2 Commits

Author SHA1 Message Date
813b40409d Merge branch 'develop' of
https://git.minres.com/DBT-RISE/DBT-RISE-TGC.git into develop
2023-08-30 10:05:42 +02:00
c8a4a4c736 renames core(s) 2023-08-28 07:09:55 +02:00
11 changed files with 249 additions and 323 deletions

View File

@ -15,19 +15,20 @@ find_package(Boost COMPONENTS coroutine REQUIRED)
add_subdirectory(softfloat)
set(LIB_SOURCES
src/iss/arch/tgc_c.cpp
src/vm/tcc/vm_tgc_c.cpp
src/vm/interp/vm_tgc_c.cpp
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/vm/tcc/vm_tgc5c.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
)
if(WITH_TCC)
list(APPEND LIB_SOURCES
src/vm/tcc/vm_tgc_c.cpp
)
src/vm/tcc/vm_tgc5c.cpp
)
endif()
if(WITH_LLVM)
list(APPEND LIB_SOURCES
src/vm/llvm/vm_tgc_c.cpp
src/vm/llvm/vm_tgc5c.cpp
src/vm/llvm/fp_impl.cpp
)
endif()

View File

@ -1,8 +1,8 @@
import "ISA/RV32I.core_desc"
import "ISA/RVI.core_desc"
import "ISA/RVM.core_desc"
import "ISA/RVC.core_desc"
Core TGC_C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
Core TGC5C provides RV32I, Zicsr, Zifencei, RV32M, RV32IC {
architectural_state {
XLEN=32;
// definitions for the architecture wrapper

View File

@ -30,7 +30,7 @@
*
*******************************************************************************/
#include "tgc_c.h"
#include "tgc5c.h"
#include "util/ities.h"
#include <util/logging.h>
#include <cstdio>
@ -39,18 +39,18 @@
using namespace iss::arch;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc_c>::reg_aliases;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc_c>::reg_bit_widths;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc_c>::reg_byte_offsets;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_names;
constexpr std::array<const char*, 36> iss::arch::traits<iss::arch::tgc5c>::reg_aliases;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_bit_widths;
constexpr std::array<const uint32_t, 43> iss::arch::traits<iss::arch::tgc5c>::reg_byte_offsets;
tgc_c::tgc_c() = default;
tgc5c::tgc5c() = default;
tgc_c::~tgc_c() = default;
tgc5c::~tgc5c() = default;
void tgc_c::reset(uint64_t address) {
auto base_ptr = reinterpret_cast<traits<tgc_c>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<tgc_c>::NUM_REGS; ++i)
void tgc5c::reset(uint64_t address) {
auto base_ptr = reinterpret_cast<traits<tgc5c>::reg_t*>(get_regs_base_ptr());
for(size_t i=0; i<traits<tgc5c>::NUM_REGS; ++i)
*(base_ptr+i)=0;
reg.PC=address;
reg.NEXT_PC=reg.PC;
@ -59,11 +59,11 @@ void tgc_c::reset(uint64_t address) {
reg.icount=0;
}
uint8_t *tgc_c::get_regs_base_ptr() {
uint8_t *tgc5c::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
tgc_c::phys_addr_t tgc_c::virt2phys(const iss::addr_t &addr) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc_c>::addr_mask);
tgc5c::phys_addr_t tgc5c::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}

View File

@ -30,8 +30,8 @@
*
*******************************************************************************/
#ifndef _TGC_C_H_
#define _TGC_C_H_
#ifndef _TGC5C_H_
#define _TGC5C_H_
#include <array>
#include <iss/arch/traits.h>
@ -41,11 +41,11 @@
namespace iss {
namespace arch {
struct tgc_c;
struct tgc5c;
template <> struct traits<tgc_c> {
template <> struct traits<tgc5c> {
constexpr static char const* const core_type = "TGC_C";
constexpr static char const* const core_type = "TGC5C";
static constexpr std::array<const char*, 36> reg_names{
{"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV", "DPC"}};
@ -175,15 +175,15 @@ template <> struct traits<tgc_c> {
};
};
struct tgc_c: public arch_if {
struct tgc5c: public arch_if {
using virt_addr_t = typename traits<tgc_c>::virt_addr_t;
using phys_addr_t = typename traits<tgc_c>::phys_addr_t;
using reg_t = typename traits<tgc_c>::reg_t;
using addr_t = typename traits<tgc_c>::addr_t;
using virt_addr_t = typename traits<tgc5c>::virt_addr_t;
using phys_addr_t = typename traits<tgc5c>::phys_addr_t;
using reg_t = typename traits<tgc5c>::reg_t;
using addr_t = typename traits<tgc5c>::addr_t;
tgc_c();
~tgc_c();
tgc5c();
~tgc5c();
void reset(uint64_t address=0) override;
@ -195,6 +195,14 @@ struct tgc_c: public arch_if {
inline uint64_t stop_code() { return interrupt_sim; }
inline phys_addr_t v2p(const iss::addr_t& addr){
if (addr.space != traits<tgc5c>::MEM || addr.type == iss::address_type::PHYSICAL ||
addr_mode[static_cast<uint16_t>(addr.access)&0x3]==address_type::PHYSICAL) {
return phys_addr_t(addr.access, addr.space, addr.val&traits<tgc5c>::addr_mask);
} else
return virt2phys(addr);
}
virtual phys_addr_t virt2phys(const iss::addr_t& addr);
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
@ -203,7 +211,7 @@ struct tgc_c: public arch_if {
#pragma pack(push, 1)
struct TGC_C_regs {
struct TGC5C_regs {
uint32_t X0 = 0;
uint32_t X1 = 0;
uint32_t X2 = 0;
@ -254,8 +262,9 @@ struct tgc_c: public arch_if {
uint32_t get_fcsr(){return 0;}
void set_fcsr(uint32_t val){}
};
}
}
#endif /* _TGC_C_H_ */
#endif /* _TGC5C_H_ */

View File

@ -2,49 +2,49 @@
#define _ISS_ARCH_TGC_MAPPER_H
#include "riscv_hart_m_p.h"
#include "tgc_c.h"
using tgc_c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_c>;
#ifdef CORE_TGC_A
#include "tgc5c.h"
using tgc5c_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5c>;
#ifdef CORE_TGC5A
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc_a.h>
using tgc_a_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_a>;
#include <iss/arch/tgc5a.h>
using tgc5a_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5a>;
#endif
#ifdef CORE_TGC_B
#ifdef CORE_TGC5B
#include "riscv_hart_m_p.h"
#include <iss/arch/tgc_b.h>
using tgc_b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc_b>;
#include <iss/arch/tgc5b.h>
using tgc5b_plat_type = iss::arch::riscv_hart_m_p<iss::arch::tgc5b>;
#endif
#ifdef CORE_TGC_C_XRB_NN
#ifdef CORE_TGC5C_XRB_NN
#include "riscv_hart_m_p.h"
#include "hwl.h"
#include <iss/arch/tgc_c_xrb_nn.h>
using tgc_c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arch::tgc_c_xrb_nn>>;
#include <iss/arch/tgc5c_xrb_nn.h>
using tgc5c_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_m_p<iss::arch::tgc5c_xrb_nn>>;
#endif
#ifdef CORE_TGC_D
#ifdef CORE_TGC5D
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc_d.h>
using tgc_d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc5d.h>
using tgc5d_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_MAC
#ifdef CORE_TGC5D_XRB_MAC
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc_d_xrb_mac.h>
using tgc_d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_mac, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc5d_xrb_mac.h>
using tgc5d_xrb_mac_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_mac, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_D_XRB_NN
#ifdef CORE_TGC5D_XRB_NN
#include "riscv_hart_mu_p.h"
#include "hwl.h"
#include <iss/arch/tgc_d_xrb_nn.h>
using tgc_d_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc_d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#include <iss/arch/tgc5d_xrb_nn.h>
using tgc5d_xrb_nn_plat_type = iss::arch::hwl<iss::arch::riscv_hart_mu_p<iss::arch::tgc5d_xrb_nn, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>>;
#endif
#ifdef CORE_TGC_E
#ifdef CORE_TGC5E
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc_e.h>
using tgc_e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#include <iss/arch/tgc5e.h>
using tgc5e_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5e, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N)>;
#endif
#ifdef CORE_TGC_X
#ifdef CORE_TGC5X
#include "riscv_hart_mu_p.h"
#include <iss/arch/tgc_x.h>
using tgc_x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc_x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#include <iss/arch/tgc5x.h>
using tgc5x_plat_type = iss::arch::riscv_hart_mu_p<iss::arch::tgc5x, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_CLIC | iss::arch::FEAT_EXT_N | iss::arch::FEAT_TCM)>;
#endif
#endif

View File

@ -147,8 +147,8 @@ public:
std::tie(cpu, vm) = f.create(type+"|"+backend);
} else {
auto base_isa = type.substr(0, 5);
if(base_isa=="tgc_d" || base_isa=="tgc_e") {
std::tie(cpu, vm) = f.create(type + "|mu_p_clic_pmp|" + backend, gdb_port, owner);
if(base_isa=="tgc5d" || base_isa=="tgc5e") {
std::tie(cpu, vm) = f.create(type + "|mu_p_clic_pmp|" + backend, gdb_port);
} else {
std::tie(cpu, vm) = f.create(type + "|m_p|" + backend, gdb_port, owner);
}

View File

@ -96,7 +96,7 @@ public:
cci::cci_param<uint64_t> reset_address{"reset_address", 0ULL};
cci::cci_param<std::string> core_type{"core_type", "tgc_c"};
cci::cci_param<std::string> core_type{"core_type", "tgc5c"};
cci::cci_param<std::string> backend{"backend", "interp"};
@ -121,7 +121,7 @@ public:
scml_property<unsigned long long> reset_address{"reset_address", 0ULL};
scml_property<std::string> core_type{"core_type", "tgc_c"};
scml_property<std::string> core_type{"core_type", "tgc5c"};
scml_property<std::string> backend{"backend", "interp"};
@ -139,7 +139,7 @@ public:
, elf_file{"elf_file", ""}
, enable_disass{"enable_disass", false}
, reset_address{"reset_address", 0ULL}
, core_type{"core_type", "tgc_c"}
, core_type{"core_type", "tgc5c"}
, backend{"backend", "interp"}
, gdb_server_port{"gdb_server_port", 0}
, dump_ir{"dump_ir", false}

View File

@ -31,7 +31,7 @@
*******************************************************************************/
#include "iss_factory.h"
#include <iss/arch/tgc_c.h>
#include <iss/arch/tgc5c.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include "sc_core_adapter.h"
@ -42,15 +42,15 @@ namespace iss {
namespace interp {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc_c|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc_c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc_c*>(cpu), gdb_port)}};
core_factory::instance().register_creator("tgc5c|m_p|interp", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc5c* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {cpu_ptr{cpu}, vm_ptr{create(cpu, gdb_port)}};
}),
iss_factory::instance().register_creator("tgc_c|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc_c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc_c*>(cpu), gdb_port)}};
core_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc5c* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {cpu_ptr{cpu}, vm_ptr{create(cpu, gdb_port)}};
})
};
}
@ -58,15 +58,15 @@ volatile std::array<bool, 2> tgc_init = {
namespace tcc {
using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc_c|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc_c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc_c*>(cpu), gdb_port)}};
core_factory::instance().register_creator("tgc5c|m_p|tcc", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc5c* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {cpu_ptr{cpu}, vm_ptr{create(cpu, gdb_port)}};
}),
iss_factory::instance().register_creator("tgc_c|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc_c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc_c*>(cpu), gdb_port)}};
core_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned gdb_port, void* data) -> std::tuple<cpu_ptr, vm_ptr>{
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
arch::tgc5c* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {cpu_ptr{cpu}, vm_ptr{create(cpu, gdb_port)}};
})
};
}

View File

@ -30,7 +30,7 @@
*
*******************************************************************************/
#include <iss/arch/tgc_c.h>
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
@ -50,7 +50,7 @@
namespace iss {
namespace interp {
namespace tgc_c {
namespace tgc5c {
using namespace iss::arch;
using namespace iss::debugger;
using namespace std::placeholders;
@ -152,22 +152,14 @@ private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
typename arch::traits<ARCH>::opcode_e op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, 87> instr_descr = {{
const std::array<InstructionDesriptor, 87> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, arch::traits<ARCH>::opcode_e::LUI},
{32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, arch::traits<ARCH>::opcode_e::AUIPC},
@ -258,75 +250,18 @@ private:
{16, 0b0000000000000000, 0b1111111111111111, arch::traits<ARCH>::opcode_e::DII},
}};
//static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
if(this->core.has_mmu()) {
auto phys_pc = this->core.virt2phys(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok)
// return iss::Err;
// } else {
if (this->core.read(phys_pc, 4, data) != iss::Ok)
return iss::Err;
// }
} else {
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
auto phys_pc = this->core.v2p(pc);
//if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
//} else {
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
//}
return iss::Ok;
}
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
typename arch::traits<ARCH>::opcode_e decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
@ -353,11 +288,16 @@ constexpr size_t bit_count(uint32_t u) {
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
unsigned id=0;
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) > bit_count(b.mask);
});
}
populate_decoding_tree(root);
}
inline bool is_count_limit_enabled(finish_cond_e cond){
@ -368,6 +308,14 @@ inline bool is_jump_to_self_enabled(finish_cond_e cond){
return (cond & finish_cond_e::JUMP_TO_SELF) == finish_cond_e::JUMP_TO_SELF;
}
template <typename ARCH>
typename arch::traits<ARCH>::opcode_e vm_impl<ARCH>::decode_inst_id(code_word_t instr){
for(auto& e: qlut[instr&0x3]){
if(!((instr&e.mask) ^ e.value )) return e.id;
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
auto pc=start;
@ -389,7 +337,7 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
} else {
if (is_jump_to_self_enabled(cond) &&
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto inst_id = decode_instr(root, instr);
auto inst_id = decode_inst_id(instr);
// pre execution stuff
this->core.reg.last_branch = 0;
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast<unsigned>(inst_id));
@ -2687,11 +2635,11 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
return pc;
}
} // namespace tgc_c
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc_c>(arch::tgc_c *core, unsigned short port, bool dump) {
auto ret = new tgc_c::vm_impl<arch::tgc_c>(*core, dump);
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
@ -2704,15 +2652,15 @@ std::unique_ptr<vm_if> create<arch::tgc_c>(arch::tgc_c *core, unsigned short por
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc_c|m_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc_c>();
auto vm = new interp::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
core_factory::instance().register_creator("tgc5c|m_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc_c|mu_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc_c>();
auto vm = new interp::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
core_factory::instance().register_creator("tgc5c|mu_p|interp", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
})

View File

@ -30,8 +30,8 @@
*
*******************************************************************************/
#include <iss/arch/tgc_c.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
@ -52,7 +52,7 @@ namespace fp_impl {
void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned);
}
namespace tgc_c {
namespace tgc5c {
using namespace ::llvm;
using namespace iss::arch;
using namespace iss::debugger;
@ -111,7 +111,7 @@ protected:
void gen_trap_check(BasicBlock *bb);
inline Value *gen_reg_load(unsigned i, unsigned level = 0) {
return this->builder.CreateLoad(this->get_typeptr(i), get_reg_ptr(i), false);
return this->builder.CreateLoad(get_reg_ptr(i), false);
}
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
@ -124,7 +124,7 @@ protected:
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(static_cast<uint64_t>(EXTR_MASK32)), LUT_SIZE_C = 1 << util::bit_count(static_cast<uint64_t>(EXTR_MASK16)) };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<continuation_e, BasicBlock *> (this_class::*)(virt_addr_t &pc,
@ -4042,10 +4042,10 @@ private:
****************************************************************************/
std::tuple<continuation_e, BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) {
this->gen_sync(iss::PRE_SYNC, instr_descr.size());
this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits<ARCH>::NEXT_PC), get_reg_ptr(traits<ARCH>::NEXT_PC), true),
this->builder.CreateStore(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), true),
get_reg_ptr(traits<ARCH>::PC), true);
this->builder.CreateStore(
this->builder.CreateAdd(this->builder.CreateLoad(this->get_typeptr(traits<ARCH>::ICOUNT), get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->builder.CreateAdd(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits<ARCH>::ICOUNT), true);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
@ -4082,22 +4082,20 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
// const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&insn;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
auto res = this->core.read(paddr, 2, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
}
} else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
@ -4111,7 +4109,7 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
template <typename ARCH> void vm_impl<ARCH>::gen_leave_behavior(BasicBlock *leave_blk) {
this->builder.SetInsertPoint(leave_blk);
this->builder.CreateRet(this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::NEXT_PC), get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
this->builder.CreateRet(this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
@ -4135,53 +4133,31 @@ template <typename ARCH> void vm_impl<ARCH>::gen_wait(unsigned type) {
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(BasicBlock *trap_blk) {
this->builder.SetInsertPoint(trap_blk);
auto *trap_state_val = this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::TRAP_STATE), get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
auto *trap_state_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
this->builder.CreateStore(this->gen_const(32U, std::numeric_limits<uint32_t>::max()),
get_reg_ptr(traits<ARCH>::LAST_BRANCH), false);
std::vector<Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::PC), get_reg_ptr(traits<ARCH>::PC), false))};
this->adj_to64(this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::PC), false))};
this->builder.CreateCall(this->mod->getFunction("enter_trap"), args);
auto *trap_addr_val = this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::NEXT_PC), get_reg_ptr(traits<ARCH>::NEXT_PC), false);
auto *trap_addr_val = this->builder.CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder.CreateRet(trap_addr_val);
}
template <typename ARCH> inline void vm_impl<ARCH>::gen_trap_check(BasicBlock *bb) {
auto *v = this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::TRAP_STATE), get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
auto *v = this->builder.CreateLoad(get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
this->gen_cond_branch(this->builder.CreateICmp(
ICmpInst::ICMP_EQ, v,
ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))),
bb, this->trap_blk, 1);
}
} // namespace tgc_c
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc_c>(arch::tgc_c *core, unsigned short port, bool dump) {
auto ret = new tgc_c::vm_impl<arch::tgc_c>(*core, dump);
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace llvm
} // namespace iss
#include <iss/factory.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc_c|m_p|llvm", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc_c>();
auto* vm = new llvm::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc_c|mu_p|llvm", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc_c>();
auto* vm = new llvm::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}

View File

@ -30,7 +30,7 @@
*
*******************************************************************************/
#include <iss/arch/tgc_c.h>
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
@ -48,7 +48,7 @@
namespace iss {
namespace tcc {
namespace tgc_c {
namespace tgc5c {
using namespace iss::arch;
using namespace iss::debugger;
@ -120,7 +120,57 @@ protected:
}
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK32)), LUT_SIZE_C = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK16)) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
@ -132,23 +182,14 @@ private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, 87> instr_descr = {{
const std::array<InstructionDesriptor, 87> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
/* instruction LUI, encoding '0b00000000000000000000000000110111' */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui},
@ -452,14 +493,14 @@ private:
this->gen_raise_trap(tu, 0, 2);
}
else{
auto new_pc = tu.assignment(tu.ext((tu.bitwise_and((tu.add(tu.load(rs1+ traits::X0, 0),tu.constant((int16_t)sext<12>(imm),16))),tu.constant(~0x1,8))),32,true),32);
auto new_pc = tu.assignment(tu.ext((tu.bitwise_and((tu.add(tu.load(rs1+ traits::X0, 0),tu.constant((int16_t)sext<12>(imm),16))),tu.constant(~ 0x1,8))),32,true),32);
tu.open_if(tu.srem(new_pc,tu.constant(static_cast<uint32_t>(traits:: INSTR_ALIGNMENT),32)));
this->gen_raise_trap(tu, 0, 0);
tu.open_else();
if(rd!= 0) {
tu.store(rd + traits::X0,tu.ext((tu.add(tu.ext(cur_pc_val,32,false),tu.constant( 4,8))),32,true));
}
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(new_pc,tu.constant(~0x1,8)),32);
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(new_pc,tu.constant(~ 0x1,8)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
tu.close_scope();
@ -1921,7 +1962,7 @@ private:
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
if(zimm!= 0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_and(xrd,tu.constant(~((uint32_t)zimm),32)));
tu.write_mem(traits::CSR, csr, tu.bitwise_and(xrd,tu.constant(~ ((uint32_t)zimm),32)));
}
if(rd!= 0) {
tu.store(rd + traits::X0,xrd);
@ -2122,13 +2163,13 @@ private:
auto divisor = tu.assignment(tu.ext(tu.load(rs2+ traits::X0, 0),32,false),32);
if(rd!= 0){ tu.open_if(tu.icmp(ICmpInst::ICMP_NE,divisor,tu.constant( 0,8)));
auto MMIN = tu.assignment(tu.constant(((uint32_t)1)<<(static_cast<uint32_t>(traits:: XLEN)-1),32),32);
tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ,tu.load(rs1+ traits::X0, 0),MMIN),tu.icmp(ICmpInst::ICMP_EQ,divisor,tu.constant(-1,8))));
tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ,tu.load(rs1+ traits::X0, 0),MMIN),tu.icmp(ICmpInst::ICMP_EQ,divisor,tu.constant(- 1,8))));
tu.store(rd + traits::X0,MMIN);
tu.open_else();
tu.store(rd + traits::X0,tu.ext((tu.sdiv(dividend,divisor)),32,true));
tu.close_scope();
tu.open_else();
tu.store(rd + traits::X0,tu.constant((uint32_t)-1,32));
tu.store(rd + traits::X0,tu.constant((uint32_t)- 1,32));
tu.close_scope();
}
}
@ -2167,7 +2208,7 @@ private:
}
tu.open_else();
if(rd!=0) {
tu.store(rd + traits::X0,tu.constant((uint32_t)-1,32));
tu.store(rd + traits::X0,tu.constant((uint32_t)- 1,32));
}
tu.close_scope();
}
@ -2202,7 +2243,7 @@ private:
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,tu.load(rs2+ traits::X0, 0),tu.constant( 0,8)));
auto MMIN = tu.assignment(tu.constant( 1<<(static_cast<uint32_t>(traits:: XLEN)-1),8),32);
tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ,tu.load(rs1+ traits::X0, 0),MMIN),tu.icmp(ICmpInst::ICMP_EQ,tu.ext(tu.load(rs2+ traits::X0, 0),32,false),tu.constant(-1,8))));
tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ,tu.load(rs1+ traits::X0, 0),MMIN),tu.icmp(ICmpInst::ICMP_EQ,tu.ext(tu.load(rs2+ traits::X0, 0),32,false),tu.constant(- 1,8))));
if(rd!=0) {
tu.store(rd + traits::X0,tu.constant( 0,8));
}
@ -2914,7 +2955,7 @@ private:
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs1&&rs1<static_cast<uint32_t>(traits:: RFS)) {
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(tu.load(rs1%static_cast<uint32_t>(traits:: RFS)+ traits::X0, 0),tu.constant(~0x1,8)),32);
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(tu.load(rs1%static_cast<uint32_t>(traits:: RFS)+ traits::X0, 0),tu.constant(~ 0x1,8)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
@ -3002,7 +3043,7 @@ private:
else{
auto new_pc = tu.assignment(tu.load(rs1+ traits::X0, 0),32);
tu.store(1 + traits::X0,tu.ext((tu.add(tu.ext(cur_pc_val,32,false),tu.constant( 2,8))),32,true));
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(new_pc,tu.constant(~0x1,8)),32);
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(new_pc,tu.constant(~ 0x1,8)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
@ -3095,64 +3136,11 @@ private:
vm_impl::gen_trap_check(tu);
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
@ -3160,11 +3148,14 @@ template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
populate_decoding_tree(root);
}
template <typename ARCH>
@ -3172,11 +3163,11 @@ std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
code_word_t insn = 0;
// const typename traits::addr_t upper_bits = ~traits::PGMASK;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
@ -3184,17 +3175,18 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, tu);
return (this->*f)(pc, insn, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
@ -3218,11 +3210,11 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("return *next_pc;");
}
} // namespace tgc_c
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc_c>(arch::tgc_c *core, unsigned short port, bool dump) {
auto ret = new tgc_c::vm_impl<arch::tgc_c>(*core, dump);
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
@ -3235,15 +3227,15 @@ std::unique_ptr<vm_if> create<arch::tgc_c>(arch::tgc_c *core, unsigned short por
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc_c|m_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc_c>();
auto* vm = new tcc::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
core_factory::instance().register_creator("tgc5c|m_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc_c|mu_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc_c>();
auto* vm = new tcc::tgc_c::vm_impl<arch::tgc_c>(*cpu, false);
core_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned port, void*) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
return {cpu_ptr{cpu}, vm_ptr{vm}};
})