Compare commits

..

No commits in common. "ffe730219d5ca5d732b9d1f2aa6b2fc1bdb99b12" and "4c3a7386b0481dc117fef9e3639748d60e72a4c7" have entirely different histories.

4 changed files with 2 additions and 4553 deletions

View File

@ -31,11 +31,7 @@ if(WITH_LLVM)
src/vm/llvm/fp_impl.cpp
)
endif()
if(WITH_ASMJIT)
list(APPEND LIB_SOURCES
src/vm/asmjit/vm_tgc5c.cpp
)
endif()
# library files
FILE(GLOB GEN_ISS_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp)
FILE(GLOB GEN_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp)
@ -57,10 +53,7 @@ if(WITH_TCC)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/tcc/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(WITH_ASMJIT)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/asmjit/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(TARGET yaml-cpp::yaml-cpp)
list(APPEND LIB_SOURCES
src/iss/plugin/cycle_estimate.cpp
@ -189,10 +182,6 @@ if(BUILD_TESTING)
add_test(NAME tgc-sim-llvm
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend llvm)
endif()
if(WITH_ASMJIT)
add_test(NAME tgc-sim-asmjit
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend asmjit)
endif()
endif()
###############################################################################
#

View File

@ -1,280 +0,0 @@
/*******************************************************************************
* Copyright (C) 2017, 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/asmjit/vm_base.h>
#include <asmjit/asmjit.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace asmjit {
namespace ${coreDef.name.toLowerCase()} {
using namespace ::asmjit;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::asmjit::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::asmjit::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename super::mem_type_e;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
#include "helper_func.h"
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
continuation_e __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate disass */
}
x86::Compiler& cc = jh.cc;
//ideally only do this if necessary (someone / plugin needs it)
cc.mov(jh.pc,PC);
cc.comment(fmt::format("\\n${instr.name}_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, ${idx});
pc=pc+ ${instr.length/8};
gen_instr_prologue(jh, pc.val);
cc.comment("\\n//behavior:");
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, ${idx});
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr: instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr)
f = &this_class::illegal_intruction;
return (this->*f)(pc, instr, jh);
}
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace asmjit
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto* vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto* vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}

View File

@ -1,474 +0,0 @@
x86::Mem get_reg_ptr(jit_holder& jh, unsigned idx){
x86::Gp tmp_ptr = jh.cc.newUIntPtr("tmp_ptr");
jh.cc.mov(tmp_ptr, jh.regs_base_ptr);
jh.cc.add(tmp_ptr, traits::reg_byte_offsets[idx]);
switch(traits::reg_bit_widths[idx]){
case 8:
return x86::ptr_8(tmp_ptr);
case 16:
return x86::ptr_16(tmp_ptr);
case 32:
return x86::ptr_32(tmp_ptr);
case 64:
return x86::ptr_64(tmp_ptr);
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
x86::Gp get_reg_for(jit_holder& jh, unsigned idx){
//can check for regs in jh and return them instead of creating new ones
switch(traits::reg_bit_widths[idx]){
case 8:
return jh.cc.newInt8();
case 16:
return jh.cc.newInt16();
case 32:
return jh.cc.newInt32();
case 64:
return jh.cc.newInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
x86::Gp get_reg_for(jit_holder& jh, unsigned size, bool is_signed){
if(is_signed)
switch(size){
case 8:
return jh.cc.newInt8();
case 16:
return jh.cc.newInt16();
case 32:
return jh.cc.newInt32();
case 64:
return jh.cc.newInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
else
switch(size){
case 8:
return jh.cc.newUInt8();
case 16:
return jh.cc.newUInt16();
case 32:
return jh.cc.newUInt32();
case 64:
return jh.cc.newUInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
inline x86::Gp load_reg_from_mem(jit_holder& jh, unsigned idx){
auto ptr = get_reg_ptr(jh, idx);
auto reg = get_reg_for(jh, idx);
jh.cc.mov(reg, ptr);
return reg;
}
inline void write_reg_to_mem(jit_holder& jh, x86::Gp reg, unsigned idx){
auto ptr = get_reg_ptr(jh, idx);
jh.cc.mov(ptr, reg);
}
void gen_instr_prologue(jit_holder& jh, addr_t pc){
auto& cc = jh.cc;
cc.comment("\n//(*icount)++;");
cc.inc(get_reg_ptr(jh, traits::ICOUNT));
cc.comment("\n//*pc=*next_pc;");
cc.mov(get_reg_ptr(jh, traits::PC), jh.next_pc);
cc.comment("\n//*trap_state=*pending_trap;");
cc.mov(get_reg_ptr(jh, traits::PENDING_TRAP), jh.trap_state);
cc.comment("\n//increment *next_pc");
cc.mov(jh.next_pc, pc);
}
void gen_instr_epilogue(jit_holder& jh){
auto& cc = jh.cc;
cc.comment("\n//if(*trap_state!=0) goto trap_entry;");
cc.test(jh.trap_state, jh.trap_state);
cc.jnz(jh.trap_entry);
//Does this need to be done after every single instruction?
cc.comment("\n//write back regs to mem");
write_reg_to_mem(jh, jh.pc, traits::PC);
write_reg_to_mem(jh, jh.next_pc, traits::NEXT_PC);
write_reg_to_mem(jh, jh.trap_state, traits::TRAP_STATE);
}
void gen_block_prologue(jit_holder& jh) override{
jh.pc = load_reg_from_mem(jh, traits::PC);
jh.next_pc = load_reg_from_mem(jh, traits::NEXT_PC);
jh.trap_state = load_reg_from_mem(jh, traits::TRAP_STATE);
}
void gen_block_epilogue(jit_holder& jh) override{
x86::Compiler& cc = jh.cc;
cc.comment("\n//return *next_pc;");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
cc.comment("\n//enter_trap(core_ptr, *trap_state, *pc, 0);");
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_reg_ptr(jh, traits::TRAP_STATE));
x86::Gp current_pc = get_reg_for(jh, traits::PC);
cc.mov(current_pc, get_reg_ptr(jh, traits::PC));
x86::Gp instr = cc.newInt32("instr");
cc.mov(instr, 0);
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignatureT<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
call_enter_trap->setArg(1, current_trap_state);
call_enter_trap->setArg(2, current_pc);
call_enter_trap->setArg(3, instr);
cc.comment("\n//*last_branch = std::numeric_limits<uint32_t>::max();");
cc.mov(get_reg_ptr(jh,traits::LAST_BRANCH), std::numeric_limits<uint32_t>::max());
cc.comment("\n//return *next_pc;");
cc.ret(jh.next_pc);
}
//TODO implement
void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
jh.cc.comment("//gen_raise");
}
void gen_wait(jit_holder& jh, unsigned type) {
jh.cc.comment("//gen_wait");
}
void gen_leave(jit_holder& jh, unsigned lvl){
jh.cc.comment("//gen_leave");
}
enum operation {add, sub, band, bor, bxor, shl, sar , shr};
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value || std::is_same<T, x86::Gp>::value>>
x86::Gp gen_operation(jit_holder& jh, operation op, x86::Gp a, T b){
x86::Compiler& cc = jh.cc;
switch (op) {
case add: { cc.add(a, b); break; }
case sub: { cc.sub(a, b); break; }
case band: { cc.and_(a, b); break; }
case bor: { cc.or_(a, b); break; }
case bxor: { cc.xor_(a, b); break; }
case shl: { cc.shl(a, b); break; }
case sar: { cc.sar(a, b); break; }
case shr: { cc.shr(a, b); break; }
default: throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (operation)", op));
}
return a;
}
enum three_operand_operation{imul, mul, idiv, div, srem, urem};
x86::Gp gen_operation(jit_holder& jh, three_operand_operation op, x86::Gp a, x86::Gp b){
x86::Compiler& cc = jh.cc;
switch (op) {
case imul: {
x86::Gp dummy = cc.newInt64();
cc.imul(dummy, a.r64(), b.r64());
return a;
}
case mul: {
x86::Gp dummy = cc.newInt64();
cc.mul(dummy, a.r64(), b.r64());
return a;
}
case idiv: {
x86::Gp dummy = cc.newInt64();
cc.mov(dummy, 0);
cc.idiv(dummy, a.r64(), b.r64());
return a;
}
case div: {
x86::Gp dummy = cc.newInt64();
cc.mov(dummy, 0);
cc.div(dummy, a.r64(), b.r64());
return a;
}
case srem:{
x86::Gp rem = cc.newInt32();
cc.mov(rem, 0);
auto a_reg = cc.newInt32();
cc.mov(a_reg, a.r32());
cc.idiv(rem, a_reg, b.r32());
return rem;
}
case urem:{
x86::Gp rem = cc.newInt32();
cc.mov(rem, 0);
auto a_reg = cc.newInt32();
cc.mov(a_reg, a.r32());
cc.div(rem, a_reg, b.r32());
return rem;
}
default: throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (three_operand)", op));
}
return a;
}
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
x86::Gp gen_operation(jit_holder& jh, three_operand_operation op, x86::Gp a, T b){
x86::Gp b_reg = jh.cc.newInt32();
/* switch(a.size()){
case 1: b_reg = jh.cc.newInt8(); break;
case 2: b_reg = jh.cc.newInt16(); break;
case 4: b_reg = jh.cc.newInt32(); break;
case 8: b_reg = jh.cc.newInt64(); break;
default: throw std::runtime_error(fmt::format("Invalid size ({}) in gen operation", a.size()));
} */
jh.cc.mov(b_reg, b);
return gen_operation(jh, op, a, b_reg);
}
enum comparison_operation{land, lor, eq, ne, lt, ltu, gt, gtu, lte, lteu, gte, gteu};
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value || std::is_same<T, x86::Gp>::value>>
x86::Gp gen_operation(jit_holder& jh, comparison_operation op, x86::Gp a, T b){
x86::Compiler& cc = jh.cc;
x86::Gp tmp = cc.newInt8();
cc.mov(tmp,1);
Label label_then = cc.newLabel();
cc.cmp(a,b);
switch (op) {
case eq: cc.je(label_then); break;
case ne: cc.jne(label_then); break;
case lt: cc.jl(label_then); break;
case ltu: cc.jb(label_then); break;
case gt: cc.jg(label_then); break;
case gtu: cc.ja(label_then); break;
case lte: cc.jle(label_then); break;
case lteu: cc.jbe(label_then); break;
case gte: cc.jge(label_then); break;
case gteu: cc.jae(label_then); break;
case land: {
Label label_false = cc.newLabel();
cc.cmp(a, 0);
cc.je(label_false);
auto b_reg = cc.newInt8();
cc.mov(b_reg, b);
cc.cmp(b_reg, 0);
cc.je(label_false);
cc.jmp(label_then);
cc.bind(label_false);
break;
}
case lor: {
cc.cmp(a, 0);
cc.jne(label_then);
auto b_reg = cc.newInt8();
cc.mov(b_reg, b);
cc.cmp(b_reg, 0);
cc.jne(label_then);
break;
}
default: throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (comparison)", op));
}
cc.mov(tmp,0);
cc.bind(label_then);
return tmp;
}
enum binary_operation{lnot, inc, dec, bnot, neg};
x86::Gp gen_operation(jit_holder& jh, binary_operation op, x86::Gp a){
x86::Compiler& cc = jh.cc;
switch (op) {
case lnot: throw std::runtime_error("Current operation not supported in gen_operation(lnot)");
case inc: { cc.inc(a); break; }
case dec: { cc.dec(a); break; }
case bnot: { cc.not_(a); break; }
case neg: { cc.neg(a); break; }
default: throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (unary)", op));
}
return a;
}
/* template <typename T>
inline typename std::enable_if_t<std::is_unsigned<T>::value, x86::Gp> gen_ext(jit_holder& jh, T val, unsigned size, bool is_signed) const {
auto val_reg = get_reg_for(jh, sizeof(val)*8);
auto tmp = get_reg_for(jh, size);
jh.cc.mov(val_reg, val);
if(is_signed) jh.cc.movsx(tmp, val_reg);
else jh.cc.movzx(tmp,val_reg);
return tmp;
}
template <typename T>
inline typename std::enable_if_t<std::is_signed<T>::value, x86::Gp> gen_ext(jit_holder& jh, T val, unsigned size, bool is_signed) const {
auto val_reg = get_reg_for(jh, sizeof(val)*8);
auto tmp = get_reg_for(jh, size);
jh.cc.mov(val_reg, val);
if(is_signed) jh.cc.movsx(tmp, val_reg);
else jh.cc.movzx(tmp,val_reg);
return tmp;
} */
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
inline x86::Gp gen_ext(jit_holder& jh, T val, unsigned size, bool is_signed) {
auto val_reg = get_reg_for(jh, sizeof(val)*8);
jh.cc.mov(val_reg, val);
return gen_ext(jh, val_reg, size, is_signed);
}
//explicit Gp size cast
inline x86::Gp gen_ext(jit_holder& jh, x86::Gp val, unsigned size, bool is_signed) {
auto& cc = jh.cc;
if(is_signed){
switch(val.size()){
case 1: cc.cbw(val); break;
case 2: cc.cwde(val); break;
case 4: cc.cdqe(val); break;
case 8: break;
default: throw std::runtime_error("Invalid register size in gen_ext");
}
}
switch(size){
case 8: cc.and_(val,std::numeric_limits<uint8_t>::max()); return val.r8();
case 16: cc.and_(val,std::numeric_limits<uint16_t>::max()); return val.r16();
case 32: cc.and_(val,std::numeric_limits<uint32_t>::max()); return val.r32();
case 64: cc.and_(val,std::numeric_limits<uint64_t>::max()); return val.r64();
case 128: return val.r64();
default: throw std::runtime_error("Invalid size in gen_ext");
}
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, uint32_t length){
x86::Compiler& cc = jh.cc;
auto ret_reg = cc.newInt32();
auto mem_type_reg = cc.newInt32();
cc.mov(mem_type_reg, type);
auto space_reg = cc.newInt32();
cc.mov(space_reg, static_cast<uint16_t>(iss::address_type::VIRTUAL));
auto val_ptr = cc.newUIntPtr();
cc.mov(val_ptr, read_mem_buf);
InvokeNode* invokeNode;
uint64_t mask = 0;
x86::Gp val_reg = cc.newInt64();
switch(length){
case 1:{
cc.invoke(&invokeNode, &read_mem1, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint8_t>::max();
break;
}
case 2:{
cc.invoke(&invokeNode, &read_mem2, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint16_t>::max();
break;
}
case 4:{
cc.invoke(&invokeNode, &read_mem4, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint32_t>::max();
break;
}
case 8:{
cc.invoke(&invokeNode, &read_mem8, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint64_t>::max();
break;
}
default: throw std::runtime_error(fmt::format("Invalid length ({}) in gen_read_mem",length));
}
invokeNode->setRet(0, ret_reg);
invokeNode->setArg(0, jh.arch_if_ptr);
invokeNode->setArg(1, space_reg);
invokeNode->setArg(2, mem_type_reg);
invokeNode->setArg(3, addr);
invokeNode->setArg(4, val_ptr);
cc.mov(val_reg, x86::ptr_64(val_ptr));
cc.and_(val_reg, mask);
cc.cmp(ret_reg,0);
cc.jne(jh.trap_entry);
return val_reg;
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, x86::Gp length){
uint32_t length_val = 0;
auto length_ptr = jh.cc.newIntPtr();
jh.cc.mov(length_ptr, &length_val);
jh.cc.mov(x86::ptr_32(length_ptr),length);
return gen_read_mem(jh, type, addr, length);
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, uint64_t addr, x86::Gp length){
auto addr_reg = jh.cc.newInt64();
jh.cc.mov(addr_reg, addr);
uint32_t length_val = 0;
auto length_ptr = jh.cc.newIntPtr();
jh.cc.mov(length_ptr, &length_val);
jh.cc.mov(x86::ptr_32(length_ptr),length);
return gen_read_mem(jh, type, addr_reg, length_val);
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, uint64_t addr, uint32_t length){
auto addr_reg = jh.cc.newInt64();
jh.cc.mov(addr_reg, addr);
return gen_read_mem(jh, type, addr_reg, length);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, int64_t val){
auto val_reg = jh.cc.newInt64();
jh.cc.mov(val_reg, val);
gen_write_mem(jh, type, addr, val_reg);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, x86::Gp val){
x86::Compiler& cc = jh.cc;
auto mem_type_reg = cc.newInt32();
jh.cc.mov(mem_type_reg, type);
auto space_reg = cc.newInt32();
jh.cc.mov(space_reg, static_cast<uint16_t>(iss::address_type::VIRTUAL));
auto ret_reg = cc.newInt32();
InvokeNode* invokeNode;
if(val.isGpb()){
cc.invoke(&invokeNode, &write_mem1, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint8_t>());
}
else if(val.isGpw()){
cc.invoke(&invokeNode, &write_mem2, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint16_t>());
}
else if(val.isGpd()){
cc.invoke(&invokeNode, &write_mem4, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint32_t>());
}
else if(val.isGpq()){
cc.invoke(&invokeNode, &write_mem8, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint64_t>());
}
else throw std::runtime_error("Invalid register size in gen_write_mem");
invokeNode->setRet(0,ret_reg);
invokeNode->setArg(0, jh.arch_if_ptr);
invokeNode->setArg(1, space_reg);
invokeNode->setArg(2, mem_type_reg);
invokeNode->setArg(3, addr);
invokeNode->setArg(4, val);
cc.cmp(ret_reg,0);
cc.jne(jh.trap_entry);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, uint64_t addr, x86::Gp val){
auto addr_reg = jh.cc.newInt64();
jh.cc.mov(addr_reg, addr);
gen_write_mem(jh, type, addr_reg, val);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, uint64_t addr, int64_t val){
auto val_reg = jh.cc.newInt64();
jh.cc.mov(val_reg, val);
auto addr_reg = jh.cc.newInt64();
jh.cc.mov(addr_reg, addr);
gen_write_mem(jh, type, addr_reg, val_reg);
}

File diff suppressed because it is too large Load Diff