DBT-RISE-TGC/riscv/src/internal/vm_riscv.in.cpp

683 lines
26 KiB
C++
Raw Normal View History

2017-08-27 12:10:38 +02:00
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, MINRES Technologies GmbH
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Contributors:
// eyck@minres.com - initial API and implementation
////////////////////////////////////////////////////////////////////////////////
#include <iss/iss.h>
#include <iss/debugger/gdb_session.h>
#include <easylogging++.h>
#include <memory>
#include <cstring>
#include "iss/vm_base.h"
#include "iss/arch/CORE_DEF_NAME.h"
#include "iss/arch/riscv_core.h"
#include "iss/debugger/server.h"
#include <boost/format.hpp>
namespace iss {
namespace CORE_DEF_NAME {
using namespace iss::arch;
using namespace llvm;
using namespace iss::debugger;
template<typename ARCH>
struct vm_impl;
template<typename ARCH>
struct target_adapter: public target_adapter_base {
target_adapter(server_if* srv, vm_impl<ARCH>* vm)
: target_adapter_base(srv)
, vm(vm)
{
}
/*============== Thread Control ===============================*/
/* Set generic thread */
status set_gen_thread(rp_thread_ref& thread) override;
/* Set control thread */
status set_ctrl_thread(rp_thread_ref& thread) override;
/* Get thread status */
status is_thread_alive(rp_thread_ref& thread, bool& alive) override;
/*============= Register Access ================================*/
/* Read all registers. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) override;
/* Write all registers. buf is 4-byte aligned and it is in target
byte order */
status write_registers(const std::vector<uint8_t>& data) override;
/* Read one register. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
status read_single_register(unsigned int reg_no, std::vector<uint8_t>& buf, std::vector<uint8_t>& avail_buf) override;
/* Write one register. buf is 4-byte aligned and it is in target byte
order */
status write_single_register(unsigned int reg_no, const std::vector<uint8_t>& buf) override;
/*=================== Memory Access =====================*/
/* Read memory, buf is 4-bytes aligned and it is in target
byte order */
status read_mem(uint64_t addr, std::vector<uint8_t>& buf) override;
/* Write memory, buf is 4-bytes aligned and it is in target
byte order */
status write_mem(uint64_t addr, const std::vector<uint8_t>& buf) override;
status process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) override;
status thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num, size_t& num, bool& done) override;
status current_thread_query(rp_thread_ref& thread) override;
status offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) override;
status crc_query(uint64_t addr, size_t len, uint32_t& val) override;
status raw_query(std::string in_buf, std::string& out_buf) override;
status threadinfo_query(int first, std::string& out_buf) override;
status threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) override;
status packetsize_query(std::string& out_buf) override;
status add_break(int type, uint64_t addr, unsigned int length) override;
status remove_break(int type, uint64_t addr, unsigned int length) override;
status resume_from_addr(bool step, int sig, uint64_t addr) override;
protected:
static inline constexpr addr_t map_addr(const addr_t& i){
return i;
}
vm_impl<ARCH>* vm;
rp_thread_ref thread_idx;
};
template<typename ARCH>
struct vm_impl: public vm::vm_base<ARCH> {
using super = typename vm::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t ;
vm_impl();
vm_impl(ARCH& core, bool dump=false);
void enableDebug(bool enable) {
super::sync_exec=super::ALL_SYNC;
}
target_adapter_if* accquire_target_adapter(server_if* srv){
debugger_if::dbg_enabled=true;
if(vm::vm_base<ARCH>::tgt_adapter==nullptr)
vm::vm_base<ARCH>::tgt_adapter=new target_adapter<ARCH>(srv, this);
return vm::vm_base<ARCH>::tgt_adapter;
}
protected:
template<typename T> inline
llvm::ConstantInt* size(T type){
return llvm::ConstantInt::get(getContext(), llvm::APInt(32, type->getType()->getScalarSizeInBits()));
}
inline llvm::Value * gen_choose(llvm::Value * cond, llvm::Value * trueVal, llvm::Value * falseVal, unsigned size) const {
return this->gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<vm::continuation_e, llvm::BasicBlock*> gen_single_inst_behavior(virt_addr_t&, unsigned int&, llvm::BasicBlock*) override;
void gen_leave_behavior(llvm::BasicBlock* leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
void gen_trap_behavior(llvm::BasicBlock*) override;
void gen_trap_check(llvm::BasicBlock* bb);
inline
void gen_set_pc(virt_addr_t pc, unsigned reg_num){
llvm::Value* next_pc_v = this->builder->CreateSExtOrTrunc(this->gen_const(traits<ARCH>::XLEN, pc.val), this->get_type(traits<ARCH>::XLEN));
this->builder->CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
inline
llvm::Value* get_reg_ptr(unsigned i){
void* ptr = this->core.get_regs_base_ptr()+traits<ARCH>::reg_byte_offset(i);
llvm::PointerType* ptrType=nullptr;
switch (traits<ARCH>::reg_bit_width(i)>>3) {
case 8:
ptrType=llvm::Type::getInt64PtrTy(this->mod->getContext());
break;
case 4:
ptrType=llvm::Type::getInt32PtrTy(this->mod->getContext());
break;
case 2:
ptrType=llvm::Type::getInt16PtrTy(this->mod->getContext());
break;
case 1:
ptrType=llvm::Type::getInt8PtrTy(this->mod->getContext());
break;
default:
throw std::runtime_error("unsupported access with");
break;
}
return llvm::ConstantExpr::getIntToPtr(
llvm::ConstantInt::get(this->mod->getContext(), llvm::APInt(
8/*bits*/ * sizeof(uint8_t*),
reinterpret_cast<uint64_t>(ptr)
)),
ptrType);
}
inline
void gen_set_pc(virt_addr_t pc){
llvm::Value* pc_l = this->builder->CreateSExt(this->gen_const(traits<ARCH>::caddr_bit_width, (unsigned)pc), this->get_type(traits<ARCH>::caddr_bit_width));
super::gen_set_reg(traits<ARCH>::PC, pc_l);
}
// some compile time constants
enum {MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111};
enum {EXTR_MASK16 = MASK16>>2, EXTR_MASK32 = MASK32>>2};
enum {LUT_SIZE = 1<< bit_count(EXTR_MASK32), LUT_SIZE_C = 1<<bit_count(EXTR_MASK16)};
using this_class = vm_impl<ARCH>;
using compile_func = std::tuple<vm::continuation_e, llvm::BasicBlock*> (this_class::*)(virt_addr_t& pc, code_word_t instr, llvm::BasicBlock* bb);
compile_func lut[LUT_SIZE];
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
compile_func* qlut[4];// = {lut_00, lut_01, lut_10, lut_11};
const uint32_t lutmasks[4]={EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f){
if(pos<0){
lut[idx]=f;
} else {
auto bitmask = 1UL<<pos;
if((mask & bitmask)==0){
expand_bit_mask(pos-1, mask, value, valid, idx, lut, f);
} else {
if((valid & bitmask) == 0) {
expand_bit_mask(pos-1, mask, value, valid, (idx<<1), lut, f);
expand_bit_mask(pos-1, mask, value, valid, (idx<<1)+1, lut, f);
} else {
auto new_val = idx<<1;
if((value&bitmask)!=0)
new_val++;
expand_bit_mask(pos-1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val){
return extract_fields(29, val>>2, lutmasks[val&0x3], 0);
}
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val){
if(pos>=0) {
auto bitmask = 1UL<<pos;
if((mask & bitmask)==0){
lut_val = extract_fields(pos-1, val, mask, lut_val);
} else {
auto new_val = lut_val<<1;
if((val&bitmask)!=0)
new_val++;
lut_val = extract_fields(pos-1, val, mask, new_val);
}
}
return lut_val;
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
/* «start generated code» */
InstructionDesriptor instr_descr[0] = {};
/* «end generated code» */
/****************************************************************************
* end opcode definitions
****************************************************************************/
std::tuple<vm::continuation_e, llvm::BasicBlock*> illegal_intruction(virt_addr_t& pc, code_word_t instr, llvm::BasicBlock* bb){
//this->gen_sync(iss::PRE_SYNC);
this->builder->CreateStore(
this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), true),
get_reg_ptr(traits<ARCH>::PC), true);
this->builder->CreateStore(
this->builder->CreateAdd(
this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->gen_const(64U, 1)),
get_reg_ptr(traits<ARCH>::ICOUNT), true);
if(this->debugging_enabled()) this->gen_sync(iss::PRE_SYNC);
pc=pc+((instr&3) == 3?4:2);
this->gen_raise_trap(0, 2); // illegal instruction trap
this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */
this->gen_trap_check(this->leave_blk);
return std::make_tuple(iss::vm::BRANCH, nullptr);
}
};
template<typename CODE_WORD>
void debug_fn(CODE_WORD insn){
volatile CODE_WORD x=insn;
insn=2*x;
}
template<typename ARCH>
vm_impl<ARCH>::vm_impl(){
this(new ARCH());
}
template<typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH& core, bool dump) : vm::vm_base<ARCH>(core, dump) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for(auto instr: instr_descr){
auto quantrant = instr.value&0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value>>2, instr.mask>>2, 0, qlut[quantrant], instr.op);
}
this->sync_exec=static_cast<sync_type>(this->sync_exec|core.needed_sync());
}
template<typename ARCH>
std::tuple<vm::continuation_e, llvm::BasicBlock*> vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t& pc, unsigned int& inst_cnt, llvm::BasicBlock* this_block){
// we fetch at max 4 byte, alignment is 2
code_word_t insn = 0;
iss::addr_t paddr;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
try {
uint8_t* const data = (uint8_t*)&insn;
paddr=this->core.v2p(pc);
if((pc.val&upper_bits) != ((pc.val+2)&upper_bits)){ // we may cross a page boundary
auto res = this->core.read_mem(paddr, 2, data);
if(res!=iss::Ok)
throw trap_access(1, pc.val);
if((insn & 0x3) == 0x3){ // this is a 32bit instruction
res = this->core.read_mem(this->core.v2p(pc+2), 2, data+2);
}
} else {
auto res = this->core.read_mem(paddr, 4, data);
if(res!=iss::Ok)
throw trap_access(1, pc.val);
}
} catch(trap_access& ta){
throw trap_access(ta.id, pc.val);
}
if(insn==0x0000006f)
throw vm::simulation_stopped(0);
// curr pc on stack
typename vm_impl<ARCH>::processing_pc_entry addr(*this, pc, paddr);
++inst_cnt;
auto lut_val = extract_fields(insn);
auto f = qlut[insn&0x3][lut_val];
if (f==nullptr){
f=&this_class::illegal_intruction;
}
return (this->*f)(pc, insn, this_block);
}
template<typename ARCH>
void vm_impl<ARCH>::gen_leave_behavior(llvm::BasicBlock* leave_blk){
this->builder->SetInsertPoint(leave_blk);
this->builder->CreateRet(this->builder->CreateLoad(get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
}
template<typename ARCH>
void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause){
auto* TRAP_val = this->gen_const(traits<ARCH>::XLEN, 0x80<<24| (cause<<16) | trap_id );
this->builder->CreateStore(TRAP_val, get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
}
template<typename ARCH>
void vm_impl<ARCH>::gen_leave_trap(unsigned lvl){
std::vector<llvm::Value*> args {
this->core_ptr,
llvm::ConstantInt::get(getContext(), llvm::APInt(64, lvl)),
};
this->builder->CreateCall(this->mod->getFunction("leave_trap"), args);
auto* PC_val = this->gen_read_mem(traits<ARCH>::CSR, (lvl<<8)+0x41, traits<ARCH>::XLEN/8);
this->builder->CreateStore(PC_val, get_reg_ptr(traits<ARCH>::NEXT_PC), false);
}
template<typename ARCH>
void vm_impl<ARCH>::gen_wait(unsigned type){
std::vector<llvm::Value*> args {
this->core_ptr,
llvm::ConstantInt::get(getContext(), llvm::APInt(64, type)),
};
this->builder->CreateCall(this->mod->getFunction("wait"), args);
}
template<typename ARCH>
void vm_impl<ARCH>::gen_trap_behavior(llvm::BasicBlock* trap_blk){
this->builder->SetInsertPoint(trap_blk);
auto* trap_state_val = this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
std::vector<llvm::Value*> args {
this->core_ptr,
this->adj_to64(trap_state_val),
this->adj_to64(this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::PC), false))
};
this->builder->CreateCall(this->mod->getFunction("enter_trap"), args);
auto* trap_addr_val = this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), false);
this->builder->CreateRet(trap_addr_val);
}
template<typename ARCH> inline
void vm_impl<ARCH>::gen_trap_check(llvm::BasicBlock* bb){
auto* v = this->builder->CreateLoad(get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
this->gen_cond_branch(
this->builder->CreateICmp(
ICmpInst::ICMP_EQ,
v,
llvm::ConstantInt::get(getContext(), llvm::APInt(v->getType()->getIntegerBitWidth(), 0))),
bb,
this->trap_blk, 1);
}
} // namespace CORE_DEF_NAME
#define CREATE_FUNCS(ARCH) \
template<> std::unique_ptr<vm_if> create<ARCH>(ARCH* core, unsigned short port, bool dump) {\
std::unique_ptr<CORE_DEF_NAME::vm_impl<ARCH> > ret = std::make_unique<CORE_DEF_NAME::vm_impl<ARCH> >(*core, dump);\
debugger::server<debugger::gdb_session>::run_server(ret.get(), port);\
return ret;\
}\
template<> std::unique_ptr<vm_if> create<ARCH>(std::string inst_name, unsigned short port, bool dump) {\
return create<ARCH>(new arch::riscv_core<ARCH>(), port, dump); /* FIXME: memory leak!!!!!!! */\
}\
template<> std::unique_ptr<vm_if> create<ARCH>(ARCH* core, bool dump) {\
return std::make_unique<CORE_DEF_NAME::vm_impl<ARCH> >(*core, dump); /* FIXME: memory leak!!!!!!! */ \
}\
template<> std::unique_ptr<vm_if> create<ARCH>(std::string inst_name, bool dump) { \
return create<ARCH>(new arch::riscv_core<ARCH>(), dump);\
}
CREATE_FUNCS(arch::CORE_DEF_NAME)
namespace CORE_DEF_NAME {
template<typename ARCH>
status target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) {
thread_idx=thread;
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref& thread) {
thread_idx=thread;
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::is_thread_alive(rp_thread_ref& thread, bool& alive) {
alive=1;
return Ok;
}
/* List threads. If first is non-zero then start from the first thread,
* otherwise start from arg, result points to array of threads to be
* filled out, result size is number of elements in the result,
* num points to the actual number of threads found, done is
* set if all threads are processed.
*/
template<typename ARCH>
status target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num,
size_t& num, bool& done) {
if(first==0){
result.clear();
result.push_back(thread_idx);
num=1;
done=true;
return Ok;
} else
return NotSupported;
}
template<typename ARCH>
status target_adapter<ARCH>::current_thread_query(rp_thread_ref& thread) {
thread=thread_idx;
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
LOG(TRACE)<<"reading target registers";
//return idx<0?:;
data.clear();
avail.clear();
std::vector<uint8_t> reg_data;
for(size_t reg_no = 0; reg_no < arch::traits<ARCH>::NUM_REGS; ++reg_no){
auto reg_bit_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no));
auto reg_width=reg_bit_width/8;
reg_data.resize(reg_width);
vm->get_arch()->get_reg(reg_no, reg_data);
for(size_t j=0; j<reg_data.size(); ++j){
data.push_back(reg_data[j]);
avail.push_back(0xff);
}
}
// work around fill with F type registers
if(arch::traits<ARCH>::NUM_REGS < 65){
auto reg_width=sizeof(typename arch::traits<ARCH>::reg_t);
for(size_t reg_no = 0; reg_no < 33; ++reg_no){
for(size_t j=0; j<reg_width; ++j){
data.push_back(0x0);
avail.push_back(0x00);
}
}
}
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::write_registers(const std::vector<uint8_t>& data) {
size_t data_index=0;
auto reg_count=arch::traits<ARCH>::NUM_REGS;
std::vector<uint8_t> reg_data;
for(size_t reg_no = 0; reg_no < reg_count; ++reg_no){
auto reg_bit_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no));
auto reg_width=reg_bit_width/8;
vm->get_arch()->set_reg(reg_no, std::vector<uint8_t>(data.begin()+data_index, data.begin()+data_index+reg_width));
data_index+=reg_width;
}
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) {
if(reg_no<65){
//auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no))/8;
data.resize(0);
vm->get_arch()->get_reg(reg_no, data);
avail.resize(data.size());
std::fill(avail.begin(), avail.end(), 0xff);
} else {
typed_addr_t<iss::PHYSICAL> a(iss::DEBUG_READ, traits<ARCH>::CSR, reg_no-65);
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
std::fill(avail.begin(), avail.end(), 0xff);
vm->get_arch()->read_mem(a, data.size(), data.data());
}
return data.size()>0?Ok:Err;
}
template<typename ARCH>
status target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) {
if(reg_no<65)
vm->get_arch()->set_reg(reg_no, data);
else {
typed_addr_t<iss::PHYSICAL> a(iss::DEBUG_WRITE, traits<ARCH>::CSR, reg_no-65);
vm->get_arch()->write_mem(a, data.size(), data.data());
}
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t>& data) {
auto a=map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr});
auto f = [&]()->status {
return vm->get_arch()->read_mem(a, data.size(), data.data());
};
return srv->execute_syncronized(f);
}
template<typename ARCH>
status target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) {
auto a=map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr});
return srv->execute_syncronized(&arch_if::write_mem, vm->get_arch(), a, data.size(), data.data());
}
template<typename ARCH>
status target_adapter<ARCH>::process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) {
return NotSupported;
}
template<typename ARCH>
status target_adapter<ARCH>::offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) {
text=0;
data=0;
bss=0;
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t& val) {
return NotSupported;
}
template<typename ARCH>
status target_adapter<ARCH>::raw_query(std::string in_buf, std::string& out_buf) {
return NotSupported;
}
template<typename ARCH>
status target_adapter<ARCH>::threadinfo_query(int first, std::string& out_buf) {
if(first){
std::stringstream ss;
ss<<"m"<<std::hex<<thread_idx.val;
out_buf=ss.str();
} else {
out_buf="l";
}
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) {
char buf[20];
memset(buf, 0, 20);
sprintf (buf, "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0);
out_buf=buf;
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::packetsize_query(std::string& out_buf) {
out_buf="PacketSize=1000";
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::add_break(int type, uint64_t addr, unsigned int length) {
auto saddr=map_addr({iss::CODE, iss::PHYSICAL, addr});
auto eaddr=map_addr({iss::CODE, iss::PHYSICAL, addr+length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val-saddr.val);
LOG(TRACE)<<"Adding breakpoint with handle "<<target_adapter_base::bp_count<<" for addr 0x"<<std::hex<<saddr.val<<std::dec;
LOG(TRACE)<<"Now having "<<target_adapter_base::bp_lut.size()<<" breakpoints";
return Ok;
}
template<typename ARCH>
status target_adapter<ARCH>::remove_break(int type, uint64_t addr, unsigned int length) {
auto saddr=map_addr({iss::CODE, iss::PHYSICAL, addr});
unsigned handle=target_adapter_base::bp_lut.getEntry(saddr.val);
// TODO: check length of addr range
if(handle){
LOG(TRACE)<<"Removing breakpoint with handle "<<handle<<" for addr 0x"<<std::hex<<saddr.val<<std::dec;
target_adapter_base::bp_lut.removeEntry(handle);
LOG(TRACE)<<"Now having "<<target_adapter_base::bp_lut.size()<<" breakpoints";
return Ok;
}
LOG(TRACE)<<"Now having "<<target_adapter_base::bp_lut.size()<<" breakpoints";
return Err;
}
template<typename ARCH>
status target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t addr) {
unsigned reg_no = arch::traits<ARCH>::PC;
std::vector<uint8_t> data(8);
*(reinterpret_cast<uint64_t*>(&data[0]))=addr;
vm->get_arch()->set_reg(reg_no, data);
return resume_from_current(step, sig);
}
} // namespace CORE_DEF_NAME
} // namespace iss