//////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, MINRES Technologies GmbH // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Contributors: // eyck@minres.com - initial API and implementation //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "iss/vm_base.h" #include "iss/arch/CORE_DEF_NAME.h" #include "iss/arch/riscv_core.h" #include "iss/debugger/server.h" #include namespace iss { namespace CORE_DEF_NAME { using namespace iss::arch; using namespace llvm; using namespace iss::debugger; template struct vm_impl; template struct target_adapter: public target_adapter_base { target_adapter(server_if* srv, vm_impl* vm) : target_adapter_base(srv) , vm(vm) { } /*============== Thread Control ===============================*/ /* Set generic thread */ status set_gen_thread(rp_thread_ref& thread) override; /* Set control thread */ status set_ctrl_thread(rp_thread_ref& thread) override; /* Get thread status */ status is_thread_alive(rp_thread_ref& thread, bool& alive) override; /*============= Register Access ================================*/ /* Read all registers. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_registers(std::vector& data, std::vector& avail) override; /* Write all registers. buf is 4-byte aligned and it is in target byte order */ status write_registers(const std::vector& data) override; /* Read one register. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_single_register(unsigned int reg_no, std::vector& buf, std::vector& avail_buf) override; /* Write one register. buf is 4-byte aligned and it is in target byte order */ status write_single_register(unsigned int reg_no, const std::vector& buf) override; /*=================== Memory Access =====================*/ /* Read memory, buf is 4-bytes aligned and it is in target byte order */ status read_mem(uint64_t addr, std::vector& buf) override; /* Write memory, buf is 4-bytes aligned and it is in target byte order */ status write_mem(uint64_t addr, const std::vector& buf) override; status process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) override; status thread_list_query(int first, const rp_thread_ref& arg, std::vector& result, size_t max_num, size_t& num, bool& done) override; status current_thread_query(rp_thread_ref& thread) override; status offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) override; status crc_query(uint64_t addr, size_t len, uint32_t& val) override; status raw_query(std::string in_buf, std::string& out_buf) override; status threadinfo_query(int first, std::string& out_buf) override; status threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) override; status packetsize_query(std::string& out_buf) override; status add_break(int type, uint64_t addr, unsigned int length) override; status remove_break(int type, uint64_t addr, unsigned int length) override; status resume_from_addr(bool step, int sig, uint64_t addr) override; protected: static inline constexpr addr_t map_addr(const addr_t& i){ return i; } vm_impl* vm; rp_thread_ref thread_idx; }; template struct vm_impl: public vm::vm_base { using super = typename vm::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t ; vm_impl(); vm_impl(ARCH& core, bool dump=false); void enableDebug(bool enable) { super::sync_exec=super::ALL_SYNC; } target_adapter_if* accquire_target_adapter(server_if* srv){ debugger_if::dbg_enabled=true; if(vm::vm_base::tgt_adapter==nullptr) vm::vm_base::tgt_adapter=new target_adapter(srv, this); return vm::vm_base::tgt_adapter; } protected: template inline llvm::ConstantInt* size(T type){ return llvm::ConstantInt::get(getContext(), llvm::APInt(32, type->getType()->getScalarSizeInBits())); } inline llvm::Value * gen_choose(llvm::Value * cond, llvm::Value * trueVal, llvm::Value * falseVal, unsigned size) const { return this->gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size)); } std::tuple gen_single_inst_behavior(virt_addr_t&, unsigned int&, llvm::BasicBlock*) override; void gen_leave_behavior(llvm::BasicBlock* leave_blk) override; void gen_raise_trap(uint16_t trap_id, uint16_t cause); void gen_leave_trap(unsigned lvl); void gen_wait(unsigned type); void gen_trap_behavior(llvm::BasicBlock*) override; void gen_trap_check(llvm::BasicBlock* bb); inline void gen_set_pc(virt_addr_t pc, unsigned reg_num){ llvm::Value* next_pc_v = this->builder->CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val), this->get_type(traits::XLEN)); this->builder->CreateStore(next_pc_v, get_reg_ptr(reg_num), true); } inline llvm::Value* get_reg_ptr(unsigned i){ void* ptr = this->core.get_regs_base_ptr()+traits::reg_byte_offset(i); llvm::PointerType* ptrType=nullptr; switch (traits::reg_bit_width(i)>>3) { case 8: ptrType=llvm::Type::getInt64PtrTy(this->mod->getContext()); break; case 4: ptrType=llvm::Type::getInt32PtrTy(this->mod->getContext()); break; case 2: ptrType=llvm::Type::getInt16PtrTy(this->mod->getContext()); break; case 1: ptrType=llvm::Type::getInt8PtrTy(this->mod->getContext()); break; default: throw std::runtime_error("unsupported access with"); break; } return llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(this->mod->getContext(), llvm::APInt( 8/*bits*/ * sizeof(uint8_t*), reinterpret_cast(ptr) )), ptrType); } inline void gen_set_pc(virt_addr_t pc){ llvm::Value* pc_l = this->builder->CreateSExt(this->gen_const(traits::caddr_bit_width, (unsigned)pc), this->get_type(traits::caddr_bit_width)); super::gen_set_reg(traits::PC, pc_l); } // some compile time constants enum {MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111}; enum {EXTR_MASK16 = MASK16>>2, EXTR_MASK32 = MASK32>>2}; enum {LUT_SIZE = 1<< bit_count(EXTR_MASK32), LUT_SIZE_C = 1<; using compile_func = std::tuple (this_class::*)(virt_addr_t& pc, code_word_t instr, llvm::BasicBlock* bb); compile_func lut[LUT_SIZE]; std::array lut_00, lut_01, lut_10; std::array lut_11; compile_func* qlut[4];// = {lut_00, lut_01, lut_10, lut_11}; const uint32_t lutmasks[4]={EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}; void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f){ if(pos<0){ lut[idx]=f; } else { auto bitmask = 1UL<>2, lutmasks[val&0x3], 0); } uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val){ if(pos>=0) { auto bitmask = 1UL< illegal_intruction(virt_addr_t& pc, code_word_t instr, llvm::BasicBlock* bb){ //this->gen_sync(iss::PRE_SYNC); this->builder->CreateStore( this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), true), get_reg_ptr(traits::PC), true); this->builder->CreateStore( this->builder->CreateAdd( this->builder->CreateLoad(get_reg_ptr(traits::ICOUNT), true), this->gen_const(64U, 1)), get_reg_ptr(traits::ICOUNT), true); if(this->debugging_enabled()) this->gen_sync(iss::PRE_SYNC); pc=pc+((instr&3) == 3?4:2); this->gen_raise_trap(0, 2); // illegal instruction trap this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */ this->gen_trap_check(this->leave_blk); return std::make_tuple(iss::vm::BRANCH, nullptr); } }; template void debug_fn(CODE_WORD insn){ volatile CODE_WORD x=insn; insn=2*x; } template vm_impl::vm_impl(){ this(new ARCH()); } template vm_impl::vm_impl(ARCH& core, bool dump) : vm::vm_base(core, dump) { qlut[0] = lut_00.data(); qlut[1] = lut_01.data(); qlut[2] = lut_10.data(); qlut[3] = lut_11.data(); for(auto instr: instr_descr){ auto quantrant = instr.value&0x3; expand_bit_mask(29, lutmasks[quantrant], instr.value>>2, instr.mask>>2, 0, qlut[quantrant], instr.op); } this->sync_exec=static_cast(this->sync_exec|core.needed_sync()); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t& pc, unsigned int& inst_cnt, llvm::BasicBlock* this_block){ // we fetch at max 4 byte, alignment is 2 code_word_t insn = 0; iss::addr_t paddr; const typename traits::addr_t upper_bits = ~traits::PGMASK; try { uint8_t* const data = (uint8_t*)&insn; paddr=this->core.v2p(pc); if((pc.val&upper_bits) != ((pc.val+2)&upper_bits)){ // we may cross a page boundary auto res = this->core.read_mem(paddr, 2, data); if(res!=iss::Ok) throw trap_access(1, pc.val); if((insn & 0x3) == 0x3){ // this is a 32bit instruction res = this->core.read_mem(this->core.v2p(pc+2), 2, data+2); } } else { auto res = this->core.read_mem(paddr, 4, data); if(res!=iss::Ok) throw trap_access(1, pc.val); } } catch(trap_access& ta){ throw trap_access(ta.id, pc.val); } if(insn==0x0000006f) throw vm::simulation_stopped(0); // curr pc on stack typename vm_impl::processing_pc_entry addr(*this, pc, paddr); ++inst_cnt; auto lut_val = extract_fields(insn); auto f = qlut[insn&0x3][lut_val]; if (f==nullptr){ f=&this_class::illegal_intruction; } return (this->*f)(pc, insn, this_block); } template void vm_impl::gen_leave_behavior(llvm::BasicBlock* leave_blk){ this->builder->SetInsertPoint(leave_blk); this->builder->CreateRet(this->builder->CreateLoad(get_reg_ptr(arch::traits::NEXT_PC), false)); } template void vm_impl::gen_raise_trap(uint16_t trap_id, uint16_t cause){ auto* TRAP_val = this->gen_const(traits::XLEN, 0x80<<24| (cause<<16) | trap_id ); this->builder->CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true); } template void vm_impl::gen_leave_trap(unsigned lvl){ std::vector args { this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, lvl)), }; this->builder->CreateCall(this->mod->getFunction("leave_trap"), args); auto* PC_val = this->gen_read_mem(traits::CSR, (lvl<<8)+0x41, traits::XLEN/8); this->builder->CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); } template void vm_impl::gen_wait(unsigned type){ std::vector args { this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, type)), }; this->builder->CreateCall(this->mod->getFunction("wait"), args); } template void vm_impl::gen_trap_behavior(llvm::BasicBlock* trap_blk){ this->builder->SetInsertPoint(trap_blk); auto* trap_state_val = this->builder->CreateLoad(get_reg_ptr(traits::TRAP_STATE), true); std::vector args { this->core_ptr, this->adj_to64(trap_state_val), this->adj_to64(this->builder->CreateLoad(get_reg_ptr(traits::PC), false)) }; this->builder->CreateCall(this->mod->getFunction("enter_trap"), args); auto* trap_addr_val = this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), false); this->builder->CreateRet(trap_addr_val); } template inline void vm_impl::gen_trap_check(llvm::BasicBlock* bb){ auto* v = this->builder->CreateLoad(get_reg_ptr(arch::traits::TRAP_STATE), true); this->gen_cond_branch( this->builder->CreateICmp( ICmpInst::ICMP_EQ, v, llvm::ConstantInt::get(getContext(), llvm::APInt(v->getType()->getIntegerBitWidth(), 0))), bb, this->trap_blk, 1); } } // namespace CORE_DEF_NAME #define CREATE_FUNCS(ARCH) \ template<> std::unique_ptr create(ARCH* core, unsigned short port, bool dump) {\ std::unique_ptr > ret = std::make_unique >(*core, dump);\ debugger::server::run_server(ret.get(), port);\ return ret;\ }\ template<> std::unique_ptr create(std::string inst_name, unsigned short port, bool dump) {\ return create(new arch::riscv_core(), port, dump); /* FIXME: memory leak!!!!!!! */\ }\ template<> std::unique_ptr create(ARCH* core, bool dump) {\ return std::make_unique >(*core, dump); /* FIXME: memory leak!!!!!!! */ \ }\ template<> std::unique_ptr create(std::string inst_name, bool dump) { \ return create(new arch::riscv_core(), dump);\ } CREATE_FUNCS(arch::CORE_DEF_NAME) namespace CORE_DEF_NAME { template status target_adapter::set_gen_thread(rp_thread_ref& thread) { thread_idx=thread; return Ok; } template status target_adapter::set_ctrl_thread(rp_thread_ref& thread) { thread_idx=thread; return Ok; } template status target_adapter::is_thread_alive(rp_thread_ref& thread, bool& alive) { alive=1; return Ok; } /* List threads. If first is non-zero then start from the first thread, * otherwise start from arg, result points to array of threads to be * filled out, result size is number of elements in the result, * num points to the actual number of threads found, done is * set if all threads are processed. */ template status target_adapter::thread_list_query(int first, const rp_thread_ref& arg, std::vector& result, size_t max_num, size_t& num, bool& done) { if(first==0){ result.clear(); result.push_back(thread_idx); num=1; done=true; return Ok; } else return NotSupported; } template status target_adapter::current_thread_query(rp_thread_ref& thread) { thread=thread_idx; return Ok; } template status target_adapter::read_registers(std::vector& data, std::vector& avail) { LOG(TRACE)<<"reading target registers"; //return idx<0?:; data.clear(); avail.clear(); std::vector reg_data; for(size_t reg_no = 0; reg_no < arch::traits::NUM_REGS; ++reg_no){ auto reg_bit_width = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no)); auto reg_width=reg_bit_width/8; reg_data.resize(reg_width); vm->get_arch()->get_reg(reg_no, reg_data); for(size_t j=0; j::NUM_REGS < 65){ auto reg_width=sizeof(typename arch::traits::reg_t); for(size_t reg_no = 0; reg_no < 33; ++reg_no){ for(size_t j=0; j status target_adapter::write_registers(const std::vector& data) { size_t data_index=0; auto reg_count=arch::traits::NUM_REGS; std::vector reg_data; for(size_t reg_no = 0; reg_no < reg_count; ++reg_no){ auto reg_bit_width = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no)); auto reg_width=reg_bit_width/8; vm->get_arch()->set_reg(reg_no, std::vector(data.begin()+data_index, data.begin()+data_index+reg_width)); data_index+=reg_width; } return Ok; } template status target_adapter::read_single_register(unsigned int reg_no, std::vector& data, std::vector& avail) { if(reg_no<65){ //auto reg_size = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no))/8; data.resize(0); vm->get_arch()->get_reg(reg_no, data); avail.resize(data.size()); std::fill(avail.begin(), avail.end(), 0xff); } else { typed_addr_t a(iss::DEBUG_READ, traits::CSR, reg_no-65); data.resize(sizeof(typename traits::reg_t)); avail.resize(sizeof(typename traits::reg_t)); std::fill(avail.begin(), avail.end(), 0xff); vm->get_arch()->read_mem(a, data.size(), data.data()); } return data.size()>0?Ok:Err; } template status target_adapter::write_single_register(unsigned int reg_no, const std::vector& data) { if(reg_no<65) vm->get_arch()->set_reg(reg_no, data); else { typed_addr_t a(iss::DEBUG_WRITE, traits::CSR, reg_no-65); vm->get_arch()->write_mem(a, data.size(), data.data()); } return Ok; } template status target_adapter::read_mem(uint64_t addr, std::vector& data) { auto a=map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr}); auto f = [&]()->status { return vm->get_arch()->read_mem(a, data.size(), data.data()); }; return srv->execute_syncronized(f); } template status target_adapter::write_mem(uint64_t addr, const std::vector& data) { auto a=map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr}); return srv->execute_syncronized(&arch_if::write_mem, vm->get_arch(), a, data.size(), data.data()); } template status target_adapter::process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) { return NotSupported; } template status target_adapter::offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) { text=0; data=0; bss=0; return Ok; } template status target_adapter::crc_query(uint64_t addr, size_t len, uint32_t& val) { return NotSupported; } template status target_adapter::raw_query(std::string in_buf, std::string& out_buf) { return NotSupported; } template status target_adapter::threadinfo_query(int first, std::string& out_buf) { if(first){ std::stringstream ss; ss<<"m"< status target_adapter::threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) { char buf[20]; memset(buf, 0, 20); sprintf (buf, "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0); out_buf=buf; return Ok; } template status target_adapter::packetsize_query(std::string& out_buf) { out_buf="PacketSize=1000"; return Ok; } template status target_adapter::add_break(int type, uint64_t addr, unsigned int length) { auto saddr=map_addr({iss::CODE, iss::PHYSICAL, addr}); auto eaddr=map_addr({iss::CODE, iss::PHYSICAL, addr+length}); target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val-saddr.val); LOG(TRACE)<<"Adding breakpoint with handle "< status target_adapter::remove_break(int type, uint64_t addr, unsigned int length) { auto saddr=map_addr({iss::CODE, iss::PHYSICAL, addr}); unsigned handle=target_adapter_base::bp_lut.getEntry(saddr.val); // TODO: check length of addr range if(handle){ LOG(TRACE)<<"Removing breakpoint with handle "< status target_adapter::resume_from_addr(bool step, int sig, uint64_t addr) { unsigned reg_no = arch::traits::PC; std::vector data(8); *(reinterpret_cast(&data[0]))=addr; vm->get_arch()->set_reg(reg_no, data); return resume_from_current(step, sig); } } // namespace CORE_DEF_NAME } // namespace iss