
uint32_t to_print = (data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
file << std::hex << fmt::format("{:08x}", to_print) << std::dec << std::endl;
}
}
} catch(std::exception& e) {
CPPLOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit" << std::endl;
res = 2;
}
// cleanup to let plugins report if needed
for(auto* p : plugin_list) {
delete p;
}
return res;
}
/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iostream>
#include <vector>
#include <array>
#include <iss/factory.h>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include "iss/arch/tgc_mapper.h"
#ifdef WITH_LLVM
#include <iss/llvm/jit_helper.h>
#endif
#include <iss/log_categories.h>
#include "iss/plugin/cycle_estimate.h"
#include "iss/plugin/instruction_count.h"
#include "iss/plugin/pctrace.h"
#ifndef WIN32
#include <iss/plugin/loader.h>
#endif
#if defined(HAS_LUA)
#include <iss/plugin/lua.h>
#endif
namespace po = boost::program_options;
int main(int argc, char *argv[]) {
/*
* Define and parse the program options
*/
po::variables_map clim;
po::options_description desc("Options");
// clang-format off
desc.add_options()
("help,h", "Print help message")
("verbose,v", po::value<int>()->default_value(4), "Sets logging verbosity")
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the ISS backend to use, options are: interp, tcc")
("isa", po::value<std::string>()->default_value("tgc_c"), "isa to use for simulation");
// clang-format on
auto parsed = po::command_line_parser(argc, argv).options(desc).allow_unregistered().run();
try {
po::store(parsed, clim); // can throw
// --help option
if (clim.count("help")) {
std::cout << "DBT-RISE-RiscV simulator for RISC-V" << std::endl << desc << std::endl;
return 0;
}
po::notify(clim); // throws on error, so do after help in case
} catch (po::error &e) {
// there are problems
std::cerr << "ERROR: " << e.what() << std::endl << std::endl;
std::cerr << desc << std::endl;
return 1;
}
std::vector<std::string> args = collect_unrecognized(parsed.options, po::include_positional);
LOGGER(DEFAULT)::print_time() = false;
LOGGER(connection)::print_time() = false;
auto l = logging::as_log_level(clim["verbose"].as<int>());
LOGGER(DEFAULT)::reporting_level() = l;
LOGGER(connection)::reporting_level() = l;
if (clim.count("logfile")) {
// configure the connection logger
auto f = fopen(clim["logfile"].as<std::string>().c_str(), "w");
LOG_OUTPUT(DEFAULT)::stream() = f;
LOG_OUTPUT(connection)::stream() = f;
}
std::vector<iss::vm_plugin *> plugin_list;
auto res = 0;
try {
#ifdef WITH_LLVM
// application code comes here //
iss::init_jit_debug(argc, argv);
#endif
bool dump = clim.count("dump-ir");
auto & f = iss::core_factory::instance();
// instantiate the simulator
iss::vm_ptr vm{nullptr};
iss::cpu_ptr cpu{nullptr};
std::string isa_opt(clim["isa"].as<std::string>());
if(isa_opt.size()==0 || isa_opt == "?") {
std::cout<<"Available cores: "<<util::join(f.get_names(), ", ")<<std::endl;
return 0;
} else if (isa_opt.find('|') != std::string::npos) {
std::tie(cpu, vm) = f.create(isa_opt+"|"+clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>());
} else {
auto base_isa = isa_opt.substr(0, 5);
if(base_isa=="tgc_d" || base_isa=="tgc_e") {
isa_opt += "|mu_p_clic_pmp|"+clim["backend"].as<std::string>();
} else {
isa_opt += "|m_p|"+clim["backend"].as<std::string>();
}
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>());
}
if(!cpu ){
LOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " <<clim["backend"].as<std::string>()<< std::endl;
return 127;
}
if(!vm ){
LOG(ERR) << "Could not create vm for isa " << isa_opt << " and backend " <<clim["backend"].as<std::string>()<< std::endl;
return 127;
}
if (clim.count("plugin")) {
for (std::string const& opt_val : clim["plugin"].as<std::vector<std::string>>()) {
std::string plugin_name=opt_val;
std::string arg{""};
std::size_t found = opt_val.find('=');
if (found != std::string::npos) {
plugin_name = opt_val.substr(0, found);
arg = opt_val.substr(found + 1, opt_val.size());
}
if (plugin_name == "ic") {
auto *ic_plugin = new iss::plugin::instruction_count(arg);
vm->register_plugin(*ic_plugin);
plugin_list.push_back(ic_plugin);
} else if (plugin_name == "ce") {
auto *ce_plugin = new iss::plugin::cycle_estimate(arg);
vm->register_plugin(*ce_plugin);
plugin_list.push_back(ce_plugin);
} else if (plugin_name == "pctrace") {
auto *plugin = new iss::plugin::pctrace(arg);
vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else {
#ifndef WIN32
std::vector<char const*> a{};
if(arg.length())
a.push_back({arg.c_str()});
iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());
if(plugin){
vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else
#endif
{
LOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
return 127;
}
}
}
}
if (clim.count("disass")) {
vm->setDisassEnabled(true);
LOGGER(disass)::reporting_level() = logging::INFO;
LOGGER(disass)::print_time() = false;
auto file_name = clim["disass"].as<std::string>();
if (file_name.length() > 0) {
LOG_OUTPUT(disass)::stream() = fopen(file_name.c_str(), "w");
LOGGER(disass)::print_severity() = false;
}
}
uint64_t start_address = 0;
if (clim.count("mem"))
vm->get_arch()->load_file(clim["mem"].as<std::string>());
if (clim.count("elf"))
for (std::string input : clim["elf"].as<std::vector<std::string>>()) {
auto start_addr = vm->get_arch()->load_file(input);
if (start_addr.second) start_address = start_addr.first;
}
for (std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if (start_addr.second) start_address = start_addr.first;
}
if (clim.count("reset")) {
auto str = clim["reset"].as<std::string>();
start_address = str.find("0x") == 0 ? std::stoull(str.substr(2), nullptr, 16) : std::stoull(str, nullptr, 10);
}
vm->reset(start_address);
auto cycles = clim["instructions"].as<uint64_t>();
res = vm->start(cycles, dump);
} catch (std::exception &e) {
LOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit"
<< std::endl;
res = 2;
}
// cleanup to let plugins report of needed
for (auto *p : plugin_list) {
delete p;
}
return res;
}

View File

@ -37,28 +37,25 @@
#include <iss/debugger/target_adapter_if.h>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include "iss_factory.h"
#ifndef WIN32
#include <iss/plugin/loader.h>
#endif
#include "sc_core_adapter_if.h"
#include "core_complex.h"
#include <iss/arch/tgc_mapper.h>
#include <scc/report.h>
#include <util/ities.h>
#include <iostream>
#include <sstream>
#include <array>
#include <numeric>
#include <iss/plugin/cycle_estimate.h>
#include <iss/plugin/instruction_count.h>
#include <iss/plugin/pctrace.h>
// clang-format on
#define STR(X) #X
#define CREATE_CORE(CN) \
if(type == STR(CN)) { \
std::tie(cpu, vm) = create_core<CN##_plat_type>(backend, gdb_port, hart_id); \
} else
#define CREATE_CORE(CN) \
if (type == STR(CN)) { std::tie(cpu, vm) = create_core<CN ## _plat_type>(backend, gdb_port, hart_id); } else
#ifdef HAS_SCV
#include <scv.h>
@ -88,23 +85,151 @@ using namespace sc_core;
namespace {
iss::debugger::encoder_decoder encdec;
std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
} // namespace
int cmd_sysc(int argc, char* argv[], debugger::out_func of, debugger::data_func df, debugger::target_adapter_if* tgt_adapter) {
if(argc > 1) {
if(strcasecmp(argv[1], "print_time") == 0) {
std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
}
template<typename PLAT>
class core_wrapper_t : public PLAT {
public:
using reg_t = typename arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
core_wrapper_t(core_complex *owner)
: owner(owner) { }
uint32_t get_mode() { return this->reg.PRIV; }
inline void set_interrupt_execution(bool v) { this->interrupt_sim = v?1:0; }
inline bool get_interrupt_execution() { return this->interrupt_sim; }
heart_state_t &get_state() { return this->state; }
void notify_phase(iss::arch_if::exec_phase p) override {
if (p == iss::arch_if::ISTART)
owner->sync(this->instr_if.get_total_cycles());
}
sync_type needed_sync() const override { return PRE_SYNC; }
void disass_output(uint64_t pc, const std::string instr) override {
if (!owner->disass_output(pc, instr)) {
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:"
<< this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->name())<<"disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
};
status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? Ok : Err;
}
}
status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
auto res = owner->write_mem(addr.val, length, data) ? Ok : Err;
// clear MTIP on mtimecmp write
if (addr.val == 0x2004000) {
reg_t val;
this->read_csr(arch::mip, val);
if (val & (1ULL << 7)) this->write_csr(arch::mip, val & ~(1ULL << 7));
}
return res;
}
}
status read_csr(unsigned addr, reg_t &val) override {
#ifndef CWR_SYSTEMC
if((addr==arch::time || addr==arch::timeh) && owner->mtime_o.get_interface(0)){
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret?Ok:Err;
#else
if((addr==arch::time || addr==arch::timeh)){
uint64_t time_val = owner->mtime_i.read();
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return Ok;
#endif
} else {
return PLAT::read_csr(addr, val);
}
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
while(this->reg.pending_trap == 0 && (this->csr[arch::mip] & this->csr[arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) {
reg_t mask = 0;
switch (id) {
case 3: // SW
mask = 1 << 3;
break;
case 7: // timer
mask = 1 << 7;
break;
case 11: // external
mask = 1 << 11;
break;
default:
if(id>15) mask = 1 << id;
break;
}
if (value) {
this->csr[arch::mip] |= mask;
wfi_evt.notify();
} else
this->csr[arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
}
private:
core_complex *const owner;
sc_event wfi_evt;
};
int cmd_sysc(int argc, char *argv[], debugger::out_func of, debugger::data_func df,
debugger::target_adapter_if *tgt_adapter) {
if (argc > 1) {
if (strcasecmp(argv[1], "print_time") == 0) {
std::string t = sc_time_stamp().to_string();
of(t.c_str());
std::array<char, 64> buf;
encdec.enc_string(t.c_str(), buf.data(), 63);
df(buf.data());
return Ok;
} else if(strcasecmp(argv[1], "break") == 0) {
} else if (strcasecmp(argv[1], "break") == 0) {
sc_time t;
if(argc == 4) {
if (argc == 4) {
t = scc::parse_from_string(argv[2], argv[3]);
} else if(argc == 3) {
} else if (argc == 3) {
t = scc::parse_from_string(argv[2]);
} else
return Err;
@ -121,19 +246,15 @@ int cmd_sysc(int argc, char* argv[], debugger::out_func of, debugger::data_func
}
using cpu_ptr = std::unique_ptr<iss::arch_if>;
using vm_ptr = std::unique_ptr<iss::vm_if>;
using vm_ptr= std::unique_ptr<iss::vm_if>;
class core_wrapper {
public:
core_wrapper(core_complex* owner)
: owner(owner) {}
core_wrapper(core_complex *owner) : owner(owner) { }
void reset(uint64_t addr) { vm->reset(addr); }
inline void start(bool dump = false) { vm->start(std::numeric_limits<uint64_t>::max(), dump); }
inline std::pair<uint64_t, bool> load_file(std::string const& name) {
iss::arch_if* cc = cpu->get_arch_if();
return cc->load_file(name);
};
void reset(uint64_t addr){vm->reset(addr);}
inline void start(){vm->start();}
inline std::pair<uint64_t, bool> load_file(std::string const& name){ return cpu->load_file(name);};
std::function<unsigned(void)> get_mode;
std::function<uint64_t(void)> get_state;
@ -141,88 +262,98 @@ public:
std::function<void(bool)> set_interrupt_execution;
std::function<void(short, bool)> local_irq;
void create_cpu(std::string const& type, std::string const& backend, unsigned gdb_port, uint32_t hart_id) {
auto& f = sysc::iss_factory::instance();
if(type.size() == 0 || type == "?") {
std::cout << "Available cores: " << util::join(f.get_names(), ", ") << std::endl;
sc_core::sc_stop();
} else if(type.find('|') != std::string::npos) {
std::tie(cpu, vm) = f.create(type + "|" + backend);
} else {
auto base_isa = type.substr(0, 5);
if(base_isa == "tgc5d" || base_isa == "tgc5e") {
std::tie(cpu, vm) = f.create(type + "|mu_p_clic_pmp|" + backend, gdb_port, owner);
} else {
std::tie(cpu, vm) = f.create(type + "|m_p|" + backend, gdb_port, owner);
}
}
if(!cpu) {
SCCFATAL() << "Could not create cpu for isa " << type << " and backend " << backend;
}
if(!vm) {
SCCFATAL() << "Could not create vm for isa " << type << " and backend " << backend;
}
auto* sc_cpu_if = reinterpret_cast<sc_core_adapter_if*>(cpu.get());
sc_cpu_if->set_mhartid(hart_id);
get_mode = [sc_cpu_if]() { return sc_cpu_if->get_mode(); };
get_state = [sc_cpu_if]() { return sc_cpu_if->get_state(); };
get_interrupt_execution = [sc_cpu_if]() { return sc_cpu_if->get_interrupt_execution(); };
set_interrupt_execution = [sc_cpu_if](bool b) { return sc_cpu_if->set_interrupt_execution(b); };
local_irq = [sc_cpu_if](short s, bool b) { return sc_cpu_if->local_irq(s, b); };
auto* srv = debugger::server<debugger::gdb_session>::get();
if(srv)
tgt_adapter = srv->get_target();
if(tgt_adapter)
tgt_adapter->add_custom_command({"sysc",
[this](int argc, char* argv[], debugger::out_func of, debugger::data_func df) -> int {
return cmd_sysc(argc, argv, of, df, tgt_adapter);
},
"SystemC sub-commands: break <time>, print_time"});
template<typename PLAT>
std::tuple<cpu_ptr, vm_ptr> create_core(std::string const& backend, unsigned gdb_port, uint32_t hart_id){
auto* lcpu = new core_wrapper_t<PLAT>(owner);
lcpu->set_mhartid(hart_id);
get_mode = [lcpu]() { return lcpu->get_mode(); };
get_state = [lcpu]() { return lcpu->get_state().mstatus.backing.val; };
get_interrupt_execution = [lcpu]() { return lcpu->get_interrupt_execution(); };
set_interrupt_execution = [lcpu](bool b) { return lcpu->set_interrupt_execution(b); };
local_irq = [lcpu](short s, bool b) { return lcpu->local_irq(s, b); };
if(backend == "interp")
return {cpu_ptr{lcpu}, vm_ptr{iss::interp::create(static_cast<typename PLAT::core*>(lcpu), gdb_port)}};
#ifdef WITH_LLVM
if(backend == "llvm")
return {cpu_ptr{lcpu}, vm_ptr{iss::llvm::create(lcpu, gdb_port)}};
#endif
#ifdef WITH_TCC
if(backend == "tcc")
s return {cpu_ptr{lcpu}, vm_ptr{iss::tcc::create(lcpu, gdb_port)}};
#endif
return {nullptr, nullptr};
}
core_complex* const owner;
void create_cpu(std::string const& type, std::string const& backend, unsigned gdb_port, uint32_t hart_id){
CREATE_CORE(tgc_c)
#ifdef CORE_TGC_B
CREATE_CORE(tgc_b)
#endif
#ifdef CORE_TGC_D
CREATE_CORE(tgc_d)
#endif
#ifdef CORE_TGC_D_XRB_MAC
CREATE_CORE(tgc_d_xrb_mac)
#endif
#ifdef CORE_TGC_D_XRB_NN
CREATE_CORE(tgc_d_xrb_nn)
#endif
{
LOG(ERR) << "Illegal argument value for core type: " << type << std::endl;
}
auto *srv = debugger::server<debugger::gdb_session>::get();
if (srv) tgt_adapter = srv->get_target();
if (tgt_adapter)
tgt_adapter->add_custom_command(
{"sysc", [this](int argc, char *argv[], debugger::out_func of,
debugger::data_func df) -> int { return cmd_sysc(argc, argv, of, df, tgt_adapter); },
"SystemC sub-commands: break <time>, print_time"});
}
core_complex * const owner;
vm_ptr vm{nullptr};
sc_cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if* tgt_adapter{nullptr};
cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if *tgt_adapter{nullptr};
};
struct core_trace {
//! transaction recording database
scv_tr_db* m_db{nullptr};
scv_tr_db *m_db{nullptr};
//! blocking transaction recording stream handle
scv_tr_stream* stream_handle{nullptr};
scv_tr_stream *stream_handle{nullptr};
//! transaction generator handle for blocking transactions
scv_tr_generator<_scv_tr_generator_default_data, _scv_tr_generator_default_data>* instr_tr_handle{nullptr};
scv_tr_generator<_scv_tr_generator_default_data, _scv_tr_generator_default_data> *instr_tr_handle{nullptr};
scv_tr_handle tr_handle;
};
SC_HAS_PROCESS(core_complex); // NOLINT
SC_HAS_PROCESS(core_complex);// NOLINT
#ifndef CWR_SYSTEMC
core_complex::core_complex(sc_module_name const& name)
: sc_module(name)
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
, write_lut(tlm_dmi_ext()) {
init();
, write_lut(tlm_dmi_ext())
{
init();
}
#endif
void core_complex::init() {
trc = new core_trace();
void core_complex::init(){
trc=new core_trace();
ibus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = fetch_lut.getEntry(start);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
fetch_lut.removeEntry(lut_entry);
}
});
dbus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = read_lut.getEntry(start);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
read_lut.removeEntry(lut_entry);
}
lut_entry = write_lut.getEntry(start);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
write_lut.removeEntry(lut_entry);
}
});
@ -237,53 +368,57 @@ void core_complex::init() {
SC_METHOD(ext_irq_cb);
sensitive << ext_irq_i;
SC_METHOD(local_irq_cb);
for(auto pin : local_irq_i)
for(auto pin:local_irq_i)
sensitive << pin;
trc->m_db = scv_tr_db::get_default_db();
trc->m_db=scv_tr_db::get_default_db();
SC_METHOD(forward);
SC_METHOD(forward);
#ifndef CWR_SYSTEMC
sensitive << clk_i;
sensitive<<clk_i;
#else
sensitive << curr_clk;
t2t.reset(new scc::tick2time{"t2t"});
t2t->clk_i(clk_i);
t2t->clk_o(curr_clk);
sensitive<<curr_clk;
t2t.reset(new scc::tick2time{"t2t"});
t2t->clk_i(clk_i);
t2t->clk_o(curr_clk);
#endif
}
core_complex::~core_complex() {
core_complex::~core_complex(){
delete cpu;
delete trc;
for(auto* p : plugin_list)
for (auto *p : plugin_list)
delete p;
}
void core_complex::trace(sc_trace_file* trf) const {}
void core_complex::trace(sc_trace_file *trf) const {}
void core_complex::before_end_of_elaboration() {
SCCDEBUG(SCMOD) << "instantiating iss::arch::tgf with " << GET_PROP_VALUE(backend) << " backend";
SCCDEBUG(SCMOD)<<"instantiating iss::arch::tgf with "<<GET_PROP_VALUE(backend)<<" backend";
// cpu = scc::make_unique<core_wrapper>(this);
cpu = new core_wrapper(this);
cpu->create_cpu(GET_PROP_VALUE(core_type), GET_PROP_VALUE(backend), GET_PROP_VALUE(gdb_server_port), GET_PROP_VALUE(mhartid));
sc_assert(cpu->vm != nullptr);
sc_assert(cpu->vm!=nullptr);
cpu->vm->setDisassEnabled(GET_PROP_VALUE(enable_disass) || trc->m_db != nullptr);
if(GET_PROP_VALUE(plugins).length()) {
if (GET_PROP_VALUE(plugins).length()) {
auto p = util::split(GET_PROP_VALUE(plugins), ';');
for(std::string const& opt_val : p) {
std::string plugin_name = opt_val;
for (std::string const& opt_val : p) {
std::string plugin_name=opt_val;
std::string filename{"cycles.txt"};
std::size_t found = opt_val.find('=');
if(found != std::string::npos) {
if (found != std::string::npos) {
plugin_name = opt_val.substr(0, found);
filename = opt_val.substr(found + 1, opt_val.size());
}
if(plugin_name == "ic") {
auto* plugin = new iss::plugin::instruction_count(filename);
if (plugin_name == "ic") {
auto *plugin = new iss::plugin::instruction_count(filename);
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else if(plugin_name == "ce") {
auto* plugin = new iss::plugin::cycle_estimate(filename);
} else if (plugin_name == "ce") {
auto *plugin = new iss::plugin::cycle_estimate(filename);
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else if (plugin_name == "pctrace") {
auto *plugin = new iss::plugin::pctrace(filename);
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else {
@ -291,7 +426,7 @@ void core_complex::before_end_of_elaboration() {
std::array<char const*, 1> a{{filename.c_str()}};
iss::plugin::loader l(plugin_name, {{"initPlugin"}});
auto* plugin = l.call_function<iss::vm_plugin*>("initPlugin", a.size(), a.data());
if(plugin) {
if(plugin){
cpu->vm->register_plugin(*plugin);
plugin_list.push_back(plugin);
} else
@ -300,25 +435,26 @@ void core_complex::before_end_of_elaboration() {
}
}
}
}
void core_complex::start_of_simulation() {
// quantum_keeper.reset();
if(GET_PROP_VALUE(elf_file).size() > 0) {
if (GET_PROP_VALUE(elf_file).size() > 0) {
istringstream is(GET_PROP_VALUE(elf_file));
string s;
while(getline(is, s, ',')) {
while (getline(is, s, ',')) {
std::pair<uint64_t, bool> start_addr = cpu->load_file(s);
#ifndef CWR_SYSTEMC
if(reset_address.is_default_value() && start_addr.second == true)
if (reset_address.is_default_value() && start_addr.second == true)
reset_address.set_value(start_addr.first);
#else
if(start_addr.second == true)
reset_address = start_addr.first;
if (start_addr.second == true)
reset_address=start_addr.first;
#endif
}
}
if(trc->m_db != nullptr && trc->stream_handle == nullptr) {
if (trc->m_db != nullptr && trc->stream_handle == nullptr) {
string basename(this->name());
trc->stream_handle = new scv_tr_stream((basename + ".instr").c_str(), "TRANSACTOR", trc->m_db);
trc->instr_tr_handle = new scv_tr_generator<>("execute", *trc->stream_handle);
@ -326,10 +462,8 @@ void core_complex::start_of_simulation() {
}
bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
if(trc->m_db == nullptr)
return false;
if(trc->tr_handle.is_active())
trc->tr_handle.end_transaction();
if (trc->m_db == nullptr) return false;
if (trc->tr_handle.is_active()) trc->tr_handle.end_transaction();
trc->tr_handle = trc->instr_tr_handle->begin_transaction();
trc->tr_handle.record_attribute("PC", pc);
trc->tr_handle.record_attribute("INSTR", instr_str);
@ -341,22 +475,20 @@ bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
void core_complex::forward() {
#ifndef CWR_SYSTEMC
set_clock_period(clk_i.read());
set_clock_period(clk_i.read());
#else
set_clock_period(curr_clk.read());
set_clock_period(curr_clk.read());
#endif
}
void core_complex::set_clock_period(sc_core::sc_time period) {
curr_clk = period;
if(period == SC_ZERO_TIME)
cpu->set_interrupt_execution(true);
curr_clk = period;
if (period == SC_ZERO_TIME) cpu->set_interrupt_execution(true);
}
void core_complex::rst_cb() {
if(rst_i.read())
cpu->set_interrupt_execution(true);
if (rst_i.read()) cpu->set_interrupt_execution(true);
}
void core_complex::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
@ -366,9 +498,9 @@ void core_complex::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
void core_complex::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
void core_complex::local_irq_cb() {
for(auto i = 0U; i < local_irq_i.size(); ++i) {
for(auto i=0U; i<local_irq_i.size(); ++i) {
if(local_irq_i[i].event()) {
cpu->local_irq(16 + i, local_irq_i[i].read());
cpu->local_irq(16+i, local_irq_i[i].read());
}
}
}
@ -377,84 +509,75 @@ void core_complex::run() {
wait(SC_ZERO_TIME); // separate from elaboration phase
do {
wait(SC_ZERO_TIME);
if(rst_i.read()) {
if (rst_i.read()) {
cpu->reset(GET_PROP_VALUE(reset_address));
wait(rst_i.negedge_event());
}
while(curr_clk.read() == SC_ZERO_TIME) {
while (curr_clk.read() == SC_ZERO_TIME) {
wait(curr_clk.value_changed_event());
}
quantum_keeper.reset();
cpu->set_interrupt_execution(false);
cpu->start(dump_ir);
} while(cpu->get_interrupt_execution());
cpu->start();
} while (cpu->get_interrupt_execution());
sc_stop();
}
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
auto& dmi_lut = is_fetch ? fetch_lut : read_lut;
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t *const data, bool is_fetch) {
auto& dmi_lut = is_fetch?fetch_lut:read_lut;
auto lut_entry = dmi_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(lut_entry.get_dmi_ptr() + offset, lut_entry.get_dmi_ptr() + offset + length, data);
if(is_fetch)
ibus_inc += lut_entry.get_read_latency() / curr_clk;
else
dbus_inc += lut_entry.get_read_latency() / curr_clk;
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
auto& sckt = is_fetch ? ibus : dbus;
auto& sckt = is_fetch? ibus : dbus;
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay = quantum_keeper.get_local_time();
if(trc->m_db != nullptr && trc->tr_handle.is_valid()) {
if(is_fetch && trc->tr_handle.is_active()) {
sc_time delay=quantum_keeper.get_local_time();
if (trc->m_db != nullptr && trc->tr_handle.is_valid()) {
if (is_fetch && trc->tr_handle.is_active()) {
trc->tr_handle.end_transaction();
}
auto preExt = new tlm::scc::scv::tlm_recording_extension(trc->tr_handle, this);
gp.set_extension(preExt);
}
auto pre_delay = delay;
dbus->b_transport(gp, delay);
if(pre_delay > delay) {
quantum_keeper.reset();
} else {
auto incr = (delay - quantum_keeper.get_local_time()) / curr_clk;
if(is_fetch)
ibus_inc += incr;
else
dbus_inc += incr;
}
SCCTRACE(this->name()) << "[local time: " << delay << "]: finish read_mem(0x" << std::hex << addr << ") : 0x"
<< (length == 4 ? *(uint32_t*)data
: length == 2 ? *(uint16_t*)data
: (unsigned)*data);
if(gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
sckt->b_transport(gp, delay);
auto incr = delay-quantum_keeper.get_local_time();
if(is_fetch)
ibus_inc+=incr;
else
dbus_inc+=incr;
SCCTRACE(this->name()) << "[local time: "<<delay<<"]: finish read_mem(0x" << std::hex << addr << ") : 0x" << (length==4?*(uint32_t*)data:length==2?*(uint16_t*)data:(unsigned)*data);
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if(gp.is_dmi_allowed() && !GET_PROP_VALUE(disable_dmi)) {
if (gp.is_dmi_allowed()) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if(sckt->get_direct_mem_ptr(gp, dmi_data)) {
if(dmi_data.is_read_allowed())
dmi_lut.addEntry(dmi_data, dmi_data.get_start_address(), dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if (sckt->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_read_allowed())
dmi_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
}
return true;
}
}
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t *const data) {
auto lut_entry = write_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(data, data + length, lut_entry.get_dmi_ptr() + offset);
dbus_inc += lut_entry.get_write_latency() / curr_clk;
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
write_buf.resize(length);
@ -465,30 +588,23 @@ bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* cons
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay = quantum_keeper.get_local_time();
if(trc->m_db != nullptr && trc->tr_handle.is_valid()) {
sc_time delay=quantum_keeper.get_local_time();
if (trc->m_db != nullptr && trc->tr_handle.is_valid()) {
auto preExt = new tlm::scc::scv::tlm_recording_extension(trc->tr_handle, this);
gp.set_extension(preExt);
}
auto pre_delay = delay;
dbus->b_transport(gp, delay);
if(pre_delay > delay)
quantum_keeper.reset();
else
dbus_inc += (delay - quantum_keeper.get_local_time()) / curr_clk;
SCCTRACE() << "[local time: " << delay << "]: finish write_mem(0x" << std::hex << addr << ") : 0x"
<< (length == 4 ? *(uint32_t*)data
: length == 2 ? *(uint16_t*)data
: (unsigned)*data);
if(gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
dbus_inc+=delay-quantum_keeper.get_local_time();
SCCTRACE() << "[local time: "<<delay<<"]: finish write_mem(0x" << std::hex << addr << ") : 0x" << (length==4?*(uint32_t*)data:length==2?*(uint16_t*)data:(unsigned)*data);
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if(gp.is_dmi_allowed() && !GET_PROP_VALUE(disable_dmi)) {
if (gp.is_dmi_allowed()) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if(dbus->get_direct_mem_ptr(gp, dmi_data)) {
if(dmi_data.is_write_allowed())
if (dbus->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_write_allowed())
write_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
@ -497,7 +613,7 @@ bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* cons
}
}
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t *const data) {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
@ -507,7 +623,7 @@ bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const d
return dbus->transport_dbg(gp) == length;
}
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t *const data) {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
@ -518,5 +634,5 @@ bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t*
gp.set_streaming_width(length);
return dbus->transport_dbg(gp) == length;
}
} /* namespace tgfs */
} /* namespace SiFive */
} /* namespace sysc */

View File

@ -33,10 +33,10 @@
#ifndef _SYSC_CORE_COMPLEX_H_
#define _SYSC_CORE_COMPLEX_H_
#include <scc/tick2time.h>
#include <scc/traceable.h>
#include <scc/utilities.h>
#include <tlm/scc/initiator_mixin.h>
#include <scc/traceable.h>
#include <scc/tick2time.h>
#include <scc/utilities.h>
#include <tlm/scc/scv/tlm_rec_initiator_socket.h>
#ifdef CWR_SYSTEMC
#include <scmlinc/scml_property.h>
@ -45,24 +45,24 @@
#include <cci_configuration>
#define SOCKET_WIDTH scc::LT
#endif
#include <memory>
#include <tlm>
#include <tlm_utils/tlm_quantumkeeper.h>
#include <util/range_lut.h>
#include <memory>
namespace iss {
class vm_plugin;
class vm_plugin;
}
namespace sysc {
class tlm_dmi_ext : public tlm::tlm_dmi {
public:
bool operator==(const tlm_dmi_ext& o) const {
return this->get_granted_access() == o.get_granted_access() && this->get_start_address() == o.get_start_address() &&
this->get_end_address() == o.get_end_address();
bool operator==(const tlm_dmi_ext &o) const {
return this->get_granted_access() == o.get_granted_access() &&
this->get_start_address() == o.get_start_address() && this->get_end_address() == o.get_end_address();
}
bool operator!=(const tlm_dmi_ext& o) const { return !operator==(o); }
bool operator!=(const tlm_dmi_ext &o) const { return !operator==(o); }
};
namespace tgfs {
@ -86,7 +86,7 @@ public:
sc_core::sc_vector<sc_core::sc_in<bool>> local_irq_i{"local_irq_i", 16};
#ifndef CWR_SYSTEMC
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_port<tlm::tlm_peek_if<uint64_t>, 1, sc_core::SC_ZERO_OR_MORE_BOUND> mtime_o{"mtime_o"};
@ -94,11 +94,9 @@ public:
cci::cci_param<bool> enable_disass{"enable_disass", false};
cci::cci_param<bool> disable_dmi{"disable_dmi", false};
cci::cci_param<uint64_t> reset_address{"reset_address", 0ULL};
cci::cci_param<std::string> core_type{"core_type", "tgc5c"};
cci::cci_param<std::string> core_type{"core_type", "tgc_c"};
cci::cci_param<std::string> backend{"backend", "interp"};
@ -113,19 +111,17 @@ public:
core_complex(sc_core::sc_module_name const& name);
#else
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<bool> enable_disass{"enable_disass", false};
scml_property<bool> disable_dmi{"disable_dmi", false};
scml_property<unsigned long long> reset_address{"reset_address", 0ULL};
scml_property<std::string> core_type{"core_type", "tgc5c"};
scml_property<std::string> core_type{"core_type", "tgc_c"};
scml_property<std::string> backend{"backend", "interp"};
@ -143,7 +139,7 @@ public:
, elf_file{"elf_file", ""}
, enable_disass{"enable_disass", false}
, reset_address{"reset_address", 0ULL}
, core_type{"core_type", "tgc5c"}
, core_type{"core_type", "tgc_c"}
, backend{"backend", "interp"}
, gdb_server_port{"gdb_server_port", 0}
, dump_ir{"dump_ir", false}
@ -151,48 +147,45 @@ public:
, plugins{"plugins", ""}
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
, write_lut(tlm_dmi_ext()) {
init();
, write_lut(tlm_dmi_ext())
{
init();
}
#endif
~core_complex();
inline unsigned get_last_bus_cycles() {
auto mem_incr = std::max(ibus_inc, dbus_inc);
ibus_inc = dbus_inc = 0;
return mem_incr > 1 ? mem_incr : 1;
}
inline void sync(uint64_t cycle) {
auto core_inc = curr_clk * (cycle - last_sync_cycle);
quantum_keeper.inc(core_inc);
if(quantum_keeper.need_sync()) {
auto incr = std::max(core_inc, std::max(ibus_inc, dbus_inc));
quantum_keeper.inc(incr);
if (quantum_keeper.need_sync()) {
wait(quantum_keeper.get_local_time());
quantum_keeper.reset();
}
last_sync_cycle = cycle;
ibus_inc = sc_core::SC_ZERO_TIME;
dbus_inc = sc_core::SC_ZERO_TIME;
}
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch);
bool read_mem(uint64_t addr, unsigned length, uint8_t *const data, bool is_fetch);
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data);
bool write_mem(uint64_t addr, unsigned length, const uint8_t *const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t *const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t *const data);
void trace(sc_core::sc_trace_file* trf) const override;
void trace(sc_core::sc_trace_file *trf) const override;
bool disass_output(uint64_t pc, const std::string instr);
void set_clock_period(sc_core::sc_time period);
protected:
void before_end_of_elaboration() override;
void start_of_simulation() override;
void forward();
void forward();
void run();
void rst_cb();
void sw_irq_cb();
@ -205,13 +198,13 @@ protected:
std::vector<uint8_t> write_buf;
core_wrapper* cpu{nullptr};
sc_core::sc_signal<sc_core::sc_time> curr_clk;
uint64_t ibus_inc{0}, dbus_inc{0};
sc_core::sc_time ibus_inc, dbus_inc;
core_trace* trc{nullptr};
std::unique_ptr<scc::tick2time> t2t;
private:
void init();
std::vector<iss::vm_plugin*> plugin_list;
std::vector<iss::vm_plugin *> plugin_list;
};
} /* namespace tgfs */
} /* namespace sysc */

View File

@ -1,110 +1,33 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
/*
* register_tgc_c.cpp
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
* Created on: Jul 5, 2023
* Author: eyck
*/
// clang-format off
#include "iss_factory.h"
#include <iss/arch/tgc5c.h>
#include <iss/factory.h>
#include <iss/arch/tgc_c.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include "sc_core_adapter.h"
#include "core_complex.h"
#include <array>
// clang-format on
namespace iss {
namespace interp {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|interp",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace interp
#if defined(WITH_LLVM)
namespace llvm {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|llvm",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace llvm
#endif
#if defined(WITH_TCC)
namespace tcc {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|tcc",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace tcc
#endif
#if defined(WITH_ASMJIT)
namespace asmjit {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|asmjit",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
} // namespace asmjit
#endif
} // namespace iss
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc_c|m_p|interp", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc_c* lcpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc_c>>(cc);
return {cpu_ptr{lcpu}, vm_ptr{interp::create(lcpu, gdb_port)}};
}),
core_factory::instance().register_creator("tgc_c|mu_p|interp", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc_c* lcpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc_c>>(cc);
return {cpu_ptr{lcpu}, vm_ptr{interp::create(lcpu, gdb_port)}};
})
};
}
}

View File

@ -8,130 +8,94 @@
#ifndef _SYSC_SC_CORE_ADAPTER_H_
#define _SYSC_SC_CORE_ADAPTER_H_
#include "sc_core_adapter_if.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
#include "core_complex.h"
#include <iss/iss.h>
#include <iss/vm_types.h>
#include <iostream>
namespace sysc {
template <typename PLAT> class sc_core_adapter : public PLAT, public sc_core_adapter_if {
template<typename PLAT>
class sc_core_adapter : public PLAT {
public:
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex* owner)
: owner(owner) {}
sc_core_adapter(sysc::tgfs::core_complex *owner)
: owner(owner) { }
iss::arch_if* get_arch_if() override { return this; }
uint32_t get_mode() { return this->reg.PRIV; }
void set_mhartid(unsigned id) override { PLAT::set_mhartid(id); }
inline void set_interrupt_execution(bool v) { this->interrupt_sim = v?1:0; }
uint32_t get_mode() override { return this->reg.PRIV; }
inline bool get_interrupt_execution() { return this->interrupt_sim; }
void set_interrupt_execution(bool v) override { this->interrupt_sim = v ? 1 : 0; }
bool get_interrupt_execution() override { return this->interrupt_sim; }
uint64_t get_state() override { return this->state.mstatus.backing.val; }
heart_state_t &get_state() { return this->state; }
void notify_phase(iss::arch_if::exec_phase p) override {
if(p == iss::arch_if::ISTART && !first) {
auto cycle_incr = owner->get_last_bus_cycles();
if(cycle_incr > 1)
this->instr_if.update_last_instr_cycles(cycle_incr);
if (p == iss::arch_if::ISTART)
owner->sync(this->instr_if.get_total_cycles());
}
first = false;
}
iss::sync_type needed_sync() const override { return iss::PRE_SYNC; }
void disass_output(uint64_t pc, const std::string instr) override {
static constexpr std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
if(!owner->disass_output(pc, instr)) {
if (!owner->disass_output(pc, instr)) {
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0') << std::setw(sizeof(reg_t) * 2)
<< (reg_t)this->state.mstatus << std::dec << ";c:" << this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)this->state.mstatus << std::dec << ";c:"
<< this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->name())<<"disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
};
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data) override {
if (addr.access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? iss::Ok : iss::Err;
}
}
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data) override {
if (addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
auto tohost_upper = (sizeof(reg_t) == 4 && addr.val == (this->tohost + 4)) || (sizeof(reg_t) == 8 && addr.val == this->tohost);
auto tohost_lower = (sizeof(reg_t) == 4 && addr.val == this->tohost) || (sizeof(reg_t) == 64 && addr.val == this->tohost);
if(tohost_lower || tohost_upper) {
if(tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
default:
break;
}
} else if(tohost_lower)
to_host_wr_cnt++;
return iss::Ok;
} else {
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
return res;
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if (addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if (val & (1ULL << 7)) this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
return res;
}
}
iss::status read_csr(unsigned addr, reg_t& val) override {
iss::status read_csr(unsigned addr, reg_t &val) override {
#ifndef CWR_SYSTEMC
if((addr == iss::arch::time || addr == iss::arch::timeh) && owner->mtime_o.get_interface(0)) {
if((addr==iss::arch::time || addr==iss::arch::timeh) && owner->mtime_o.get_interface(0)){
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if(addr == iss::arch::time) {
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret ? iss::Ok : iss::Err;
return ret?iss::Ok:iss::Err;
#else
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
if((addr==iss::arch::time || addr==iss::arch::timeh)){
uint64_t time_val = owner->mtime_i.read();
if(addr == iss::arch::time) {
if (addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
} else if (addr == iss::arch::timeh) {
if (sizeof(reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
@ -149,9 +113,9 @@ public:
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) override {
void local_irq(short id, bool value) {
reg_t mask = 0;
switch(id) {
switch (id) {
case 3: // SW
mask = 1 << 3;
break;
@ -162,11 +126,10 @@ public:
mask = 1 << 11;
break;
default:
if(id > 15)
mask = 1 << id;
if(id>15) mask = 1 << id;
break;
}
if(value) {
if (value) {
this->csr[iss::arch::mip] |= mask;
wfi_evt.notify();
} else
@ -177,11 +140,9 @@ public:
}
private:
sysc::tgfs::core_complex* const owner;
sysc::tgfs::core_complex *const owner;
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;
bool first{true};
};
} // namespace sysc
#endif /* _SYSC_SC_CORE_ADAPTER_H_ */

View File

@ -1,30 +0,0 @@
/*
* sc_core_adapter.h
*
* Created on: Jul 5, 2023
* Author: eyck
*/
#ifndef _SYSC_SC_CORE_ADAPTER_IF_H_
#define _SYSC_SC_CORE_ADAPTER_IF_H_
#include "core_complex.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
namespace sysc {
struct sc_core_adapter_if {
virtual iss::arch_if* get_arch_if() = 0;
virtual void set_mhartid(unsigned) = 0;
virtual uint32_t get_mode() = 0;
virtual uint64_t get_state() = 0;
virtual bool get_interrupt_execution() = 0;
virtual void set_interrupt_execution(bool v) = 0;
virtual void local_irq(short id, bool value) = 0;
virtual ~sc_core_adapter_if() = default;
};
} // namespace sysc
#endif /* _SYSC_SC_CORE_ADAPTER_IF_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -35,90 +35,97 @@
#include "fp_functions.h"
extern "C" {
#include <softfloat.h>
#include "internals.h"
#include "specialize.h"
#include <softfloat.h>
}
#include <limits>
using this_t = uint8_t*;
using this_t = uint8_t *;
const uint8_t rmm_map[] = {
softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/,
softfloat_round_near_maxMag /*RMM*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/,
softfloat_round_near_even /*RNE*/,
softfloat_round_minMag/*RTZ*/,
softfloat_round_min/*RDN*/,
softfloat_round_max/*RUP?*/,
softfloat_round_near_maxMag /*RMM*/,
softfloat_round_max/*RTZ*/,
softfloat_round_max/*RTZ*/,
softfloat_round_max/*RTZ*/,
};
const uint32_t quiet_nan32 = 0x7fC00000;
const uint32_t quiet_nan32=0x7fC00000;
extern "C" {
uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; }
uint32_t fget_flags(){
return softfloat_exceptionFlags&0x1f;
}
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_add(v1f, v2f);
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r =f32_add(v1f, v2f);
return r.v;
}
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sub(v1f, v2f);
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_sub(v1f, v2f);
return r.v;
}
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_mul(v1f, v2f);
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_mul(v1f, v2f);
return r.v;
}
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_div(v1f, v2f);
float32_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_div(v1f, v2f);
return r.v;
}
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
float32_t v1f{v1};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sqrt(v1f);
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t r=f32_sqrt(v1f);
return r.v;
}
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
float32_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32;
float32_t v1f{v1},v2f{v2};
softfloat_exceptionFlags=0;
bool nan = (v1&defaultNaNF32UI)==quiet_nan32 || (v2&defaultNaNF32UI)==quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
switch(op) {
switch(op){
case 0:
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(nan | snan){
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_eq(v1f, v2f) ? 1 : 0;
return f32_eq(v1f,v2f )?1:0;
case 1:
if(nan | snan) {
if(nan | snan){
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_le(v1f, v2f) ? 1 : 0;
return f32_le(v1f,v2f )?1:0;
case 2:
if(nan | snan) {
if(nan | snan){
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f32_lt(v1f, v2f) ? 1 : 0;
return f32_lt(v1f,v2f )?1:0;
default:
break;
}
@ -127,22 +134,22 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
softfloat_exceptionFlags=0;
float32_t r;
switch(op) {
case 0: { // w->s, fp to int32
uint_fast32_t res = f32_to_i32(v1f, rmm_map[mode & 0x7], true);
switch(op){
case 0:{ //w->s, fp to int32
uint_fast32_t res = f32_to_i32(v1f,rmm_map[mode&0x7],true);
return (uint32_t)res;
}
case 1: { // wu->s
uint_fast32_t res = f32_to_ui32(v1f, rmm_map[mode & 0x7], true);
case 1:{ //wu->s
uint_fast32_t res = f32_to_ui32(v1f,rmm_map[mode&0x7],true);
return (uint32_t)res;
}
case 2: // s->w
r = i32_to_f32(v1);
case 2: //s->w
r=i32_to_f32(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f32(v1);
case 3: //s->wu
r=ui32_to_f32(v1);
return r.v;
}
return 0;
@ -150,11 +157,10 @@ uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 31;
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, op&0x1);
if(op>1) res.v ^= 1ULL<<31;
return res.v;
}
@ -164,23 +170,23 @@ uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op) {
bool v2_nan = (v2 & defaultNaNF32UI) == defaultNaNF32UI;
bool v1_snan = softfloat_isSigNaNF32UI(v1);
bool v2_snan = softfloat_isSigNaNF32UI(v2);
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
if (v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF32UI : v2;
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) {
return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1);
} else {
float32_t v1f{v1}, v2f{v2};
return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1);
else
if (v2_nan || v2_snan)
return v1;
else {
if ((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) {
return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1);
} else {
float32_t v1f{ v1 }, v2f{ v2 };
return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1);
}
}
}
}
uint32_t fclass_s(uint32_t v1) {
uint32_t fclass_s( uint32_t v1 ){
float32_t a{v1};
union ui32_f32 uA;
@ -189,23 +195,30 @@ uint32_t fclass_s(uint32_t v1) {
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF32UI(uiA) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI(uiA) == 0;
bool sign = signF32UI(uiA);
bool fracZero = fracF32UI(uiA) == 0;
bool isNaN = isNaNF32UI(uiA);
bool isSNaN = softfloat_isSigNaNF32UI(uiA);
uint_fast16_t infOrNaN = expF32UI( uiA ) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI( uiA ) == 0;
bool sign = signF32UI( uiA );
bool fracZero = fracF32UI( uiA ) == 0;
bool isNaN = isNaNF32UI( uiA );
bool isSNaN = softfloat_isSigNaNF32UI( uiA );
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
return
( sign && infOrNaN && fracZero ) << 0 |
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
( sign && subnormalOrZero && !fracZero ) << 2 |
( sign && subnormalOrZero && fracZero ) << 3 |
( !sign && infOrNaN && fracZero ) << 7 |
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
( !sign && subnormalOrZero && !fracZero ) << 5 |
( !sign && subnormalOrZero && fracZero ) << 4 |
( isNaN && isSNaN ) << 8 |
( isNaN && !isSNaN ) << 9;
}
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
softfloat_roundingMode = rmm_map[mode & 0x7];
bool nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI;
if(nan) {
uint32_t fconv_d2f(uint64_t v1, uint8_t mode){
softfloat_roundingMode=rmm_map[mode&0x7];
bool nan = (v1 & defaultNaNF64UI)==defaultNaNF64UI;
if(nan){
return defaultNaNF32UI;
} else {
float32_t res = f64_to_f32(float64_t{v1});
@ -213,84 +226,83 @@ uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
}
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI;
if(nan) {
uint64_t fconv_f2d(uint32_t v1, uint8_t mode){
bool nan = (v1 & defaultNaNF32UI)==defaultNaNF32UI;
if(nan){
return defaultNaNF64UI;
} else {
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_roundingMode=rmm_map[mode&0x7];
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
}
}
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32;
bool nan = (v1&defaultNaNF32UI)==quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_add(v1f, v2f);
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r =f64_add(v1f, v2f);
return r.v;
}
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sub(v1f, v2f);
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_sub(v1f, v2f);
return r.v;
}
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_mul(v1f, v2f);
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_mul(v1f, v2f);
return r.v;
}
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_div(v1f, v2f);
float64_t v1f{v1},v2f{v2};
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_div(v1f, v2f);
return r.v;
}
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
float64_t v1f{v1};
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sqrt(v1f);
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t r=f64_sqrt(v1f);
return r.v;
}
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
float64_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32;
float64_t v1f{v1},v2f{v2};
softfloat_exceptionFlags=0;
bool nan = (v1&defaultNaNF64UI)==quiet_nan32 || (v2&defaultNaNF64UI)==quiet_nan32;
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
switch(op) {
switch(op){
case 0:
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(nan | snan){
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_eq(v1f, v2f) ? 1 : 0;
return f64_eq(v1f,v2f )?1:0;
case 1:
if(nan | snan) {
if(nan | snan){
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_le(v1f, v2f) ? 1 : 0;
return f64_le(v1f,v2f )?1:0;
case 2:
if(nan | snan) {
if(nan | snan){
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f64_lt(v1f, v2f) ? 1 : 0;
return f64_lt(v1f,v2f )?1:0;
default:
break;
}
@ -299,22 +311,22 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags = 0;
softfloat_exceptionFlags=0;
float64_t r;
switch(op) {
case 0: { // l->d, fp to int32
int64_t res = f64_to_i64(v1f, rmm_map[mode & 0x7], true);
switch(op){
case 0:{ //l->d, fp to int32
int64_t res = f64_to_i64(v1f,rmm_map[mode&0x7],true);
return (uint64_t)res;
}
case 1: { // lu->s
uint64_t res = f64_to_ui64(v1f, rmm_map[mode & 0x7], true);
case 1:{ //lu->s
uint64_t res = f64_to_ui64(v1f,rmm_map[mode&0x7],true);
return res;
}
case 2: // s->l
r = i64_to_f64(v1);
case 2: //s->l
r=i64_to_f64(v1);
return r.v;
case 3: // s->lu
r = ui64_to_f64(v1);
case 3: //s->lu
r=ui64_to_f64(v1);
return r.v;
}
return 0;
@ -322,11 +334,10 @@ uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 63;
softfloat_roundingMode=rmm_map[mode&0x7];
softfloat_exceptionFlags=0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op&0x1);
if(op>1) res.v ^= 1ULL<<63;
return res.v;
}
@ -336,24 +347,27 @@ uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) {
bool v2_nan = (v2 & defaultNaNF64UI) == defaultNaNF64UI;
bool v1_snan = softfloat_isSigNaNF64UI(v1);
bool v2_snan = softfloat_isSigNaNF64UI(v2);
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
if (v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF64UI : v2;
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & std::numeric_limits<int64_t>::max()) == 0 && (v2 & std::numeric_limits<int64_t>::max()) == 0) {
return op == 0 ? ((v1 & std::numeric_limits<int64_t>::min()) ? v1 : v2)
: ((v1 & std::numeric_limits<int64_t>::min()) ? v2 : v1);
} else {
float64_t v1f{v1}, v2f{v2};
return op == 0 ? (f64_lt(v1f, v2f) ? v1 : v2) : (f64_lt(v1f, v2f) ? v2 : v1);
else
if (v2_nan || v2_snan)
return v1;
else {
if ((v1 & std::numeric_limits<int64_t>::max()) == 0 && (v2 & std::numeric_limits<int64_t>::max()) == 0) {
return op == 0 ?
((v1 & std::numeric_limits<int64_t>::min()) ? v1 : v2) :
((v1 & std::numeric_limits<int64_t>::min()) ? v2 : v1);
} else {
float64_t v1f{ v1 }, v2f{ v2 };
return op == 0 ?
(f64_lt(v1f, v2f) ? v1 : v2) :
(f64_lt(v1f, v2f) ? v2 : v1);
}
}
}
}
uint64_t fclass_d(uint64_t v1) {
uint64_t fclass_d(uint64_t v1 ){
float64_t a{v1};
union ui64_f64 uA;
@ -362,61 +376,68 @@ uint64_t fclass_d(uint64_t v1) {
uA.f = a;
uiA = uA.ui;
uint_fast16_t infOrNaN = expF64UI(uiA) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI(uiA) == 0;
bool sign = signF64UI(uiA);
bool fracZero = fracF64UI(uiA) == 0;
bool isNaN = isNaNF64UI(uiA);
bool isSNaN = softfloat_isSigNaNF64UI(uiA);
uint_fast16_t infOrNaN = expF64UI( uiA ) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI( uiA ) == 0;
bool sign = signF64UI( uiA );
bool fracZero = fracF64UI( uiA ) == 0;
bool isNaN = isNaNF64UI( uiA );
bool isSNaN = softfloat_isSigNaNF64UI( uiA );
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
return
( sign && infOrNaN && fracZero ) << 0 |
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
( sign && subnormalOrZero && !fracZero ) << 2 |
( sign && subnormalOrZero && fracZero ) << 3 |
( !sign && infOrNaN && fracZero ) << 7 |
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
( !sign && subnormalOrZero && !fracZero ) << 5 |
( !sign && subnormalOrZero && fracZero ) << 4 |
( isNaN && isSNaN ) << 8 |
( isNaN && !isSNaN ) << 9;
}
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
softfloat_exceptionFlags=0;
float64_t r;
switch(op) {
case 0: // l->s, fp to int32
return f32_to_i64(v1f, rmm_map[mode & 0x7], true);
case 1: // wu->s
return f32_to_ui64(v1f, rmm_map[mode & 0x7], true);
case 2: // s->w
r = i32_to_f64(v1);
switch(op){
case 0: //l->s, fp to int32
return f32_to_i64(v1f,rmm_map[mode&0x7],true);
case 1: //wu->s
return f32_to_ui64(v1f,rmm_map[mode&0x7],true);
case 2: //s->w
r=i32_to_f64(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f64(v1);
case 3: //s->wu
r=ui32_to_f64(v1);
return r.v;
}
return 0;
}
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) {
softfloat_exceptionFlags = 0;
softfloat_exceptionFlags=0;
float32_t r;
switch(op) {
case 0: { // wu->s
int32_t r = f64_to_i32(float64_t{v1}, rmm_map[mode & 0x7], true);
switch(op){
case 0:{ //wu->s
int32_t r=f64_to_i32(float64_t{v1}, rmm_map[mode&0x7],true);
return r;
}
case 1: { // wu->s
uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map[mode & 0x7], true);
case 1:{ //wu->s
uint32_t r=f64_to_ui32(float64_t{v1}, rmm_map[mode&0x7],true);
return r;
}
case 2: // l->s, fp to int32
r = i64_to_f32(v1);
case 2: //l->s, fp to int32
r=i64_to_f32(v1);
return r.v;
case 3: // wu->s
r = ui64_to_f32(v1);
case 3: //wu->s
r=ui64_to_f32(v1);
return r.v;
}
return 0;
}
uint32_t unbox_s(uint64_t v) {
uint32_t unbox_s(uint64_t v){
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
if((v & mask) != mask)
return 0x7fc00000;
@ -424,3 +445,4 @@ uint32_t unbox_s(uint64_t v) {
return v & std::numeric_limits<uint32_t>::max();
}
}

View File

@ -44,11 +44,11 @@ uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsqrt_s(uint32_t v1, uint8_t mode);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) ;
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode);
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fclass_s(uint32_t v1);
uint32_t fclass_s( uint32_t v1 );
uint32_t fconv_d2f(uint64_t v1, uint8_t mode);
uint64_t fconv_f2d(uint32_t v1, uint8_t mode);
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode);
@ -59,8 +59,8 @@ uint64_t fsqrt_d(uint64_t v1, uint8_t mode);
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode);
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fclass_d(uint64_t v1);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) ;
uint64_t fclass_d(uint64_t v1 );
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode);
uint32_t unbox_s(uint64_t v);

File diff suppressed because it is too large Load Diff

2674
src/vm/interp/vm_tgc_c.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -36,9 +36,9 @@
#include <iss/llvm/vm_base.h>
extern "C" {
#include <softfloat.h>
#include "internals.h"
#include "specialize.h"
#include <softfloat.h>
}
#include <limits>
@ -50,58 +50,60 @@ namespace fp_impl {
using namespace std;
using namespace ::llvm;
#define INT_TYPE(L) Type::getIntNTy(mod->getContext(), L)
#define FLOAT_TYPE Type::getFloatTy(mod->getContext())
#define DOUBLE_TYPE Type::getDoubleTy(mod->getContext())
#define VOID_TYPE Type::getVoidTy(mod->getContext())
#define INT_TYPE(L) Type::getIntNTy(mod->getContext(), L)
#define FLOAT_TYPE Type::getFloatTy(mod->getContext())
#define DOUBLE_TYPE Type::getDoubleTy(mod->getContext())
#define VOID_TYPE Type::getVoidTy(mod->getContext())
#define THIS_PTR_TYPE Type::getIntNPtrTy(mod->getContext(), 8)
#define FDECLL(NAME, RET, ...) \
Function* NAME##_func = CurrentModule->getFunction(#NAME); \
if(!NAME##_func) { \
std::vector<Type*> NAME##_args{__VA_ARGS__}; \
FunctionType* NAME##_type = FunctionType::get(RET, NAME##_args, false); \
NAME##_func = Function::Create(NAME##_type, GlobalValue::ExternalLinkage, #NAME, CurrentModule); \
NAME##_func->setCallingConv(CallingConv::C); \
#define FDECLL(NAME, RET, ...) \
Function *NAME##_func = CurrentModule->getFunction(#NAME); \
if (!NAME##_func) { \
std::vector<Type *> NAME##_args{__VA_ARGS__}; \
FunctionType *NAME##_type = FunctionType::get(RET, NAME##_args, false); \
NAME##_func = Function::Create(NAME##_type, GlobalValue::ExternalLinkage, #NAME, CurrentModule); \
NAME##_func->setCallingConv(CallingConv::C); \
}
#define FDECL(NAME, RET, ...) \
std::vector<Type*> NAME##_args{__VA_ARGS__}; \
FunctionType* NAME##_type = FunctionType::get(RET, NAME##_args, false); \
#define FDECL(NAME, RET, ...) \
std::vector<Type *> NAME##_args{__VA_ARGS__}; \
FunctionType *NAME##_type = FunctionType::get(RET, NAME##_args, false); \
mod->getOrInsertFunction(#NAME, NAME##_type);
void add_fp_functions_2_module(Module* mod, uint32_t flen, uint32_t xlen) {
if(flen) {
void add_fp_functions_2_module(Module *mod, uint32_t flen, uint32_t xlen) {
if(flen){
FDECL(fget_flags, INT_TYPE(32));
FDECL(fadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsub_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmul_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fdiv_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsqrt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcmp_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fclass_s, INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_32_64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcvt_64_32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
if(flen > 32) {
FDECL(fconv_d2f, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(fconv_f2d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsub_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fmul_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fdiv_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsqrt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fcmp_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fcvt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fclass_d, INT_TYPE(64), INT_TYPE(64));
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(64));
FDECL(fadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsub_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmul_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fdiv_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsqrt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcmp_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fclass_s, INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_32_64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcvt_64_32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
if(flen>32){
FDECL(fconv_d2f, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(fconv_f2d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsub_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fmul_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fdiv_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsqrt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fcmp_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fcvt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fclass_d, INT_TYPE(64), INT_TYPE(64));
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(64));
}
}
}
} // namespace fp_impl
} // namespace llvm
} // namespace iss
}
}
}

File diff suppressed because it is too large Load Diff

4163
src/vm/llvm/vm_tgc_c.cpp Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff