Added doxygen comments and refactored a few functions

This commit is contained in:
Eyck Jentzsch 2018-10-21 22:48:57 +02:00
parent 188bd2b5dd
commit a96cb14dcf

View File

@ -16,14 +16,15 @@
#include "hifive1_io.h"
volatile uint32_t nextCommutationStep;
/*
Kommutierungsblöcke
1 2 3 4 5 6
U 0 z +1 +1 z 0
V +1 +1 z 0 0 z
W z 0 0 z +1 +1
*/
volatile uint32_t nextCommutationStep=0;
/* commutation blocks
* 1 2 3 4 5 6
* U 0 z +1 +1 z 0
* V +1 +1 z 0 0 z
* W z 0 0 z +1 +1
*/
std::array<uint32_t, 6> driveTable { //! Drive pattern for commutation, CW rotation
((1 << VH) | (1 << UL)), //1
((1 << VH) | (1 << WL)), //2
@ -32,6 +33,7 @@ std::array<uint32_t, 6> driveTable { //! Drive pattern for commutation, CW rotat
((1 << WH) | (1 << VL)), //5
((1 << WH) | (1 << UL)) //6
};
std::array<uint32_t, 6> senseTable { //! channels to sense during the applied pattern
SENSW_N, //1
SENSU_P, //2
@ -44,10 +46,14 @@ std::array<uint32_t, 6> senseTable { //! channels to sense during the applied pa
bool ccw=false;
typedef void (*function_ptr_t) (void);
// Instance data for the PLIC.
//! Instance data for the PLIC.
plic_instance_t g_plic;
std::array<function_ptr_t,PLIC_NUM_INTERRUPTS> g_ext_interrupt_handlers;
/*! \brief external interrupt handler
*
* routes the peripheral interrupts to the the respective handler
*
*/
extern "C" void handle_m_ext_interrupt() {
plic_source int_num = PLIC_claim_interrupt(&g_plic);
if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS))
@ -56,8 +62,9 @@ extern "C" void handle_m_ext_interrupt() {
exit(1 + (uintptr_t) int_num);
PLIC_complete_interrupt(&g_plic, int_num);
}
// 1sec interval interrupt
/*! \brief mtime interval interrupt
*
*/
extern "C" void handle_m_time_interrupt(){
clear_csr(mie, MIP_MTIP);
// Reset the timer for 3s in the future.
@ -70,9 +77,13 @@ extern "C" void handle_m_time_interrupt(){
// Re-enable the timer interrupt.
set_csr(mie, MIP_MTIP);
}
/*! \brief dummy interrupt handler
*
*/
void no_interrupt_handler (void) {};
/*! \brief configure the per-interrupt handler
*
*/
void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1) {
g_ext_interrupt_handlers[irq_num] = handler;
// Priority must be set > 0 to trigger the interrupt.
@ -80,7 +91,9 @@ void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1)
// Have to enable the interrupt both at the GPIO level, and at the PLIC level.
PLIC_enable_interrupt(&g_plic, irq_num);
}
/*!\brief initializes platform
*
*/
void platform_init(){
// configure clocks
PRCI_use_hfxosc(1); // is equivalent to
@ -125,7 +138,9 @@ void platform_init(){
// Enable interrupts in general.
set_csr(mstatus, MSTATUS_MIE);
}
/*! \brief reads adc channel and returns measured value
*
*/
unsigned read_adc(unsigned channel){
std::array<uint8_t, 3> bytes{
uint8_t(0x06 | (channel>>2 & 0x1)), /* start bit, single ended measurement, channel[2] */
@ -137,13 +152,8 @@ unsigned read_adc(unsigned channel){
qspi1::transfer(bytes);
return (bytes[1]&0xf)*256+bytes[2];
}
/*! \brief Generates a delay used during startup
/*! \brief waits for zero crossing and measures time until
*
* This functions is used to generate a delay during the startup procedure.
* The length of the delay equals delay * STARTUP_DELAY_MULTIPLIER microseconds.
* Since Timer/Counter1 is used in this function, it must never be called when
* sensorless operation is running.
*/
unsigned short measured_zc_time(unsigned short max_delay){
long delay_us = max_delay;
@ -169,21 +179,25 @@ unsigned short measured_zc_time(unsigned short max_delay){
pwm0::cfg_reg().enoneshot=false;
return sreg*(1<<scaling_factor);
}
void next_commutation_step(void) {
/*! \brief calculates the next commutation step
*
*/
inline void next_commutation_step(void) {
if (ccw) {
if (nextCommutationStep == 0)
nextCommutationStep = 0;
else
nextCommutationStep--;
nextCommutationStep = nextCommutationStep == 0? 5 : nextCommutationStep-1;
} else {
if (nextCommutationStep == 5)
nextCommutationStep = 0;
else
nextCommutationStep++;
nextCommutationStep = nextCommutationStep == 5? 0 : nextCommutationStep+1;
}
}
/*! \brief write the drive pattern to gpio
*
*/
void setDrivePattern(uint32_t nextDrivePattern) {
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff) | nextDrivePattern | nextCommutationStep << 24;
}
/*! \brief open-loop commutation to start the motor
*
*/
void start_open_loop(void){
auto delay = 30120U;
std::array<double, 2> multiplier={0.83, 1.0};
@ -195,8 +209,7 @@ void start_open_loop(void){
next_commutation_step();
auto nextDrivePattern = driveTable[nextCommutationStep];
for (size_t i = 0; i < 12; i++){
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff)
| nextDrivePattern | nextCommutationStep<<24;
setDrivePattern(nextDrivePattern);
auto channel=senseTable[nextCommutationStep]&0x3;
auto zcPolRise = senseTable[nextCommutationStep]<4;
auto bemf_0=read_adc(channel);
@ -208,21 +221,24 @@ void start_open_loop(void){
nextDrivePattern = driveTable[nextCommutationStep];
}
}
/*! \brief closed-loop commutation to run the motor
*
*/
void run_closed_loop(void){
auto count=0;
auto zc_delay=0U;
auto tmp=0U;
auto nextDrivePattern = driveTable[nextCommutationStep];
for(;;){
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff)
| nextDrivePattern | nextCommutationStep<<24;
setDrivePattern(nextDrivePattern);
zc_delay=measured_zc_time(50000);
next_commutation_step();
nextDrivePattern = driveTable[nextCommutationStep];
}
}
/*! \brief main function
*
*/
int main() {
platform_init();
printf("Starting motor\n");