DBT-RISE-TGC/src/vm/asmjit/vm_tgc5c.cpp

4639 lines
193 KiB
C++

/*******************************************************************************
* Copyright (C) 2017, 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/asmjit/vm_base.h>
#include <asmjit/asmjit.h>
#include <util/logging.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace asmjit {
namespace tgc5c {
using namespace ::asmjit;
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::asmjit::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::asmjit::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename super::mem_type_e;
using addr_t = typename super::addr_t;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
#include <vm/asmjit/helper_func.h>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, 87> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
/* instruction LUI, encoding '0b00000000000000000000000000110111' */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui},
/* instruction AUIPC, encoding '0b00000000000000000000000000010111' */
{32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc},
/* instruction JAL, encoding '0b00000000000000000000000001101111' */
{32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal},
/* instruction JALR, encoding '0b00000000000000000000000001100111' */
{32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr},
/* instruction BEQ, encoding '0b00000000000000000000000001100011' */
{32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq},
/* instruction BNE, encoding '0b00000000000000000001000001100011' */
{32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne},
/* instruction BLT, encoding '0b00000000000000000100000001100011' */
{32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt},
/* instruction BGE, encoding '0b00000000000000000101000001100011' */
{32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge},
/* instruction BLTU, encoding '0b00000000000000000110000001100011' */
{32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu},
/* instruction BGEU, encoding '0b00000000000000000111000001100011' */
{32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu},
/* instruction LB, encoding '0b00000000000000000000000000000011' */
{32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb},
/* instruction LH, encoding '0b00000000000000000001000000000011' */
{32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh},
/* instruction LW, encoding '0b00000000000000000010000000000011' */
{32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw},
/* instruction LBU, encoding '0b00000000000000000100000000000011' */
{32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu},
/* instruction LHU, encoding '0b00000000000000000101000000000011' */
{32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu},
/* instruction SB, encoding '0b00000000000000000000000000100011' */
{32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb},
/* instruction SH, encoding '0b00000000000000000001000000100011' */
{32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh},
/* instruction SW, encoding '0b00000000000000000010000000100011' */
{32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw},
/* instruction ADDI, encoding '0b00000000000000000000000000010011' */
{32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi},
/* instruction SLTI, encoding '0b00000000000000000010000000010011' */
{32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti},
/* instruction SLTIU, encoding '0b00000000000000000011000000010011' */
{32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu},
/* instruction XORI, encoding '0b00000000000000000100000000010011' */
{32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori},
/* instruction ORI, encoding '0b00000000000000000110000000010011' */
{32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori},
/* instruction ANDI, encoding '0b00000000000000000111000000010011' */
{32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi},
/* instruction SLLI, encoding '0b00000000000000000001000000010011' */
{32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli},
/* instruction SRLI, encoding '0b00000000000000000101000000010011' */
{32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli},
/* instruction SRAI, encoding '0b01000000000000000101000000010011' */
{32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai},
/* instruction ADD, encoding '0b00000000000000000000000000110011' */
{32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add},
/* instruction SUB, encoding '0b01000000000000000000000000110011' */
{32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub},
/* instruction SLL, encoding '0b00000000000000000001000000110011' */
{32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll},
/* instruction SLT, encoding '0b00000000000000000010000000110011' */
{32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt},
/* instruction SLTU, encoding '0b00000000000000000011000000110011' */
{32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu},
/* instruction XOR, encoding '0b00000000000000000100000000110011' */
{32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor},
/* instruction SRL, encoding '0b00000000000000000101000000110011' */
{32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl},
/* instruction SRA, encoding '0b01000000000000000101000000110011' */
{32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra},
/* instruction OR, encoding '0b00000000000000000110000000110011' */
{32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or},
/* instruction AND, encoding '0b00000000000000000111000000110011' */
{32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and},
/* instruction FENCE, encoding '0b00000000000000000000000000001111' */
{32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence},
/* instruction ECALL, encoding '0b00000000000000000000000001110011' */
{32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall},
/* instruction EBREAK, encoding '0b00000000000100000000000001110011' */
{32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak},
/* instruction MRET, encoding '0b00110000001000000000000001110011' */
{32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret},
/* instruction WFI, encoding '0b00010000010100000000000001110011' */
{32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi},
/* instruction CSRRW, encoding '0b00000000000000000001000001110011' */
{32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw},
/* instruction CSRRS, encoding '0b00000000000000000010000001110011' */
{32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs},
/* instruction CSRRC, encoding '0b00000000000000000011000001110011' */
{32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc},
/* instruction CSRRWI, encoding '0b00000000000000000101000001110011' */
{32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi},
/* instruction CSRRSI, encoding '0b00000000000000000110000001110011' */
{32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi},
/* instruction CSRRCI, encoding '0b00000000000000000111000001110011' */
{32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci},
/* instruction FENCE_I, encoding '0b00000000000000000001000000001111' */
{32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i},
/* instruction MUL, encoding '0b00000010000000000000000000110011' */
{32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul},
/* instruction MULH, encoding '0b00000010000000000001000000110011' */
{32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh},
/* instruction MULHSU, encoding '0b00000010000000000010000000110011' */
{32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu},
/* instruction MULHU, encoding '0b00000010000000000011000000110011' */
{32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu},
/* instruction DIV, encoding '0b00000010000000000100000000110011' */
{32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div},
/* instruction DIVU, encoding '0b00000010000000000101000000110011' */
{32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu},
/* instruction REM, encoding '0b00000010000000000110000000110011' */
{32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem},
/* instruction REMU, encoding '0b00000010000000000111000000110011' */
{32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu},
/* instruction C__ADDI4SPN, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1110000000000011, &this_class::__c__addi4spn},
/* instruction C__LW, encoding '0b0100000000000000' */
{16, 0b0100000000000000, 0b1110000000000011, &this_class::__c__lw},
/* instruction C__SW, encoding '0b1100000000000000' */
{16, 0b1100000000000000, 0b1110000000000011, &this_class::__c__sw},
/* instruction C__ADDI, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110000000000011, &this_class::__c__addi},
/* instruction C__NOP, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110111110000011, &this_class::__c__nop},
/* instruction C__JAL, encoding '0b0010000000000001' */
{16, 0b0010000000000001, 0b1110000000000011, &this_class::__c__jal},
/* instruction C__LI, encoding '0b0100000000000001' */
{16, 0b0100000000000001, 0b1110000000000011, &this_class::__c__li},
/* instruction C__LUI, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1110000000000011, &this_class::__c__lui},
/* instruction C__ADDI16SP, encoding '0b0110000100000001' */
{16, 0b0110000100000001, 0b1110111110000011, &this_class::__c__addi16sp},
/* instruction __reserved_clui, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui},
/* instruction C__SRLI, encoding '0b1000000000000001' */
{16, 0b1000000000000001, 0b1111110000000011, &this_class::__c__srli},
/* instruction C__SRAI, encoding '0b1000010000000001' */
{16, 0b1000010000000001, 0b1111110000000011, &this_class::__c__srai},
/* instruction C__ANDI, encoding '0b1000100000000001' */
{16, 0b1000100000000001, 0b1110110000000011, &this_class::__c__andi},
/* instruction C__SUB, encoding '0b1000110000000001' */
{16, 0b1000110000000001, 0b1111110001100011, &this_class::__c__sub},
/* instruction C__XOR, encoding '0b1000110000100001' */
{16, 0b1000110000100001, 0b1111110001100011, &this_class::__c__xor},
/* instruction C__OR, encoding '0b1000110001000001' */
{16, 0b1000110001000001, 0b1111110001100011, &this_class::__c__or},
/* instruction C__AND, encoding '0b1000110001100001' */
{16, 0b1000110001100001, 0b1111110001100011, &this_class::__c__and},
/* instruction C__J, encoding '0b1010000000000001' */
{16, 0b1010000000000001, 0b1110000000000011, &this_class::__c__j},
/* instruction C__BEQZ, encoding '0b1100000000000001' */
{16, 0b1100000000000001, 0b1110000000000011, &this_class::__c__beqz},
/* instruction C__BNEZ, encoding '0b1110000000000001' */
{16, 0b1110000000000001, 0b1110000000000011, &this_class::__c__bnez},
/* instruction C__SLLI, encoding '0b0000000000000010' */
{16, 0b0000000000000010, 0b1111000000000011, &this_class::__c__slli},
/* instruction C__LWSP, encoding '0b0100000000000010' */
{16, 0b0100000000000010, 0b1110000000000011, &this_class::__c__lwsp},
/* instruction C__MV, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000000000011, &this_class::__c__mv},
/* instruction C__JR, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000001111111, &this_class::__c__jr},
/* instruction __reserved_cmv, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv},
/* instruction C__ADD, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000000000011, &this_class::__c__add},
/* instruction C__JALR, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000001111111, &this_class::__c__jalr},
/* instruction C__EBREAK, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111111111111111, &this_class::__c__ebreak},
/* instruction C__SWSP, encoding '0b1100000000000010' */
{16, 0b1100000000000010, 0b1110000000000011, &this_class::__c__swsp},
/* instruction DII, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii},
}};
/* instruction definitions */
/* instruction 0: LUI */
continuation_e __lui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLUI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 0);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)((int32_t)imm));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 0);
return returnValue;
}
/* instruction 1: AUIPC */
continuation_e __auipc(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nAUIPC_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 1);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)(PC+(int32_t)imm));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 1);
return returnValue;
}
/* instruction 2: JAL */
continuation_e __jal(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nJAL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 2);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)(PC+ 4));
}
auto PC_val_v = (uint32_t)(PC+(int32_t)sext<21>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 2);
return returnValue;
}
/* instruction 3: JALR */
continuation_e __jalr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nJALR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 3);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto addr_mask = (uint32_t)- 2;
auto new_pc = gen_ext(jh,
(gen_operation(jh, band,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), gen_ext(jh, addr_mask, 64, false))
), 32, true);
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, urem,
new_pc, static_cast<uint32_t>(traits::INSTR_ALIGNMENT))
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
gen_raise(jh, 0, 0);
}
cc.jmp(label_merge);
cc.bind(label_else);
{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)(PC+ 4));
}
auto PC_val_v = new_pc;
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 3);
return returnValue;
}
/* instruction 4: BEQ */
continuation_e __beq(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBEQ_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 4);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, eq,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 4);
return returnValue;
}
/* instruction 5: BNE */
continuation_e __bne(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBNE_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 5);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 5);
return returnValue;
}
/* instruction 6: BLT */
continuation_e __blt(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBLT_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 6);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, lt,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 6);
return returnValue;
}
/* instruction 7: BGE */
continuation_e __bge(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBGE_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 7);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, gte,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 7);
return returnValue;
}
/* instruction 8: BLTU */
continuation_e __bltu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBLTU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 8);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ltu,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 8);
return returnValue;
}
/* instruction 9: BGEU */
continuation_e __bgeu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nBGEU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 9);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, gteu,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
,0);
cc.je(label_merge);
{
if(imm%static_cast<uint32_t>(traits::INSTR_ALIGNMENT)){
gen_raise(jh, 0, 0);
}
else{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
}
cc.bind(label_merge);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 9);
return returnValue;
}
/* instruction 10: LB */
continuation_e __lb(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLB_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 10);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto load_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
auto res = gen_ext(jh,
gen_read_mem(jh, traits::MEM, load_address, 1), 8, false);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 10);
return returnValue;
}
/* instruction 11: LH */
continuation_e __lh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLH_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 11);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto load_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
auto res = gen_ext(jh,
gen_read_mem(jh, traits::MEM, load_address, 2), 16, false);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 11);
return returnValue;
}
/* instruction 12: LW */
continuation_e __lw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLW_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 12);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto load_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
auto res = gen_ext(jh,
gen_read_mem(jh, traits::MEM, load_address, 4), 32, false);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 12);
return returnValue;
}
/* instruction 13: LBU */
continuation_e __lbu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLBU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 13);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto load_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
auto res = gen_read_mem(jh, traits::MEM, load_address, 1);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 13);
return returnValue;
}
/* instruction 14: LHU */
continuation_e __lhu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nLHU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 14);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto load_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
auto res = gen_read_mem(jh, traits::MEM, load_address, 2);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 14);
return returnValue;
}
/* instruction 15: SB */
continuation_e __sb(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSB_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 15);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto store_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 8, false), 1);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 15);
return returnValue;
}
/* instruction 16: SH */
continuation_e __sh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSH_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 16);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto store_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 16, false), 2);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 16);
return returnValue;
}
/* instruction 17: SW */
continuation_e __sw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSW_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 17);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto store_address = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true);
gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false), 4);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 17);
return returnValue;
}
/* instruction 18: ADDI */
continuation_e __addi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nADDI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 18);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 18);
return returnValue;
}
/* instruction 19: SLTI */
continuation_e __slti(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLTI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 19);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(jh, 1);
cc.cmp(gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), (int16_t)sext<12>(imm));
cc.jl(label_then);
cc.mov(tmp_reg, 0);
cc.jmp(label_merge);
cc.bind(label_then);
cc.mov(tmp_reg, 1);
cc.bind(label_merge);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, tmp_reg
, 32, false)
);
}
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 19);
return returnValue;
}
/* instruction 20: SLTIU */
continuation_e __sltiu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLTIU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 20);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(jh, 1);
cc.cmp(load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm)));
cc.jb(label_then);
cc.mov(tmp_reg, 0);
cc.jmp(label_merge);
cc.bind(label_then);
cc.mov(tmp_reg, 1);
cc.bind(label_merge);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, tmp_reg
, 32, false)
);
}
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 20);
return returnValue;
}
/* instruction 21: XORI */
continuation_e __xori(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nXORI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 21);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, bxor,
load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm)))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 21);
return returnValue;
}
/* instruction 22: ORI */
continuation_e __ori(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nORI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 22);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, bor,
load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm)))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 22);
return returnValue;
}
/* instruction 23: ANDI */
continuation_e __andi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nANDI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 23);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, band,
load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm)))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 23);
return returnValue;
}
/* instruction 24: SLLI */
continuation_e __slli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLLI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 24);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, shl,
load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, shamt, 32, false))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 24);
return returnValue;
}
/* instruction 25: SRLI */
continuation_e __srli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSRLI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 25);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, shr,
load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, shamt, 32, false))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 25);
return returnValue;
}
/* instruction 26: SRAI */
continuation_e __srai(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSRAI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 26);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, sar,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), gen_ext(jh, shamt, 32, false))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 26);
return returnValue;
}
/* instruction 27: ADD */
continuation_e __add(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nADD_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 27);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false))
), 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 27);
return returnValue;
}
/* instruction 28: SUB */
continuation_e __sub(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSUB_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 28);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, sub,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 28);
return returnValue;
}
/* instruction 29: SLL */
continuation_e __sll(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 29);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, gen_operation(jh, shl,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), (gen_operation(jh, band,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast<uint32_t>(traits::XLEN)- 1))
))
, 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 29);
return returnValue;
}
/* instruction 30: SLT */
continuation_e __slt(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLT_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 30);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(jh, 1);
cc.cmp(gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, true));
cc.jl(label_then);
cc.mov(tmp_reg, 0);
cc.jmp(label_merge);
cc.bind(label_then);
cc.mov(tmp_reg, 1);
cc.bind(label_merge);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, tmp_reg
, 32, false)
);
}
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 30);
return returnValue;
}
/* instruction 31: SLTU */
continuation_e __sltu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSLTU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 31);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
{
auto label_then = cc.newLabel();
auto label_merge = cc.newLabel();
auto tmp_reg = get_reg_for(jh, 1);
cc.cmp(load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2));
cc.jb(label_then);
cc.mov(tmp_reg, 0);
cc.jmp(label_merge);
cc.bind(label_then);
cc.mov(tmp_reg, 1);
cc.bind(label_merge);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, tmp_reg
, 32, false)
);
}
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 31);
return returnValue;
}
/* instruction 32: XOR */
continuation_e __xor(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nXOR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 32);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, bxor,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 32);
return returnValue;
}
/* instruction 33: SRL */
continuation_e __srl(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSRL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 33);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, gen_operation(jh, shr,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), (gen_operation(jh, band,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast<uint32_t>(traits::XLEN)- 1))
))
, 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 33);
return returnValue;
}
/* instruction 34: SRA */
continuation_e __sra(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nSRA_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 34);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_ext(jh, gen_operation(jh, sar,
gen_ext(jh, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), (gen_operation(jh, band,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast<uint32_t>(traits::XLEN)- 1))
))
, 32, true)), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 34);
return returnValue;
}
/* instruction 35: OR */
continuation_e __or(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nOR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 35);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, bor,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 35);
return returnValue;
}
/* instruction 36: AND */
continuation_e __and(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nAND_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 36);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, band,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 36);
return returnValue;
}
/* instruction 37: FENCE */
continuation_e __fence(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t succ = ((bit_sub<20,4>(instr)));
uint8_t pred = ((bit_sub<24,4>(instr)));
uint8_t fm = ((bit_sub<28,4>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"),
fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nFENCE_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 37);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_write_mem(jh, traits::FENCE, static_cast<uint32_t>(traits::fence), (uint8_t)pred<< 4|succ, 4);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 37);
return returnValue;
}
/* instruction 38: ECALL */
continuation_e __ecall(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "ecall";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nECALL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 38);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 11);
auto returnValue = TRAP;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 38);
return returnValue;
}
/* instruction 39: EBREAK */
continuation_e __ebreak(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "ebreak";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nEBREAK_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 39);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 3);
auto returnValue = TRAP;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 39);
return returnValue;
}
/* instruction 40: MRET */
continuation_e __mret(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "mret";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nMRET_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 40);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_leave(jh, 3);
auto returnValue = TRAP;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 40);
return returnValue;
}
/* instruction 41: WFI */
continuation_e __wfi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "wfi";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nWFI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 41);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_wait(jh, 1);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 41);
return returnValue;
}
/* instruction 42: CSRRW */
continuation_e __csrrw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRW_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 42);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1);
if(rd!= 0){
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
gen_write_mem(jh, traits::CSR, csr, xrs1, 4);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
else{
gen_write_mem(jh, traits::CSR, csr, xrs1, 4);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 42);
return returnValue;
}
/* instruction 43: CSRRS */
continuation_e __csrrs(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRS_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 43);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1);
if(rs1!= 0){
gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, bor,
xrd, xrs1)
, 4);
}
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 43);
return returnValue;
}
/* instruction 44: CSRRC */
continuation_e __csrrc(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRC_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 44);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1);
if(rs1!= 0){
gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, band,
xrd, gen_operation(jh, bnot, xrs1))
, 4);
}
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 44);
return returnValue;
}
/* instruction 45: CSRRWI */
continuation_e __csrrwi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRWI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 45);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
gen_write_mem(jh, traits::CSR, csr, (uint32_t)zimm, 4);
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 45);
return returnValue;
}
/* instruction 46: CSRRSI */
continuation_e __csrrsi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRSI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 46);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
if(zimm!= 0){
gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, bor,
xrd, (uint32_t)zimm)
, 4);
}
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 46);
return returnValue;
}
/* instruction 47: CSRRCI */
continuation_e __csrrci(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nCSRRCI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 47);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto xrd = gen_read_mem(jh, traits::CSR, csr, 4);
if(zimm!= 0){
gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, band,
xrd, ~ ((uint32_t)zimm))
, 4);
}
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
xrd);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 47);
return returnValue;
}
/* instruction 48: FENCE_I */
continuation_e __fence_i(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"),
fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nFENCE_I_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 48);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_write_mem(jh, traits::FENCE, static_cast<uint32_t>(traits::fencei), imm, 4);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 48);
return returnValue;
}
/* instruction 49: MUL */
continuation_e __mul(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nMUL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 49);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto res = gen_ext(jh,
(gen_operation(jh, imul,
gen_ext(jh, gen_ext(jh,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, true), 64, true), 128, true))
), 64, true);
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
res, 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 49);
return returnValue;
}
/* instruction 50: MULH */
continuation_e __mulh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nMULH_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 50);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto res = gen_ext(jh,
(gen_operation(jh, imul,
gen_ext(jh, gen_ext(jh,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, true), 64, true), 128, true))
), 64, true);
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, sar,
res, gen_ext(jh, static_cast<uint32_t>(traits::XLEN), 64, false))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 50);
return returnValue;
}
/* instruction 51: MULHSU */
continuation_e __mulhsu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nMULHSU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 51);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto res = gen_ext(jh,
(gen_operation(jh, imul,
gen_ext(jh, gen_ext(jh,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 64, false), 128, false))
), 64, true);
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, sar,
res, gen_ext(jh, static_cast<uint32_t>(traits::XLEN), 64, false))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 51);
return returnValue;
}
/* instruction 52: MULHU */
continuation_e __mulhu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nMULHU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 52);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto res = gen_ext(jh,
(gen_operation(jh, mul,
gen_ext(jh, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 64, false), 128, false), gen_ext(jh, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 64, false), 128, false))
), 64, false);
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, shr,
res, gen_ext(jh, static_cast<uint32_t>(traits::XLEN), 64, false))
), 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 52);
return returnValue;
}
/* instruction 53: DIV */
continuation_e __div(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nDIV_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 53);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto dividend = gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false);
auto divisor = gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false);
if(rd!= 0){
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
divisor, gen_ext(jh, 0, 32, false))
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
auto MMIN = ((uint32_t)1)<<(static_cast<uint32_t>(traits::XLEN)-1);
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, land,
gen_operation(jh, eq,
load_reg_from_mem(jh, traits::X0 + rs1), MMIN)
, gen_operation(jh, eq,
divisor, gen_ext(jh, - 1, 32, true))
)
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
MMIN);
}
cc.jmp(label_merge);
cc.bind(label_else);
{
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, idiv,
gen_ext(jh, dividend, 64, true), gen_ext(jh, divisor, 64, true))
), 32, true));
}
cc.bind(label_merge);
}
cc.jmp(label_merge);
cc.bind(label_else);
{
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)- 1);
}
cc.bind(label_merge);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 53);
return returnValue;
}
/* instruction 54: DIVU */
continuation_e __divu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nDIVU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 54);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false))
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, div,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
), 32, false));
}
}
cc.jmp(label_merge);
cc.bind(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)- 1);
}
}
cc.bind(label_merge);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 54);
return returnValue;
}
/* instruction 55: REM */
continuation_e __rem(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nREM_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 55);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false))
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
auto MMIN = (uint32_t)1<<(static_cast<uint32_t>(traits::XLEN)-1);
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, land,
gen_operation(jh, eq,
load_reg_from_mem(jh, traits::X0 + rs1), MMIN)
, gen_operation(jh, eq,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false), gen_ext(jh, - 1, 32, true))
)
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh, 0, 32, false)
);
}
}
cc.jmp(label_merge);
cc.bind(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, srem,
gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false))
), 32, true));
}
}
cc.bind(label_merge);
}
cc.jmp(label_merge);
cc.bind(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
load_reg_from_mem(jh, traits::X0 + rs1));
}
}
cc.bind(label_merge);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 55);
return returnValue;
}
/* instruction 56: REMU */
continuation_e __remu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nREMU_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 56);
pc=pc+ 4;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rs1>=static_cast<uint32_t>(traits::RFS)||rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false))
,0);
auto label_else = cc.newLabel();
cc.je(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_operation(jh, urem,
load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2))
);
}
}
cc.jmp(label_merge);
cc.bind(label_else);
{
if(rd!=0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
load_reg_from_mem(jh, traits::X0 + rs1));
}
}
cc.bind(label_merge);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 56);
return returnValue;
}
/* instruction 57: C__ADDI4SPN */
continuation_e __c__addi4spn(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint16_t imm = ((bit_sub<5,1>(instr) << 3) | (bit_sub<6,1>(instr) << 2) | (bit_sub<7,4>(instr) << 6) | (bit_sub<11,2>(instr) << 4));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__addi4spn"),
fmt::arg("rd", name(8+rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__ADDI4SPN_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 57);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(imm){
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, imm, 64, false))
), 32, false));
}
else{
gen_raise(jh, 0, 2);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 57);
return returnValue;
}
/* instruction 58: C__LW */
continuation_e __c__lw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__lw"),
fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__LW_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 58);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto offs = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 64, false), gen_ext(jh, uimm, 64, false))
), 32, false);
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_ext(jh,
gen_ext(jh,
gen_read_mem(jh, traits::MEM, offs, 4), 32, false), 32, true));
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 58);
return returnValue;
}
/* instruction 59: C__SW */
continuation_e __c__sw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__sw"),
fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SW_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 59);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto offs = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 64, false), gen_ext(jh, uimm, 64, false))
), 32, false);
gen_write_mem(jh, traits::MEM, offs, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2+ 8), 32, false), 4);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 59);
return returnValue;
}
/* instruction 60: C__ADDI */
continuation_e __c__addi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__addi"),
fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__ADDI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 60);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rs1!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rs1),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int8_t)sext<6>(imm), 64, true))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 60);
return returnValue;
}
/* instruction 61: C__NOP */
continuation_e __c__nop(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "c__nop";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__NOP_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 61);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 61);
return returnValue;
}
/* instruction 62: C__JAL */
continuation_e __c__jal(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__jal"),
fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__JAL_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 62);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ 1),
(uint32_t)(PC+ 2));
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<12>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 62);
return returnValue;
}
/* instruction 63: C__LI */
continuation_e __c__li(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__li"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__LI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 63);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)((int8_t)sext<6>(imm)));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 63);
return returnValue;
}
/* instruction 64: C__LUI */
continuation_e __c__lui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint32_t imm = ((bit_sub<2,5>(instr) << 12) | (bit_sub<12,1>(instr) << 17));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__LUI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 64);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(imm== 0||rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
(uint32_t)((int32_t)sext<18>(imm)));
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 64);
return returnValue;
}
/* instruction 65: C__ADDI16SP */
continuation_e __c__addi16sp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t nzimm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 7) | (bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 4) | (bit_sub<12,1>(instr) << 9));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c__addi16sp"),
fmt::arg("nzimm", nzimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__ADDI16SP_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 65);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(nzimm){
cc.mov(get_reg_ptr(jh, traits::X0+ 2),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, (int16_t)sext<10>(nzimm), 64, true))
), 32, true));
}
else{
gen_raise(jh, 0, 2);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 65);
return returnValue;
}
/* instruction 66: __reserved_clui */
continuation_e ____reserved_clui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "__reserved_clui";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\n__reserved_clui_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 66);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 2);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 66);
return returnValue;
}
/* instruction 67: C__SRLI */
continuation_e __c__srli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srli"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SRLI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 67);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8),
gen_operation(jh, shr,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, shamt, 32, false))
);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 67);
return returnValue;
}
/* instruction 68: C__SRAI */
continuation_e __c__srai(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srai"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SRAI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 68);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(shamt){
cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8),
gen_ext(jh,
(gen_operation(jh, sar,
(gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), 32, false)), gen_ext(jh, shamt, 32, false))
), 32, true));
}
else{
if(static_cast<uint32_t>(traits::XLEN)== 128){
cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8),
gen_ext(jh,
(gen_operation(jh, sar,
(gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), 32, false)), gen_ext(jh, 64, 32, false))
), 32, true));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 68);
return returnValue;
}
/* instruction 69: C__ANDI */
continuation_e __c__andi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__andi"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__ANDI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 69);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8),
gen_ext(jh,
(gen_operation(jh, band,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, (int8_t)sext<6>(imm), 32, true))
), 32, true));
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 69);
return returnValue;
}
/* instruction 70: C__SUB */
continuation_e __c__sub(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__sub"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SUB_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 70);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_ext(jh,
(gen_operation(jh, sub,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rd+ 8), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2+ 8), 64, false))
), 32, true));
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 70);
return returnValue;
}
/* instruction 71: C__XOR */
continuation_e __c__xor(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__xor"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__XOR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 71);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_operation(jh, bxor,
load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8))
);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 71);
return returnValue;
}
/* instruction 72: C__OR */
continuation_e __c__or(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__or"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__OR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 72);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_operation(jh, bor,
load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8))
);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 72);
return returnValue;
}
/* instruction 73: C__AND */
continuation_e __c__and(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__and"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__AND_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 73);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8),
gen_operation(jh, band,
load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8))
);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 73);
return returnValue;
}
/* instruction 74: C__J */
continuation_e __c__j(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__j"),
fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__J_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 74);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<12>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 74);
return returnValue;
}
/* instruction 75: C__BEQZ */
continuation_e __c__beqz(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__beqz"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__BEQZ_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 75);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, eq,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, 0, 32, false))
,0);
cc.je(label_merge);
{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<9>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
cc.bind(label_merge);
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 75);
return returnValue;
}
/* instruction 76: C__BNEZ */
continuation_e __c__bnez(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__bnez"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__BNEZ_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 76);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
auto label_merge = cc.newLabel();
cc.cmp(gen_operation(jh, ne,
load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, 0, 32, false))
,0);
cc.je(label_merge);
{
auto PC_val_v = (uint32_t)(PC+(int16_t)sext<9>(imm));
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
cc.bind(label_merge);
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 76);
return returnValue;
}
/* instruction 77: C__SLLI */
continuation_e __c__slli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t nzuimm = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c__slli"),
fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SLLI_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 77);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rs1!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rs1),
gen_operation(jh, shl,
load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, nzuimm, 32, false))
);
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 77);
return returnValue;
}
/* instruction 78: C__LWSP */
continuation_e __c__lwsp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t uimm = ((bit_sub<2,2>(instr) << 6) | (bit_sub<4,3>(instr) << 2) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c__lwsp"),
fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__LWSP_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 78);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)||rd== 0){
gen_raise(jh, 0, 2);
}
else{
auto offs = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, uimm, 64, false))
), 32, false);
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
gen_ext(jh,
gen_read_mem(jh, traits::MEM, offs, 4), 32, false), 32, true));
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 78);
return returnValue;
}
/* instruction 79: C__MV */
continuation_e __c__mv(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__mv"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__MV_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 79);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
load_reg_from_mem(jh, traits::X0 + rs2));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 79);
return returnValue;
}
/* instruction 80: C__JR */
continuation_e __c__jr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jr"),
fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__JR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 80);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs1&&rs1<static_cast<uint32_t>(traits::RFS)){
auto PC_val_v = gen_operation(jh, band,
load_reg_from_mem(jh, traits::X0 + rs1%static_cast<uint32_t>(traits::RFS)), gen_ext(jh, ~ 0x1, 32, false))
;
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
else{
gen_raise(jh, 0, 2);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 80);
return returnValue;
}
/* instruction 81: __reserved_cmv */
continuation_e ____reserved_cmv(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "__reserved_cmv";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\n__reserved_cmv_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 81);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 2);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 81);
return returnValue;
}
/* instruction 82: C__ADD */
continuation_e __c__add(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__add"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__ADD_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 82);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rd>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
if(rd!= 0){
cc.mov(get_reg_ptr(jh, traits::X0+ rd),
gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rd), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false))
), 32, false));
}
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 82);
return returnValue;
}
/* instruction 83: C__JALR */
continuation_e __c__jalr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jalr"),
fmt::arg("rs1", name(rs1)));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__JALR_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 83);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs1>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto new_pc = load_reg_from_mem(jh, traits::X0 + rs1);
cc.mov(get_reg_ptr(jh, traits::X0+ 1),
(uint32_t)(PC+ 2));
auto PC_val_v = gen_operation(jh, band,
new_pc, gen_ext(jh, ~ 0x1, 32, false))
;
cc.mov(jh.next_pc, PC_val_v);
cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U);
}
auto returnValue = BRANCH;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 83);
return returnValue;
}
/* instruction 84: C__EBREAK */
continuation_e __c__ebreak(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "c__ebreak";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__EBREAK_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 84);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 3);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 84);
return returnValue;
}
/* instruction 85: C__SWSP */
continuation_e __c__swsp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t uimm = ((bit_sub<7,2>(instr) << 6) | (bit_sub<9,4>(instr) << 2));
if(this->disass_enabled){
/* generate disass */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c__swsp"),
fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm));
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nC__SWSP_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 85);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
if(rs2>=static_cast<uint32_t>(traits::RFS)){
gen_raise(jh, 0, 2);
}
else{
auto offs = gen_ext(jh,
(gen_operation(jh, add,
gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, uimm, 64, false))
), 32, false);
gen_write_mem(jh, traits::MEM, offs, gen_ext(jh,
load_reg_from_mem(jh, traits::X0 + rs2), 32, false), 4);
}
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 85);
return returnValue;
}
/* instruction 86: DII */
continuation_e __dii(virt_addr_t& pc, code_word_t instr, jit_holder& jh){
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate disass */
//This disass is not yet implemented
std::string mnemonic = "dii";
InvokeNode* call_print_disass;
char* mnemonic_ptr = strdup(mnemonic.c_str());
jh.disass_collection.push_back(mnemonic_ptr);
jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT<void, void *, uint64_t, char *>());
call_print_disass->setArg(0, jh.arch_if_ptr);
call_print_disass->setArg(1, pc.val);
call_print_disass->setArg(2, mnemonic_ptr);
}
x86::Compiler& cc = jh.cc;
cc.comment(fmt::format("\nDII_{:#x}:",pc.val).c_str());
this->gen_sync(jh, PRE_SYNC, 86);
pc=pc+ 2;
gen_instr_prologue(jh, pc.val);
cc.comment("\n//behavior:");
/*generate behavior*/
gen_raise(jh, 0, 2);
auto returnValue = CONT;
gen_instr_epilogue(jh);
this->gen_sync(jh, POST_SYNC, 86);
return returnValue;
}
/****************************************************************************
* end opcode definitions
****************************************************************************/
continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) {
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr: instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&instr;
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
throw trap_access(TRAP_ID, pc.val);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
throw simulation_stopped(0); // 'J 0' or 'C.J 0'
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr)
f = &this_class::illegal_intruction;
return (this->*f)(pc, instr, jh);
}
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace asmjit
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc5c|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new asmjit::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::tgc5c>::reg_t, arch::traits<arch::tgc5c>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc5c>();
auto vm = new asmjit::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::tgc5c>::reg_t, arch::traits<arch::tgc5c>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on