5 Commits

540 changed files with 60863 additions and 71826 deletions

View File

@ -1,6 +1,5 @@
cmake_minimum_required(VERSION 3.18)
cmake_minimum_required(VERSION 3.12)
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
###############################################################################
#
###############################################################################
@ -12,52 +11,41 @@ include(flink)
find_package(elfio QUIET)
find_package(jsoncpp)
find_package(Boost COMPONENTS coroutine REQUIRED)
find_package(absl REQUIRED)
add_subdirectory(softfloat)
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/iss/mem/memory_if.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/vm/vector_functions.cpp
src/iss/debugger/csr_names.cpp
src/iss/semihosting/semihosting.cpp
)
if(WITH_TCC)
list(APPEND LIB_SOURCES
src/vm/tcc/vm_tgc5c.cpp
)
endif()
if(WITH_LLVM)
list(APPEND LIB_SOURCES
src/vm/llvm/vm_tgc5c.cpp
src/vm/llvm/fp_impl.cpp
)
endif()
if(WITH_ASMJIT)
list(APPEND LIB_SOURCES
src/vm/asmjit/vm_tgc5c.cpp
)
endif()
# library files
FILE(GLOB GEN_ISS_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/iss/arch/*.cpp)
FILE(GLOB GEN_VM_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/interp/vm_*.cpp)
FILE(GLOB GEN_YAML_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/contrib/instr/*.yaml)
list(APPEND LIB_SOURCES ${GEN_ISS_SOURCES} ${GEN_VM_SOURCES})
foreach(FILEPATH ${GEN_ISS_SOURCES})
get_filename_component(CORE ${FILEPATH} NAME_WE)
string(TOUPPER ${CORE} CORE)
list(APPEND LIB_DEFINES CORE_${CORE})
endforeach()
message(STATUS "Core defines are ${LIB_DEFINES}")
if(WITH_LLVM)
@ -69,19 +57,16 @@ if(WITH_TCC)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/tcc/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(WITH_ASMJIT)
FILE(GLOB TCC_GEN_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src-gen/vm/asmjit/vm_*.cpp)
list(APPEND LIB_SOURCES ${TCC_GEN_SOURCES})
endif()
if(TARGET yaml-cpp::yaml-cpp)
list(APPEND LIB_SOURCES
src/iss/plugin/cycle_estimate.cpp
src/iss/plugin/instruction_count.cpp
)
endif()
# Define the library
add_library(${PROJECT_NAME} SHARED ${LIB_SOURCES})
@ -90,28 +75,33 @@ if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
target_compile_options(${PROJECT_NAME} PRIVATE /wd4293)
endif()
target_include_directories(${PROJECT_NAME} PUBLIC src)
target_include_directories(${PROJECT_NAME} PUBLIC src-gen)
target_force_link_libraries(${PROJECT_NAME} PRIVATE dbt-rise-core)
# only re-export the include paths
get_target_property(DBT_CORE_INCL dbt-rise-core INTERFACE_INCLUDE_DIRECTORIES)
target_include_directories(${PROJECT_NAME} INTERFACE ${DBT_CORE_INCL})
get_target_property(DBT_CORE_DEFS dbt-rise-core INTERFACE_COMPILE_DEFINITIONS)
if(NOT (DBT_CORE_DEFS STREQUAL DBT_CORE_DEFS-NOTFOUND))
target_compile_definitions(${PROJECT_NAME} INTERFACE ${DBT_CORE_DEFS})
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio softfloat scc-util Boost::coroutine abseil::abseil)
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio softfloat scc-util Boost::coroutine)
if(TARGET yaml-cpp::yaml-cpp)
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_PLUGINS)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries( ${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE
@ -131,7 +121,6 @@ install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/incl/iss COMPONENT ${PROJECT_NAME}
PATTERN "*.h" # select header files
)
install(FILES ${GEN_YAML_SOURCES} DESTINATION share/tgc-vp)
###############################################################################
#
###############################################################################
@ -140,7 +129,6 @@ project(tgc-sim)
find_package(Boost COMPONENTS program_options thread REQUIRED)
add_executable(${PROJECT_NAME} src/main.cpp)
if(TARGET ${CORE_NAME}_cpp)
list(APPEND TGC_SOURCES ${${CORE_NAME}_OUTPUT_FILES})
else()
@ -166,6 +154,7 @@ endforeach()
#if(WITH_TCC)
# target_compile_definitions(${PROJECT_NAME} PRIVATE WITH_TCC)
#endif()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc fmt::fmt)
if(TARGET Boost::program_options)
@ -173,9 +162,7 @@ if(TARGET Boost::program_options)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC ${BOOST_program_options_LIBRARY})
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC ${CMAKE_DL_LIBS})
if (Tcmalloc_FOUND)
target_link_libraries(${PROJECT_NAME} PUBLIC ${Tcmalloc_LIBRARIES})
endif(Tcmalloc_FOUND)
@ -194,23 +181,19 @@ if(BUILD_TESTING)
# ... CMake code to create tests ...
add_test(NAME tgc-sim-interp
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend interp)
if(WITH_TCC)
add_test(NAME tgc-sim-tcc
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend tcc)
endif()
if(WITH_LLVM)
add_test(NAME tgc-sim-llvm
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend llvm)
endif()
if(WITH_ASMJIT)
add_test(NAME tgc-sim-asmjit
COMMAND tgc-sim -f ${CMAKE_BINARY_DIR}/../../Firmwares/hello-world/hello --backend asmjit)
endif()
endif()
###############################################################################
#
###############################################################################
@ -225,7 +208,6 @@ if(TARGET scc-sysc)
add_library(${PROJECT_NAME} ${LIB_SOURCES})
target_compile_definitions(${PROJECT_NAME} PUBLIC WITH_SYSTEMC)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
foreach(F IN LISTS TGC_SOURCES)
if (${F} MATCHES ".*/arch/([^/]*)\.cpp")
string(REGEX REPLACE ".*/([^/]*)\.cpp" "\\1" CORE_NAME_LC ${F})
@ -233,12 +215,11 @@ if(TARGET scc-sysc)
target_compile_definitions(${PROJECT_NAME} PRIVATE CORE_${CORE_NAME})
endif()
endforeach()
target_link_libraries(${PROJECT_NAME} PUBLIC dbt-rise-tgc scc-sysc)
# if(WITH_LLVM)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${llvm_libs})
# endif()
set(LIB_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/src/sysc/core_complex.h)
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
@ -256,8 +237,3 @@ if(TARGET scc-sysc)
)
endif()
project(elfio-test)
find_package(Boost COMPONENTS program_options thread REQUIRED)
add_executable(${PROJECT_NAME} src/elfio.cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC elfio::elfio)

View File

@ -20,7 +20,7 @@ RVI:
mask: 0b00000000000000000000000001111111
size: 32
branch: true
delay: [1,1]
delay: 1
JALR:
index: 3
encoding: 0b00000000000000000000000001100111
@ -349,7 +349,7 @@ Zifencei:
size: 32
branch: false
delay: 1
RVM:
RV32M:
MUL:
index: 49
encoding: 0b00000010000000000000000000110011

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* Copyright (C) 2017 - 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -47,10 +47,10 @@ def getRegisterSizes(){
using namespace iss::arch;
constexpr std::array<const char*, ${registers.size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${registers.size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() = default;

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* Copyright (C) 2017 - 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -30,21 +30,11 @@
*
*******************************************************************************/
<%
def nativeSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
if(size<=128) return 128;
if(size<=256) return 256;
if(size<=512) return 512;
if(size<=1024) return 1024;
if(size<=2048) return 2048;
if(size<=4096) return 4096;
throw new IllegalArgumentException("Unsupported size in nativeSize in CORENAME.h.gtl");
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
def getRegisterSizes(){
def regs = registers.collect{nativeSize(it.size)}
def regs = registers.collect{nativeTypeSize(it.size)}
regs+=[32,32, 64, 64, 64, 32, 32] // append TRAP_STATE, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
return regs
}
@ -57,7 +47,13 @@ def getRegisterOffsets(){
}
return offsets
}
def byteSize(int size){
if(size<=8) return 8;
if(size<=16) return 16;
if(size<=32) return 32;
if(size<=64) return 64;
return 128;
}
def getCString(def val){
return val.toString()+'ULL'
}
@ -79,17 +75,15 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
constexpr static char const* const core_type = "${coreDef.name}";
static constexpr std::array<const char*, ${registers.size()}> reg_names{
static constexpr std::array<const char*, ${registers.size}> reg_names{
{"${registers.collect{it.name.toLowerCase()}.join('", "')}"}};
static constexpr std::array<const char*, ${registers.size()}> reg_aliases{
static constexpr std::array<const char*, ${registers.size}> reg_aliases{
{"${registers.collect{it.alias.toLowerCase()}.join('", "')}"}};
enum constants {${constants.collect{c -> c.name+"="+getCString(c.value)}.join(', ')}};
constexpr static unsigned FP_REGS_SIZE = ${constants.find {it.name=='FLEN'}?.value?:0};
constexpr static unsigned V_REGS_SIZE = ${constants.find {it.name=='VLEN'}?.value?:0};
enum reg_e {
${registers.collect{it.name}.join(', ')}, NUM_REGS, TRAP_STATE=NUM_REGS, PENDING_TRAP, ICOUNT, CYCLE, INSTRET, INSTRUCTION, LAST_BRANCH
@ -105,17 +99,17 @@ template <> struct traits<${coreDef.name.toLowerCase()}> {
using phys_addr_t = iss::typed_addr_t<iss::address_type::PHYSICAL>;
static constexpr std::array<const uint32_t, ${getRegisterSizes().size()}> reg_bit_widths{
static constexpr std::array<const uint32_t, ${getRegisterSizes().size}> reg_bit_widths{
{${getRegisterSizes().join(',')}}};
static constexpr std::array<const uint32_t, ${getRegisterOffsets().size()}> reg_byte_offsets{
static constexpr std::array<const uint32_t, ${getRegisterOffsets().size}> reg_byte_offsets{
{${getRegisterOffsets().join(',')}}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);
enum sreg_flag_e { FLAGS };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')}, IMEM = MEM };
enum mem_type_e { ${spaces.collect{it.name}.join(', ')} };
enum class opcode_e {<%instructions.eachWithIndex{instr, index -> %>
${instr.instruction.name} = ${index},<%}%>
@ -137,6 +131,8 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
@ -145,20 +141,20 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%
registers.each { reg -> if(reg.size>64) {%>
uint8_t ${reg.name}[${reg.size/8}] = {0};<%
}else if(reg.size>0) {%>
uint${nativeSize(reg.size)}_t ${reg.name} = 0;<%
registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
}}%>
uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0; // counts number of instructions undisturbed
uint64_t cycle = 0; // counts number of cycles, in functional mode equals icount
uint64_t instret = 0; // counts number of instructions, can be reset via CSR write
uint32_t instruction = 0; // holds op code of currently executed instruction
uint32_t last_branch = 0; // indicates if last branch was taken
uint64_t icount = 0;
uint64_t cycle = 0;
uint64_t instret = 0;
uint32_t instruction = 0;
uint32_t last_branch = 0;
} reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode;
@ -172,31 +168,6 @@ if(fcsr != null) {%>
<%} else { %>
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
<%}
def vstart = registers.find {it.name=='vstart'}
def vl = registers.find {it.name=='vl'}
def vtype = registers.find {it.name=='vtype'}
def vxsat = registers.find {it.name=='vxsat'}
def vxrm = registers.find {it.name=='vxrm'}
if(vtype != null) {%>
uint${vstart.size}_t get_vstart(){return reg.vstart;}
void set_vstart(uint${vstart.size}_t val){reg.vstart = val;}
uint${vl.size}_t get_vl(){return reg.vl;}
uint${vtype.size}_t get_vtype(){return reg.vtype;}
uint${vxsat.size}_t get_vxsat(){return reg.vxsat;}
void set_vxsat(uint${vxsat.size}_t val){reg.vxsat = val;}
uint${vxrm.size}_t get_vxrm(){return reg.vxrm;}
void set_vxrm(uint${vxrm.size}_t val){reg.vxrm = val;}
<%} else { %>
uint32_t get_vstart(){return 0;}
void set_vstart(uint32_t val){}
uint32_t get_vl(){return 0;}
uint32_t get_vtype(){return 0;}
uint32_t get_vxsat(){return 0;}
void set_vxsat(uint32_t val){}
uint32_t get_vxrm(){return 0;}
void set_vxrm(uint32_t val){}
<%}%>
};

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -45,17 +45,17 @@ namespace interp {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -66,17 +66,17 @@ namespace llvm {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -88,17 +88,17 @@ namespace tcc {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -110,17 +110,17 @@ namespace asmjit {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017-2024 MINRES Technologies GmbH
* Copyright (C) 2017, 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -37,14 +37,7 @@
#include <iss/asmjit/vm_base.h>
#include <asmjit/asmjit.h>
#include <util/logging.h>
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}
def aes = functions.find { it.contains('aes') }
if(aes != null) {%>
#include <vm/aes_sbox.h>
<%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@ -53,22 +46,6 @@ if(aes != null) {%>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
#ifndef _MSC_VER
using int128_t = __int128;
using uint128_t = unsigned __int128;
namespace std {
template <> struct make_unsigned<__int128> { typedef unsigned __int128 type; };
template <> class __make_unsigned_selector<__int128 unsigned, false, false> {
public:
typedef unsigned __int128 __type;
};
template <> struct is_signed<int128_t> { static constexpr bool value = true; };
template <> struct is_signed<uint128_t> { static constexpr bool value = false; };
template <> struct is_unsigned<int128_t> { static constexpr bool value = false; };
template <> struct is_unsigned<uint128_t> { static constexpr bool value = true; };
} // namespace std
#endif
namespace iss {
namespace asmjit {
@ -102,33 +79,12 @@ public:
}
protected:
using super::get_ptr_for;
using super::get_reg_for;
using super::get_reg_for_Gp;
using super::load_reg_from_mem;
using super::load_reg_from_mem_Gp;
using super::write_reg_to_mem;
using super::gen_read_mem;
using super::gen_write_mem;
using super::gen_leave;
using super::gen_sync;
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, jit_holder&) override;
enum globals_e {TVAL = 0, GLOBALS_SIZE};
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
void gen_instr_prologue(jit_holder& jh);
void gen_instr_epilogue(jit_holder& jh);
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause);
template <typename T, typename = typename std::enable_if<std::is_integral<T>::value>::type> void gen_set_tval(jit_holder& jh, T new_tval) ;
void gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) ;
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
@ -136,34 +92,34 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->core.reg.trap_state = trap_val;
}
#include <vm/asmjit/helper_func.h>
<%functions.each{ it.eachLine { %>
${it}<%}
}%>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
uint32_t length;
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
//needs to be declared after instr_descr
decoder instr_decoder;
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
continuation_e __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
@ -171,183 +127,126 @@ private:
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate disass */
<%instr.disass.eachLine{%>
${it}<%}%>
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignature::build<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("${instr.name}_{:#x}:",pc.val).c_str());
gen_sync(jh, PRE_SYNC, ${idx});
mov(cc, jh.pc, pc.val);
gen_set_tval(jh, instr);
//ideally only do this if necessary (someone / plugin needs it)
cc.mov(jh.pc,PC);
cc.comment(fmt::format("\\n${instr.name}_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, ${idx});
pc=pc+ ${instr.length/8};
mov(cc, jh.next_pc, pc.val);
gen_instr_prologue(jh);
gen_instr_prologue(jh, pc.val);
cc.comment("\\n//behavior:");
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
gen_sync(jh, POST_SYNC, ${idx});
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, ${idx});
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
continuation_e illegal_instruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
x86::Compiler& cc = jh.cc;
if(this->disass_enabled){
auto mnemonic = std::string("illegal_instruction");
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignature::build<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
return BRANCH;
}
cc.comment(fmt::format("illegal_instruction{:#x}:",pc.val).c_str());
gen_sync(jh, PRE_SYNC, instr_descr.size());
mov(cc, jh.pc, pc.val);
gen_set_tval(jh, instr);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
mov(cc, jh.next_pc, pc.val);
gen_instr_prologue(jh);
gen_raise(jh, 0, 2);
gen_sync(jh, POST_SYNC, instr_descr.size());
gen_instr_epilogue(jh);
return ILLEGAL_INSTR;
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id)
, instr_decoder([this]() {
std::vector<generic_instruction_descriptor> g_instr_descr;
g_instr_descr.reserve(instr_descr.size());
for (uint32_t i = 0; i < instr_descr.size(); ++i) {
generic_instruction_descriptor new_instr_descr {instr_descr[i].value, instr_descr[i].mask, i};
g_instr_descr.push_back(new_instr_descr);
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr: instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
return std::move(g_instr_descr);
}()) {}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_holder& jh) {
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return ILLEGAL_FETCH;
throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
f = instr_descr[inst_index].op;
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr)
f = &this_class::illegal_instruction;
f = &this_class::illegal_intruction;
return (this->*f)(pc, instr, jh);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_prologue(jit_holder& jh) {
auto& cc = jh.cc;
x86_reg_t current_trap_state = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
mov(cc, get_ptr_for(jh, traits::PENDING_TRAP), current_trap_state);
cc.comment("//Instruction prologue end");
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("//Instruction epilogue begin");
x86_reg_t current_trap_state = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
cc.comment("//Instruction epilogue end");
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){
jh.pc = load_reg_from_mem_Gp(jh, traits::PC);
jh.next_pc = load_reg_from_mem_Gp(jh, traits::NEXT_PC);
jh.globals.resize(GLOBALS_SIZE);
jh.globals[TVAL] = get_reg_Gp(jh.cc, 64, false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_epilogue(jit_holder& jh){
x86::Compiler& cc = jh.cc;
cc.comment("//block epilogue begin");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
this->write_back(jh);
x86::Gp current_trap_state = get_reg_for_Gp(cc, traits::TRAP_STATE);
mov(cc, current_trap_state, get_ptr_for(jh, traits::TRAP_STATE));
x86::Gp current_pc = get_reg_for_Gp(cc, traits::PC);
mov(cc, current_pc, get_ptr_for(jh, traits::PC));
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignature::build<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
call_enter_trap->setArg(1, current_trap_state);
call_enter_trap->setArg(2, current_pc);
call_enter_trap->setArg(3, jh.globals[TVAL]);
x86_reg_t current_next_pc = get_reg_for(cc, traits::NEXT_PC);
mov(cc, current_next_pc, get_ptr_for(jh, traits::NEXT_PC));
mov(cc, jh.next_pc, current_next_pc);
mov(cc, get_ptr_for(jh, traits::LAST_BRANCH), static_cast<int>(UNKNOWN_JUMP));
cc.ret(jh.next_pc);
}
template <typename ARCH>
inline void vm_impl<ARCH>::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
auto& cc = jh.cc;
auto tmp1 = get_reg_for(cc, traits::TRAP_STATE);
mov(cc, tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
mov(cc, get_ptr_for(jh, traits::TRAP_STATE), tmp1);
cc.jmp(jh.trap_entry);
}
template <typename ARCH>
template <typename T, typename>
void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, T new_tval) {
mov(jh.cc, jh.globals[TVAL], new_tval);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_set_tval(jit_holder& jh, x86_reg_t _new_tval) {
if(nonstd::holds_alternative<x86::Gp>(_new_tval)) {
x86::Gp new_tval = nonstd::get<x86::Gp>(_new_tval);
if(new_tval.size() < 8)
new_tval = gen_ext_Gp(jh.cc, new_tval, 64, false);
mov(jh.cc, jh.globals[TVAL], new_tval);
} else {
throw std::runtime_error("Variant not supported in gen_set_tval");
}
}
} // namespace tgc5c
} // namespace ${coreDef.name.toLowerCase()}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
@ -358,30 +257,22 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
} // namespace asmjit
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
auto* vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
auto* vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017-2024 MINRES Technologies GmbH
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -31,17 +31,12 @@
*******************************************************************************/
// clang-format off
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
// vm_base needs to be included before gdb_session as termios.h (via boost and gdb_server) has a define which clashes with a variable
// name in ConstantRange.h
#include <iss/llvm/vm_base.h>
#include <iss/iss.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/instruction_decoder.h>
#include <iss/iss.h>
#include <iss/llvm/vm_base.h>
#include <util/logging.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@ -87,9 +82,7 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
template <typename T> inline ConstantInt *size(T type) {
return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits()));
}
@ -103,17 +96,19 @@ protected:
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, BasicBlock *) override;
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void set_tval(uint64_t new_tval);
void set_tval(Value* new_tval);
void gen_trap_behavior(BasicBlock *) override;
void gen_instr_prologue();
void gen_instr_epilogue(BasicBlock *bb);
void gen_trap_check(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(this->get_typeptr(i), get_reg_ptr(i), false);
@ -137,79 +132,51 @@ protected:
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}
}
if(fcsr != null) {%>
Value* NaNBox16(BasicBlock* bb, Value* NaNBox16_val){
if(static_cast<uint32_t>(traits::FLEN) == 16)
return this->gen_ext(NaNBox16_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 32, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 16), this->gen_ext(NaNBox16_val, traits::FLEN))), traits::FLEN, false);
}
Value* NaNBox32(BasicBlock* bb, Value* NaNBox32_val){
if(static_cast<uint32_t>(traits::FLEN) == 32)
return this->gen_ext(NaNBox32_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 64, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 32), this->gen_ext(NaNBox32_val, traits::FLEN))), traits::FLEN, false);
}
Value* NaNBox64(BasicBlock* bb, Value* NaNBox64_val){
if(static_cast<uint32_t>(traits::FLEN) == 64)
return this->gen_ext(NaNBox64_val, traits::FLEN, false);
auto box = this->builder.CreateNot((this->gen_ext(0, 128, false)));
return this->gen_ext((this->builder.CreateOr(this->builder.CreateShl(this->gen_ext(box, traits::FLEN), 64), this->gen_ext(NaNBox64_val, traits::FLEN))), traits::FLEN, false);
}
<%}%>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
uint32_t length;
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
//needs to be declared after instr_descr
decoder instr_decoder;
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
std::tuple<continuation_e, BasicBlock*> __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){
bb->setName(fmt::format("${instr.name}_0x{:X}",pc.val));
this->gen_sync(PRE_SYNC,${idx});
uint64_t PC = pc.val;
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
std::vector<Value*> args {
this->core_ptr,
this->gen_const(64, pc.val),
this->builder.CreateGlobalStringPtr(mnemonic),
};
this->builder.CreateCall(this->mod->getFunction("print_disass"), args);
}
bb->setName(fmt::format("${instr.name}_0x{:X}",pc.val));
this->gen_sync(PRE_SYNC,${idx});
this->gen_set_pc(pc, traits::PC);
this->set_tval(instr);
auto cur_pc_val = this->gen_const(32,pc.val);
pc=pc+ ${instr.length/8};
this->gen_set_pc(pc, traits::NEXT_PC);
this->gen_instr_prologue();
/*generate behavior*/
<%instr.behavior.eachLine{%>${it}
<%}%>
this->gen_trap_check(bb);
this->gen_sync(POST_SYNC, ${idx});
this->gen_instr_epilogue(bb);
this->builder.CreateBr(bb);
return returnValue;
}
@ -217,16 +184,7 @@ private:
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_instruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
if(this->disass_enabled){
auto mnemonic = std::string("illegal_instruction");
std::vector<Value*> args {
this->core_ptr,
this->gen_const(64, pc.val),
this->builder.CreateGlobalStringPtr(mnemonic),
};
this->builder.CreateCall(this->mod->getFunction("print_disass"), args);
}
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), true),
get_reg_ptr(traits::PC), true);
@ -235,13 +193,62 @@ private:
this->gen_const(64U, 1)),
get_reg_ptr(traits::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->set_tval(instr);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC, instr_descr.size());
bb = this->leave_blk;
this->gen_instr_epilogue(bb);
this->builder.CreateBr(bb);
return std::make_tuple(ILLEGAL_INSTR, nullptr);
this->gen_trap_check(this->leave_blk);
return std::make_tuple(BRANCH, nullptr);
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
@ -254,103 +261,84 @@ template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id)
, instr_decoder([this]() {
std::vector<generic_instruction_descriptor> g_instr_descr;
g_instr_descr.reserve(instr_descr.size());
for (uint32_t i = 0; i < instr_descr.size(); ++i) {
generic_instruction_descriptor new_instr_descr {instr_descr[i].value, instr_descr[i].mask, i};
g_instr_descr.push_back(new_instr_descr);
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
return std::move(g_instr_descr);
}()) {}
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block) {
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((instr & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001){
this->builder.CreateBr(this->leave_blk);
return std::make_tuple(JUMP_TO_SELF, nullptr);
}
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
f = instr_descr[inst_index].op;
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_instruction;
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, this_block);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
template <typename ARCH> void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC),get_reg_ptr(traits::NEXT_PC), false));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true);
this->builder.CreateBr(this->trap_blk);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) };
this->builder.CreateCall(this->mod->getFunction("leave_trap"), args);
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(UNKNOWN_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8);
this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()), get_reg_ptr(traits::LAST_BRANCH), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_wait(unsigned type) {
template <typename ARCH> void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<Value *> args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) };
this->builder.CreateCall(this->mod->getFunction("wait"), args);
}
template <typename ARCH>
inline void vm_impl<ARCH>::set_tval(uint64_t tval) {
auto tmp_tval = this->gen_const(64, tval);
this->set_tval(tmp_tval);
}
template <typename ARCH>
inline void vm_impl<ARCH>::set_tval(Value* new_tval) {
this->builder.CreateStore(this->gen_ext(new_tval, 64, false), this->tval);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
this->gen_sync(POST_SYNC, -1); //TODO get right InstrId
auto *trap_state_val = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
auto *cur_pc_val = this->builder.CreateLoad(this->get_typeptr(traits::PC), get_reg_ptr(traits::PC), true);
std::vector<Value *> args{this->core_ptr,
this->adj_to64(trap_state_val),
this->adj_to64(cur_pc_val),
this->adj_to64(this->builder.CreateLoad(this->get_type(64),this->tval))};
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(this->get_typeptr(traits::PC), get_reg_ptr(traits::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
this->builder.CreateStore(this->gen_const(32U, static_cast<int>(UNKNOWN_JUMP)), get_reg_ptr(traits::LAST_BRANCH), false);
auto *trap_addr_val = this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_prologue() {
auto* trap_val =
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::PENDING_TRAP), get_reg_ptr(arch::traits<ARCH>::PENDING_TRAP));
this->builder.CreateStore(trap_val, get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), false);
}
template <typename ARCH>
void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
template <typename ARCH> inline void vm_impl<ARCH>::gen_trap_check(BasicBlock *bb) {
auto* target_bb = BasicBlock::Create(this->mod->getContext(), "", this->func, bb);
auto *v = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
@ -358,14 +346,6 @@ void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
target_bb, this->trap_blk, 1);
this->builder.SetInsertPoint(target_bb);
// update icount
auto* icount_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::ICOUNT), get_reg_ptr(arch::traits<ARCH>::ICOUNT)), this->gen_const(64U, 1));
this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits<ARCH>::ICOUNT), false);
//increment cyclecount
auto* cycle_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::CYCLE), get_reg_ptr(arch::traits<ARCH>::CYCLE)), this->gen_const(64U, 1));
this->builder.CreateStore(cycle_val, get_reg_ptr(arch::traits<ARCH>::CYCLE), false);
}
} // namespace ${coreDef.name.toLowerCase()}
@ -379,30 +359,22 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
} // namespace llvm
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
auto* vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
auto* vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*, arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t*)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2020-2024 MINRES Technologies GmbH
* Copyright (C) 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -37,10 +37,7 @@
#include <iss/tcc/vm_base.h>
#include <util/logging.h>
#include <sstream>
#include <iss/instruction_decoder.h>
<%def fcsr = registers.find {it.name=='FCSR'}
if(fcsr != null) {%>
#include <vm/fp_functions.h><%}%>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
@ -83,21 +80,16 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = continuation_e;
using compile_ret_t = std::tuple<continuation_e>;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
<%}%>
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@ -105,9 +97,7 @@ if(fcsr != null) {%>
void gen_leave_trap(tu_builder& tu, unsigned lvl);
inline void gen_set_tval(tu_builder& tu, uint64_t new_tval);
inline void gen_set_tval(tu_builder& tu, value new_tval);
void gen_wait(tu_builder& tu, unsigned type);
inline void gen_trap_check(tu_builder& tu) {
tu("if(*trap_state!=0) goto trap_entry;");
@ -138,56 +128,32 @@ if(fcsr != null) {%>
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
<%functions.each{ it.eachLine { %>
${it}<%}
}
if(fcsr != null) {%>
value NaNBox16(tu_builder& tu, value NaNBox16_val){
if(static_cast<uint32_t>(traits::FLEN) == 16)
return tu.ext(NaNBox16_val, traits::FLEN, false);
else {
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 32, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 16), NaNBox16_val)), traits::FLEN, false);
}
}
value NaNBox32(tu_builder& tu, value NaNBox32_val){
if(static_cast<uint32_t>(traits::FLEN) == 32)
return tu.ext(NaNBox32_val, traits::FLEN, false);
else {
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 64, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 32), NaNBox32_val)), traits::FLEN, false);
}
}
value NaNBox64(tu_builder& tu, value NaNBox64_val){
if(static_cast<uint32_t>(traits::FLEN) == 64)
return tu.ext(NaNBox64_val, traits::FLEN, false);
else {
throw new std::runtime_error("tcc does not support Registers wider than 64 bits");
auto box = tu.assignment(tu.logical_neg((tu.ext(0, 128, false))), traits::FLEN) ;
return tu.ext((tu.bitwise_or(tu.shl(box, 64), NaNBox64_val)), traits::FLEN, false);
}
}
<%}%>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
uint32_t length;
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
const std::array<instruction_descriptor, ${instructions.size()}> instr_descr = {{
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
//needs to be declared after instr_descr
decoder instr_decoder;
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
@ -198,39 +164,82 @@ private:
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
<%instr.behavior.eachLine{%>${it}
<%}%>
tu("(*icount)++;");
tu("(*instret)++;");
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
return returnValue;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_instruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size());
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, std::string("illegal_instruction"));
}
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_set_tval(tu, instr);
gen_raise_trap(tu, 0, 2); // illegal instruction trap
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
return ILLEGAL_INSTR;
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
@ -243,139 +252,65 @@ template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id)
, instr_decoder([this]() {
std::vector<generic_instruction_descriptor> g_instr_descr;
g_instr_descr.reserve(instr_descr.size());
for (uint32_t i = 0; i < instr_descr.size(); ++i) {
generic_instruction_descriptor new_instr_descr {instr_descr[i].value, instr_descr[i].mask, i};
g_instr_descr.push_back(new_instr_descr);
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
return std::move(g_instr_descr);
}()) {}
template <typename ARCH>
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok)
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
f = instr_descr[inst_index].op;
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_instruction;
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 32));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_set_tval(tu_builder& tu, uint64_t new_tval) {
tu(fmt::format("tval = {};", new_tval));
}
template <typename ARCH> void vm_impl<ARCH>::gen_set_tval(tu_builder& tu, value new_tval) {
tu(fmt::format("tval = {};", new_tval.str));
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
}
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
this->gen_sync(tu, POST_SYNC, -1);
tu("enter_trap(core_ptr, *trap_state, *pc, tval);");
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
tu("return *next_pc;");
}
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
<%if(fcsr != null) {
def flen = constants.find { it.name == 'FLEN' }?.value ?: 0
%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint16_t (*fadd_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fadd_h << ";\\n";
os << "uint16_t (*fsub_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fsub_h << ";\\n";
os << "uint16_t (*fmul_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fmul_h << ";\\n";
os << "uint16_t (*fdiv_h)(uint16_t v1, uint16_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_h << ";\\n";
os << "uint16_t (*fsqrt_h)(uint16_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_h << ";\\n";
os << "uint16_t (*fcmp_h)(uint16_t v1, uint16_t v2, uint16_t op)=" << (uintptr_t)&fcmp_h << ";\\n";
os << "uint16_t (*fmadd_h)(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode)=" << (uintptr_t)&fmadd_h << ";\\n";
os << "uint16_t (*fsel_h)(uint16_t v1, uint16_t v2, uint16_t op)=" << (uintptr_t)&fsel_h << ";\\n";
os << "uint16_t (*fclass_h)(uint16_t v1)=" << (uintptr_t)&fclass_h << ";\\n";
os << "uint16_t (*unbox_h)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_h << ";\\n";
os << "uint32_t (*f16toi32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toi32 << ";\\n";
os << "uint32_t (*f16toui32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toui32 << ";\\n";
os << "uint16_t (*i32tof16)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof16 << ";\\n";
os << "uint16_t (*ui32tof16)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof16 << ";\\n";
os << "uint64_t (*f16toi64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toi64 <<";\\n";
os << "uint64_t (*f16toui64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f16toui64 <<";\\n";
os << "uint16_t (*i64tof16)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof16 <<";\\n";
os << "uint16_t (*ui64tof16)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof16 <<";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
os << "uint32_t (*fmul_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fmul_s << ";\\n";
os << "uint32_t (*fdiv_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_s << ";\\n";
os << "uint32_t (*fsqrt_s)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_s << ";\\n";
os << "uint32_t (*fcmp_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fcmp_s << ";\\n";
os << "uint32_t (*fmadd_s)(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_s << ";\\n";
os << "uint32_t (*fsel_s)(uint32_t v1, uint32_t v2, uint32_t op)=" << (uintptr_t)&fsel_s << ";\\n";
os << "uint32_t (*fclass_s)( uint32_t v1 )=" << (uintptr_t)&fclass_s << ";\\n";
os << "uint32_t (*unbox_s)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
os << "uint32_t (*f32toi32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toi32 << ";\\n";
os << "uint32_t (*f32toui32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toui32 << ";\\n";
os << "uint32_t (*i32tof32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof32 << ";\\n";
os << "uint32_t (*ui32tof32)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof32 << ";\\n";
os << "uint64_t (*f32toi64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toi64 <<";\\n";
os << "uint64_t (*f32toui64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32toui64 <<";\\n";
os << "uint32_t (*i64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof32 <<";\\n";
os << "uint32_t (*ui64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof32 <<";\\n";
<%if(flen > 32) {%>
os << "uint64_t (*fadd_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fadd_d << ";\\n";
os << "uint64_t (*fsub_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fsub_d << ";\\n";
os << "uint64_t (*fmul_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fmul_d << ";\\n";
os << "uint64_t (*fdiv_d)(uint64_t v1, uint64_t v2, uint8_t mode)=" << (uintptr_t)&fdiv_d << ";\\n";
os << "uint64_t (*fsqrt_d)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&fsqrt_d << ";\\n";
os << "uint64_t (*fcmp_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fcmp_d << ";\\n";
os << "uint64_t (*fmadd_d)(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode)=" << (uintptr_t)&fmadd_d << ";\\n";
os << "uint64_t (*fsel_d)(uint64_t v1, uint64_t v2, uint32_t op)=" << (uintptr_t)&fsel_d << ";\\n";
os << "uint64_t (*fclass_d)(uint64_t v1 )=" << (uintptr_t)&fclass_d << ";\\n";
os << "uint64_t (*unbox_d)(uint8_t FLEN, uint64_t v)=" << (uintptr_t)&unbox_d << ";\\n";
os << "uint32_t (*f64tof32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64tof32 << ";\\n";
os << "uint64_t (*f32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&f32tof64 << ";\\n";
os << "uint64_t (*f64toi64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toi64 <<";\\n";
os << "uint64_t (*f64toui64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toui64 <<";\\n";
os << "uint64_t (*i64tof64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&i64tof64 <<";\\n";
os << "uint64_t (*ui64tof64)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&ui64tof64 <<";\\n";
os << "uint64_t (*i32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&i32tof64 <<";\\n";
os << "uint64_t (*ui32tof64)(uint32_t v1, uint8_t mode)=" << (uintptr_t)&ui32tof64 <<";\\n";
os << "uint32_t (*f64toi32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toi32 <<";\\n";
os << "uint32_t (*f64toui32)(uint64_t v1, uint8_t mode)=" << (uintptr_t)&f64toui32 <<";\\n";
<%}
}%>
tu.add_prologue(os.str());
}
} // namespace ${coreDef.name.toLowerCase()}
@ -388,30 +323,22 @@ std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreD
} // namesapce tcc
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::${coreDef.name.toLowerCase()}>();
auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::${coreDef.name.toLowerCase()}>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};

View File

@ -1,2 +0,0 @@
build/*/*.o
build/*/*.a

View File

@ -327,7 +327,7 @@ set(OTHERS
set(LIB_SOURCES ${PRIMITIVES} ${SPECIALIZE} ${OTHERS})
add_library(softfloat STATIC ${LIB_SOURCES})
add_library(softfloat ${LIB_SOURCES})
set_property(TARGET softfloat PROPERTY C_STANDARD 99)
target_compile_definitions(softfloat PRIVATE
SOFTFLOAT_ROUND_ODD
@ -347,7 +347,7 @@ set_target_properties(softfloat PROPERTIES
install(TARGETS softfloat
EXPORT ${PROJECT_NAME}Targets # for downstream dependencies
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}/static COMPONENT libs # static lib
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # static lib
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # shared lib
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT libs # for mac
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} COMPONENT devel # headers for mac (note the different component -> different package)

View File

@ -1,24 +0,0 @@
Package Overview for Berkeley SoftFloat Release 3e
==================================================
John R. Hauser<br>
2018 January 20
Berkeley SoftFloat is a software implementation of binary floating-point
that conforms to the IEEE Standard for Floating-Point Arithmetic. SoftFloat
is distributed in the form of C source code. Building the SoftFloat sources
generates a library file (typically `softfloat.a` or `libsoftfloat.a`)
containing the floating-point subroutines.
The SoftFloat package is documented in the following files in the `doc`
subdirectory:
* [SoftFloat.html](http://www.jhauser.us/arithmetic/SoftFloat-3/doc/SoftFloat.html) Documentation for using the SoftFloat functions.
* [SoftFloat-source.html](http://www.jhauser.us/arithmetic/SoftFloat-3/doc/SoftFloat-source.html) Documentation for building SoftFloat.
* [SoftFloat-history.html](http://www.jhauser.us/arithmetic/SoftFloat-3/doc/SoftFloat-history.html) History of the major changes to SoftFloat.
Other files in the package comprise the source code for SoftFloat.

View File

@ -50,4 +50,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -50,4 +50,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -50,4 +50,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -1,399 +0,0 @@
#=============================================================================
#
# This Makefile is part of the SoftFloat IEEE Floating-Point Arithmetic
# Package, Release 3e, by John R. Hauser.
#
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
# University of California. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions, and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions, and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the University nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
# DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#=============================================================================
SOURCE_DIR ?= ../../source
SPECIALIZE_TYPE ?= RISCV
MARCH ?= rv64gcv_zfh_zfhmin
MABI ?= lp64d
SOFTFLOAT_OPTS ?= \
-DSOFTFLOAT_ROUND_ODD -DINLINE_LEVEL=5 -DSOFTFLOAT_FAST_DIV32TO16 \
-DSOFTFLOAT_FAST_DIV64TO32
DELETE = rm -f
C_INCLUDES = -I. -I$(SOURCE_DIR)/$(SPECIALIZE_TYPE) -I$(SOURCE_DIR)/include
COMPILE_C = \
riscv64-unknown-linux-gnu-gcc -c -march=$(MARCH) -mabi=$(MABI) -Werror-implicit-function-declaration -DSOFTFLOAT_FAST_INT64 \
$(SOFTFLOAT_OPTS) $(C_INCLUDES) -O2 -o $@
MAKELIB = ar crs $@
OBJ = .o
LIB = .a
OTHER_HEADERS = $(SOURCE_DIR)/include/opts-GCC.h
.PHONY: all
all: softfloat$(LIB)
OBJS_PRIMITIVES = \
s_eq128$(OBJ) \
s_le128$(OBJ) \
s_lt128$(OBJ) \
s_shortShiftLeft128$(OBJ) \
s_shortShiftRight128$(OBJ) \
s_shortShiftRightJam64$(OBJ) \
s_shortShiftRightJam64Extra$(OBJ) \
s_shortShiftRightJam128$(OBJ) \
s_shortShiftRightJam128Extra$(OBJ) \
s_shiftRightJam32$(OBJ) \
s_shiftRightJam64$(OBJ) \
s_shiftRightJam64Extra$(OBJ) \
s_shiftRightJam128$(OBJ) \
s_shiftRightJam128Extra$(OBJ) \
s_shiftRightJam256M$(OBJ) \
s_countLeadingZeros8$(OBJ) \
s_countLeadingZeros16$(OBJ) \
s_countLeadingZeros32$(OBJ) \
s_countLeadingZeros64$(OBJ) \
s_add128$(OBJ) \
s_add256M$(OBJ) \
s_sub128$(OBJ) \
s_sub256M$(OBJ) \
s_mul64ByShifted32To128$(OBJ) \
s_mul64To128$(OBJ) \
s_mul128By32$(OBJ) \
s_mul128To256M$(OBJ) \
s_approxRecip_1Ks$(OBJ) \
s_approxRecip32_1$(OBJ) \
s_approxRecipSqrt_1Ks$(OBJ) \
s_approxRecipSqrt32_1$(OBJ) \
OBJS_SPECIALIZE = \
softfloat_raiseFlags$(OBJ) \
s_f16UIToCommonNaN$(OBJ) \
s_commonNaNToF16UI$(OBJ) \
s_propagateNaNF16UI$(OBJ) \
s_bf16UIToCommonNaN$(OBJ) \
s_commonNaNToBF16UI$(OBJ) \
s_f32UIToCommonNaN$(OBJ) \
s_commonNaNToF32UI$(OBJ) \
s_propagateNaNF32UI$(OBJ) \
s_f64UIToCommonNaN$(OBJ) \
s_commonNaNToF64UI$(OBJ) \
s_propagateNaNF64UI$(OBJ) \
extF80M_isSignalingNaN$(OBJ) \
s_extF80UIToCommonNaN$(OBJ) \
s_commonNaNToExtF80UI$(OBJ) \
s_propagateNaNExtF80UI$(OBJ) \
f128M_isSignalingNaN$(OBJ) \
s_f128UIToCommonNaN$(OBJ) \
s_commonNaNToF128UI$(OBJ) \
s_propagateNaNF128UI$(OBJ) \
OBJS_OTHERS = \
s_roundToUI32$(OBJ) \
s_roundToUI64$(OBJ) \
s_roundToI32$(OBJ) \
s_roundToI64$(OBJ) \
s_normSubnormalBF16Sig$(OBJ) \
s_roundPackToBF16$(OBJ) \
s_normSubnormalF16Sig$(OBJ) \
s_roundPackToF16$(OBJ) \
s_normRoundPackToF16$(OBJ) \
s_addMagsF16$(OBJ) \
s_subMagsF16$(OBJ) \
s_mulAddF16$(OBJ) \
s_normSubnormalF32Sig$(OBJ) \
s_roundPackToF32$(OBJ) \
s_normRoundPackToF32$(OBJ) \
s_addMagsF32$(OBJ) \
s_subMagsF32$(OBJ) \
s_mulAddF32$(OBJ) \
s_normSubnormalF64Sig$(OBJ) \
s_roundPackToF64$(OBJ) \
s_normRoundPackToF64$(OBJ) \
s_addMagsF64$(OBJ) \
s_subMagsF64$(OBJ) \
s_mulAddF64$(OBJ) \
s_normSubnormalExtF80Sig$(OBJ) \
s_roundPackToExtF80$(OBJ) \
s_normRoundPackToExtF80$(OBJ) \
s_addMagsExtF80$(OBJ) \
s_subMagsExtF80$(OBJ) \
s_normSubnormalF128Sig$(OBJ) \
s_roundPackToF128$(OBJ) \
s_normRoundPackToF128$(OBJ) \
s_addMagsF128$(OBJ) \
s_subMagsF128$(OBJ) \
s_mulAddF128$(OBJ) \
softfloat_state$(OBJ) \
ui32_to_f16$(OBJ) \
ui32_to_f32$(OBJ) \
ui32_to_f64$(OBJ) \
ui32_to_extF80$(OBJ) \
ui32_to_extF80M$(OBJ) \
ui32_to_f128$(OBJ) \
ui32_to_f128M$(OBJ) \
ui64_to_f16$(OBJ) \
ui64_to_f32$(OBJ) \
ui64_to_f64$(OBJ) \
ui64_to_extF80$(OBJ) \
ui64_to_extF80M$(OBJ) \
ui64_to_f128$(OBJ) \
ui64_to_f128M$(OBJ) \
i32_to_f16$(OBJ) \
i32_to_f32$(OBJ) \
i32_to_f64$(OBJ) \
i32_to_extF80$(OBJ) \
i32_to_extF80M$(OBJ) \
i32_to_f128$(OBJ) \
i32_to_f128M$(OBJ) \
i64_to_f16$(OBJ) \
i64_to_f32$(OBJ) \
i64_to_f64$(OBJ) \
i64_to_extF80$(OBJ) \
i64_to_extF80M$(OBJ) \
i64_to_f128$(OBJ) \
i64_to_f128M$(OBJ) \
bf16_isSignalingNaN$(OBJ) \
bf16_to_f32$(OBJ) \
f16_to_ui32$(OBJ) \
f16_to_ui64$(OBJ) \
f16_to_i32$(OBJ) \
f16_to_i64$(OBJ) \
f16_to_ui32_r_minMag$(OBJ) \
f16_to_ui64_r_minMag$(OBJ) \
f16_to_i32_r_minMag$(OBJ) \
f16_to_i64_r_minMag$(OBJ) \
f16_to_f32$(OBJ) \
f16_to_f64$(OBJ) \
f16_to_extF80$(OBJ) \
f16_to_extF80M$(OBJ) \
f16_to_f128$(OBJ) \
f16_to_f128M$(OBJ) \
f16_roundToInt$(OBJ) \
f16_add$(OBJ) \
f16_sub$(OBJ) \
f16_mul$(OBJ) \
f16_mulAdd$(OBJ) \
f16_div$(OBJ) \
f16_rem$(OBJ) \
f16_sqrt$(OBJ) \
f16_eq$(OBJ) \
f16_le$(OBJ) \
f16_lt$(OBJ) \
f16_eq_signaling$(OBJ) \
f16_le_quiet$(OBJ) \
f16_lt_quiet$(OBJ) \
f16_isSignalingNaN$(OBJ) \
f32_to_ui32$(OBJ) \
f32_to_ui64$(OBJ) \
f32_to_i32$(OBJ) \
f32_to_i64$(OBJ) \
f32_to_ui32_r_minMag$(OBJ) \
f32_to_ui64_r_minMag$(OBJ) \
f32_to_i32_r_minMag$(OBJ) \
f32_to_i64_r_minMag$(OBJ) \
f32_to_bf16$(OBJ) \
f32_to_f16$(OBJ) \
f32_to_f64$(OBJ) \
f32_to_extF80$(OBJ) \
f32_to_extF80M$(OBJ) \
f32_to_f128$(OBJ) \
f32_to_f128M$(OBJ) \
f32_roundToInt$(OBJ) \
f32_add$(OBJ) \
f32_sub$(OBJ) \
f32_mul$(OBJ) \
f32_mulAdd$(OBJ) \
f32_div$(OBJ) \
f32_rem$(OBJ) \
f32_sqrt$(OBJ) \
f32_eq$(OBJ) \
f32_le$(OBJ) \
f32_lt$(OBJ) \
f32_eq_signaling$(OBJ) \
f32_le_quiet$(OBJ) \
f32_lt_quiet$(OBJ) \
f32_isSignalingNaN$(OBJ) \
f64_to_ui32$(OBJ) \
f64_to_ui64$(OBJ) \
f64_to_i32$(OBJ) \
f64_to_i64$(OBJ) \
f64_to_ui32_r_minMag$(OBJ) \
f64_to_ui64_r_minMag$(OBJ) \
f64_to_i32_r_minMag$(OBJ) \
f64_to_i64_r_minMag$(OBJ) \
f64_to_f16$(OBJ) \
f64_to_f32$(OBJ) \
f64_to_extF80$(OBJ) \
f64_to_extF80M$(OBJ) \
f64_to_f128$(OBJ) \
f64_to_f128M$(OBJ) \
f64_roundToInt$(OBJ) \
f64_add$(OBJ) \
f64_sub$(OBJ) \
f64_mul$(OBJ) \
f64_mulAdd$(OBJ) \
f64_div$(OBJ) \
f64_rem$(OBJ) \
f64_sqrt$(OBJ) \
f64_eq$(OBJ) \
f64_le$(OBJ) \
f64_lt$(OBJ) \
f64_eq_signaling$(OBJ) \
f64_le_quiet$(OBJ) \
f64_lt_quiet$(OBJ) \
f64_isSignalingNaN$(OBJ) \
extF80_to_ui32$(OBJ) \
extF80_to_ui64$(OBJ) \
extF80_to_i32$(OBJ) \
extF80_to_i64$(OBJ) \
extF80_to_ui32_r_minMag$(OBJ) \
extF80_to_ui64_r_minMag$(OBJ) \
extF80_to_i32_r_minMag$(OBJ) \
extF80_to_i64_r_minMag$(OBJ) \
extF80_to_f16$(OBJ) \
extF80_to_f32$(OBJ) \
extF80_to_f64$(OBJ) \
extF80_to_f128$(OBJ) \
extF80_roundToInt$(OBJ) \
extF80_add$(OBJ) \
extF80_sub$(OBJ) \
extF80_mul$(OBJ) \
extF80_div$(OBJ) \
extF80_rem$(OBJ) \
extF80_sqrt$(OBJ) \
extF80_eq$(OBJ) \
extF80_le$(OBJ) \
extF80_lt$(OBJ) \
extF80_eq_signaling$(OBJ) \
extF80_le_quiet$(OBJ) \
extF80_lt_quiet$(OBJ) \
extF80_isSignalingNaN$(OBJ) \
extF80M_to_ui32$(OBJ) \
extF80M_to_ui64$(OBJ) \
extF80M_to_i32$(OBJ) \
extF80M_to_i64$(OBJ) \
extF80M_to_ui32_r_minMag$(OBJ) \
extF80M_to_ui64_r_minMag$(OBJ) \
extF80M_to_i32_r_minMag$(OBJ) \
extF80M_to_i64_r_minMag$(OBJ) \
extF80M_to_f16$(OBJ) \
extF80M_to_f32$(OBJ) \
extF80M_to_f64$(OBJ) \
extF80M_to_f128M$(OBJ) \
extF80M_roundToInt$(OBJ) \
extF80M_add$(OBJ) \
extF80M_sub$(OBJ) \
extF80M_mul$(OBJ) \
extF80M_div$(OBJ) \
extF80M_rem$(OBJ) \
extF80M_sqrt$(OBJ) \
extF80M_eq$(OBJ) \
extF80M_le$(OBJ) \
extF80M_lt$(OBJ) \
extF80M_eq_signaling$(OBJ) \
extF80M_le_quiet$(OBJ) \
extF80M_lt_quiet$(OBJ) \
f128_to_ui32$(OBJ) \
f128_to_ui64$(OBJ) \
f128_to_i32$(OBJ) \
f128_to_i64$(OBJ) \
f128_to_ui32_r_minMag$(OBJ) \
f128_to_ui64_r_minMag$(OBJ) \
f128_to_i32_r_minMag$(OBJ) \
f128_to_i64_r_minMag$(OBJ) \
f128_to_f16$(OBJ) \
f128_to_f32$(OBJ) \
f128_to_extF80$(OBJ) \
f128_to_f64$(OBJ) \
f128_roundToInt$(OBJ) \
f128_add$(OBJ) \
f128_sub$(OBJ) \
f128_mul$(OBJ) \
f128_mulAdd$(OBJ) \
f128_div$(OBJ) \
f128_rem$(OBJ) \
f128_sqrt$(OBJ) \
f128_eq$(OBJ) \
f128_le$(OBJ) \
f128_lt$(OBJ) \
f128_eq_signaling$(OBJ) \
f128_le_quiet$(OBJ) \
f128_lt_quiet$(OBJ) \
f128_isSignalingNaN$(OBJ) \
f128M_to_ui32$(OBJ) \
f128M_to_ui64$(OBJ) \
f128M_to_i32$(OBJ) \
f128M_to_i64$(OBJ) \
f128M_to_ui32_r_minMag$(OBJ) \
f128M_to_ui64_r_minMag$(OBJ) \
f128M_to_i32_r_minMag$(OBJ) \
f128M_to_i64_r_minMag$(OBJ) \
f128M_to_f16$(OBJ) \
f128M_to_f32$(OBJ) \
f128M_to_extF80M$(OBJ) \
f128M_to_f64$(OBJ) \
f128M_roundToInt$(OBJ) \
f128M_add$(OBJ) \
f128M_sub$(OBJ) \
f128M_mul$(OBJ) \
f128M_mulAdd$(OBJ) \
f128M_div$(OBJ) \
f128M_rem$(OBJ) \
f128M_sqrt$(OBJ) \
f128M_eq$(OBJ) \
f128M_le$(OBJ) \
f128M_lt$(OBJ) \
f128M_eq_signaling$(OBJ) \
f128M_le_quiet$(OBJ) \
f128M_lt_quiet$(OBJ) \
OBJS_ALL = $(OBJS_PRIMITIVES) $(OBJS_SPECIALIZE) $(OBJS_OTHERS)
$(OBJS_ALL): \
$(OTHER_HEADERS) platform.h $(SOURCE_DIR)/include/primitiveTypes.h \
$(SOURCE_DIR)/include/primitives.h
$(OBJS_SPECIALIZE) $(OBJS_OTHERS): \
$(SOURCE_DIR)/include/softfloat_types.h $(SOURCE_DIR)/include/internals.h \
$(SOURCE_DIR)/$(SPECIALIZE_TYPE)/specialize.h \
$(SOURCE_DIR)/include/softfloat.h
$(OBJS_PRIMITIVES) $(OBJS_OTHERS): %$(OBJ): $(SOURCE_DIR)/%.c
$(COMPILE_C) $(SOURCE_DIR)/$*.c
$(OBJS_SPECIALIZE): %$(OBJ): $(SOURCE_DIR)/$(SPECIALIZE_TYPE)/%.c
$(COMPILE_C) $(SOURCE_DIR)/$(SPECIALIZE_TYPE)/$*.c
softfloat$(LIB): $(OBJS_ALL)
$(DELETE) $@
$(MAKELIB) $^
.PHONY: clean
clean:
$(DELETE) $(OBJS_ALL) softfloat$(LIB)

View File

@ -1,54 +0,0 @@
/*============================================================================
This C header file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define LITTLEENDIAN 1
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#ifdef __GNUC_STDC_INLINE__
#define INLINE inline
#else
#define INLINE extern inline
#endif
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#include "opts-GCC.h"

View File

@ -94,8 +94,6 @@ OBJS_SPECIALIZE = \
s_f16UIToCommonNaN$(OBJ) \
s_commonNaNToF16UI$(OBJ) \
s_propagateNaNF16UI$(OBJ) \
s_bf16UIToCommonNaN$(OBJ) \
s_commonNaNToBF16UI$(OBJ) \
s_f32UIToCommonNaN$(OBJ) \
s_commonNaNToF32UI$(OBJ) \
s_propagateNaNF32UI$(OBJ) \
@ -116,8 +114,6 @@ OBJS_OTHERS = \
s_roundToUI64$(OBJ) \
s_roundToI32$(OBJ) \
s_roundToI64$(OBJ) \
s_normSubnormalBF16Sig$(OBJ) \
s_roundPackToBF16$(OBJ) \
s_normSubnormalF16Sig$(OBJ) \
s_roundPackToF16$(OBJ) \
s_normRoundPackToF16$(OBJ) \
@ -176,8 +172,6 @@ OBJS_OTHERS = \
i64_to_extF80M$(OBJ) \
i64_to_f128$(OBJ) \
i64_to_f128M$(OBJ) \
bf16_isSignalingNaN$(OBJ) \
bf16_to_f32$(OBJ) \
f16_to_ui32$(OBJ) \
f16_to_ui64$(OBJ) \
f16_to_i32$(OBJ) \
@ -215,7 +209,6 @@ OBJS_OTHERS = \
f32_to_ui64_r_minMag$(OBJ) \
f32_to_i32_r_minMag$(OBJ) \
f32_to_i64_r_minMag$(OBJ) \
f32_to_bf16$(OBJ) \
f32_to_f16$(OBJ) \
f32_to_f64$(OBJ) \
f32_to_extF80$(OBJ) \

View File

@ -50,4 +50,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -50,4 +50,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*----------------------------------------------------------------------------*/
#define SOFTFLOAT_BUILTIN_CLZ 1
#include "opts-GCC.h"

View File

@ -51,4 +51,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define SOFTFLOAT_BUILTIN_CLZ 1
#define SOFTFLOAT_INTRINSIC_INT128 1
#include "opts-GCC.h"

View File

@ -115,8 +115,6 @@ OBJS_OTHERS = \
s_roundToUI64$(OBJ) \
s_roundToI32$(OBJ) \
s_roundToI64$(OBJ) \
s_normSubnormalBF16Sig$(OBJ) \
s_roundPackToBF16$(OBJ) \
s_normSubnormalF16Sig$(OBJ) \
s_roundPackToF16$(OBJ) \
s_normRoundPackToF16$(OBJ) \
@ -175,8 +173,6 @@ OBJS_OTHERS = \
i64_to_extF80M$(OBJ) \
i64_to_f128$(OBJ) \
i64_to_f128M$(OBJ) \
bf16_isSignalingNaN$(OBJ) \
bf16_to_f32$(OBJ) \
f16_to_ui32$(OBJ) \
f16_to_ui64$(OBJ) \
f16_to_i32$(OBJ) \
@ -214,7 +210,6 @@ OBJS_OTHERS = \
f32_to_ui64_r_minMag$(OBJ) \
f32_to_i32_r_minMag$(OBJ) \
f32_to_i64_r_minMag$(OBJ) \
f32_to_bf16$(OBJ) \
f32_to_f16$(OBJ) \
f32_to_f64$(OBJ) \
f32_to_extF80$(OBJ) \

View File

@ -47,4 +47,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -47,4 +47,3 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
== > #define THREAD_LOCAL _Thread_local

View File

@ -508,7 +508,7 @@ significant extra cost.
On computers where the word size is <NOBR>64 bits</NOBR> or larger, both
function versions (<CODE>f128M_add</CODE> and <CODE>f128_add</CODE>) are
provided, because the cost of passing by value is then more reasonable.
Applications that must be portable across both classes of computers must use
Applications that must be portable accross both classes of computers must use
the pointer-based functions, as these are always implemented.
However, if it is known that SoftFloat includes the by-value functions for all
platforms of interest, programmers can use whichever version they prefer.

View File

@ -1,59 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Assuming `uiA' has the bit pattern of a BF16 NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_bf16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr )
{
if ( softfloat_isSigNaNBF16UI( uiA ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = uiA>>15;
zPtr->v64 = (uint_fast64_t) uiA<<56;
zPtr->v0 = 0;
}

View File

@ -1,51 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by `aPtr' into a BF16 NaN, and
| returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToBF16UI( const struct commonNaN *aPtr )
{
return (uint_fast16_t) aPtr->sign<<15 | 0x7FC0 | aPtr->v64>>56;
}

View File

@ -116,27 +116,6 @@ uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| Returns true when 16-bit unsigned integer 'uiA' has the bit pattern of a
| 16-bit brain floating-point (BF16) signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNBF16UI(uiA) ((((uiA)&0x7FC0) == 0x7F80) && ((uiA)&0x003F))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit BF16 floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_bf16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToBF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
*----------------------------------------------------------------------------*/

View File

@ -1,5 +0,0 @@
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
*----------------------------------------------------------------------------*/

View File

@ -1,5 +0,0 @@
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
*----------------------------------------------------------------------------*/

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,10 +34,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "softfloat_types.h"
#define softfloat_commonNaNToExtF80M softfloat_commonNaNToExtF80M
#include "internals.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
@ -50,8 +49,8 @@ void
const struct commonNaN *aPtr, struct extFloat80M *zSPtr )
{
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
zSPtr->signExp = packToExtF80UI64( aPtr->sign, 0x7FFF );
zSPtr->signif = UINT64_C( 0xC000000000000000 ) | aPtr->v64>>1;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,10 +34,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#define softfloat_commonNaNToExtF80UI softfloat_commonNaNToExtF80UI
#include "primitives.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
@ -49,8 +48,8 @@ struct uint128 softfloat_commonNaNToExtF80UI( const struct commonNaN *aPtr )
{
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
uiZ.v64 = (uint_fast16_t) aPtr->sign<<15 | 0x7FFF;
uiZ.v0 = UINT64_C( 0xC000000000000000 ) | aPtr->v64>>1;
return uiZ;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -36,9 +36,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#define softfloat_commonNaNToF128M softfloat_commonNaNToF128M
#include "primitives.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
@ -51,10 +49,8 @@ void
softfloat_commonNaNToF128M( const struct commonNaN *aPtr, uint32_t *zWPtr )
{
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
softfloat_shortShiftRight128M( (const uint32_t *) &aPtr->v0, 16, zWPtr );
zWPtr[indexWordHi( 4 )] |= (uint32_t) aPtr->sign<<31 | 0x7FFF8000;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,10 +34,9 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#define softfloat_commonNaNToF128UI softfloat_commonNaNToF128UI
#include "primitives.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
@ -48,8 +47,8 @@ struct uint128 softfloat_commonNaNToF128UI( const struct commonNaN *aPtr )
{
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
uiZ = softfloat_shortShiftRight128( aPtr->v64, aPtr->v0, 16 );
uiZ.v64 |= (uint_fast64_t) aPtr->sign<<63 | UINT64_C( 0x7FFF800000000000 );
return uiZ;
}

View File

@ -1,5 +1,51 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Converts the common NaN pointed to by `aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_commonNaNToF16UI( const struct commonNaN *aPtr )
{
return (uint_fast16_t) aPtr->sign<<15 | 0x7E00 | aPtr->v64>>54;
}

View File

@ -1,5 +1,51 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Converts the common NaN pointed to by `aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr )
{
return (uint_fast32_t) aPtr->sign<<31 | 0x7FC00000 | aPtr->v64>>41;
}

View File

@ -1,5 +1,53 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Converts the common NaN pointed to by `aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr )
{
return
(uint_fast64_t) aPtr->sign<<63 | UINT64_C( 0x7FF8000000000000 )
| aPtr->v64>>12;
}

View File

@ -1,5 +1,62 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming the 80-bit extended floating-point value pointed to by `aSPtr' is
| a NaN, converts this NaN to the common NaN form, and stores the resulting
| common NaN at the location pointed to by `zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80MToCommonNaN(
const struct extFloat80M *aSPtr, struct commonNaN *zPtr )
{
if ( extF80M_isSignalingNaN( (const extFloat80_t *) aSPtr ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = signExtF80UI64( aSPtr->signExp );
zPtr->v64 = aSPtr->signif<<1;
zPtr->v0 = 0;
}

View File

@ -1,5 +1,62 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming the unsigned integer formed from concatenating `uiA64' and `uiA0'
| has the bit pattern of an 80-bit extended floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void
softfloat_extF80UIToCommonNaN(
uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr )
{
if ( softfloat_isSigNaNExtF80UI( uiA64, uiA0 ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = uiA64>>15;
zPtr->v64 = uiA0<<1;
zPtr->v0 = 0;
}

View File

@ -1,5 +1,62 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "primitives.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming the 128-bit floating-point value pointed to by `aWPtr' is a NaN,
| converts this NaN to the common NaN form, and stores the resulting common
| NaN at the location pointed to by `zPtr'. If the NaN is a signaling NaN,
| the invalid exception is raised. Argument `aWPtr' points to an array of
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_f128MToCommonNaN( const uint32_t *aWPtr, struct commonNaN *zPtr )
{
if ( f128M_isSignalingNaN( (const float128_t *) aWPtr ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = aWPtr[indexWordHi( 4 )]>>31;
softfloat_shortShiftLeft128M( aWPtr, 16, (uint32_t *) &zPtr->v0 );
}

View File

@ -1,5 +1,65 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "primitives.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming the unsigned integer formed from concatenating `uiA64' and `uiA0'
| has the bit pattern of a 128-bit floating-point NaN, converts this NaN to
| the common NaN form, and stores the resulting common NaN at the location
| pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
void
softfloat_f128UIToCommonNaN(
uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN *zPtr )
{
struct uint128 NaNSig;
if ( softfloat_isSigNaNF128UI( uiA64, uiA0 ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
NaNSig = softfloat_shortShiftLeft128( uiA64, uiA0, 16 );
zPtr->sign = uiA64>>63;
zPtr->v64 = NaNSig.v64;
zPtr->v0 = NaNSig.v0;
}

View File

@ -1,5 +1,59 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming `uiA' has the bit pattern of a 16-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f16UIToCommonNaN( uint_fast16_t uiA, struct commonNaN *zPtr )
{
if ( softfloat_isSigNaNF16UI( uiA ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = uiA>>15;
zPtr->v64 = (uint_fast64_t) uiA<<54;
zPtr->v0 = 0;
}

View File

@ -1,5 +1,59 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming `uiA' has the bit pattern of a 32-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr )
{
if ( softfloat_isSigNaNF32UI( uiA ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = uiA>>31;
zPtr->v64 = (uint_fast64_t) uiA<<41;
zPtr->v0 = 0;
}

View File

@ -1,5 +1,59 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| This file intentionally contains no code.
| Assuming `uiA' has the bit pattern of a 64-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr )
{
if ( softfloat_isSigNaNF64UI( uiA ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
}
zPtr->sign = uiA>>63;
zPtr->v64 = uiA<<12;
zPtr->v0 = 0;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,9 +34,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
@ -53,22 +54,54 @@ void
struct extFloat80M *zSPtr
)
{
uint_fast16_t ui64;
uint_fast64_t ui0;
bool isSigNaNA;
const struct extFloat80M *sPtr;
bool isSigNaNB;
uint_fast16_t uiB64;
uint64_t uiB0;
uint_fast16_t uiA64;
uint64_t uiA0;
uint_fast16_t uiMagA64, uiMagB64;
ui64 = aSPtr->signExp;
ui0 = aSPtr->signif;
if (
softfloat_isSigNaNExtF80UI( ui64, ui0 )
|| (bSPtr
&& (ui64 = bSPtr->signExp,
ui0 = bSPtr->signif,
softfloat_isSigNaNExtF80UI( ui64, ui0 )))
) {
isSigNaNA = extF80M_isSignalingNaN( (const extFloat80_t *) aSPtr );
sPtr = aSPtr;
if ( ! bSPtr ) {
if ( isSigNaNA ) softfloat_raiseFlags( softfloat_flag_invalid );
goto copy;
}
isSigNaNB = extF80M_isSignalingNaN( (const extFloat80_t *) bSPtr );
if ( isSigNaNA | isSigNaNB ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) {
uiB64 = bSPtr->signExp;
if ( isSigNaNB ) goto returnLargerUIMag;
uiB0 = bSPtr->signif;
if ( isNaNExtF80UI( uiB64, uiB0 ) ) goto copyB;
goto copy;
} else {
uiA64 = aSPtr->signExp;
uiA0 = aSPtr->signif;
if ( isNaNExtF80UI( uiA64, uiA0 ) ) goto copy;
goto copyB;
}
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
}
uiB64 = bSPtr->signExp;
returnLargerUIMag:
uiA64 = aSPtr->signExp;
uiMagA64 = uiA64 & 0x7FFF;
uiMagB64 = uiB64 & 0x7FFF;
if ( uiMagA64 < uiMagB64 ) goto copyB;
if ( uiMagB64 < uiMagA64 ) goto copy;
uiA0 = aSPtr->signif;
uiB0 = bSPtr->signif;
if ( uiA0 < uiB0 ) goto copyB;
if ( uiB0 < uiA0 ) goto copy;
if ( uiA64 < uiB64 ) goto copy;
copyB:
sPtr = bSPtr;
copy:
zSPtr->signExp = sPtr->signExp;
zSPtr->signif = sPtr->signif | UINT64_C( 0xC000000000000000 );
}

View File

@ -4,7 +4,7 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
Copyright 2011, 2012, 2013, 2014, 2018 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
@ -34,16 +34,17 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating `uiA64' and
| `uiA0' as an 80-bit extended floating-point value, and likewise interpreting
| the unsigned integer formed from concatenating `uiB64' and `uiB0' as another
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
| 'uiA0' as an 80-bit extended floating-point value, and likewise interpreting
| the unsigned integer formed from concatenating 'uiB64' and 'uiB0' as another
| 80-bit extended floating-point value, and assuming at least on of these
| floating-point values is a NaN, returns the bit pattern of the combined NaN
| result. If either original floating-point value is a signaling NaN, the
@ -57,16 +58,48 @@ struct uint128
uint_fast64_t uiB0
)
{
bool isSigNaNA, isSigNaNB;
uint_fast64_t uiNonsigA0, uiNonsigB0;
uint_fast16_t uiMagA64, uiMagB64;
struct uint128 uiZ;
if (
softfloat_isSigNaNExtF80UI( uiA64, uiA0 )
|| softfloat_isSigNaNExtF80UI( uiB64, uiB0 )
) {
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
isSigNaNA = softfloat_isSigNaNExtF80UI( uiA64, uiA0 );
isSigNaNB = softfloat_isSigNaNExtF80UI( uiB64, uiB0 );
/*------------------------------------------------------------------------
| Make NaNs non-signaling.
*------------------------------------------------------------------------*/
uiNonsigA0 = uiA0 | UINT64_C( 0xC000000000000000 );
uiNonsigB0 = uiB0 | UINT64_C( 0xC000000000000000 );
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
if ( isSigNaNA | isSigNaNB ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) {
if ( isSigNaNB ) goto returnLargerMag;
if ( isNaNExtF80UI( uiB64, uiB0 ) ) goto returnB;
goto returnA;
} else {
if ( isNaNExtF80UI( uiA64, uiA0 ) ) goto returnA;
goto returnB;
}
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
}
returnLargerMag:
uiMagA64 = uiA64 & 0x7FFF;
uiMagB64 = uiB64 & 0x7FFF;
if ( uiMagA64 < uiMagB64 ) goto returnB;
if ( uiMagB64 < uiMagA64 ) goto returnA;
if ( uiA0 < uiB0 ) goto returnB;
if ( uiB0 < uiA0 ) goto returnA;
if ( uiA64 < uiB64 ) goto returnA;
returnB:
uiZ.v64 = uiB64;
uiZ.v0 = uiNonsigB0;
return uiZ;
returnA:
uiZ.v64 = uiA64;
uiZ.v0 = uiNonsigA0;
return uiZ;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2018 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,35 +34,43 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by
| 'aWPtr' and 'bWPtr' is a NaN, stores the combined NaN result at the location
| pointed to by 'zWPtr'. If either original floating-point value is a
| signaling NaN, the invalid exception is raised. Each of 'aWPtr', 'bWPtr',
| and 'zWPtr' points to an array of four 32-bit elements that concatenate in
| `aWPtr' and `bWPtr' is a NaN, stores the combined NaN result at the location
| pointed to by `zWPtr'. If either original floating-point value is a
| signaling NaN, the invalid exception is raised. Each of `aWPtr', `bWPtr',
| and `zWPtr' points to an array of four 32-bit elements that concatenate in
| the platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
void
softfloat_propagateNaNF128M(
const uint32_t *aWPtr, const uint32_t *bWPtr, uint32_t *zWPtr )
{
bool isSigNaNA;
const uint32_t *ptr;
ptr = aWPtr;
isSigNaNA = f128M_isSignalingNaN( (const float128_t *) aWPtr );
if (
f128M_isSignalingNaN( (const float128_t *) aWPtr )
isSigNaNA
|| (bWPtr && f128M_isSignalingNaN( (const float128_t *) bWPtr ))
) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) goto copy;
}
zWPtr[indexWord( 4, 3 )] = defaultNaNF128UI96;
zWPtr[indexWord( 4, 2 )] = defaultNaNF128UI64;
zWPtr[indexWord( 4, 1 )] = defaultNaNF128UI32;
zWPtr[indexWord( 4, 0 )] = defaultNaNF128UI0;
if ( ! softfloat_isNaNF128M( aWPtr ) ) ptr = bWPtr;
copy:
zWPtr[indexWordHi( 4 )] = ptr[indexWordHi( 4 )] | 0x00008000;
zWPtr[indexWord( 4, 2 )] = ptr[indexWord( 4, 2 )];
zWPtr[indexWord( 4, 1 )] = ptr[indexWord( 4, 1 )];
zWPtr[indexWord( 4, 0 )] = ptr[indexWord( 4, 0 )];
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,9 +34,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "primitiveTypes.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
@ -57,16 +58,23 @@ struct uint128
uint_fast64_t uiB0
)
{
bool isSigNaNA;
struct uint128 uiZ;
if (
softfloat_isSigNaNF128UI( uiA64, uiA0 )
|| softfloat_isSigNaNF128UI( uiB64, uiB0 )
) {
isSigNaNA = softfloat_isSigNaNF128UI( uiA64, uiA0 );
if ( isSigNaNA || softfloat_isSigNaNF128UI( uiB64, uiB0 ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) goto returnNonsigA;
}
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
if ( isNaNF128UI( uiA64, uiA0 ) ) {
returnNonsigA:
uiZ.v64 = uiA64;
uiZ.v0 = uiA0;
} else {
uiZ.v64 = uiB64;
uiZ.v0 = uiB0;
}
uiZ.v64 |= UINT64_C( 0x0000800000000000 );
return uiZ;
}

View File

@ -4,7 +4,7 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
@ -34,8 +34,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
@ -48,11 +50,14 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
uint_fast16_t
softfloat_propagateNaNF16UI( uint_fast16_t uiA, uint_fast16_t uiB )
{
bool isSigNaNA;
if ( softfloat_isSigNaNF16UI( uiA ) || softfloat_isSigNaNF16UI( uiB ) ) {
isSigNaNA = softfloat_isSigNaNF16UI( uiA );
if ( isSigNaNA || softfloat_isSigNaNF16UI( uiB ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) return uiA | 0x0200;
}
return defaultNaNF16UI;
return (isNaNF16UI( uiA ) ? uiA : uiB) | 0x0200;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,8 +34,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
@ -48,11 +50,14 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
uint_fast32_t
softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB )
{
bool isSigNaNA;
if ( softfloat_isSigNaNF32UI( uiA ) || softfloat_isSigNaNF32UI( uiB ) ) {
isSigNaNA = softfloat_isSigNaNF32UI( uiA );
if ( isSigNaNA || softfloat_isSigNaNF32UI( uiB ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) return uiA | 0x00400000;
}
return defaultNaNF32UI;
return (isNaNF32UI( uiA ) ? uiA : uiB) | 0x00400000;
}

View File

@ -4,8 +4,8 @@
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
@ -34,8 +34,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
@ -48,11 +50,14 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
uint_fast64_t
softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB )
{
bool isSigNaNA;
if ( softfloat_isSigNaNF64UI( uiA ) || softfloat_isSigNaNF64UI( uiB ) ) {
isSigNaNA = softfloat_isSigNaNF64UI( uiA );
if ( isSigNaNA || softfloat_isSigNaNF64UI( uiB ) ) {
softfloat_raiseFlags( softfloat_flag_invalid );
if ( isSigNaNA ) return uiA | UINT64_C( 0x0008000000000000 );
}
return defaultNaNF64UI;
return (isNaNF64UI( uiA ) ? uiA : uiB) | UINT64_C( 0x0008000000000000 );
}

View File

@ -51,19 +51,19 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| The values to return on conversions to 32-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN 0xFFFFFFFF
#define i32_fromPosOverflow 0x7FFFFFFF
#define i32_fromNegOverflow (-0x7FFFFFFF - 1)
#define i32_fromNaN 0x7FFFFFFF
#define ui32_fromPosOverflow UINT32_C(0xFFFFFFFF)
#define ui32_fromNegOverflow UINT32_C(0x0)
#define ui32_fromNaN UINT32_C(0xFFFFFFFF)
#define i32_fromPosOverflow INT64_C(0x7FFFFFFF)
#define i32_fromNegOverflow (-INT64_C(0x7FFFFFFF) - 1)
#define i32_fromNaN INT64_C(0x7FFFFFFF)
/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C(0xFFFFFFFFFFFFFFFF)
#define ui64_fromNegOverflow 0
#define ui64_fromNegOverflow UINT64_C(0x0)
#define ui64_fromNaN UINT64_C(0xFFFFFFFFFFFFFFFF)
#define i64_fromPosOverflow INT64_C(0x7FFFFFFFFFFFFFFF)
#define i64_fromNegOverflow (-INT64_C(0x7FFFFFFFFFFFFFFF) - 1)
@ -74,13 +74,18 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN {
char _unused;
bool sign;
#ifdef LITTLEENDIAN
uint64_t v0, v64;
#else
uint64_t v64, v0;
#endif
};
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF16UI 0x7E00
#define defaultNaNF16UI 0xFE00
/*----------------------------------------------------------------------------
| Returns true when 16-bit unsigned integer 'uiA' has the bit pattern of a
@ -89,38 +94,19 @@ struct commonNaN {
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF16UI(uiA) ((((uiA)&0x7E00) == 0x7C00) && ((uiA)&0x01FF))
/*----------------------------------------------------------------------------
| Returns true when 16-bit unsigned integer 'uiA' has the bit pattern of a
| 16-bit brain floating-point (BF16) signaling NaN.
| Note: This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNBF16UI(uiA) ((((uiA)&0x7FC0) == 0x7F80) && ((uiA)&0x003F))
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0200)) \
softfloat_raiseFlags(softfloat_flag_invalid)
/*----------------------------------------------------------------------------
| Assuming 'uiA' has the bit pattern of a 16-bit BF16 floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_bf16UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x0040)) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_f16UIToCommonNaN(uint_fast16_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF16UI(aPtr) ((uint_fast16_t)defaultNaNF16UI)
uint_fast16_t softfloat_commonNaNToF16UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 16-bit floating-
@ -130,17 +116,6 @@ struct commonNaN {
*----------------------------------------------------------------------------*/
uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 16-bit BF16 floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNBF16UI 0x7FC0
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 16-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToBF16UI(aPtr) ((uint_fast16_t)defaultNaNBF16UI)
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
*----------------------------------------------------------------------------*/
@ -159,15 +134,13 @@ uint_fast16_t softfloat_propagateNaNF16UI(uint_fast16_t uiA, uint_fast16_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f32UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&0x00400000)) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_f32UIToCommonNaN(uint_fast32_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF32UI(aPtr) ((uint_fast32_t)defaultNaNF32UI)
uint_fast32_t softfloat_commonNaNToF32UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 32-bit floating-
@ -196,15 +169,13 @@ uint_fast32_t softfloat_propagateNaNF32UI(uint_fast32_t uiA, uint_fast32_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f64UIToCommonNaN(uiA, zPtr) \
if(!((uiA)&UINT64_C(0x0008000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_f64UIToCommonNaN(uint_fast64_t uiA, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#define softfloat_commonNaNToF64UI(aPtr) ((uint_fast64_t)defaultNaNF64UI)
uint_fast64_t softfloat_commonNaNToF64UI(const struct commonNaN* aPtr);
/*----------------------------------------------------------------------------
| Interpreting 'uiA' and 'uiB' as the bit patterns of two 64-bit floating-
@ -217,7 +188,7 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 80-bit extended floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNExtF80UI64 0x7FFF
#define defaultNaNExtF80UI64 0xFFFF
#define defaultNaNExtF80UI0 UINT64_C(0xC000000000000000)
/*----------------------------------------------------------------------------
@ -243,26 +214,14 @@ uint_fast64_t softfloat_propagateNaNF64UI(uint_fast64_t uiA, uint_fast64_t uiB);
| location pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA0)&UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_extF80UIToCommonNaN(uint_fast16_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and returns the bit pattern of this value as an unsigned
| integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToExtF80UI
INLINE
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNExtF80UI64;
uiZ.v0 = defaultNaNExtF80UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToExtF80UI(const struct commonNaN* aPtr);
#endif
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -278,7 +237,7 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI64 UINT64_C(0x7FFF800000000000)
#define defaultNaNF128UI64 UINT64_C(0xFFFF800000000000)
#define defaultNaNF128UI0 UINT64_C(0)
/*----------------------------------------------------------------------------
@ -297,25 +256,13 @@ struct uint128 softfloat_propagateNaNExtF80UI(uint_fast16_t uiA64, uint_fast64_t
| pointed to by 'zPtr'. If the NaN is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
#define softfloat_f128UIToCommonNaN(uiA64, uiA0, zPtr) \
if(!((uiA64)&UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_f128UIToCommonNaN(uint_fast64_t uiA64, uint_fast64_t uiA0, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToF128UI
INLINE
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN* aPtr) {
struct uint128 uiZ;
uiZ.v64 = defaultNaNF128UI64;
uiZ.v0 = defaultNaNF128UI0;
return uiZ;
}
#else
struct uint128 softfloat_commonNaNToF128UI(const struct commonNaN*);
#endif
/*----------------------------------------------------------------------------
| Interpreting the unsigned integer formed from concatenating 'uiA64' and
@ -341,24 +288,14 @@ struct uint128 softfloat_propagateNaNF128UI(uint_fast64_t uiA64, uint_fast64_t u
| common NaN at the location pointed to by 'zPtr'. If the NaN is a signaling
| NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
#define softfloat_extF80MToCommonNaN(aSPtr, zPtr) \
if(!((aSPtr)->signif & UINT64_C(0x4000000000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_extF80MToCommonNaN(const struct extFloat80M* aSPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into an 80-bit extended
| floating-point NaN, and stores this NaN at the location pointed to by
| 'zSPtr'.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToExtF80M
INLINE
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr) {
zSPtr->signExp = defaultNaNExtF80UI64;
zSPtr->signif = defaultNaNExtF80UI0;
}
#else
void softfloat_commonNaNToExtF80M(const struct commonNaN* aPtr, struct extFloat80M* zSPtr);
#endif
/*----------------------------------------------------------------------------
| Assuming at least one of the two 80-bit extended floating-point values
@ -371,7 +308,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
/*----------------------------------------------------------------------------
| The bit pattern for a default generated 128-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF128UI96 0x7FFF8000
#define defaultNaNF128UI96 0xFFFF8000
#define defaultNaNF128UI64 0
#define defaultNaNF128UI32 0
#define defaultNaNF128UI0 0
@ -384,9 +321,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| four 32-bit elements that concatenate in the platform's normal endian order
| to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#define softfloat_f128MToCommonNaN(aWPtr, zPtr) \
if(!((aWPtr)[indexWordHi(4)] & UINT64_C(0x0000800000000000))) \
softfloat_raiseFlags(softfloat_flag_invalid)
void softfloat_f128MToCommonNaN(const uint32_t* aWPtr, struct commonNaN* zPtr);
/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by 'aPtr' into a 128-bit floating-point
@ -394,17 +329,7 @@ void softfloat_propagateNaNExtF80M(const struct extFloat80M* aSPtr, const struct
| 'zWPtr' points to an array of four 32-bit elements that concatenate in the
| platform's normal endian order to form a 128-bit floating-point value.
*----------------------------------------------------------------------------*/
#if defined INLINE && !defined softfloat_commonNaNToF128M
INLINE
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr) {
zWPtr[indexWord(4, 3)] = defaultNaNF128UI96;
zWPtr[indexWord(4, 2)] = defaultNaNF128UI64;
zWPtr[indexWord(4, 1)] = defaultNaNF128UI32;
zWPtr[indexWord(4, 0)] = defaultNaNF128UI0;
}
#else
void softfloat_commonNaNToF128M(const struct commonNaN* aPtr, uint32_t* zWPtr);
#endif
/*----------------------------------------------------------------------------
| Assuming at least one of the two 128-bit floating-point values pointed to by

View File

@ -1,51 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
bool bf16_isSignalingNaN( bfloat16_t a )
{
union ui16_bf16 uA;
uA.f = a;
return softfloat_isSigNaNBF16UI( uA.ui );
}

View File

@ -1,90 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
float32_t bf16_to_f32( bfloat16_t a )
{
union ui16_bf16 uA;
uint_fast16_t uiA;
bool sign;
int_fast16_t exp;
uint_fast16_t frac;
struct commonNaN commonNaN;
uint_fast32_t uiZ;
struct exp8_sig16 normExpSig;
union ui32_f32 uZ;
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
uA.f = a;
uiA = uA.ui;
sign = signBF16UI( uiA );
exp = expBF16UI( uiA );
frac = fracBF16UI( uiA );
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// NaN or Inf
if ( exp == 0xFF ) {
if ( frac ) {
softfloat_bf16UIToCommonNaN( uiA, &commonNaN );
uiZ = softfloat_commonNaNToF32UI( &commonNaN );
} else {
uiZ = packToF32UI( sign, 0xFF, 0 );
}
goto uiZ;
}
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// packToF32UI simply packs bitfields without any numerical change
// which means it can be used directly for any BF16 to f32 conversions which
// does not require bits manipulation
// (that is everything where the 16-bit are just padded right with 16 zeros, including
// subnormal numbers)
uiZ = packToF32UI( sign, exp, ((uint_fast32_t) frac) <<16 );
uiZ:
uZ.ui = uiZ;
return uZ.f;
}

View File

@ -1,105 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "specialize.h"
#include "softfloat.h"
#include <inttypes.h>
#include <stdio.h>
bfloat16_t f32_to_bf16( float32_t a )
{
union ui32_f32 uA;
uint_fast32_t uiA;
bool sign;
int_fast16_t exp;
uint_fast32_t frac;
struct commonNaN commonNaN;
uint_fast16_t uiZ, frac16;
union ui16_bf16 uZ;
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
uA.f = a;
uiA = uA.ui;
sign = signF32UI( uiA );
exp = expF32UI( uiA );
frac = fracF32UI( uiA );
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// infinity or NaN cases
if ( exp == 0xFF ) {
if ( frac ) {
// NaN case
softfloat_f32UIToCommonNaN( uiA, &commonNaN );
uiZ = softfloat_commonNaNToBF16UI( &commonNaN );
} else {
// infinity case
uiZ = packToBF16UI( sign, 0xFF, 0 );
}
goto uiZ;
}
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// frac is a 24-bit mantissa, right shifted by 9
// In the normal case, (24-9) = 15 are set
frac16 = frac>>9 | ((frac & 0x1FF) != 0);
if ( ! (exp | frac16) ) {
uiZ = packToBF16UI( sign, 0, 0 );
goto uiZ;
}
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// softfloat_roundPackToBF16 exponent argument (2nd argument)
// must correspond to the exponent of fracIn[13] bits
// (fracIn is the 3rd and last argument)
uint_fast32_t mask = exp ? 0x4000 : 0x0; // implicit one mask added if input is a normal number
// exponent for the lowest normal and largest subnormal should be equal
// but is not in IEEE encoding so mantissa must be partially normalized
// (by one bit) for subnormal numbers. Such that (exp - 1) corresponds
// to the exponent of frac16[13]
frac16 = frac16 << (exp ? 0 : 1);
return softfloat_roundPackToBF16( sign, exp - 1, frac16 | mask );
uiZ:
uZ.ui = uiZ;
return uZ.f;
}

View File

@ -72,9 +72,6 @@ float16_t f32_to_f16( float32_t a )
}
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
// frac is a 24-bit significand, the bottom 9 bits LSB are extracted and OR-red
// into a sticky flag, the top 15 MSBs are extracted, the LSB of this top slice
// is OR-red with the sticky
frac16 = frac>>9 | ((frac & 0x1FF) != 0);
if ( ! (exp | frac16) ) {
uiZ = packToF16UI( sign, 0, 0 );

View File

@ -46,10 +46,6 @@ union ui16_f16 {
uint16_t ui;
float16_t f;
};
union ui16_bf16 {
uint16_t ui;
bfloat16_t f;
};
union ui32_f32 {
uint32_t ui;
float32_t f;
@ -112,18 +108,6 @@ float16_t softfloat_addMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_subMagsF16(uint_fast16_t, uint_fast16_t);
float16_t softfloat_mulAddF16(uint_fast16_t, uint_fast16_t, uint_fast16_t, uint_fast8_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signBF16UI(a) ((bool)((uint16_t)(a) >> 15))
#define expBF16UI(a) ((int_fast16_t)((a) >> 7) & 0xFF)
#define fracBF16UI(a) ((a)&0x07F)
#define packToBF16UI(sign, exp, sig) (((uint16_t)(sign) << 15) + ((uint16_t)(exp) << 7) + (sig))
#define isNaNBF16UI(a) (((~(a)&0x7FC0) == 0) && ((a)&0x07F))
bfloat16_t softfloat_roundPackToBF16(bool, int_fast16_t, uint_fast16_t);
struct exp8_sig16 softfloat_normSubnormalBF16Sig(uint_fast16_t);
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
#define signF32UI(a) ((bool)((uint32_t)(a) >> 31))

View File

@ -76,13 +76,13 @@ enum {
| Software floating-point exception flags.
*----------------------------------------------------------------------------*/
extern THREAD_LOCAL uint_fast8_t softfloat_exceptionFlags;
typedef enum {
enum {
softfloat_flag_inexact = 1,
softfloat_flag_underflow = 2,
softfloat_flag_overflow = 4,
softfloat_flag_infinite = 8,
softfloat_flag_invalid = 16
} exceptionFlag_t;
};
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software floating-point exception flags.
@ -164,13 +164,6 @@ bool f16_le_quiet(float16_t, float16_t);
bool f16_lt_quiet(float16_t, float16_t);
bool f16_isSignalingNaN(float16_t);
/*----------------------------------------------------------------------------
| 16-bit (brain float 16) floating-point operations.
*----------------------------------------------------------------------------*/
float32_t bf16_to_f32(bfloat16_t);
bfloat16_t f32_to_bf16(float32_t);
bool bf16_isSignalingNaN(bfloat16_t);
/*----------------------------------------------------------------------------
| 32-bit (single-precision) floating-point operations.
*----------------------------------------------------------------------------*/

View File

@ -50,9 +50,6 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
typedef struct {
uint16_t v;
} float16_t;
typedef struct {
uint16_t v;
} bfloat16_t;
typedef struct {
uint32_t v;
} float32_t;

View File

@ -221,3 +221,4 @@ float32_t
return uZ.f;
}

View File

@ -1,52 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdint.h>
#include "platform.h"
#include "internals.h"
struct exp8_sig16 softfloat_normSubnormalBF16Sig( uint_fast16_t sig )
{
int_fast8_t shiftDist;
struct exp8_sig16 z;
shiftDist = softfloat_countLeadingZeros16( sig ) - 8;
z.exp = 1 - shiftDist;
z.sig = sig<<shiftDist;
return z;
}

View File

@ -1,114 +0,0 @@
/*============================================================================
This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3e, by John R. Hauser.
Copyright 2011, 2012, 2013, 2014, 2015, 2017 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "internals.h"
#include "softfloat.h"
/** sig last significant bit is sig[7], the 7 LSBs will be used for rounding */
bfloat16_t
softfloat_roundPackToBF16( bool sign, int_fast16_t exp, uint_fast16_t sig )
{
uint_fast8_t roundingMode;
bool roundNearEven;
uint_fast8_t roundIncrement, roundBits;
bool isTiny;
uint_fast16_t uiZ;
union ui16_bf16 uZ;
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
roundingMode = softfloat_roundingMode;
roundNearEven = (roundingMode == softfloat_round_near_even);
roundIncrement = 0x40;
if ( ! roundNearEven && (roundingMode != softfloat_round_near_maxMag) ) {
roundIncrement =
(roundingMode
== (sign ? softfloat_round_min : softfloat_round_max))
? 0x7F
: 0;
}
roundBits = sig & 0x7F;
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
if ( 0xFD <= (unsigned int) exp ) {
if ( exp < 0 ) {
/*----------------------------------------------------------------
*----------------------------------------------------------------*/
isTiny =
(softfloat_detectTininess == softfloat_tininess_beforeRounding)
|| (exp < -1) || (sig + roundIncrement < 0x8000);
sig = softfloat_shiftRightJam32( sig, -exp );
exp = 0;
roundBits = sig & 0x7F;
if ( isTiny && roundBits ) {
softfloat_raiseFlags( softfloat_flag_underflow );
}
} else if ( (0xFD < exp) || (0x8000 <= sig + roundIncrement) ) {
/*----------------------------------------------------------------
*----------------------------------------------------------------*/
softfloat_raiseFlags(
softfloat_flag_overflow | softfloat_flag_inexact );
uiZ = packToBF16UI( sign, 0xFF, 0 ) - ! roundIncrement;
goto uiZ;
}
}
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
sig = (sig + roundIncrement)>>7;
if ( roundBits ) {
softfloat_exceptionFlags |= softfloat_flag_inexact;
#ifdef SOFTFLOAT_ROUND_ODD
if ( roundingMode == softfloat_round_odd ) {
sig |= 1;
goto packReturn;
}
#endif
}
sig &= ~(uint_fast16_t) (! (roundBits ^ 0x40) & roundNearEven);
if ( ! sig ) exp = 0;
/*------------------------------------------------------------------------
*------------------------------------------------------------------------*/
packReturn:
uiZ = packToBF16UI( sign, exp, sig );
uiZ:
uZ.ui = uiZ;
return uZ.f;
}

View File

@ -1,69 +0,0 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifdef _MSC_VER
#define _SCL_SECURE_NO_WARNINGS
#define ELFIO_NO_INTTYPES
#endif
#include <elfio/elfio_dump.hpp>
#include <iostream>
using namespace ELFIO;
int main(int argc, char** argv) {
if(argc != 2) {
printf("Usage: elfdump <file_name>\n");
return 1;
}
elfio reader;
if(!reader.load(argv[1])) {
printf("File %s is not found or it is not an ELF file\n", argv[1]);
return 1;
}
dump::header(std::cout, reader);
dump::section_headers(std::cout, reader);
dump::segment_headers(std::cout, reader);
dump::symbol_tables(std::cout, reader);
dump::notes(std::cout, reader);
dump::modinfo(std::cout, reader);
dump::dynamic_tags(std::cout, reader);
dump::section_datas(std::cout, reader);
dump::segment_datas(std::cout, reader);
return 0;
}

View File

@ -51,8 +51,8 @@ public:
virtual ~hwl() = default;
protected:
iss::status read_custom_csr(unsigned addr, reg_t& val) override;
iss::status write_custom_csr(unsigned addr, reg_t val) override;
iss::status read_custom_csr_reg(unsigned addr, reg_t& val) override;
iss::status write_custom_csr_reg(unsigned addr, reg_t val) override;
};
template <typename BASE>
@ -68,7 +68,7 @@ inline hwl<BASE>::hwl(feature_config cfg)
}
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr(unsigned addr, reg_t& val) {
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_csr_reg(unsigned addr, reg_t& val) {
switch(addr) {
case 0x800:
val = this->reg.lpstart0;
@ -92,7 +92,7 @@ template <typename BASE> inline iss::status iss::arch::hwl<BASE>::read_custom_cs
return iss::Ok;
}
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr(unsigned addr, reg_t val) {
template <typename BASE> inline iss::status iss::arch::hwl<BASE>::write_custom_csr_reg(unsigned addr, reg_t val) {
switch(addr) {
case 0x800:
this->reg.lpstart0 = val;

View File

@ -1,233 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MSTATUS_TYPE
#define _MSTATUS_TYPE
#include <cstdint>
#include <type_traits>
#include <util/bit_field.h>
#include <util/ities.h>
namespace iss {
namespace arch {
template <class T, class Enable = void> struct status {};
// specialization 32bit
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); }
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); };
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
// specialization 64bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
} // namespace arch
} // namespace iss
#endif // _MSTATUS_TYPE

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* Copyright (C) 2017, 2018, 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -35,38 +35,15 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "mstatus.h"
#include "util/delegate.h"
#include <absl/container/flat_hash_map.h>
#include <array>
#include "iss/arch_if.h"
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/mem/memory_if.h>
#include <iss/semihosting/semihosting.h>
#include <iss/vm_types.h>
#include <limits>
#include <sstream>
#include <string>
#include <unordered_map>
#include <util/logging.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) ::__builtin_expect(!!(x), 1)
#define unlikely(x) ::__builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
namespace iss {
namespace arch {
enum features_e { FEAT_NONE, FEAT_EXT_N = 1, FEAT_DEBUG = 2 };
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e { FEAT_NONE, FEAT_PMP = 1, FEAT_EXT_N = 2, FEAT_CLIC = 4, FEAT_DEBUG = 8, FEAT_TCM = 16 };
enum riscv_csr {
/* user-level CSR */
@ -195,19 +172,26 @@ enum riscv_csr {
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch0 = 0x7B2,
dscratch1 = 0x7B3,
// vector CSR
// URW
vstart = 0x008,
vxsat = 0x009,
vxrm = 0x00A,
vcsr = 0x00F,
// URO
vl = 0xC20,
vtype = 0xC21,
vlenb = 0xC22,
dscratch1 = 0x7B3
};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3, PRIV_D = 4 };
enum {
@ -226,6 +210,25 @@ enum {
ISA_U = 1 << 20
};
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
struct feature_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
@ -252,662 +255,48 @@ public:
: trap_access(15 << 16, badaddr) {}
};
template <typename WORD_TYPE> struct priv_if {
using rd_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE)>;
std::function<iss::status(unsigned, WORD_TYPE&)> read_csr;
std::function<iss::status(unsigned, WORD_TYPE)> write_csr;
std::function<iss::status(uint8_t const*)> exec_htif;
std::function<void(uint16_t, uint16_t, WORD_TYPE)> raise_trap; // trap_id, cause, fault_data
absl::flat_hash_map<unsigned, rd_csr_f>& csr_rd_cb;
absl::flat_hash_map<unsigned, wr_csr_f>& csr_wr_cb;
hart_state<WORD_TYPE>& state;
uint8_t& PRIV;
WORD_TYPE& PC;
uint64_t& tohost;
uint64_t& fromhost;
unsigned& max_irq;
};
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE, public mem::memory_elem {
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
constexpr static unsigned MEM = traits<BASE>::MEM;
using core = BASE;
using this_class = riscv_hart_common<BASE, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = std::function<iss::status(unsigned addr, reg_t&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, reg_t)>;
#define MK_CSR_RD_CB(FCT) [this](unsigned a, reg_t& r) -> iss::status { return this->FCT(a, r); };
#define MK_CSR_WR_CB(FCT) [this](unsigned a, reg_t r) -> iss::status { return this->FCT(a, r); };
riscv_hart_common()
: state()
, instr_if(*this) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fcsr] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[fflags] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fflags] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[frm] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[frm] = MK_CSR_WR_CB(write_fcsr);
}
if(traits<BASE>::V_REGS_SIZE > 0) {
csr_rd_cb[vstart] = MK_CSR_RD_CB(read_vstart);
csr_wr_cb[vstart] = MK_CSR_WR_CB(write_vstart);
csr_rd_cb[vxsat] = MK_CSR_RD_CB(read_vxsat);
csr_wr_cb[vxsat] = MK_CSR_WR_CB(write_vxsat);
csr_rd_cb[vxrm] = MK_CSR_RD_CB(read_vxrm);
csr_wr_cb[vxrm] = MK_CSR_WR_CB(write_vxrm);
csr_rd_cb[vcsr] = MK_CSR_RD_CB(read_vcsr);
csr_wr_cb[vcsr] = MK_CSR_WR_CB(write_vcsr);
csr_rd_cb[vl] = MK_CSR_RD_CB(read_vl);
csr_rd_cb[vtype] = MK_CSR_RD_CB(read_vtype);
csr_rd_cb[vlenb] = MK_CSR_RD_CB(read_vlenb);
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_null);
}
// special handling & overrides
csr_rd_cb[time] = MK_CSR_RD_CB(read_time);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = MK_CSR_RD_CB(read_time);
csr_rd_cb[cycle] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = MK_CSR_RD_CB(read_cycle);
csr_rd_cb[instret] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = MK_CSR_RD_CB(read_instret);
csr_rd_cb[mcycle] = MK_CSR_RD_CB(read_cycle);
csr_wr_cb[mcycle] = MK_CSR_WR_CB(write_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = MK_CSR_WR_CB(write_cycle);
csr_rd_cb[minstret] = MK_CSR_RD_CB(read_instret);
csr_wr_cb[minstret] = MK_CSR_WR_CB(write_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = MK_CSR_WR_CB(write_instret);
csr_rd_cb[mhartid] = MK_CSR_RD_CB(read_hartid);
};
~riscv_hart_common() {
if(io_buf.str().length()) {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
}
}
std::unordered_map<std::string, uint64_t> symbol_table;
uint64_t entry_address{0};
uint64_t tohost = std::numeric_limits<uint64_t>::max();
uint64_t fromhost = std::numeric_limits<uint64_t>::max();
std::stringstream io_buf;
void set_semihosting_callback(semihosting_cb_t<reg_t> cb) { semihosting_cb = cb; };
std::pair<uint64_t, bool> load_file(std::string name, int type) {
return std::make_pair(entry_address, read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64));
}
bool read_elf_file(std::string name, uint8_t expected_elf_class) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(reader.load(name)) {
// check elf properties
if(reader.get_class() != expected_elf_class) {
CPPLOG(ERR) << "ISA missmatch, selected XLEN does not match supplied file ";
return false;
}
if(reader.get_type() != ELFIO::ET_EXEC)
return false;
if(reader.get_machine() != ELFIO::EM_RISCV)
return false;
entry_address = reader.get_entry();
for(const auto& pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == ELFIO::PT_LOAD && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
const auto sym_sec = reader.sections[".symtab"];
if(ELFIO::SHT_SYMTAB == sym_sec->get_type() || ELFIO::SHT_DYNSYM == sym_sec->get_type()) {
ELFIO::symbol_section_accessor symbols(reader, sym_sec);
auto sym_no = symbols.get_symbols_num();
std::string name;
ELFIO::Elf64_Addr value = 0;
ELFIO::Elf_Xword size = 0;
unsigned char bind = 0;
unsigned char type = 0;
ELFIO::Elf_Half section = 0;
unsigned char other = 0;
for(auto i = 0U; i < sym_no; ++i) {
symbols.get_symbol(i, name, value, size, bind, type, section, other);
if(name != "") {
this->symbol_table[name] = value;
#ifndef NDEBUG
CPPLOG(DEBUG) << "Found Symbol " << name;
#endif
}
}
auto to_it = symbol_table.find("tohost");
if(to_it != std::end(symbol_table))
tohost = to_it->second;
auto from_it = symbol_table.find("tohost");
if(from_it != std::end(symbol_table))
tohost = from_it->second;
}
return true;
}
return false;
};
iss::status execute_sys_write(arch_if* aif, const std::array<uint64_t, 8>& loaded_payload, unsigned mem_type) {
uint64_t fd = loaded_payload[1];
uint64_t buf_ptr = loaded_payload[2];
uint64_t len = loaded_payload[3];
std::vector<char> buf(len);
if(aif->read(address_type::PHYSICAL, access_type::DEBUG_READ, mem_type, buf_ptr, len, reinterpret_cast<uint8_t*>(buf.data()))) {
CPPLOG(ERR) << "SYS_WRITE buffer read went wrong";
return iss::Err;
}
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n' || buf[i] == '\0') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
} else
io_buf << buf[i];
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
if(fromhost != std::numeric_limits<uint64_t>::max())
if(aif->write(address_type::PHYSICAL, access_type::DEBUG_WRITE, mem_type, fromhost, 1, &ret_val)) {
CPPLOG(ERR) << "Fromhost write went wrong";
return iss::Err;
}
return iss::Ok;
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
void disass_output(uint64_t pc, const std::string instr) override {
// NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV],
// (reg_t)state.mstatus,
// this->reg.cycle + cycle_offset);
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};c:{}]", pc, instr, lvl[this->reg.PRIV],
this->reg.cycle + cycle_offset);
};
void register_csr(unsigned addr, rd_csr_f f) { csr_rd_cb[addr] = f; }
void register_csr(unsigned addr, wr_csr_f f) { csr_wr_cb[addr] = f; }
void register_csr(unsigned addr, rd_csr_f rdf, wr_csr_f wrf) {
csr_rd_cb[addr] = rdf;
csr_wr_cb[addr] = wrf;
}
void unregister_csr_rd(unsigned addr) { csr_rd_cb.erase(addr); }
void unregister_csr_wr(unsigned addr) { csr_wr_cb.erase(addr); }
bool debug_mode_active() { return this->reg.PRIV & 0x4; }
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
iss::status read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
iss::status read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
iss::status write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
iss::status read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
iss::status write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
iss::status read_tvec(unsigned addr, reg_t& val) {
val = csr[addr] & ~2;
return iss::Ok;
}
iss::status read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
iss::status write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
iss::status write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
iss::status read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
iss::status write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
iss::status read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
iss::status write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
iss::status read_fcsr(unsigned addr, reg_t& val) {
switch(addr) {
case 1: // fflags, 4:0
val = bit_sub<0, 5>(this->get_fcsr());
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 2: // frm, 7:5
val = bit_sub<5, 3>(this->get_fcsr());
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 3: // fcsr
val = this->get_fcsr();
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status write_fcsr(unsigned addr, reg_t val) {
switch(addr) {
case 1: // fflags, 4:0
this->set_fcsr((this->get_fcsr() & 0xffffffe0) | (val & 0x1f));
case 3:
*data = *(reg_ptr + 3);
break;
case 2: // frm, 7:5
this->set_fcsr((this->get_fcsr() & 0xffffff1f) | ((val & 0x7) << 5));
}
}
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 3: // fcsr
this->set_fcsr(val & 0xff);
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status read_vstart(unsigned addr, reg_t& val) {
val = this->get_vstart();
return iss::Ok;
}
iss::status write_vstart(unsigned addr, reg_t val) {
this->set_vstart(val);
return iss::Ok;
}
iss::status read_vxsat(unsigned addr, reg_t& val) {
val = this->get_vxsat();
return iss::Ok;
}
iss::status write_vxsat(unsigned addr, reg_t val) {
this->set_vxsat(val & 1);
csr[vcsr] = (~1ULL & csr[vcsr]) | (val & 1);
return iss::Ok;
}
iss::status read_vxrm(unsigned addr, reg_t& val) {
val = this->get_vxrm();
return iss::Ok;
}
iss::status write_vxrm(unsigned addr, reg_t val) {
this->set_vxrm(val & 0b11);
csr[vcsr] = (~0b110ULL & csr[vcsr]) | ((val & 0b11) << 1);
return iss::Ok;
}
iss::status read_vcsr(unsigned addr, reg_t& val) {
val = csr[vcsr];
return iss::Ok;
}
iss::status write_vcsr(unsigned addr, reg_t val) {
csr[vcsr] = val;
return iss::Ok;
}
iss::status read_vl(unsigned addr, reg_t& val) {
val = this->get_vl();
return iss::Ok;
}
iss::status read_vtype(unsigned addr, reg_t& val) {
val = this->get_vtype();
return iss::Ok;
}
iss::status read_vlenb(unsigned addr, reg_t& val) {
val = csr[vlenb];
return iss::Ok;
}
priv_if<reg_t> get_priv_if() {
return priv_if<reg_t>{.read_csr = [this](unsigned addr, reg_t& val) -> iss::status { return read_csr(addr, val); },
.write_csr = [this](unsigned addr, reg_t val) -> iss::status { return write_csr(addr, val); },
.exec_htif = [this](uint8_t const* data) -> iss::status { return execute_htif(data); },
.raise_trap =
[this](uint16_t trap_id, uint16_t cause, reg_t fault_data) {
this->reg.trap_state = 0x80ULL << 24 | (cause << 16) | trap_id;
this->fault_data = fault_data;
},
.csr_rd_cb{this->csr_rd_cb},
.csr_wr_cb{this->csr_wr_cb},
.state{this->state},
.PRIV{this->reg.PRIV},
.PC{this->reg.PC},
.tohost{this->tohost},
.fromhost{this->fromhost},
.max_irq{mcause_max_irq}};
}
iss::status execute_htif(uint8_t const* data) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
CPPLOG(FATAL) << "this->tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
} else if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
if(memory.rd_mem(access_type::DEBUG_READ, payload_addr, 8 * sizeof(uint64_t),
reinterpret_cast<uint8_t*>(loaded_payload.data())) == iss::Err)
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "this->tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "this->tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
}
mem::memory_hierarchy memories;
mem::memory_if get_mem_if() override {
assert(false || "This function should never be called");
return mem::memory_if{};
}
void set_next(mem::memory_if mem_if) override { memory = mem_if; };
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
protected:
hart_state<reg_t> state;
static constexpr reg_t get_mstatus_mask_t(unsigned priv_lvl = PRIV_M) {
if(sizeof(reg_t) == 4) {
return priv_lvl == PRIV_U ? 0x80000011UL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x800de133UL // 0b0...0 0001 1000 1001 1001;
: 0x807ff9ddUL;
} else {
return priv_lvl == PRIV_U ? 0x011ULL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x000de133ULL
: 0x007ff9ddULL;
}
}
mem::memory_if memory;
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_common<BASE, LOGCAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_common<BASE, LOGCAT>& arch;
};
friend struct riscv_instrumentation_if;
riscv_instrumentation_if instr_if;
instrumentation_if* get_instrumentation_if() override { return &instr_if; };
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
csr_type csr;
absl::flat_hash_map<unsigned, rd_csr_f> csr_rd_cb;
absl::flat_hash_map<unsigned, wr_csr_f> csr_wr_cb;
reg_t mhartid_reg{0x0};
uint64_t mcycle_csr{0};
uint64_t minstret_csr{0};
reg_t fault_data;
int64_t cycle_offset{0};
int64_t instret_offset{0};
semihosting_cb_t<reg_t> semihosting_cb;
unsigned mcause_max_irq{16U};
};
} // namespace arch
} // namespace iss

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2024 MINRES Technologies GmbH
* Copyright (C) 2017 - 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

File diff suppressed because one or more lines are too long

View File

@ -1,37 +1,3 @@
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _ISS_ARCH_TGC_MAPPER_H
#define _ISS_ARCH_TGC_MAPPER_H
@ -57,29 +23,35 @@ using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arc
#ifdef CORE_TGC5D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac(iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
using tgc5d_xrb_mac_plat_type =
iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5D_XRB_NN
#include "hwl.h"
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type =
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>>;
iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn,
(iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC5E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC5X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_EXT_N)>;
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC |
iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#endif
#endif

View File

@ -87,7 +87,7 @@ public:
virtual ~wt_cache() = default;
unsigned size{4096};
unsigned line_sz{64};
unsigned line_sz{32};
unsigned ways{1};
uint64_t io_address{0xf0000000};
uint64_t io_addr_mask{0xf0000000};
@ -119,7 +119,7 @@ template <typename BASE> iss::status iss::arch::wt_cache<BASE>::read_cache(phys_
icache_ptr.reset(new cache::cache(size, line_sz, ways));
dcache_ptr.reset(new cache::cache(size, line_sz, ways));
}
if((a.access & iss::access_type::FETCH) == iss::access_type::FETCH || (a.val & io_addr_mask) != io_address) {
if((a.val & io_addr_mask) != io_address) {
auto set_addr = (a.val & (size - 1)) >> util::ilog2(line_sz * ways);
auto tag_addr = a.val >> util::ilog2(line_sz);
auto& set = (is_fetch(a.access) ? icache_ptr : dcache_ptr)->sets[set_addr];

File diff suppressed because it is too large Load Diff

View File

@ -30,8 +30,8 @@
*
*******************************************************************************/
#ifndef _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#define _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#ifndef _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#define _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_
#include "iss/arch_if.h"
#include <iss/arch/traits.h>
@ -48,10 +48,6 @@
namespace iss {
namespace debugger {
char const* const get_csr_name(unsigned);
constexpr auto csr_offset = 100U;
using namespace iss::arch;
using namespace iss::debugger;
@ -133,17 +129,11 @@ public:
protected:
static inline constexpr addr_t map_addr(const addr_t& i) { return i; }
std::string csr_xml;
iss::arch_if* core;
rp_thread_ref thread_idx;
};
template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN != 0, unsigned>::type get_f0_offset() {
return iss::arch::traits<ARCH>::F0;
}
template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN == 0, unsigned>::type get_f0_offset() { return 0; }
template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) {
thread_idx = thread;
return Ok;
@ -184,30 +174,13 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query
}
template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
CPPLOG(TRACE) << "reading target registers";
LOG(TRACE) << "reading target registers";
// return idx<0?:;
data.clear();
avail.clear();
const uint8_t* reg_base = core->get_regs_base_ptr();
auto start_reg = arch::traits<ARCH>::X0;
for(size_t i = 0; i < 33; ++i) {
if(i < arch::traits<ARCH>::RFS || i == arch::traits<ARCH>::PC) {
auto reg_no = i < 32 ? start_reg + i : arch::traits<ARCH>::PC;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) {
data.push_back(*(reg_base + offset + j));
avail.push_back(0xff);
}
} else {
for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) {
data.push_back(0);
avail.push_back(0);
}
}
}
if(iss::arch::traits<ARCH>::FLEN > 0) {
auto fstart_reg = get_f0_offset<ARCH>();
for(size_t i = 0; i < 32; ++i) {
auto reg_no = fstart_reg + i;
for(size_t reg_no = start_reg; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no];
for(size_t j = 0; j < reg_width; ++j) {
@ -215,7 +188,21 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::
avail.push_back(0xff);
}
}
}
// work around fill with F type registers
// if (arch::traits<ARCH>::NUM_REGS < 65) {
// auto reg_width = sizeof(typename arch::traits<ARCH>::reg_t);
// for (size_t reg_no = 0; reg_no < 33; ++reg_no) {
// for (size_t j = 0; j < reg_width; ++j) {
// data.push_back(0x0);
// avail.push_back(0x00);
// }
// // if(arch::traits<ARCH>::XLEN < 64)
// // for(unsigned j=0; j<4; ++j){
// // data.push_back(0x0);
// // avail.push_back(0x00);
// // }
// }
// }
return Ok;
}
@ -223,25 +210,25 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
auto start_reg = arch::traits<ARCH>::X0;
auto* reg_base = core->get_regs_base_ptr();
auto iter = data.data();
auto iter_end = data.data() + data.size();
for(size_t i = 0; i < 33 && iter < iter_end; ++i) {
auto reg_width = arch::traits<ARCH>::XLEN / 8;
if(i < arch::traits<ARCH>::RFS) {
auto offset = traits<ARCH>::reg_byte_offsets[start_reg + i];
std::copy(iter, iter + reg_width, reg_base + offset);
} else if(i == 32) {
bool e_ext = arch::traits<ARCH>::PC < 32;
for(size_t reg_no = 0; reg_no < start_reg + 33 /*arch::traits<ARCH>::NUM_REGS*/; ++reg_no) {
if(e_ext && reg_no > 15) {
if(reg_no == 32) {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC];
std::copy(iter, iter + reg_width, reg_base + offset);
std::copy(iter, iter + reg_width, reg_base);
} else {
const uint64_t zero_val = 0;
auto reg_width = arch::traits<ARCH>::reg_bit_widths[15] / 8;
auto iter = (uint8_t*)&zero_val;
std::copy(iter, iter + reg_width, reg_base);
}
iter += reg_width;
}
if(iss::arch::traits<ARCH>::FLEN > 0) {
auto fstart_reg = get_f0_offset<ARCH>();
auto reg_width = arch::traits<ARCH>::FLEN / 8;
for(size_t i = 0; i < 32 && iter < iter_end; ++i) {
unsigned offset = traits<ARCH>::reg_byte_offsets[fstart_reg + i];
std::copy(iter, iter + reg_width, reg_base + offset);
iter += reg_width;
} else {
auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(iter, iter + reg_width, reg_base);
iter += 4;
reg_base += offset;
}
}
return Ok;
@ -249,7 +236,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(cons
template <typename ARCH>
status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
if(reg_no < csr_offset) {
if(reg_no < 65) {
// auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename
// arch::traits<ARCH>::reg_e>(reg_no))/8;
auto* reg_base = core->get_regs_base_ptr();
@ -260,24 +247,23 @@ status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std
std::copy(reg_base + offset, reg_base + offset + reg_width, data.begin());
std::fill(avail.begin(), avail.end(), 0xff);
} else {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, reg_no - csr_offset);
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, reg_no - 65);
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
std::fill(avail.begin(), avail.end(), 0xff);
core->read(a, data.size(), data.data());
std::fill(avail.begin(), avail.end(), 0xff);
}
return data.size() > 0 ? Ok : Err;
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) {
if(reg_no < csr_offset) {
if(reg_no < 65) {
auto* reg_base = core->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_widths[static_cast<typename arch::traits<ARCH>::reg_e>(reg_no)] / 8;
auto offset = traits<ARCH>::reg_byte_offsets[reg_no];
std::copy(data.begin(), data.begin() + reg_width, reg_base + offset);
} else {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - csr_offset);
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - 65);
core->write(a, data.size(), data.data());
}
return Ok;
@ -290,7 +276,7 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t ad
}
template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) {
auto a = map_addr({iss::access_type::DEBUG_WRITE, iss::address_type::VIRTUAL, 0, addr});
auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr});
auto f = [&]() -> status { return core->write(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
@ -342,9 +328,9 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::add_break(break_type
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
auto eaddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr + length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val);
CPPLOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val
LOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val
<< std::dec;
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
}
@ -359,13 +345,13 @@ template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(break_t
auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr});
unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val);
if(handle) {
CPPLOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec;
LOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec;
// TODO: check length of addr range
target_adapter_base::bp_lut.removeEntry(handle);
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Err;
}
}
@ -383,57 +369,93 @@ status riscv_target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t
}
template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string& out_buf) {
if(!csr_xml.size()) {
std::ostringstream oss;
oss << "<?xml version=\"1.0\"?><!DOCTYPE feature SYSTEM \"gdb-target.dtd\"><target version=\"1.0\">\n";
if(iss::arch::traits<ARCH>::XLEN == 32)
oss << "<architecture>riscv:rv32</architecture>\n";
else if(iss::arch::traits<ARCH>::XLEN == 64)
oss << " <architectureriscv:rv64</architecture>\n";
oss << " <feature name=\"org.gnu.gdb.riscv.cpu\">\n";
auto reg_base_num = iss::arch::traits<ARCH>::X0;
for(auto i = 0U; i < iss::arch::traits<ARCH>::RFS; ++i) {
oss << " <reg name=\"x" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i]
<< "\" type=\"int\" regnum=\"" << i << "\"/>\n";
}
oss << " <reg name=\"pc\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[iss::arch::traits<ARCH>::PC]
<< "\" type=\"code_ptr\" regnum=\"" << 32U << "\"/>\n";
oss << " </feature>\n";
if(iss::arch::traits<ARCH>::FLEN > 0) {
oss << " <feature name=\"org.gnu.gdb.riscv.fpu\">\n";
auto reg_base_num = get_f0_offset<ARCH>();
auto type = iss::arch::traits<ARCH>::FLEN == 32 ? "ieee_single" : "riscv_double";
for(auto i = 0U; i < 32; ++i) {
oss << " <reg name=\"f" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i]
<< "\" type=\"" << type << "\" regnum=\"" << i + 33 << "\"/>\n";
}
oss << " <reg name=\"fcsr\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"103\" type int/>\n";
oss << " <reg name=\"fflags\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"101\" type int/>\n";
oss << " <reg name=\"frm\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"102\" type int/>\n";
oss << " </feature>\n";
}
oss << " <feature name=\"org.gnu.gdb.riscv.csr\">\n";
std::vector<uint8_t> data;
std::vector<uint8_t> avail;
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
for(auto i = 0U; i < 4096; ++i) {
typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, i);
std::fill(avail.begin(), avail.end(), 0xff);
auto res = core->read(a, data.size(), data.data());
if(res == iss::Ok) {
oss << " <reg name=\"" << get_csr_name(i) << "\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN
<< "\" type=\"int\" regnum=\"" << (i + csr_offset) << "\"/>\n";
}
}
oss << " </feature>\n";
oss << "</target>\n";
csr_xml = oss.str();
}
out_buf = csr_xml;
const std::string res{"<?xml version=\"1.0\"?><!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target><architecture>riscv:rv32</architecture>"
//" <feature name=\"org.gnu.gdb.riscv.rv32i\">\n"
//" <reg name=\"x0\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x1\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x2\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x3\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x4\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x5\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x6\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x7\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x8\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x9\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x10\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x11\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x12\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x13\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x14\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x15\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x16\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x17\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x18\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x19\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x20\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x21\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x22\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x23\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x24\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x25\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x26\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x27\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x28\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x29\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x30\" bitsize=\"32\" group=\"general\"/>\n"
//" <reg name=\"x31\" bitsize=\"32\" group=\"general\"/>\n"
//" </feature>\n"
"</target>"};
out_buf = res;
return Ok;
}
/*
*
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target>
<architecture>riscv:rv32</architecture>
<feature name="org.gnu.gdb.riscv.rv32i">
<reg name="x0" bitsize="32" group="general"/>
<reg name="x1" bitsize="32" group="general"/>
<reg name="x2" bitsize="32" group="general"/>
<reg name="x3" bitsize="32" group="general"/>
<reg name="x4" bitsize="32" group="general"/>
<reg name="x5" bitsize="32" group="general"/>
<reg name="x6" bitsize="32" group="general"/>
<reg name="x7" bitsize="32" group="general"/>
<reg name="x8" bitsize="32" group="general"/>
<reg name="x9" bitsize="32" group="general"/>
<reg name="x10" bitsize="32" group="general"/>
<reg name="x11" bitsize="32" group="general"/>
<reg name="x12" bitsize="32" group="general"/>
<reg name="x13" bitsize="32" group="general"/>
<reg name="x14" bitsize="32" group="general"/>
<reg name="x15" bitsize="32" group="general"/>
<reg name="x16" bitsize="32" group="general"/>
<reg name="x17" bitsize="32" group="general"/>
<reg name="x18" bitsize="32" group="general"/>
<reg name="x19" bitsize="32" group="general"/>
<reg name="x20" bitsize="32" group="general"/>
<reg name="x21" bitsize="32" group="general"/>
<reg name="x22" bitsize="32" group="general"/>
<reg name="x23" bitsize="32" group="general"/>
<reg name="x24" bitsize="32" group="general"/>
<reg name="x25" bitsize="32" group="general"/>
<reg name="x26" bitsize="32" group="general"/>
<reg name="x27" bitsize="32" group="general"/>
<reg name="x28" bitsize="32" group="general"/>
<reg name="x29" bitsize="32" group="general"/>
<reg name="x30" bitsize="32" group="general"/>
<reg name="x31" bitsize="32" group="general"/>
</feature>
</target>
*/
} // namespace debugger
} // namespace iss
#endif /* _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */
#endif /* _ISS_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */

View File

@ -1,285 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct clic : public memory_elem {
using this_class = clic<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
clic(arch::priv_if<WORD_TYPE> hart_if, clic_config cfg)
: hart_if(hart_if)
, cfg(cfg) {
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x30;
clic_mact_lvl = clic_mprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
clic_uact_lvl = clic_uprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr_rd_cb[arch::mtvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mtvt] = MK_CSR_WR_CB(write_xtvt);
// hart_if.csr_rd_cb[mxnti] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mxnti] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::mintstatus] = MK_CSR_WR_CB(write_null);
// hart_if.csr_rd_cb[mscratchcsw] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcsw] = MK_CSR_WR_CB(write_plain(a,r);};
// hart_if.csr_rd_cb[mscratchcswl] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcswl] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mintthresh] = MK_CSR_WR_CB(write_intthresh);
if(cfg.nmode) {
hart_if.csr_rd_cb[arch::utvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::utvt] = MK_CSR_WR_CB(write_xtvt);
hart_if.csr_rd_cb[arch::uintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::uintstatus] = MK_CSR_WR_CB(write_null);
hart_if.csr_rd_cb[arch::uintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::uintthresh] = MK_CSR_WR_CB(write_intthresh);
}
hart_if.csr[arch::mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr[arch::uintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
}
~clic() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
std::tuple<uint64_t, uint64_t> get_range() override { return {cfg.clic_base, cfg.clic_base + 0x7fff}; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return read_clic(addr, length, data);
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return write_clic(addr, length, data);
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_clic(uint64_t addr, unsigned length, uint8_t* data);
iss::status write_clic(uint64_t addr, unsigned length, uint8_t const* data);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_xtvt(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & ~0x3fULL;
return iss::Ok;
}
iss::status read_cause(unsigned addr, reg_t& val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
clic_config cfg;
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
struct {
uint8_t ip;
uint8_t ie;
uint8_t attr;
uint8_t ctl;
};
uint32_t raw;
};
std::vector<clic_int_reg_t> clic_int_reg;
uint8_t clic_mprev_lvl{0}, clic_uprev_lvl{0};
uint8_t clic_mact_lvl{0}, clic_uact_lvl{0};
};
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_clic(uint64_t addr, unsigned length, uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
*data = clic_cfg_reg;
for(auto i = 1; i < length; ++i)
*(data + i) = 0;
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
read_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
read_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
} else {
for(auto i = 0U; i < length; ++i)
*(data + i) = 0;
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_clic(uint64_t addr, unsigned length, const uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
clic_cfg_reg = (clic_cfg_reg & ~0x1e) | (*data & 0x1e);
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
write_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
write_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
clic_int_reg[offset].raw &= 0xf0c70101; // clicIntCtlBits->0xf0, clicintattr->0xc7, clicintie->0x1, clicintip->0x1
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_cause(unsigned addr, reg_t& val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
val = hart_if.csr[addr] & (1UL << (sizeof(reg_t) * 8) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
val |= clic_uprev_lvl << 16;
val |= hart_if.state.mstatus.UPIE << 27;
break;
default:
val |= clic_mprev_lvl << 16;
val |= hart_if.state.mstatus.MPIE << 27;
val |= hart_if.state.mstatus.MPP << 28;
break;
}
} else
val = hart_if.csr[addr] & ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_cause(unsigned addr, reg_t val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
clic_uprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.state.mstatus.UPIE = (val >> 27) & 0x1;
break;
default:
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.state.mstatus.MPIE = (val >> 27) & 0x1;
hart_if.state.mstatus.MPP = (val >> 28) & 0x3;
break;
}
} else {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_intstatus(unsigned addr, reg_t& val) {
auto mode = (addr >> 8) & 0x3;
val = clic_uact_lvl & 0xff;
if(mode == 0x3)
val += (clic_mact_lvl & 0xff) << 24;
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_intthresh(unsigned addr, reg_t val) {
hart_if.csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
} // namespace mem
} // namespace iss

View File

@ -1,101 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include <algorithm>
namespace iss {
namespace mem {
void memory_hierarchy::root(memory_elem& e) {
hierarchy.push_front(&e);
root_set = true;
update_chain();
}
void memory_hierarchy::prepend(memory_elem& e) {
if(root_set)
hierarchy.insert(hierarchy.begin() + 1, &e);
else
hierarchy.push_front(&e);
update_chain();
}
void memory_hierarchy::append(memory_elem& e) {
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::insert_before(memory_elem&) {}
void memory_hierarchy::insert_after(memory_elem&) {}
void memory_hierarchy::replace_last(memory_elem& e) {
auto old = hierarchy.back();
auto it = std::find_if(std::begin(owned_elems), std::end(owned_elems),
[old](std::unique_ptr<memory_elem> const& p) { return p.get() == old; });
hierarchy.pop_back();
if(it != std::end(owned_elems))
owned_elems.erase(it);
hierarchy.push_back(&e);
update_chain();
}
void memory_hierarchy::update_chain() {
bool tail = false;
for(size_t i = 1; i < hierarchy.size(); ++i) {
hierarchy[i - 1]->set_next(hierarchy[i]->get_mem_if());
}
}
void memory_hierarchy::prepend(std::unique_ptr<memory_elem>&& p) {
prepend(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::append(std::unique_ptr<memory_elem>&& p) {
append(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_before(std::unique_ptr<memory_elem>&& p) {
insert_before(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::insert_after(std::unique_ptr<memory_elem>&& p) {
insert_after(*p);
owned_elems.push_back(std::move(p));
}
void memory_hierarchy::replace_last(std::unique_ptr<memory_elem>&& p) {
replace_last(*p);
owned_elems.push_back(std::move(p));
}
} // namespace mem
} // namespace iss

View File

@ -1,86 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_MEMORY_IF_
#define _MEMORY_MEMORY_IF_
#include "iss/vm_types.h"
#include <deque>
#include <functional>
#include <limits>
#include <memory>
#include <util/delegate.h>
#include <vector>
namespace iss {
namespace mem {
using rd_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t*);
using wr_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t const*);
struct memory_if {
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t*)> rd_mem;
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t const*)> wr_mem;
};
struct memory_elem {
virtual ~memory_elem() = default;
virtual memory_if get_mem_if() = 0;
virtual void set_next(memory_if) = 0;
virtual std::tuple<uint64_t, uint64_t> get_range() { return {0, std::numeric_limits<uint64_t>::max()}; }
};
struct memory_hierarchy {
void root(memory_elem&);
void prepend(memory_elem&);
void append(memory_elem&);
void insert_before(memory_elem&);
void insert_after(memory_elem&);
void replace_last(memory_elem&);
void prepend(std::unique_ptr<memory_elem>&&);
void append(std::unique_ptr<memory_elem>&&);
void insert_before(std::unique_ptr<memory_elem>&&);
void insert_after(std::unique_ptr<memory_elem>&&);
void replace_last(std::unique_ptr<memory_elem>&&);
protected:
void update_chain();
std::deque<memory_elem*> hierarchy;
std::vector<std::unique_ptr<memory_elem>> owned_elems;
bool root_set{false};
};
} // namespace mem
} // namespace iss
#endif

View File

@ -1,90 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_WITH_HTIF_
#define _MEMORY_WITH_HTIF_
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
#include <util/sparse_array.h>
namespace iss {
namespace mem {
template <typename WORD_TYPE> struct memory_with_htif : public memory_elem {
using this_class = memory_with_htif<WORD_TYPE>;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
memory_with_htif(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {}
~memory_with_htif() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if) override {
// intenrionally left empty, leaf element
}
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
for(auto offs = 0U; offs < length; ++offs) {
*(data + offs) = mem[(addr + offs) % mem.size()];
}
return iss::Ok;
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
mem_type::page_type& p = mem(addr / mem.page_size);
std::copy(data, data + length, p.data() + (addr & mem.page_addr_mask));
// this->tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(access && iss::access_type::FUNC && addr == hart_if.tohost) {
return hart_if.exec_htif(data);
}
return iss::Ok;
}
protected:
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
mem_type mem;
arch::priv_if<WORD_TYPE> hart_if;
};
} // namespace mem
} // namespace iss
#endif // _MEMORY_WITH_HTIF_

View File

@ -1,353 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
namespace iss {
namespace mem {
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
bool is_active() { return levels; }
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
// TODO: update vminfo on trap enter and leave as well as mstatus write, reset
template <typename WORD_TYPE> struct mmu : public memory_elem {
using this_class = mmu<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
constexpr static reg_t PGSIZE = 1 << PGSHIFT;
constexpr static reg_t PGMASK = PGSIZE - 1;
mmu(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
hart_if.csr_rd_cb[satp] = MK_CSR_RD_CB(read_satp);
hart_if.csr_wr_cb[satp] = MK_CSR_WR_CB(write_satp);
}
virtual ~mmu() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.rd_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.rd_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(unlikely((addr & ~PGMASK) != ((addr + length - 1) & ~PGMASK))) { // we may cross a page boundary
vm_info vm = decode_vm_info(hart_if.PRIV, satp);
if(vm.levels != 0) { // VM is active
auto split_addr = (addr + length) & ~PGMASK;
auto len1 = split_addr - addr;
auto res = down_stream_mem.wr_mem(access, addr, len1, data);
if(res == iss::Ok)
res = down_stream_mem.wr_mem(access, split_addr, length - len1, data + len1);
return res;
}
}
return down_stream_mem.wr_mem(access, virt2phys(access, addr), length, data);
}
void update_vm_info();
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status read_satp(unsigned addr, reg_t& val) {
auto tvm = bit_sub<20, 1>(hart_if.state.mstatus());
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
val = satp;
return iss::Ok;
}
iss::status write_satp(unsigned addr, reg_t val) {
reg_t tvm = hart_if.state.mstatus.TVM;
if(hart_if.PRIV == arch::PRIV_S & tvm != 0) {
hart_if.raise_trap(2, 0, hart_if.PC);
// hart_if.reg.trap_state = (1 << 31) | (2 << 16);
// hart_if.fault_data = hart_if.reg.PC;
return iss::Err;
}
satp = val;
update_vm_info();
return iss::Ok;
}
uint64_t virt2phys(iss::access_type access, uint64_t addr);
static inline vm_info decode_vm_info(uint32_t state, uint32_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<31, 1>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 1:
return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
static inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr) {
if(state == arch::PRIV_M)
return {0, 0, 0, 0};
if(state <= arch::PRIV_S)
switch(bit_sub<60, 4>(sptbr)) {
case 0:
return {0, 0, 0, 0}; // off
case 8:
return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV39
case 9:
return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV48
case 10:
return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV57
case 11:
return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; // SV64
default:
abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
protected:
reg_t satp;
absl::flat_hash_map<reg_t, uint64_t> ptw;
std::array<vm_info, 2> vmt;
std::array<address_type, 4> addr_mode;
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> uint64_t mmu<WORD_TYPE>::virt2phys(iss::access_type access, uint64_t addr) {
const auto type = access & iss::access_type::FUNC;
auto it = ptw.find(addr >> PGSHIFT);
if(it != ptw.end()) {
const reg_t pte = it->second;
const reg_t ad = PTE_A | (type == iss::access_type::WRITE) * PTE_D;
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) == ad)
return {(pte & (~PGMASK)) | (addr & PGMASK)};
else
ptw.erase(it); // throw an exception
#endif
} else {
uint32_t mode = type != iss::access_type::FETCH && hart_if.state.mstatus.MPRV ? // MPRV
hart_if.state.mstatus.MPP
: hart_if.PRIV;
const vm_info& vm = vmt[static_cast<uint16_t>(type) / 2];
const bool s_mode = mode == arch::PRIV_S;
const bool sum = hart_if.state.mstatus.SUM;
const bool mxr = hart_if.state.mstatus.MXR;
// verify bits xlen-1:va_bits-1 are all equal
const int va_bits = PGSHIFT + vm.levels * vm.idxbits;
const reg_t mask = (reg_t(1) << (sizeof(reg_t) * 8 - (va_bits - 1))) - 1;
const reg_t masked_msbs = (addr >> (va_bits - 1)) & mask;
const int levels = (masked_msbs != 0 && masked_msbs != mask) ? 0 : vm.levels;
reg_t base = vm.ptbase;
for(int i = levels - 1; i >= 0; i--) {
const int ptshift = i * vm.idxbits;
const reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
reg_t pte = 0;
const uint8_t res = down_stream_mem.rd_mem(iss::access_type::READ, base + idx * vm.ptesize, vm.ptesize, (uint8_t*)&pte);
if(res != 0)
throw arch::trap_load_access_fault(addr);
const reg_t ppn = pte >> PTE_PPN_SHIFT;
if(PTE_TABLE(pte)) { // next level of page table
base = ppn << PGSHIFT;
} else if((pte & PTE_U) ? s_mode && (type == iss::access_type::FETCH || !sum) : !s_mode) {
break;
} else if(!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if(type == (type == iss::access_type::FETCH ? !(pte & PTE_X)
: type == iss::access_type::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W)))) {
break;
} else if((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
const reg_t ad = PTE_A | ((type == iss::access_type::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t*)ppte |= ad;
#else
// take exception if access or possibly dirty bit is not set.
if((pte & ad) != ad)
break;
#endif
// for superpage mappings, make a fake leaf PTE for the TLB's benefit.
const reg_t vpn = addr >> PGSHIFT;
const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
const reg_t offset = addr & PGMASK;
ptw[vpn] = value | (pte & 0xff);
return value | offset;
}
}
}
switch(type) {
case access_type::FETCH:
hart_if.raise_trap(12, 0, addr);
throw arch::trap_instruction_page_fault(addr);
case access_type::READ:
hart_if.raise_trap(13, 0, addr);
throw arch::trap_load_page_fault(addr);
case access_type::WRITE:
hart_if.raise_trap(15, 0, addr);
throw arch::trap_store_page_fault(addr);
default:
abort();
}
}
template <typename WORD_TYPE> inline void mmu<WORD_TYPE>::update_vm_info() {
vmt[1] = decode_vm_info(hart_if.PRIV, satp);
addr_mode[3] = addr_mode[2] = vmt[1].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
if(hart_if.state.mstatus.MPRV)
vmt[0] = decode_vm_info(hart_if.state.mstatus.MPP, satp);
else
vmt[0] = vmt[1];
addr_mode[1] = addr_mode[0] = vmt[0].is_active() ? iss::address_type::VIRTUAL : iss::address_type::PHYSICAL;
ptw.clear();
}
} // namespace mem
} // namespace iss

View File

@ -1,244 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "memory_if.h"
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include <util/logging.h>
namespace iss {
namespace mem {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct pmp : public memory_elem {
using this_class = pmp<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
pmp(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {
for(size_t i = arch::pmpaddr0; i <= arch::pmpaddr15; ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_plain);
}
for(size_t i = arch::pmpcfg0; i < arch::pmpcfg0 + 16 / sizeof(reg_t); ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_pmpcfg);
}
}
virtual ~pmp() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | ((access == access_type::FETCH ? 1 : 5) << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | (7 << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status write_pmpcfg(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & 0x9f9f9f9f;
return iss::Ok;
}
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> bool pmp<WORD_TYPE>::pmp_check(const access_type type, const uint64_t addr, const unsigned len) {
constexpr auto PMP_SHIFT = 2U;
constexpr auto PMP_R = 0x1U;
constexpr auto PMP_W = 0x2U;
constexpr auto PMP_X = 0x4U;
constexpr auto PMP_A = 0x18U;
constexpr auto PMP_L = 0x80U;
constexpr auto PMP_TOR = 0x1U;
constexpr auto PMP_NA4 = 0x2U;
constexpr auto PMP_NAPOT = 0x3U;
reg_t base = 0;
auto any_active = false;
auto const cfg_reg_size = sizeof(reg_t);
for(size_t i = 0; i < 16; i++) {
reg_t tor = hart_if.csr[arch::pmpaddr0 + i] << PMP_SHIFT;
uint8_t cfg = hart_if.csr[arch::pmpcfg0 + (i / cfg_reg_size)] >> (i % cfg_reg_size);
if(cfg & PMP_A) {
any_active = true;
auto pmp_a = (cfg & PMP_A) >> 3;
auto is_tor = pmp_a == PMP_TOR;
auto is_na4 = pmp_a == PMP_NA4;
reg_t mask = (hart_if.csr[arch::pmpaddr0 + i] << 1) | (!is_na4);
mask = ~(mask & ~(mask + 1)) << PMP_SHIFT;
// Check each 4-byte sector of the access
auto any_match = false;
auto all_match = true;
for(reg_t offset = 0; offset < len; offset += 1 << PMP_SHIFT) {
reg_t cur_addr = addr + offset;
auto napot_match = ((cur_addr ^ tor) & mask) == 0;
auto tor_match = base <= (cur_addr + len - 1) && cur_addr < tor;
auto match = is_tor ? tor_match : napot_match;
any_match |= match;
all_match &= match;
}
if(any_match) {
// If the PMP matches only a strict subset of the access, fail it
if(!all_match)
return false;
return (hart_if.reg.PRIV == arch::PRIV_M && !(cfg & PMP_L)) || (type == access_type::READ && (cfg & PMP_R)) ||
(type == access_type::WRITE && (cfg & PMP_W)) || (type == access_type::FETCH && (cfg & PMP_X));
}
}
base = tor;
}
// constexpr auto pmp_num_regs = 16;
// reg_t tor_base = 0;
// auto any_active = false;
// auto lower_addr = addr >>2;
// auto upper_addr = (addr+len-1)>>2;
// for (size_t i = 0; i < pmp_num_regs; i++) {
// uint8_t cfg = csr[pmpcfg0+(i/4)]>>(i%4);
// uint8_t cfg_next = i==(pmp_num_regs-1)? 0 : csr[pmpcfg0+((i+1)/4)]>>((i+1)%4);
// auto pmpaddr = csr[pmpaddr0+i];
// if (cfg & PMP_A) {
// any_active=true;
// auto is_tor = bit_sub<3, 2>(cfg) == PMP_TOR;
// auto is_napot = bit_sub<4, 1>(cfg) && bit_sub<3, 2>(cfg_next)!= PMP_TOR;
// if(is_napot) {
// reg_t mask = bit_sub<3, 1>(cfg)?~( pmpaddr & ~(pmpaddr + 1)): 0x3fffffff;
// auto mpmpaddr = pmpaddr & mask;
// if((lower_addr&mask) == mpmpaddr && (upper_addr&mask)==mpmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// } else if(is_tor) {
// if(lower_addr>=tor_base && upper_addr<=pmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// }
// }
// tor_base = pmpaddr;
// }
return !any_active || hart_if.reg.PRIV == arch::PRIV_M;
}
} // namespace mem
} // namespace iss

View File

@ -61,7 +61,7 @@ bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if&
try {
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many root nodes in YAML file " << config_file_name;
LOG(ERR) << "Too many root nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
@ -87,11 +87,11 @@ bool iss::plugin::cycle_estimate::registration(const char* const version, vm_if&
}
}
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
return false;
}
} else {
CPPLOG(ERR) << "Could not open input file " << config_file_name;
LOG(ERR) << "Could not open input file " << config_file_name;
return false;
}
}

View File

@ -47,7 +47,7 @@ iss::plugin::instruction_count::instruction_count(std::string config_file_name)
try {
auto root = YAML::LoadAll(is);
if(root.size() != 1) {
CPPLOG(ERR) << "Too many rro nodes in YAML file " << config_file_name;
LOG(ERR) << "Too many rro nodes in YAML file " << config_file_name;
}
for(auto p : root[0]) {
auto isa_subset = p.first;
@ -69,10 +69,10 @@ iss::plugin::instruction_count::instruction_count(std::string config_file_name)
}
rep_counts.resize(delays.size());
} catch(YAML::ParserException& e) {
CPPLOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
LOG(ERR) << "Could not parse input file " << config_file_name << ", reason: " << e.what();
}
} else {
CPPLOG(ERR) << "Could not open input file " << config_file_name;
LOG(ERR) << "Could not open input file " << config_file_name;
}
}
}
@ -81,7 +81,7 @@ iss::plugin::instruction_count::~instruction_count() {
size_t idx = 0;
for(auto it : delays) {
if(rep_counts[idx] > 0 && it.instr_name.find("__" != 0))
CPPLOG(INFO) << it.instr_name << ";" << rep_counts[idx];
LOG(INFO) << it.instr_name << ";" << rep_counts[idx];
idx++;
}
}

View File

@ -1,331 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#include "semihosting.h"
#include <chrono>
#include <cstdint>
#include <iss/vm_types.h>
#include <map>
#include <stdexcept>
// explanation of syscalls can be found at https://github.com/SpinalHDL/openocd_riscv/blob/riscv_spinal/src/target/semihosting_common.h
const char* SYS_OPEN_MODES_STRS[] = {"r", "rb", "r+", "r+b", "w", "wb", "w+", "w+b", "a", "ab", "a+", "a+b"};
template <typename T> T sh_read_field(iss::arch_if* arch_if_ptr, T addr, int len = 4) {
uint8_t bytes[4];
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr, 4, &bytes[0]);
// auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok) {
return 0; // TODO THROW ERROR
} else
return static_cast<T>(bytes[0]) | (static_cast<T>(bytes[1]) << 8) | (static_cast<T>(bytes[2]) << 16) |
(static_cast<T>(bytes[3]) << 24);
}
template <typename T> std::string sh_read_string(iss::arch_if* arch_if_ptr, T addr, T str_len) {
std::vector<uint8_t> buffer(str_len);
for(int i = 0; i < str_len; i++) {
buffer[i] = sh_read_field(arch_if_ptr, addr + i, 1);
}
std::string str(buffer.begin(), buffer.end());
return str;
}
template <typename T> void semihosting_callback<T>::operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter) {
static std::map<T, FILE*> openFiles;
static T file_count = 3;
static T semihostingErrno;
switch(static_cast<semihosting_syscalls>(*call_number)) {
case semihosting_syscalls::SYS_CLOCK: {
auto end = std::chrono::high_resolution_clock::now(); // end measurement
auto elapsed = end - timeVar;
auto millis = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();
*call_number = millis; // TODO get time now
break;
}
case semihosting_syscalls::SYS_CLOSE: {
T file_handle = *parameter;
if(openFiles.size() <= file_handle && file_handle < 0) {
semihostingErrno = EBADF;
return;
}
auto file = openFiles[file_handle];
openFiles.erase(file_handle);
if(!(file == stdin || file == stdout || file == stderr)) {
int i = fclose(file);
*call_number = i;
} else {
*call_number = -1;
semihostingErrno = EINTR;
}
break;
}
case semihosting_syscalls::SYS_ELAPSED: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ERRNO: {
*call_number = semihostingErrno;
break;
}
case semihosting_syscalls::SYS_EXIT: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT");
break;
}
case semihosting_syscalls::SYS_EXIT_EXTENDED: {
throw std::runtime_error("ISS terminated by Semihost: SYS_EXIT_EXTENDED");
break;
}
case semihosting_syscalls::SYS_FLEN: {
T file_handle = *parameter;
auto file = openFiles[file_handle];
size_t currentPos = ftell(file);
if(currentPos < 0)
throw std::runtime_error("SYS_FLEN negative value");
fseek(file, 0, SEEK_END);
size_t length = ftell(file);
fseek(file, currentPos, SEEK_SET);
*call_number = (T)length;
break;
}
case semihosting_syscalls::SYS_GET_CMDLINE: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_HEAPINFO: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_ISERROR: {
T value = *parameter;
*call_number = (value != 0);
break;
}
case semihosting_syscalls::SYS_ISTTY: {
T file_handle = *parameter;
*call_number = (file_handle == 0 || file_handle == 1 || file_handle == 2);
break;
}
case semihosting_syscalls::SYS_OPEN: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T mode = sh_read_field<T>(arch_if_ptr, 4 + (*parameter));
T path_len = sh_read_field<T>(arch_if_ptr, 8 + (*parameter));
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
// TODO LOG INFO
if(mode >= 12) {
// TODO throw ERROR
return;
}
FILE* file = nullptr;
if(path_str == ":tt") {
if(mode < 4)
file = stdin;
else if(mode < 8)
file = stdout;
else
file = stderr;
} else {
file = fopen(path_str.c_str(), SYS_OPEN_MODES_STRS[mode]);
if(file == nullptr) {
// TODO throw error
return;
}
}
T file_handle = file_count++;
openFiles[file_handle] = file;
*call_number = file_handle;
break;
}
case semihosting_syscalls::SYS_READ: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::vector<uint8_t> buffer(count);
size_t num_read = 0;
if(file == stdin) {
// when reading from stdin: mimic behaviour from read syscall
// and return on newline.
while(num_read < count) {
char c = fgetc(file);
buffer[num_read] = c;
num_read++;
if(c == '\n')
break;
}
} else {
num_read = fread(buffer.data(), 1, count, file);
}
buffer.resize(num_read);
for(int i = 0; i < num_read; i++) {
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, addr + i, 1, &buffer[i]);
if(res != iss::Ok)
return;
}
*call_number = count - num_read;
break;
}
case semihosting_syscalls::SYS_READC: {
uint8_t character = getchar();
// character = getchar();
/*if(character != iss::Ok)
std::cout << "Not OK";
return;*/
*call_number = character;
break;
}
case semihosting_syscalls::SYS_REMOVE: {
T path_str_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
std::string path_str = sh_read_string<T>(arch_if_ptr, path_str_addr, path_len);
if(remove(path_str.c_str()) < 0)
*call_number = -1;
break;
}
case semihosting_syscalls::SYS_RENAME: {
T path_str_addr_old = sh_read_field<T>(arch_if_ptr, *parameter);
T path_len_old = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T path_str_addr_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
T path_len_new = sh_read_field<T>(arch_if_ptr, (*parameter) + 12);
std::string path_str_old = sh_read_string<T>(arch_if_ptr, path_str_addr_old, path_len_old);
std::string path_str_new = sh_read_string<T>(arch_if_ptr, path_str_addr_new, path_len_new);
rename(path_str_old.c_str(), path_str_new.c_str());
break;
}
case semihosting_syscalls::SYS_SEEK: {
T file_handle = sh_read_field<T>(arch_if_ptr, *parameter);
T pos = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
auto file = openFiles[file_handle];
int retval = fseek(file, pos, SEEK_SET);
if(retval < 0)
throw std::runtime_error("SYS_SEEK negative return value");
break;
}
case semihosting_syscalls::SYS_SYSTEM: {
T cmd_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T cmd_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
std::string cmd = sh_read_string<T>(arch_if_ptr, cmd_addr, cmd_len);
system(cmd.c_str());
break;
}
case semihosting_syscalls::SYS_TICKFREQ: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::SYS_TIME: {
// returns time in seconds scince 01.01.1970 00:00
*call_number = time(NULL);
break;
}
case semihosting_syscalls::SYS_TMPNAM: {
T buffer_addr = sh_read_field<T>(arch_if_ptr, *parameter);
T identifier = sh_read_field<T>(arch_if_ptr, (*parameter) + 1);
T buffer_len = sh_read_field<T>(arch_if_ptr, (*parameter) + 2);
if(identifier > 255) {
*call_number = -1;
return;
}
std::stringstream ss;
ss << "tmp/file-" << std::setfill('0') << std::setw(3) << identifier;
std::string filename = ss.str();
for(int i = 0; i < buffer_len; i++) {
uint8_t character = filename[i];
auto res = arch_if_ptr->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, (*parameter) + i, 1, &character);
if(res != iss::Ok)
return;
}
break;
}
case semihosting_syscalls::SYS_WRITE: {
T file_handle = sh_read_field<T>(arch_if_ptr, (*parameter) + 4);
T addr = sh_read_field<T>(arch_if_ptr, *parameter);
T count = sh_read_field<T>(arch_if_ptr, (*parameter) + 8);
auto file = openFiles[file_handle];
std::string str = sh_read_string<T>(arch_if_ptr, addr, count);
fwrite(&str[0], 1, count, file);
break;
}
case semihosting_syscalls::SYS_WRITEC: {
uint8_t character;
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
putchar(character);
break;
}
case semihosting_syscalls::SYS_WRITE0: {
uint8_t character;
while(1) {
auto res = arch_if_ptr->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0, *parameter, 1, &character);
if(res != iss::Ok)
return;
if(character == 0)
break;
putchar(character);
(*parameter)++;
}
break;
}
case semihosting_syscalls::USER_CMD_0x100: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
case semihosting_syscalls::USER_CMD_0x1FF: {
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
default:
throw std::runtime_error("Semihosting Call not Implemented");
break;
}
}
template class semihosting_callback<uint32_t>;
template class semihosting_callback<uint64_t>;

View File

@ -1,95 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _SEMIHOSTING_H_
#define _SEMIHOSTING_H_
#include <chrono>
#include <functional>
#include <iss/arch_if.h>
/*
* According to:
* "Semihosting for AArch32 and AArch64, Release 2.0"
* https://static.docs.arm.com/100863/0200/semihosting.pdf
* from ARM Ltd.
*
* The available semihosting operation numbers passed in A0 are allocated
* as follows:
* - 0x00-0x31 Used by ARM.
* - 0x32-0xFF Reserved for future use by ARM.
* - 0x100-0x1FF Reserved for user applications. These are not used by ARM.
* However, if you are writing your own SVC operations, you are advised
* to use a different SVC number rather than using the semihosted
* SVC number and these operation type numbers.
* - 0x200-0xFFFFFFFF Undefined and currently unused. It is recommended
* that you do not use these.
*/
enum class semihosting_syscalls {
SYS_OPEN = 0x01,
SYS_CLOSE = 0x02,
SYS_WRITEC = 0x03,
SYS_WRITE0 = 0x04,
SYS_WRITE = 0x05,
SYS_READ = 0x06,
SYS_READC = 0x07,
SYS_ISERROR = 0x08,
SYS_ISTTY = 0x09,
SYS_SEEK = 0x0A,
SYS_FLEN = 0x0C,
SYS_TMPNAM = 0x0D,
SYS_REMOVE = 0x0E,
SYS_RENAME = 0x0F,
SYS_CLOCK = 0x10,
SYS_TIME = 0x11,
SYS_SYSTEM = 0x12,
SYS_ERRNO = 0x13,
SYS_GET_CMDLINE = 0x15,
SYS_HEAPINFO = 0x16,
SYS_EXIT = 0x18,
SYS_EXIT_EXTENDED = 0x20,
SYS_ELAPSED = 0x30,
SYS_TICKFREQ = 0x31,
USER_CMD_0x100 = 0x100,
USER_CMD_0x1FF = 0x1FF,
};
template <typename T> struct semihosting_callback {
std::chrono::high_resolution_clock::time_point timeVar;
semihosting_callback()
: timeVar(std::chrono::high_resolution_clock::now()) {}
void operator()(iss::arch_if* arch_if_ptr, T* call_number, T* parameter);
};
template <typename T> using semihosting_cb_t = std::function<void(iss::arch_if*, T*, T*)>;
#endif

View File

@ -31,16 +31,11 @@
*******************************************************************************/
#include <array>
#include <cstdint>
#include <iostream>
#include <iss/factory.h>
#include <iss/semihosting/semihosting.h>
#include <string>
#include <unordered_map>
#include <vector>
#include "iss/arch/tgc_mapper.h"
#include "util/logging.h"
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#ifdef WITH_LLVM
@ -57,6 +52,7 @@
#endif
namespace po = boost::program_options;
int main(int argc, char* argv[]) {
/*
* Define and parse the program options
@ -70,14 +66,13 @@ int main(int argc, char* argv[]) {
("logfile,l", po::value<std::string>(), "Sets default log file.")
("disass,d", po::value<std::string>()->implicit_value(""), "Enables disassembly")
("gdb-port,g", po::value<unsigned>()->default_value(0), "enable gdb server and specify port to use")
("ilimit,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("flimit", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of fetches to simulate")
("instructions,i", po::value<uint64_t>()->default_value(std::numeric_limits<uint64_t>::max()), "max. number of instructions to simulate")
("reset,r", po::value<std::string>(), "reset address")
("dump-ir", "dump the intermediate representation")
("elf,f", po::value<std::vector<std::string>>(), "ELF file(s) to load")
("mem,m", po::value<std::string>(), "the memory input file")
("plugin,p", po::value<std::vector<std::string>>(), "plugin to activate")
("backend", po::value<std::string>()->default_value("interp"), "the ISS backend to use, options are: interp, llvm, tcc, asmjit")
("backend", po::value<std::string>()->default_value("interp"), "the ISS backend to use, options are: interp, tcc")
("isa", po::value<std::string>()->default_value("tgc5c"), "core or isa name to use for simulation, use '?' to get list");
// clang-format on
auto parsed = po::command_line_parser(argc, argv).options(desc).allow_unregistered().run();
@ -121,8 +116,6 @@ int main(int argc, char* argv[]) {
// instantiate the simulator
iss::vm_ptr vm{nullptr};
iss::cpu_ptr cpu{nullptr};
semihosting_callback<uint32_t> cb{};
semihosting_cb_t<uint32_t> semihosting_cb = [&cb](iss::arch_if* i, uint32_t* a0, uint32_t* a1) { cb(i, a0, a1); };
std::string isa_opt(clim["isa"].as<std::string>());
if(isa_opt.size() == 0 || isa_opt == "?") {
auto list = f.get_names();
@ -130,8 +123,7 @@ int main(int argc, char* argv[]) {
std::cout << "Available implementations (core|platform|backend):\n - " << util::join(list, "\n - ") << std::endl;
return 0;
} else if(isa_opt.find('|') != std::string::npos) {
std::tie(cpu, vm) =
f.create(isa_opt + "|" + clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>(), &semihosting_cb);
std::tie(cpu, vm) = f.create(isa_opt + "|" + clim["backend"].as<std::string>(), clim["gdb-port"].as<unsigned>());
} else {
auto base_isa = isa_opt.substr(0, 5);
if(base_isa == "tgc5d" || base_isa == "tgc5e") {
@ -139,17 +131,14 @@ int main(int argc, char* argv[]) {
} else {
isa_opt += "|m_p|" + clim["backend"].as<std::string>();
}
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>(), &semihosting_cb);
std::tie(cpu, vm) = f.create(isa_opt, clim["gdb-port"].as<unsigned>());
}
if(!cpu) {
auto list = f.get_names();
std::sort(std::begin(list), std::end(list));
CPPLOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << "\n"
<< "Available implementations (core|platform|backend):\n - " << util::join(list, "\n - ") << std::endl;
LOG(ERR) << "Could not create cpu for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if(!vm) {
CPPLOG(ERR) << "Could not create vm for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
LOG(ERR) << "Could not create vm for isa " << isa_opt << " and backend " << clim["backend"].as<std::string>() << std::endl;
return 127;
}
if(clim.count("plugin")) {
@ -185,7 +174,7 @@ int main(int argc, char* argv[]) {
} else
#endif
{
CPPLOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
LOG(ERR) << "Unknown plugin name: " << plugin_name << ", valid names are 'ce', 'ic'" << std::endl;
return 127;
}
}
@ -209,71 +198,24 @@ int main(int argc, char* argv[]) {
auto start_addr = vm->get_arch()->load_file(input);
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
for(std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
if(clim.count("reset")) {
auto str = clim["reset"].as<std::string>();
start_address = str.find("0x") == 0 ? std::stoull(str.substr(2), nullptr, 16) : std::stoull(str, nullptr, 10);
}
vm->reset(start_address);
auto limit = clim["ilimit"].as<uint64_t>();
auto cond = iss::finish_cond_e::JUMP_TO_SELF;
if(clim.count("flimit")) {
cond = cond | iss::finish_cond_e::FCOUNT_LIMIT;
limit = clim["flimit"].as<uint64_t>();
} else {
cond = cond | iss::finish_cond_e::ICOUNT_LIMIT;
}
res = vm->start(limit, dump, cond);
auto instr_if = vm->get_arch()->get_instrumentation_if();
// this assumes a single input file
std::unordered_map<std::string, uint64_t> sym_table;
if(args.empty())
sym_table = instr_if->get_symbol_table(clim["elf"].as<std::vector<std::string>>()[0]);
else
sym_table = instr_if->get_symbol_table(args[0]);
if(sym_table.find("begin_signature") != std::end(sym_table) && sym_table.find("end_signature") != std::end(sym_table)) {
auto start_addr = sym_table["begin_signature"];
auto end_addr = sym_table["end_signature"];
std::array<uint8_t, 4> data;
std::ofstream file;
std::string filename = fmt::format("{}.signature", isa_opt);
std::replace(std::begin(filename), std::end(filename), '|', '_');
// default riscof requires this filename
filename = "DUT-tgc.signature";
file.open(filename, std::ios::out);
if(!file.is_open()) {
LOG(ERR) << "Error opening file " << filename << std::endl;
return 1;
}
LOGGER(DEFAULT)::reporting_level() = logging::ERR;
for(auto addr = start_addr; addr < end_addr; addr += data.size()) {
vm->get_arch()->read(iss::address_type::PHYSICAL, iss::access_type::DEBUG_READ, 0 /*MEM*/, addr, data.size(),
data.data()); // FIXME: get space from iss::arch::traits<ARCH>::mem_type_e::MEM
// TODO : obey Target endianess
uint32_t to_print = (data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
file << std::hex << fmt::format("{:08x}", to_print) << std::dec << std::endl;
}
}
auto cycles = clim["instructions"].as<uint64_t>();
res = vm->start(cycles, dump);
} catch(std::exception& e) {
CPPLOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit" << std::endl;
LOG(ERR) << "Unhandled Exception reached the top of main: " << e.what() << ", application will now exit" << std::endl;
res = 2;
}
// cleanup to let plugins report if needed
// cleanup to let plugins report of needed
for(auto* p : plugin_list) {
delete p;
}

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -42,6 +42,7 @@
#include <iss/plugin/loader.h>
#endif
#include "sc_core_adapter_if.h"
#include <iss/arch/tgc_mapper.h>
#include <scc/report.h>
#include <util/ities.h>
#include <iostream>
@ -124,7 +125,7 @@ using vm_ptr = std::unique_ptr<iss::vm_if>;
class core_wrapper {
public:
core_wrapper(core_complex_if* owner)
core_wrapper(core_complex* owner)
: owner(owner) {}
void reset(uint64_t addr) { vm->reset(addr); }
@ -180,7 +181,7 @@ public:
"SystemC sub-commands: break <time>, print_time"});
}
core_complex_if* const owner;
core_complex* const owner;
vm_ptr vm{nullptr};
sc_cpu_ptr cpu{nullptr};
iss::debugger::target_adapter_if* tgt_adapter{nullptr};
@ -196,9 +197,9 @@ struct core_trace {
scv_tr_handle tr_handle;
};
SC_HAS_PROCESS(core_complex); // NOLINT
#ifndef CWR_SYSTEMC
template <unsigned int BUSWIDTH>
core_complex<BUSWIDTH>::core_complex(sc_module_name const& name)
core_complex::core_complex(sc_module_name const& name)
: sc_module(name)
, fetch_lut(tlm_dmi_ext())
, read_lut(tlm_dmi_ext())
@ -207,7 +208,7 @@ core_complex<BUSWIDTH>::core_complex(sc_module_name const& name)
}
#endif
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::init() {
void core_complex::init() {
trc = new core_trace();
ibus.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = fetch_lut.getEntry(start);
@ -226,7 +227,6 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::init() {
}
});
SC_HAS_PROCESS(core_complex<BUSWIDTH>); // NOLINT
SC_THREAD(run);
SC_METHOD(rst_cb);
sensitive << rst_i;
@ -252,16 +252,16 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::init() {
#endif
}
template <unsigned int BUSWIDTH> core_complex<BUSWIDTH>::~core_complex() {
core_complex::~core_complex() {
delete cpu;
delete trc;
for(auto* p : plugin_list)
delete p;
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::trace(sc_trace_file* trf) const {}
void core_complex::trace(sc_trace_file* trf) const {}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::before_end_of_elaboration() {
void core_complex::before_end_of_elaboration() {
SCCDEBUG(SCMOD) << "instantiating iss::arch::tgf with " << GET_PROP_VALUE(backend) << " backend";
// cpu = scc::make_unique<core_wrapper>(this);
cpu = new core_wrapper(this);
@ -302,7 +302,7 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::before_end_of_elab
}
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::start_of_simulation() {
void core_complex::start_of_simulation() {
// quantum_keeper.reset();
if(GET_PROP_VALUE(elf_file).size() > 0) {
istringstream is(GET_PROP_VALUE(elf_file));
@ -325,7 +325,7 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::start_of_simulatio
}
}
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::disass_output(uint64_t pc, const std::string instr_str) {
bool core_complex::disass_output(uint64_t pc, const std::string instr_str) {
if(trc->m_db == nullptr)
return false;
if(trc->tr_handle.is_active())
@ -339,7 +339,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::disass_output(uint
return true;
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::forward() {
void core_complex::forward() {
#ifndef CWR_SYSTEMC
set_clock_period(clk_i.read());
#else
@ -348,24 +348,24 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::forward() {
#endif
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::set_clock_period(sc_core::sc_time period) {
void core_complex::set_clock_period(sc_core::sc_time period) {
curr_clk = period;
if(period == SC_ZERO_TIME)
cpu->set_interrupt_execution(true);
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::rst_cb() {
void core_complex::rst_cb() {
if(rst_i.read())
cpu->set_interrupt_execution(true);
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
void core_complex::sw_irq_cb() { cpu->local_irq(3, sw_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
void core_complex::timer_irq_cb() { cpu->local_irq(7, timer_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
void core_complex::ext_irq_cb() { cpu->local_irq(11, ext_irq_i.read()); }
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::local_irq_cb() {
void core_complex::local_irq_cb() {
for(auto i = 0U; i < local_irq_i.size(); ++i) {
if(local_irq_i[i].event()) {
cpu->local_irq(16 + i, local_irq_i[i].read());
@ -373,7 +373,7 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::local_irq_cb() {
}
}
template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::run() {
void core_complex::run() {
wait(SC_ZERO_TIME); // separate from elaboration phase
do {
wait(SC_ZERO_TIME);
@ -387,11 +387,11 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::run() {
quantum_keeper.reset();
cpu->set_interrupt_execution(false);
cpu->start(dump_ir);
} while(!cpu->get_interrupt_execution());
} while(cpu->get_interrupt_execution());
sc_stop();
}
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) {
auto& dmi_lut = is_fetch ? fetch_lut : read_lut;
auto lut_entry = dmi_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
@ -419,7 +419,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t
gp.set_extension(preExt);
}
auto pre_delay = delay;
sckt->b_transport(gp, delay);
dbus->b_transport(gp, delay);
if(pre_delay > delay) {
quantum_keeper.reset();
} else {
@ -449,7 +449,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem(uint64_t
}
}
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t* const data) {
auto lut_entry = write_lut.getEntry(addr);
if(lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
@ -497,7 +497,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem(uint64_t
}
}
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
@ -507,7 +507,7 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::read_mem_dbg(uint6
return dbus->transport_dbg(gp) == length;
}
template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
@ -518,10 +518,5 @@ template <unsigned int BUSWIDTH> bool core_complex<BUSWIDTH>::write_mem_dbg(uint
gp.set_streaming_width(length);
return dbus->transport_dbg(gp) == length;
}
template class core_complex<scc::LT>;
template class core_complex<32>;
template class core_complex<64>;
} /* namespace tgfs */
} /* namespace sysc */

View File

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* Copyright (C) 2017-2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -33,7 +33,6 @@
#ifndef _SYSC_CORE_COMPLEX_H_
#define _SYSC_CORE_COMPLEX_H_
#include <scc/signal_opt_ports.h>
#include <scc/tick2time.h>
#include <scc/traceable.h>
#include <scc/utilities.h>
@ -41,8 +40,10 @@
#include <tlm/scc/scv/tlm_rec_initiator_socket.h>
#ifdef CWR_SYSTEMC
#include <scmlinc/scml_property.h>
#define SOCKET_WIDTH 32
#else
#include <cci_configuration>
#define SOCKET_WIDTH scc::LT
#endif
#include <memory>
#include <tlm>
@ -67,35 +68,12 @@ public:
namespace tgfs {
class core_wrapper;
struct core_trace;
struct core_complex_if {
virtual ~core_complex_if() = default;
virtual bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) = 0;
virtual bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data) = 0;
virtual bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) = 0;
virtual bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) = 0;
virtual bool disass_output(uint64_t pc, const std::string instr) = 0;
virtual unsigned get_last_bus_cycles() = 0;
//! Allow quantum keeper handling
virtual void sync(uint64_t) = 0;
virtual char const* hier_name() = 0;
scc::sc_in_opt<uint64_t> mtime_i{"mtime_i"};
};
template <unsigned int BUSWIDTH = scc::LT> class core_complex : public sc_core::sc_module, public scc::traceable, public core_complex_if {
class core_complex : public sc_core::sc_module, public scc::traceable {
public:
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<BUSWIDTH>> ibus{"ibus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> ibus{"ibus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<BUSWIDTH>> dbus{"dbus"};
tlm::scc::initiator_mixin<tlm::tlm_initiator_socket<SOCKET_WIDTH>> dbus{"dbus"};
sc_core::sc_in<bool> rst_i{"rst_i"};
@ -110,6 +88,8 @@ public:
#ifndef CWR_SYSTEMC
sc_core::sc_in<sc_core::sc_time> clk_i{"clk_i"};
sc_core::sc_port<tlm::tlm_peek_if<uint64_t>, 1, sc_core::SC_ZERO_OR_MORE_BOUND> mtime_o{"mtime_o"};
cci::cci_param<std::string> elf_file{"elf_file", ""};
cci::cci_param<bool> enable_disass{"enable_disass", false};
@ -135,6 +115,8 @@ public:
#else
sc_core::sc_in<bool> clk_i{"clk_i"};
sc_core::sc_in<uint64_t> mtime_i{"mtime_i"};
scml_property<std::string> elf_file{"elf_file", ""};
scml_property<bool> enable_disass{"enable_disass", false};
@ -177,13 +159,13 @@ public:
~core_complex();
unsigned get_last_bus_cycles() override {
inline unsigned get_last_bus_cycles() {
auto mem_incr = std::max(ibus_inc, dbus_inc);
ibus_inc = dbus_inc = 0;
return mem_incr > 1 ? mem_incr : 1;
}
void sync(uint64_t cycle) override {
inline void sync(uint64_t cycle) {
auto core_inc = curr_clk * (cycle - last_sync_cycle);
quantum_keeper.inc(core_inc);
if(quantum_keeper.need_sync()) {
@ -193,22 +175,20 @@ public:
last_sync_cycle = cycle;
}
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch) override;
bool read_mem(uint64_t addr, unsigned length, uint8_t* const data, bool is_fetch);
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data) override;
bool write_mem(uint64_t addr, unsigned length, const uint8_t* const data);
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data) override;
bool read_mem_dbg(uint64_t addr, unsigned length, uint8_t* const data);
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data) override;
bool write_mem_dbg(uint64_t addr, unsigned length, const uint8_t* const data);
void trace(sc_core::sc_trace_file* trf) const override;
bool disass_output(uint64_t pc, const std::string instr) override;
bool disass_output(uint64_t pc, const std::string instr);
void set_clock_period(sc_core::sc_time period);
char const* hier_name() override { return name(); }
protected:
void before_end_of_elaboration() override;
void start_of_simulation() override;

View File

@ -46,12 +46,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|interp",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@ -62,12 +62,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|llvm",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@ -79,12 +79,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|tcc",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};
@ -96,12 +96,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|asmjit",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};

View File

@ -1,36 +1,9 @@
/*******************************************************************************
* Copyright (C) 2023 - 2025 MINRES Technologies GmbH
* All rights reserved.
/*
* sc_core_adapter.h
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
* Created on: Jul 5, 2023
* Author: eyck
*/
#ifndef _SYSC_SC_CORE_ADAPTER_H_
#define _SYSC_SC_CORE_ADAPTER_H_
@ -38,7 +11,6 @@
#include "sc_core_adapter_if.h"
#include <iostream>
#include <iss/iss.h>
#include <iss/mem/memory_if.h>
#include <iss/vm_types.h>
#include <scc/report.h>
#include <util/ities.h>
@ -46,16 +18,11 @@
namespace sysc {
template <typename PLAT> class sc_core_adapter : public PLAT, public sc_core_adapter_if {
public:
using this_class = sc_core_adapter<PLAT>;
using reg_t = typename iss::arch::traits<typename PLAT::core>::reg_t;
using phys_addr_t = typename iss::arch::traits<typename PLAT::core>::phys_addr_t;
sc_core_adapter(sysc::tgfs::core_complex_if* owner)
: owner(owner) {
this->csr_rd_cb[iss::arch::time] = MK_CSR_RD_CB(read_time);
if(sizeof(reg_t) == 4)
this->csr_rd_cb[iss::arch::timeh] = MK_CSR_RD_CB(read_time);
this->memories.replace_last(*this);
}
using heart_state_t = typename PLAT::hart_state_type;
sc_core_adapter(sysc::tgfs::core_complex* owner)
: owner(owner) {}
iss::arch_if* get_arch_if() override { return this; }
@ -87,77 +54,79 @@ public:
std::stringstream s;
s << "[p:" << lvl[this->reg.PRIV] << ";s:0x" << std::hex << std::setfill('0') << std::setw(sizeof(reg_t) * 2)
<< (reg_t)this->state.mstatus << std::dec << ";c:" << this->reg.icount + this->cycle_offset << "]";
SCCDEBUG(owner->hier_name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t"
<< std::setw(40) << std::setfill(' ') << std::left << instr << s.str();
SCCDEBUG(owner->name()) << "disass: "
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
};
iss::mem::memory_if get_mem_if() override {
return iss::mem::memory_if{.rd_mem{util::delegate<iss::mem::rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<iss::mem::wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
return owner->read_mem(addr, length, data, is_fetch(access)) ? iss::Ok : iss::Err;
return owner->read_mem(addr.val, length, data, is_fetch(addr.access)) ? iss::Ok : iss::Err;
}
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr, length, data) ? iss::Ok : iss::Err;
if(addr == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = sizeof(reg_t) == 4 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = sizeof(reg_t) == 4 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL; // 24bits
if(payload_addr & 1) {
if(payload_addr != 0x1) {
SCCERR(owner->hier_name()) << "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
else {
auto tohost_upper = (sizeof(reg_t) == 4 && addr.val == (this->tohost + 4)) || (sizeof(reg_t) == 8 && addr.val == this->tohost);
auto tohost_lower = (sizeof(reg_t) == 4 && addr.val == this->tohost) || (sizeof(reg_t) == 64 && addr.val == this->tohost);
if(tohost_lower || tohost_upper) {
if(tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr << "), stopping simulation";
SCCINFO(owner->name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
default:
break;
}
if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
auto res = owner->read_mem(payload_addr, 8 * sizeof(uint64_t), reinterpret_cast<uint8_t*>(loaded_payload.data()), false)
? iss::Ok
: iss::Err;
if(res == iss::Err) {
SCCERR(owner->hier_name()) << "Syscall read went wrong";
} else if(tohost_lower)
to_host_wr_cnt++;
return iss::Ok;
} else {
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, PLAT::MEM);
SCCERR(owner->hier_name()) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
SCCERR(owner->hier_name()) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
auto res = owner->write_mem(addr, length, data) ? iss::Ok : iss::Err;
return res;
}
}
}
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = owner->mtime_i.get_interface() ? owner->mtime_i.read() : 0;
iss::status read_csr(unsigned addr, reg_t& val) override {
#ifndef CWR_SYSTEMC
if((addr == iss::arch::time || addr == iss::arch::timeh) && owner->mtime_o.get_interface(0)) {
uint64_t time_val;
bool ret = owner->mtime_o->nb_peek(time_val);
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
if(sizeof(reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return ret ? iss::Ok : iss::Err;
#else
if((addr == iss::arch::time || addr == iss::arch::timeh)) {
uint64_t time_val = owner->mtime_i.read();
if(addr == iss::arch::time) {
val = static_cast<reg_t>(time_val);
} else if(addr == iss::arch::timeh) {
@ -166,14 +135,18 @@ public:
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
#endif
} else {
return PLAT::read_csr(addr, val);
}
}
void wait_until(uint64_t flags) override {
SCCDEBUG(owner->hier_name()) << "Sleeping until interrupt";
PLAT::wait_until(flags);
SCCDEBUG(owner->name()) << "Sleeping until interrupt";
while(this->reg.pending_trap == 0 && (this->csr[iss::arch::mip] & this->csr[iss::arch::mie]) == 0) {
sc_core::wait(wfi_evt);
}
PLAT::wait_until(flags);
}
void local_irq(short id, bool value) override {
@ -200,12 +173,13 @@ public:
this->csr[iss::arch::mip] &= ~mask;
this->check_interrupt();
if(value)
SCCTRACE(owner->hier_name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
SCCTRACE(owner->name()) << "Triggering interrupt " << id << " Pending trap: " << this->reg.pending_trap;
}
private:
sysc::tgfs::core_complex_if* const owner{nullptr};
sysc::tgfs::core_complex* const owner;
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;
bool first{true};
};

View File

@ -1,36 +1,9 @@
/*******************************************************************************
* Copyright (C) 2023 MINRES Technologies GmbH
* All rights reserved.
/*
* sc_core_adapter.h
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
* Created on: Jul 5, 2023
* Author: eyck
*/
#ifndef _SYSC_SC_CORE_ADAPTER_IF_H_
#define _SYSC_SC_CORE_ADAPTER_IF_H_

View File

@ -1,70 +0,0 @@
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// ales@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#ifndef _VM_AES_SBOX_H_
#define _VM_AES_SBOX_H_
#include <cstdint>
extern "C" {
const uint8_t AES_ENC_SBOX[] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59,
0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1,
0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83,
0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C,
0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE,
0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6,
0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9,
0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1,
0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16};
uint8_t inline aes_sbox_fwd(uint8_t index) { return AES_ENC_SBOX[index]; }
const uint8_t AES_DEC_SBOX[] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F,
0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B,
0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8,
0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3,
0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9,
0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07,
0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F,
0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B,
0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D};
uint8_t inline aes_sbox_inv(uint8_t index) { return AES_DEC_SBOX[index]; }
}
#endif /* _VM_AES_SBOX_H_ */

537
src/vm/asmjit/helper_func.h Normal file
View File

@ -0,0 +1,537 @@
x86::Mem get_reg_ptr(jit_holder& jh, unsigned idx) {
x86::Gp tmp_ptr = jh.cc.newUIntPtr("tmp_ptr");
jh.cc.mov(tmp_ptr, jh.regs_base_ptr);
jh.cc.add(tmp_ptr, traits::reg_byte_offsets[idx]);
switch(traits::reg_bit_widths[idx]) {
case 8:
return x86::ptr_8(tmp_ptr);
case 16:
return x86::ptr_16(tmp_ptr);
case 32:
return x86::ptr_32(tmp_ptr);
case 64:
return x86::ptr_64(tmp_ptr);
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
x86::Gp get_reg_for(jit_holder& jh, unsigned idx) {
// TODO can check for regs in jh and return them instead of creating new ones
switch(traits::reg_bit_widths[idx]) {
case 8:
return jh.cc.newInt8();
case 16:
return jh.cc.newInt16();
case 32:
return jh.cc.newInt32();
case 64:
return jh.cc.newInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
x86::Gp get_reg_for(jit_holder& jh, unsigned size, bool is_signed) {
if(is_signed)
switch(size) {
case 8:
return jh.cc.newInt8();
case 16:
return jh.cc.newInt16();
case 32:
return jh.cc.newInt32();
case 64:
return jh.cc.newInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
else
switch(size) {
case 8:
return jh.cc.newUInt8();
case 16:
return jh.cc.newUInt16();
case 32:
return jh.cc.newUInt32();
case 64:
return jh.cc.newUInt64();
default:
throw std::runtime_error("Invalid reg size in get_reg_ptr");
}
}
inline x86::Gp load_reg_from_mem(jit_holder& jh, unsigned idx) {
auto ptr = get_reg_ptr(jh, idx);
auto reg = get_reg_for(jh, idx);
jh.cc.mov(reg, ptr);
return reg;
}
inline void write_reg_to_mem(jit_holder& jh, x86::Gp reg, unsigned idx) {
auto ptr = get_reg_ptr(jh, idx);
jh.cc.mov(ptr, reg);
}
void gen_instr_prologue(jit_holder& jh, addr_t pc) {
auto& cc = jh.cc;
cc.comment("\n//(*icount)++;");
cc.inc(get_reg_ptr(jh, traits::ICOUNT));
cc.comment("\n//*pc=*next_pc;");
cc.mov(get_reg_ptr(jh, traits::PC), jh.next_pc);
cc.comment("\n//*trap_state=*pending_trap;");
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_reg_ptr(jh, traits::TRAP_STATE));
cc.mov(get_reg_ptr(jh, traits::PENDING_TRAP), current_trap_state);
cc.comment("\n//increment *next_pc");
cc.mov(jh.next_pc, pc);
}
void gen_instr_epilogue(jit_holder& jh) {
auto& cc = jh.cc;
cc.comment("\n//if(*trap_state!=0) goto trap_entry;");
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_reg_ptr(jh, traits::TRAP_STATE));
cc.cmp(current_trap_state, 0);
cc.jne(jh.trap_entry);
// TODO: Does not need to be done for every instruction, only when needed
cc.comment("\n//write back regs to mem");
write_reg_to_mem(jh, jh.pc, traits::PC);
write_reg_to_mem(jh, jh.next_pc, traits::NEXT_PC);
}
void gen_block_prologue(jit_holder& jh) override {
jh.pc = load_reg_from_mem(jh, traits::PC);
jh.next_pc = load_reg_from_mem(jh, traits::NEXT_PC);
}
void gen_block_epilogue(jit_holder& jh) override {
x86::Compiler& cc = jh.cc;
cc.comment("\n//return *next_pc;");
cc.ret(jh.next_pc);
cc.bind(jh.trap_entry);
cc.comment("\n//Prepare for enter_trap;");
// Make sure cached values are written back
cc.comment("\n//write back regs to mem");
write_reg_to_mem(jh, jh.pc, traits::PC);
write_reg_to_mem(jh, jh.next_pc, traits::NEXT_PC);
this->gen_sync(jh, POST_SYNC, -1);
x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(current_trap_state, get_reg_ptr(jh, traits::TRAP_STATE));
x86::Gp current_pc = get_reg_for(jh, traits::PC);
cc.mov(current_pc, get_reg_ptr(jh, traits::PC));
x86::Gp instr = cc.newInt32("instr");
cc.mov(instr, 0); // this is not correct
cc.comment("\n//enter trap call;");
InvokeNode* call_enter_trap;
cc.invoke(&call_enter_trap, &enter_trap, FuncSignatureT<uint64_t, void*, uint64_t, uint64_t, uint64_t>());
call_enter_trap->setArg(0, jh.arch_if_ptr);
call_enter_trap->setArg(1, current_trap_state);
call_enter_trap->setArg(2, current_pc);
call_enter_trap->setArg(3, instr);
x86::Gp current_next_pc = get_reg_for(jh, traits::NEXT_PC);
cc.mov(current_next_pc, get_reg_ptr(jh, traits::NEXT_PC));
cc.mov(jh.next_pc, current_next_pc);
cc.comment("\n//*last_branch = std::numeric_limits<uint32_t>::max();");
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), std::numeric_limits<uint32_t>::max());
cc.comment("\n//return *next_pc;");
cc.ret(jh.next_pc);
}
/*
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->core.reg.trap_state = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
}
*/
inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) {
auto& cc = jh.cc;
cc.comment("//gen_raise");
auto tmp1 = get_reg_for(jh, traits::TRAP_STATE);
cc.mov(tmp1, 0x80ULL << 24 | (cause << 16) | trap_id);
cc.mov(get_reg_ptr(jh, traits::TRAP_STATE), tmp1);
auto tmp2 = get_reg_for(jh, traits::NEXT_PC);
cc.mov(tmp2, std::numeric_limits<uint32_t>::max());
cc.mov(get_reg_ptr(jh, traits::NEXT_PC), tmp2);
}
inline void gen_wait(jit_holder& jh, unsigned type) { jh.cc.comment("//gen_wait"); }
inline void gen_leave(jit_holder& jh, unsigned lvl) { jh.cc.comment("//gen_leave"); }
enum operation { add, sub, band, bor, bxor, shl, sar, shr };
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value || std::is_same<T, x86::Gp>::value>>
x86::Gp gen_operation(jit_holder& jh, operation op, x86::Gp a, T b) {
x86::Compiler& cc = jh.cc;
switch(op) {
case add: {
cc.add(a, b);
break;
}
case sub: {
cc.sub(a, b);
break;
}
case band: {
cc.and_(a, b);
break;
}
case bor: {
cc.or_(a, b);
break;
}
case bxor: {
cc.xor_(a, b);
break;
}
case shl: {
cc.shl(a, b);
break;
}
case sar: {
cc.sar(a, b);
break;
}
case shr: {
cc.shr(a, b);
break;
}
default:
throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (operation)", op));
}
return a;
}
enum three_operand_operation { imul, mul, idiv, div, srem, urem };
x86::Gp gen_operation(jit_holder& jh, three_operand_operation op, x86::Gp a, x86::Gp b) {
x86::Compiler& cc = jh.cc;
switch(op) {
case imul: {
x86::Gp dummy = cc.newInt64();
cc.imul(dummy, a.r64(), b.r64());
return a;
}
case mul: {
x86::Gp dummy = cc.newInt64();
cc.mul(dummy, a.r64(), b.r64());
return a;
}
case idiv: {
x86::Gp dummy = cc.newInt64();
cc.mov(dummy, 0);
cc.idiv(dummy, a.r64(), b.r64());
return a;
}
case div: {
x86::Gp dummy = cc.newInt64();
cc.mov(dummy, 0);
cc.div(dummy, a.r64(), b.r64());
return a;
}
case srem: {
x86::Gp rem = cc.newInt32();
cc.mov(rem, 0);
auto a_reg = cc.newInt32();
cc.mov(a_reg, a.r32());
cc.idiv(rem, a_reg, b.r32());
return rem;
}
case urem: {
x86::Gp rem = cc.newInt32();
cc.mov(rem, 0);
auto a_reg = cc.newInt32();
cc.mov(a_reg, a.r32());
cc.div(rem, a_reg, b.r32());
return rem;
}
default:
throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (three_operand)", op));
}
return a;
}
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
x86::Gp gen_operation(jit_holder& jh, three_operand_operation op, x86::Gp a, T b) {
x86::Gp b_reg = jh.cc.newInt32();
/* switch(a.size()){
case 1: b_reg = jh.cc.newInt8(); break;
case 2: b_reg = jh.cc.newInt16(); break;
case 4: b_reg = jh.cc.newInt32(); break;
case 8: b_reg = jh.cc.newInt64(); break;
default: throw std::runtime_error(fmt::format("Invalid size ({}) in gen operation", a.size()));
} */
jh.cc.mov(b_reg, b);
return gen_operation(jh, op, a, b_reg);
}
enum comparison_operation { land, lor, eq, ne, lt, ltu, gt, gtu, lte, lteu, gte, gteu };
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value || std::is_same<T, x86::Gp>::value>>
x86::Gp gen_operation(jit_holder& jh, comparison_operation op, x86::Gp a, T b) {
x86::Compiler& cc = jh.cc;
x86::Gp tmp = cc.newInt8();
cc.mov(tmp, 1);
Label label_then = cc.newLabel();
cc.cmp(a, b);
switch(op) {
case eq:
cc.je(label_then);
break;
case ne:
cc.jne(label_then);
break;
case lt:
cc.jl(label_then);
break;
case ltu:
cc.jb(label_then);
break;
case gt:
cc.jg(label_then);
break;
case gtu:
cc.ja(label_then);
break;
case lte:
cc.jle(label_then);
break;
case lteu:
cc.jbe(label_then);
break;
case gte:
cc.jge(label_then);
break;
case gteu:
cc.jae(label_then);
break;
case land: {
Label label_false = cc.newLabel();
cc.cmp(a, 0);
cc.je(label_false);
auto b_reg = cc.newInt8();
cc.mov(b_reg, b);
cc.cmp(b_reg, 0);
cc.je(label_false);
cc.jmp(label_then);
cc.bind(label_false);
break;
}
case lor: {
cc.cmp(a, 0);
cc.jne(label_then);
auto b_reg = cc.newInt8();
cc.mov(b_reg, b);
cc.cmp(b_reg, 0);
cc.jne(label_then);
break;
}
default:
throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (comparison)", op));
}
cc.mov(tmp, 0);
cc.bind(label_then);
return tmp;
}
enum binary_operation { lnot, inc, dec, bnot, neg };
x86::Gp gen_operation(jit_holder& jh, binary_operation op, x86::Gp a) {
x86::Compiler& cc = jh.cc;
switch(op) {
case lnot:
throw std::runtime_error("Current operation not supported in gen_operation(lnot)");
case inc: {
cc.inc(a);
break;
}
case dec: {
cc.dec(a);
break;
}
case bnot: {
cc.not_(a);
break;
}
case neg: {
cc.neg(a);
break;
}
default:
throw std::runtime_error(fmt::format("Current operation {} not supported in gen_operation (unary)", op));
}
return a;
}
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
inline x86::Gp gen_ext(jit_holder& jh, T val, unsigned size, bool is_signed) {
auto val_reg = get_reg_for(jh, sizeof(val) * 8, is_signed);
jh.cc.mov(val_reg, val);
return gen_ext(jh, val_reg, size, is_signed);
}
inline x86::Gp gen_ext(jit_holder& jh, x86::Gp val, unsigned size, bool is_signed) {
auto& cc = jh.cc;
if(is_signed) {
switch(val.size()) {
case 1:
cc.cbw(val);
break;
case 2:
cc.cwde(val);
break;
case 4:
cc.cdqe(val);
break;
case 8:
break;
default:
throw std::runtime_error("Invalid register size in gen_ext");
}
}
switch(size) {
case 8:
cc.and_(val, std::numeric_limits<uint8_t>::max());
return val.r8();
case 16:
cc.and_(val, std::numeric_limits<uint16_t>::max());
return val.r16();
case 32:
cc.and_(val, std::numeric_limits<uint32_t>::max());
return val.r32();
case 64:
cc.and_(val, std::numeric_limits<uint64_t>::max());
return val.r64();
case 128:
return val.r64();
default:
throw std::runtime_error("Invalid size in gen_ext");
}
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, uint32_t length) {
x86::Compiler& cc = jh.cc;
auto ret_reg = cc.newInt32();
auto mem_type_reg = cc.newInt32();
cc.mov(mem_type_reg, type);
auto space_reg = cc.newInt32();
cc.mov(space_reg, static_cast<uint16_t>(iss::address_type::VIRTUAL));
auto val_ptr = cc.newUIntPtr();
cc.mov(val_ptr, read_mem_buf);
InvokeNode* invokeNode;
uint64_t mask = 0;
x86::Gp val_reg = cc.newInt64();
switch(length) {
case 1: {
cc.invoke(&invokeNode, &read_mem1, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint8_t>::max();
break;
}
case 2: {
cc.invoke(&invokeNode, &read_mem2, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint16_t>::max();
break;
}
case 4: {
cc.invoke(&invokeNode, &read_mem4, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint32_t>::max();
break;
}
case 8: {
cc.invoke(&invokeNode, &read_mem8, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uintptr_t>());
mask = std::numeric_limits<uint64_t>::max();
break;
}
default:
throw std::runtime_error(fmt::format("Invalid length ({}) in gen_read_mem", length));
}
invokeNode->setRet(0, ret_reg);
invokeNode->setArg(0, jh.arch_if_ptr);
invokeNode->setArg(1, space_reg);
invokeNode->setArg(2, mem_type_reg);
invokeNode->setArg(3, addr);
invokeNode->setArg(4, val_ptr);
cc.cmp(ret_reg, 0);
cc.jne(jh.trap_entry);
cc.mov(val_reg, x86::ptr_64(val_ptr));
cc.and_(val_reg, mask);
return val_reg;
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, x86::Gp length) {
throw std::runtime_error("Invalid gen_read_mem");
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, uint64_t addr, x86::Gp length) {
throw std::runtime_error("Invalid gen_read_mem");
}
inline x86::Gp gen_read_mem(jit_holder& jh, mem_type_e type, uint64_t addr, uint32_t length) {
auto addr_reg = jh.cc.newInt64();
jh.cc.mov(addr_reg, addr);
return gen_read_mem(jh, type, addr_reg, length);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, int64_t val, uint32_t length) {
auto val_reg = get_reg_for(jh, length * 8, true);
jh.cc.mov(val_reg, val);
gen_write_mem(jh, type, addr, val_reg, length);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, x86::Gp addr, x86::Gp val, uint32_t length) {
x86::Compiler& cc = jh.cc;
assert(val.size() == length);
auto mem_type_reg = cc.newInt32();
jh.cc.mov(mem_type_reg, type);
auto space_reg = cc.newInt32();
jh.cc.mov(space_reg, static_cast<uint16_t>(iss::address_type::VIRTUAL));
auto ret_reg = cc.newInt32();
InvokeNode* invokeNode;
switch(length) {
case 1:
cc.invoke(&invokeNode, &write_mem1, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint8_t>());
break;
case 2:
cc.invoke(&invokeNode, &write_mem2, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint16_t>());
break;
case 4:
cc.invoke(&invokeNode, &write_mem4, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint32_t>());
break;
case 8:
cc.invoke(&invokeNode, &write_mem8, FuncSignatureT<uint32_t, uint64_t, uint32_t, uint32_t, uint64_t, uint64_t>());
break;
default:
throw std::runtime_error("Invalid register size in gen_ext");
}
invokeNode->setRet(0, ret_reg);
invokeNode->setArg(0, jh.arch_if_ptr);
invokeNode->setArg(1, space_reg);
invokeNode->setArg(2, mem_type_reg);
invokeNode->setArg(3, addr);
invokeNode->setArg(4, val);
cc.cmp(ret_reg, 0);
cc.jne(jh.trap_entry);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, uint64_t addr, x86::Gp val, uint32_t length) {
auto addr_reg = jh.cc.newUInt64();
jh.cc.mov(addr_reg, addr);
gen_write_mem(jh, type, addr_reg, val, length);
}
inline void gen_write_mem(jit_holder& jh, mem_type_e type, uint64_t addr, int64_t val, uint32_t length) {
auto val_reg = get_reg_for(jh, length * 8, true);
jh.cc.mov(val_reg, val);
auto addr_reg = jh.cc.newUInt64();
jh.cc.mov(addr_reg, addr);
gen_write_mem(jh, type, addr_reg, val_reg, length);
}

File diff suppressed because it is too large Load Diff

View File

@ -33,9 +33,6 @@
////////////////////////////////////////////////////////////////////////////////
#include "fp_functions.h"
#include "softfloat_types.h"
#include <array>
#include <cstdint>
extern "C" {
#include "internals.h"
@ -46,375 +43,20 @@ extern "C" {
#include <limits>
using this_t = uint8_t*;
template <typename T> T constexpr defaultNaN();
template <> uint16_t constexpr defaultNaN<uint16_t>() { return defaultNaNF16UI; }
template <> uint32_t constexpr defaultNaN<uint32_t>() { return defaultNaNF32UI; }
template <> uint64_t constexpr defaultNaN<uint64_t>() { return defaultNaNF64UI; }
template <typename T> T constexpr posInf();
template <> uint16_t constexpr posInf<uint16_t>() { return 0x7C00; }
template <> uint32_t constexpr posInf<uint32_t>() { return 0x7F800000; }
template <> uint64_t constexpr posInf<uint64_t>() { return 0x7FF0000000000000; }
template <typename T> T constexpr negInf();
template <> uint16_t constexpr negInf<uint16_t>() { return 0xFC00; }
template <> uint32_t constexpr negInf<uint32_t>() { return 0xFF800000; }
template <> uint64_t constexpr negInf<uint64_t>() { return 0xFFF0000000000000; }
template <typename T> T constexpr negZero();
template <> uint16_t constexpr negZero<uint16_t>() { return 0x8000; }
template <> uint32_t constexpr negZero<uint32_t>() { return 0x80000000; }
template <> uint64_t constexpr negZero<uint64_t>() { return 0x8000000000000000; }
const uint8_t rmm_map[] = {
softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/,
softfloat_round_near_maxMag /*RMM*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/,
};
template <typename T> bool rsqrt_check(T fclass_val, bool& subnormal, T& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0002: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0020: {
subnormal = true;
}
default:
return false;
}
}
static constexpr std::array<std::array<uint64_t, 64>, 2> rsqrt_table{
{{
52, 51, 50, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20,
19, 19, 18, 17, 16, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 7, 7, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0,
},
{127, 125, 123, 121, 119, 118, 116, 114, 113, 111, 109, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93,
92, 91, 90, 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 70,
69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 53}}};
uint64_t constexpr frsqrt7_general(const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal) {
int64_t normalized_exp = exp;
uint64_t normalized_sig = sig;
if(subnormal) {
signed nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
normalized_exp = -nr_leadingzeros;
normalized_sig = (sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1);
}
unsigned exp_idx = normalized_exp & 1;
unsigned sig_idx = (normalized_sig >> (s - 6)) & 0x3f;
// The output of the table becomes the seven high bits of the result significand (after the leading one); the remainder of the
// result significand is zero.
uint64_t out_sig = rsqrt_table[exp_idx][sig_idx] << (s - 7);
// The output exponent equals floor((3*B - 1 - the normalized input exponent) / 2), where B is the exponent bias.
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t out_exp = (3 * bias - 1 - normalized_exp) / 2;
// The output sign equals the input sign.
return (sign << (s + e)) | (out_exp << s) | out_sig;
}
template <typename T> bool recip_check(T fclass_val, bool& subnormal, uint64_t& ret_val) {
softfloat_exceptionFlags = 0;
switch(fclass_val) {
case 0x0001: {
ret_val = negZero<T>();
return true;
}
case 0x0080: {
ret_val = 0;
return true;
}
case 0x0008: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = negInf<T>();
return true;
}
case 0x0010: {
softfloat_exceptionFlags |= softfloat_flag_infinite;
ret_val = posInf<T>();
return true;
}
case 0x0100: {
softfloat_exceptionFlags |= softfloat_flag_invalid;
ret_val = defaultNaN<T>();
return true;
}
case 0x0200: {
ret_val = defaultNaN<T>();
return true;
}
case 0x0004: {
subnormal = true;
return false;
}
case 0x0020: {
subnormal = true;
return false;
}
default: {
subnormal = false;
return false;
}
}
}
static constexpr std::array<uint64_t, 128> rec_table{
{127, 125, 123, 121, 119, 117, 116, 114, 112, 110, 109, 107, 105, 104, 102, 100, 99, 97, 96, 94, 93, 91, 90, 88, 87, 85,
84, 83, 81, 80, 79, 77, 76, 75, 74, 72, 71, 70, 69, 68, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, 32, 31,
31, 30, 29, 28, 28, 27, 26, 25, 25, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 14,
13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0}};
bool frec_general(uint64_t& res, const unsigned s, const unsigned e, const uint64_t sign, const int64_t exp, const uint64_t sig,
const bool subnormal, uint8_t mode) {
int nr_leadingzeros = __builtin_clzll(sig) - (64 - s);
int64_t normalized_exp = subnormal ? -nr_leadingzeros : exp;
uint64_t normalized_sig = subnormal ? ((sig << (1 + nr_leadingzeros)) & ((1ULL << s) - 1)) : sig;
unsigned idx = (normalized_sig >> (s - 7)) & 0x7f;
unsigned bias = (1UL << (e - 1)) - 1;
uint64_t mid_exp = 2 * (bias)-1 - normalized_exp;
uint64_t mid_sig = rec_table[idx] << (s - 7);
uint64_t out_exp = mid_exp;
uint64_t out_sig = mid_sig;
if(mid_exp == 0) {
out_exp = mid_exp;
out_sig = (mid_sig >> 1) | (1ULL << (s - 1));
} else if(mid_exp == (1ULL << e) - 1) {
out_exp = 0;
out_sig = (mid_sig >> 2) | (1ULL << (s - 2));
}
if(subnormal && nr_leadingzeros > 1) {
if((mode == 0b001) || (mode == 0b010 && sign == 0b0) || (mode == 0b011 && sign == 0b1)) {
res = (sign << (s + e)) | ((1ULL << (e - 1)) - 1) << s | ((1ULL << s) - 1);
return true;
} else {
res = (sign << (s + e)) | ((1ULL << e) - 1) << s;
return true;
}
}
res = (sign << (s + e)) | (out_exp << s) | out_sig;
return false;
}
const uint32_t quiet_nan32 = 0x7fC00000;
extern "C" {
uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; }
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_add(v1f, v2f);
return r.v;
}
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sub(v1f, v2f);
return r.v;
}
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_mul(v1f, v2f);
return r.v;
}
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode) {
float16_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_div(v1f, v2f);
return r.v;
}
uint16_t fsqrt_h(uint16_t v1, uint8_t mode) {
float16_t v1f{v1};
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t r = f16_sqrt(v1f);
return r.v;
}
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op) {
float16_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = v1 == defaultNaNF16UI || v2 & defaultNaNF16UI;
bool snan = softfloat_isSigNaNF16UI(v1) || softfloat_isSigNaNF16UI(v2);
switch(op) {
case 0:
if(nan | snan) {
if(snan)
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_eq(v1f, v2f) ? 1 : 0;
case 1:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_le(v1f, v2f) ? 1 : 0;
case 2:
if(nan | snan) {
softfloat_raiseFlags(softfloat_flag_invalid);
return 0;
} else
return f16_lt(v1f, v2f) ? 1 : 0;
default:
break;
}
return -1;
}
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode) {
uint16_t F16_SIGN = 1UL << 15;
switch(op) {
case 0: // FMADD_S
break;
case 1: // FMSUB_S
v3 ^= F16_SIGN;
break;
case 2: // FNMADD_S
v1 ^= F16_SIGN;
v3 ^= F16_SIGN;
break;
case 3: // FNMSUB_S
v1 ^= F16_SIGN;
break;
}
softfloat_roundingMode = mode;
softfloat_exceptionFlags = 0;
float16_t res = softfloat_mulAddF16(v1, v2, v3, 0);
return res.v;
}
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op) {
softfloat_exceptionFlags = 0;
bool v1_nan = (v1 & defaultNaNF16UI) == defaultNaNF16UI;
bool v2_nan = (v2 & defaultNaNF16UI) == defaultNaNF16UI;
bool v1_snan = softfloat_isSigNaNF16UI(v1);
bool v2_snan = softfloat_isSigNaNF16UI(v2);
if(v1_snan || v2_snan)
softfloat_raiseFlags(softfloat_flag_invalid);
if(v1_nan || v1_snan)
return (v2_nan || v2_snan) ? defaultNaNF16UI : v2;
else if(v2_nan || v2_snan)
return v1;
else {
if((v1 & 0x7fff) == 0 && (v2 & 0x7fff) == 0) {
return op == 0 ? ((v1 & 0x8000) ? v1 : v2) : ((v1 & 0x8000) ? v2 : v1);
} else {
float16_t v1f{v1}, v2f{v2};
return op == 0 ? (f16_lt(v1f, v2f) ? v1 : v2) : (f16_lt(v1f, v2f) ? v2 : v1);
}
}
}
uint16_t fclass_h(uint16_t v1) {
float16_t a{v1};
union ui16_f16 uA;
uint_fast16_t uiA;
uA.f = a;
uiA = uA.ui;
bool infOrNaN = expF16UI(uiA) == 0x1F;
bool subnormalOrZero = expF16UI(uiA) == 0;
bool sign = signF16UI(uiA);
bool fracZero = fracF16UI(uiA) == 0;
bool isNaN = isNaNF16UI(uiA);
bool isSNaN = softfloat_isSigNaNF16UI(uiA);
return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 |
(sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 |
(!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 |
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint16_t frsqrt7_h(uint16_t v) {
bool subnormal = false;
uint16_t ret_val = 0;
if(rsqrt_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF64UI(v);
int16_t exp = expF64UI(v);
uint16_t sign = signF64UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint16_t frec7_h(uint16_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_h(v), subnormal, ret_val)) {
return ret_val;
}
uint16_t sig = fracF16UI(v);
int exp = expF16UI(v);
uint16_t sign = signF16UI(v);
unsigned constexpr e = 5;
unsigned constexpr s = 10;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint16_t unbox_h(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
mask = std::numeric_limits<uint32_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint16_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
return defaultNaNF16UI;
else
return v & std::numeric_limits<uint32_t>::max();
}
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_add(v1f, v2f);
return r.v;
@ -422,7 +64,7 @@ uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sub(v1f, v2f);
return r.v;
@ -430,7 +72,7 @@ uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_mul(v1f, v2f);
return r.v;
@ -438,7 +80,7 @@ uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
float32_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_div(v1f, v2f);
return r.v;
@ -446,7 +88,7 @@ uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
float32_t v1f{v1};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t r = f32_sqrt(v1f);
return r.v;
@ -455,7 +97,7 @@ uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
float32_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = v1 == defaultNaNF32UI || v2 == defaultNaNF32UI;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
switch(op) {
case 0:
@ -483,25 +125,36 @@ uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
return -1;
}
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
uint32_t F32_SIGN = 1UL << 31;
switch(op) {
case 0: // FMADD_S
break;
case 1: // FMSUB_S
v3 ^= F32_SIGN;
break;
case 2: // FNMADD_S
v1 ^= F32_SIGN;
v3 ^= F32_SIGN;
break;
case 3: // FNMSUB_S
v1 ^= F32_SIGN;
break;
}
softfloat_roundingMode = mode;
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, 0);
float32_t r;
switch(op) {
case 0: { // w->s, fp to int32
uint_fast32_t res = f32_to_i32(v1f, rmm_map[mode & 0x7], true);
return (uint32_t)res;
}
case 1: { // wu->s
uint_fast32_t res = f32_to_ui32(v1f, rmm_map[mode & 0x7], true);
return (uint32_t)res;
}
case 2: // s->w
r = i32_to_f32(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f32(v1);
return r.v;
}
return 0;
}
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float32_t res = softfloat_mulAddF32(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 31;
return res.v;
}
@ -536,8 +189,8 @@ uint32_t fclass_s(uint32_t v1) {
uA.f = a;
uiA = uA.ui;
bool infOrNaN = expF32UI(uiA) == 0xFF;
bool subnormalOrZero = expF32UI(uiA) == 0;
uint_fast16_t infOrNaN = expF32UI(uiA) == 0xFF;
uint_fast16_t subnormalOrZero = expF32UI(uiA) == 0;
bool sign = signF32UI(uiA);
bool fracZero = fracF32UI(uiA) == 0;
bool isNaN = isNaNF32UI(uiA);
@ -549,60 +202,33 @@ uint32_t fclass_s(uint32_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint32_t frsqrt7_s(uint32_t v) {
bool subnormal = false;
uint32_t ret_val = 0;
if(rsqrt_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
}
uint32_t frec7_s(uint32_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_s(v), subnormal, ret_val)) {
return ret_val;
}
uint32_t sig = fracF32UI(v);
int exp = expF32UI(v);
uint32_t sign = signF32UI(v);
unsigned constexpr e = 8;
unsigned constexpr s = 23;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
}
uint32_t unbox_s(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 32: {
return v;
}
case 64: {
mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
break;
}
default:
break;
}
if((v & mask) != mask)
uint32_t fconv_d2f(uint64_t v1, uint8_t mode) {
softfloat_roundingMode = rmm_map[mode & 0x7];
bool nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI;
if(nan) {
return defaultNaNF32UI;
else
return v & std::numeric_limits<uint32_t>::max();
} else {
float32_t res = f64_to_f32(float64_t{v1});
return res.v;
}
}
uint64_t fconv_f2d(uint32_t v1, uint8_t mode) {
bool nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI;
if(nan) {
return defaultNaNF64UI;
} else {
softfloat_roundingMode = rmm_map[mode & 0x7];
float64_t res = f32_to_f64(float32_t{v1});
return res.v;
}
}
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
bool nan = v1 == defaultNaNF32UI;
bool nan = (v1 & defaultNaNF32UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF32UI(v1);
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_add(v1f, v2f);
return r.v;
@ -610,7 +236,7 @@ uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sub(v1f, v2f);
return r.v;
@ -618,7 +244,7 @@ uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_mul(v1f, v2f);
return r.v;
@ -626,7 +252,7 @@ uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
float64_t v1f{v1}, v2f{v2};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_div(v1f, v2f);
return r.v;
@ -634,7 +260,7 @@ uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
float64_t v1f{v1};
softfloat_roundingMode = mode;
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t r = f64_sqrt(v1f);
return r.v;
@ -643,7 +269,7 @@ uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
float64_t v1f{v1}, v2f{v2};
softfloat_exceptionFlags = 0;
bool nan = v1 == defaultNaNF64UI || v2 == defaultNaNF64UI;
bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32;
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
switch(op) {
case 0:
@ -671,25 +297,36 @@ uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
return -1;
}
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
uint64_t F64_SIGN = 1ULL << 63;
switch(op) {
case 0: // FMADD_D
break;
case 1: // FMSUB_D
v3 ^= F64_SIGN;
break;
case 2: // FNMADD_D
v1 ^= F64_SIGN;
v3 ^= F64_SIGN;
break;
case 3: // FNMSUB_D
v1 ^= F64_SIGN;
break;
}
softfloat_roundingMode = mode;
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
float64_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, 0);
float64_t r;
switch(op) {
case 0: { // l->d, fp to int32
int64_t res = f64_to_i64(v1f, rmm_map[mode & 0x7], true);
return (uint64_t)res;
}
case 1: { // lu->s
uint64_t res = f64_to_ui64(v1f, rmm_map[mode & 0x7], true);
return res;
}
case 2: // s->l
r = i64_to_f64(v1);
return r.v;
case 3: // s->lu
r = ui64_to_f64(v1);
return r.v;
}
return 0;
}
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
softfloat_roundingMode = rmm_map[mode & 0x7];
softfloat_exceptionFlags = 0;
float64_t res = softfloat_mulAddF64(v1, v2, v3, op & 0x1);
if(op > 1)
res.v ^= 1ULL << 63;
return res.v;
}
@ -725,8 +362,8 @@ uint64_t fclass_d(uint64_t v1) {
uA.f = a;
uiA = uA.ui;
bool infOrNaN = expF64UI(uiA) == 0x7FF;
bool subnormalOrZero = expF64UI(uiA) == 0;
uint_fast16_t infOrNaN = expF64UI(uiA) == 0x7FF;
uint_fast16_t subnormalOrZero = expF64UI(uiA) == 0;
bool sign = signF64UI(uiA);
bool fracZero = fracF64UI(uiA) == 0;
bool isNaN = isNaNF64UI(uiA);
@ -738,211 +375,52 @@ uint64_t fclass_d(uint64_t v1) {
(!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9;
}
uint64_t frsqrt7_d(uint64_t v) {
bool subnormal = false;
uint64_t ret_val = 0;
if(rsqrt_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) {
float32_t v1f{v1};
softfloat_exceptionFlags = 0;
float64_t r;
switch(op) {
case 0: // l->s, fp to int32
return f32_to_i64(v1f, rmm_map[mode & 0x7], true);
case 1: // wu->s
return f32_to_ui64(v1f, rmm_map[mode & 0x7], true);
case 2: // s->w
r = i32_to_f64(v1);
return r.v;
case 3: // s->wu
r = ui32_to_f64(v1);
return r.v;
}
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
return frsqrt7_general(s, e, sign, exp, sig, subnormal);
return 0;
}
uint64_t frec7_d(uint64_t v, uint8_t mode) {
bool subnormal = false;
uint64_t ret_val = 0;
if(recip_check(fclass_d(v), subnormal, ret_val)) {
return ret_val;
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) {
softfloat_exceptionFlags = 0;
float32_t r;
switch(op) {
case 0: { // wu->s
int32_t r = f64_to_i32(float64_t{v1}, rmm_map[mode & 0x7], true);
return r;
}
uint64_t sig = fracF64UI(v);
int exp = expF64UI(v);
uint64_t sign = signF64UI(v);
unsigned constexpr e = 11;
unsigned constexpr s = 52;
if(frec_general(ret_val, s, e, sign, exp, sig, subnormal, mode))
softfloat_exceptionFlags |= (softfloat_flag_inexact | softfloat_flag_overflow);
return ret_val;
case 1: { // wu->s
uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map[mode & 0x7], true);
return r;
}
case 2: // l->s, fp to int32
r = i64_to_f32(v1);
return r.v;
case 3: // wu->s
r = ui64_to_f32(v1);
return r.v;
}
return 0;
}
uint64_t unbox_d(uint8_t FLEN, uint64_t v) {
uint64_t mask = 0;
switch(FLEN) {
case 64: {
return v;
break;
}
default:
break;
}
uint32_t unbox_s(uint64_t v) {
constexpr uint64_t mask = std::numeric_limits<uint64_t>::max() & ~((uint64_t)std::numeric_limits<uint32_t>::max());
if((v & mask) != mask)
return defaultNaNF64UI;
return 0x7fc00000;
else
return v & std::numeric_limits<uint32_t>::max();
}
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f32(float16_t{val}).v;
}
uint64_t f16tof64(uint16_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_f64(float16_t{val}).v;
}
uint16_t f32tof16(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f16(float32_t{val}).v;
}
uint64_t f32tof64(uint32_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_f64(float32_t{val}).v;
}
uint16_t f64tof16(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f16(float64_t{val}).v;
}
uint32_t f64tof32(uint64_t val, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_f32(float64_t{val}).v;
}
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui32(float16_t{v}, rm, true);
}
uint64_t f16toui64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_ui64(float16_t{v}, rm, true);
}
uint32_t f32toui32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui32(float32_t{v}, rm, true);
}
uint64_t f32toui64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_ui64(float32_t{v}, rm, true);
}
uint32_t f64toui32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui32(float64_t{v}, rm, true);
}
uint64_t f64toui64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_ui64(float64_t{v}, rm, true);
}
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i32(float16_t{v}, rm, true);
}
uint64_t f16toi64(uint16_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f16_to_i64(float16_t{v}, rm, true);
}
uint32_t f32toi32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i32(float32_t{v}, rm, true);
}
uint64_t f32toi64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f32_to_i64(float32_t{v}, rm, true);
}
uint32_t f64toi32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i32(float64_t{v}, rm, true);
}
uint64_t f64toi64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return f64_to_i64(float64_t{v}, rm, true);
}
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f16(v).v;
}
uint16_t ui64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f16(v).v;
}
uint32_t ui32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f32(v).v;
}
uint32_t ui64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f32(v).v;
}
uint64_t ui32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui32_to_f64(v).v;
}
uint64_t ui64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return ui64_to_f64(v).v;
}
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f16(v).v;
}
uint16_t i64tof16(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f16(v).v;
}
uint32_t i32tof32(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f32(v).v;
}
uint32_t i64tof32(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f32(v).v;
}
uint64_t i32tof64(uint32_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i32_to_f64(v).v;
}
uint64_t i64tof64(uint64_t v, uint8_t rm) {
softfloat_exceptionFlags = 0;
softfloat_roundingMode = rm;
return i64_to_f64(v).v;
}
}

View File

@ -39,87 +39,30 @@
extern "C" {
uint32_t fget_flags();
// half precision
uint16_t fadd_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsub_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fmul_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fdiv_h(uint16_t v1, uint16_t v2, uint8_t mode);
uint16_t fsqrt_h(uint16_t v1, uint8_t mode);
uint16_t fcmp_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fmadd_h(uint16_t v1, uint16_t v2, uint16_t v3, uint16_t op, uint8_t mode);
uint16_t fsel_h(uint16_t v1, uint16_t v2, uint16_t op);
uint16_t fclass_h(uint16_t v1);
uint16_t frsqrt7_h(uint16_t v);
uint16_t frec7_h(uint16_t v, uint8_t mode);
uint16_t unbox_h(uint8_t FLEN, uint64_t v);
// single precision
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode);
uint32_t fsqrt_s(uint32_t v1, uint8_t mode);
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode);
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op);
uint32_t fclass_s(uint32_t v1);
uint32_t frsqrt7_s(uint32_t v);
uint32_t frec7_s(uint32_t v, uint8_t mode);
uint32_t unbox_s(uint8_t FLEN, uint64_t v);
// double precision
uint32_t fconv_d2f(uint64_t v1, uint8_t mode);
uint64_t fconv_f2d(uint32_t v1, uint8_t mode);
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode);
uint64_t fsqrt_d(uint64_t v1, uint8_t mode);
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode);
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode);
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op);
uint64_t fclass_d(uint64_t v1);
uint64_t frsqrt7_d(uint64_t v);
uint64_t frec7_d(uint64_t v, uint8_t mode);
uint64_t unbox_d(uint8_t FLEN, uint64_t v);
// conversion: float to float
uint32_t f16tof32(uint16_t val, uint8_t rm);
uint64_t f16tof64(uint16_t val, uint8_t rm);
uint16_t f32tof16(uint32_t val, uint8_t rm);
uint64_t f32tof64(uint32_t val, uint8_t rm);
uint16_t f64tof16(uint64_t val, uint8_t rm);
uint32_t f64tof32(uint64_t val, uint8_t rm);
// conversions: float to unsigned
uint32_t f16toui32(uint16_t v, uint8_t rm);
uint64_t f16toui64(uint16_t v, uint8_t rm);
uint32_t f32toui32(uint32_t v, uint8_t rm);
uint64_t f32toui64(uint32_t v, uint8_t rm);
uint32_t f64toui32(uint64_t v, uint8_t rm);
uint64_t f64toui64(uint64_t v, uint8_t rm);
// conversions: float to signed
uint32_t f16toi32(uint16_t v, uint8_t rm);
uint64_t f16toi64(uint16_t v, uint8_t rm);
uint32_t f32toi32(uint32_t v, uint8_t rm);
uint64_t f32toi64(uint32_t v, uint8_t rm);
uint32_t f64toi32(uint64_t v, uint8_t rm);
uint64_t f64toi64(uint64_t v, uint8_t rm);
// conversions: unsigned to float
uint16_t ui32tof16(uint32_t v, uint8_t rm);
uint16_t ui64tof16(uint64_t v, uint8_t rm);
uint32_t ui32tof32(uint32_t v, uint8_t rm);
uint32_t ui64tof32(uint64_t v, uint8_t rm);
uint64_t ui32tof64(uint32_t v, uint8_t rm);
uint64_t ui64tof64(uint64_t v, uint8_t rm);
// conversions: signed to float
uint16_t i32tof16(uint32_t v, uint8_t rm);
uint16_t i64tof16(uint64_t v, uint8_t rm);
uint32_t i32tof32(uint32_t v, uint8_t rm);
uint32_t i64tof32(uint64_t v, uint8_t rm);
uint64_t i32tof64(uint32_t v, uint8_t rm);
uint64_t i64tof64(uint64_t v, uint8_t rm);
uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode);
uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode);
uint32_t unbox_s(uint64_t v);
}
#endif /* _VM_FP_FUNCTIONS_H_ */
#endif /* RISCV_SRC_VM_FP_FUNCTIONS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -72,70 +72,32 @@ using namespace ::llvm;
void add_fp_functions_2_module(Module* mod, uint32_t flen, uint32_t xlen) {
if(flen) {
FDECL(fget_flags, INT_TYPE(32));
FDECL(fadd_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsub_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fmul_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fdiv_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsqrt_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fcmp_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16));
FDECL(fmadd_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(8));
FDECL(fsel_h, INT_TYPE(16), INT_TYPE(16), INT_TYPE(16), INT_TYPE(16));
FDECL(fclass_h, INT_TYPE(16), INT_TYPE(16));
FDECL(unbox_h, INT_TYPE(16), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
FDECL(f16toi32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toui32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8))
FDECL(i32tof16, INT_TYPE(16), INT_TYPE(32), INT_TYPE(8))
FDECL(ui32tof16, INT_TYPE(16), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toi64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8))
FDECL(f16toui64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8))
FDECL(i64tof16, INT_TYPE(16), INT_TYPE(64), INT_TYPE(8))
FDECL(ui64tof16, INT_TYPE(16), INT_TYPE(64), INT_TYPE(8))
FDECL(fadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsub_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmul_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fdiv_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsqrt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcmp_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fcvt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
FDECL(fclass_s, INT_TYPE(32), INT_TYPE(32));
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
FDECL(f32toi32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toui32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(i32tof32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(ui32tof32, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toi64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f32toui64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(i64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(ui64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(fcvt_32_64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
FDECL(fcvt_64_32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
if(flen > 32) {
FDECL(fconv_d2f, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(fconv_f2d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsub_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fmul_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fdiv_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fsqrt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(fcmp_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fcvt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fmadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(fsel_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
FDECL(fclass_d, INT_TYPE(64), INT_TYPE(64));
FDECL(f64tof32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(f32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f64toi64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(f64toui64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(i64tof64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(ui64tof64, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
FDECL(i32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(ui32tof64, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
FDECL(f64toi32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(f64toui32, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
FDECL(unbox_d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(64)); // technically the first arg is only 8 bits
FDECL(unbox_s, INT_TYPE(32), INT_TYPE(64));
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More