/******************************************************************************* * Copyright (C) 2017, 2023 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ // clang-format off #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace asmjit { namespace tgc5c { using namespace ::asmjit; using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::asmjit::vm_base { public: using traits = arch::traits; using super = typename iss::asmjit::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using mem_type_e = typename super::mem_type_e; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using vm_base::get_reg_ptr; using this_class = vm_impl; using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&); continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override; inline const char *name(size_t index){return traits::reg_aliases.at(index);} template::type> inline S sext(U from) { auto mask = (1ULL< private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct instruction_descriptor { size_t length; uint32_t value; uint32_t mask; compile_func op; }; struct decoding_tree_node{ std::vector instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value){} }; decoding_tree_node* root {nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */ /* instruction LUI, encoding '0b00000000000000000000000000110111' */ {32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui}, /* instruction AUIPC, encoding '0b00000000000000000000000000010111' */ {32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc}, /* instruction JAL, encoding '0b00000000000000000000000001101111' */ {32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal}, /* instruction JALR, encoding '0b00000000000000000000000001100111' */ {32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr}, /* instruction BEQ, encoding '0b00000000000000000000000001100011' */ {32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq}, /* instruction BNE, encoding '0b00000000000000000001000001100011' */ {32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne}, /* instruction BLT, encoding '0b00000000000000000100000001100011' */ {32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt}, /* instruction BGE, encoding '0b00000000000000000101000001100011' */ {32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge}, /* instruction BLTU, encoding '0b00000000000000000110000001100011' */ {32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu}, /* instruction BGEU, encoding '0b00000000000000000111000001100011' */ {32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu}, /* instruction LB, encoding '0b00000000000000000000000000000011' */ {32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb}, /* instruction LH, encoding '0b00000000000000000001000000000011' */ {32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh}, /* instruction LW, encoding '0b00000000000000000010000000000011' */ {32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw}, /* instruction LBU, encoding '0b00000000000000000100000000000011' */ {32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu}, /* instruction LHU, encoding '0b00000000000000000101000000000011' */ {32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu}, /* instruction SB, encoding '0b00000000000000000000000000100011' */ {32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb}, /* instruction SH, encoding '0b00000000000000000001000000100011' */ {32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh}, /* instruction SW, encoding '0b00000000000000000010000000100011' */ {32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw}, /* instruction ADDI, encoding '0b00000000000000000000000000010011' */ {32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi}, /* instruction SLTI, encoding '0b00000000000000000010000000010011' */ {32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti}, /* instruction SLTIU, encoding '0b00000000000000000011000000010011' */ {32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu}, /* instruction XORI, encoding '0b00000000000000000100000000010011' */ {32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori}, /* instruction ORI, encoding '0b00000000000000000110000000010011' */ {32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori}, /* instruction ANDI, encoding '0b00000000000000000111000000010011' */ {32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi}, /* instruction SLLI, encoding '0b00000000000000000001000000010011' */ {32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli}, /* instruction SRLI, encoding '0b00000000000000000101000000010011' */ {32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli}, /* instruction SRAI, encoding '0b01000000000000000101000000010011' */ {32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai}, /* instruction ADD, encoding '0b00000000000000000000000000110011' */ {32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add}, /* instruction SUB, encoding '0b01000000000000000000000000110011' */ {32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub}, /* instruction SLL, encoding '0b00000000000000000001000000110011' */ {32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll}, /* instruction SLT, encoding '0b00000000000000000010000000110011' */ {32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt}, /* instruction SLTU, encoding '0b00000000000000000011000000110011' */ {32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu}, /* instruction XOR, encoding '0b00000000000000000100000000110011' */ {32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor}, /* instruction SRL, encoding '0b00000000000000000101000000110011' */ {32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl}, /* instruction SRA, encoding '0b01000000000000000101000000110011' */ {32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra}, /* instruction OR, encoding '0b00000000000000000110000000110011' */ {32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or}, /* instruction AND, encoding '0b00000000000000000111000000110011' */ {32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and}, /* instruction FENCE, encoding '0b00000000000000000000000000001111' */ {32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence}, /* instruction ECALL, encoding '0b00000000000000000000000001110011' */ {32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall}, /* instruction EBREAK, encoding '0b00000000000100000000000001110011' */ {32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak}, /* instruction MRET, encoding '0b00110000001000000000000001110011' */ {32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret}, /* instruction WFI, encoding '0b00010000010100000000000001110011' */ {32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi}, /* instruction CSRRW, encoding '0b00000000000000000001000001110011' */ {32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw}, /* instruction CSRRS, encoding '0b00000000000000000010000001110011' */ {32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs}, /* instruction CSRRC, encoding '0b00000000000000000011000001110011' */ {32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc}, /* instruction CSRRWI, encoding '0b00000000000000000101000001110011' */ {32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi}, /* instruction CSRRSI, encoding '0b00000000000000000110000001110011' */ {32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi}, /* instruction CSRRCI, encoding '0b00000000000000000111000001110011' */ {32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci}, /* instruction FENCE_I, encoding '0b00000000000000000001000000001111' */ {32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i}, /* instruction MUL, encoding '0b00000010000000000000000000110011' */ {32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul}, /* instruction MULH, encoding '0b00000010000000000001000000110011' */ {32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh}, /* instruction MULHSU, encoding '0b00000010000000000010000000110011' */ {32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu}, /* instruction MULHU, encoding '0b00000010000000000011000000110011' */ {32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu}, /* instruction DIV, encoding '0b00000010000000000100000000110011' */ {32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div}, /* instruction DIVU, encoding '0b00000010000000000101000000110011' */ {32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu}, /* instruction REM, encoding '0b00000010000000000110000000110011' */ {32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem}, /* instruction REMU, encoding '0b00000010000000000111000000110011' */ {32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu}, /* instruction C__ADDI4SPN, encoding '0b0000000000000000' */ {16, 0b0000000000000000, 0b1110000000000011, &this_class::__c__addi4spn}, /* instruction C__LW, encoding '0b0100000000000000' */ {16, 0b0100000000000000, 0b1110000000000011, &this_class::__c__lw}, /* instruction C__SW, encoding '0b1100000000000000' */ {16, 0b1100000000000000, 0b1110000000000011, &this_class::__c__sw}, /* instruction C__ADDI, encoding '0b0000000000000001' */ {16, 0b0000000000000001, 0b1110000000000011, &this_class::__c__addi}, /* instruction C__NOP, encoding '0b0000000000000001' */ {16, 0b0000000000000001, 0b1110111110000011, &this_class::__c__nop}, /* instruction C__JAL, encoding '0b0010000000000001' */ {16, 0b0010000000000001, 0b1110000000000011, &this_class::__c__jal}, /* instruction C__LI, encoding '0b0100000000000001' */ {16, 0b0100000000000001, 0b1110000000000011, &this_class::__c__li}, /* instruction C__LUI, encoding '0b0110000000000001' */ {16, 0b0110000000000001, 0b1110000000000011, &this_class::__c__lui}, /* instruction C__ADDI16SP, encoding '0b0110000100000001' */ {16, 0b0110000100000001, 0b1110111110000011, &this_class::__c__addi16sp}, /* instruction __reserved_clui, encoding '0b0110000000000001' */ {16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui}, /* instruction C__SRLI, encoding '0b1000000000000001' */ {16, 0b1000000000000001, 0b1111110000000011, &this_class::__c__srli}, /* instruction C__SRAI, encoding '0b1000010000000001' */ {16, 0b1000010000000001, 0b1111110000000011, &this_class::__c__srai}, /* instruction C__ANDI, encoding '0b1000100000000001' */ {16, 0b1000100000000001, 0b1110110000000011, &this_class::__c__andi}, /* instruction C__SUB, encoding '0b1000110000000001' */ {16, 0b1000110000000001, 0b1111110001100011, &this_class::__c__sub}, /* instruction C__XOR, encoding '0b1000110000100001' */ {16, 0b1000110000100001, 0b1111110001100011, &this_class::__c__xor}, /* instruction C__OR, encoding '0b1000110001000001' */ {16, 0b1000110001000001, 0b1111110001100011, &this_class::__c__or}, /* instruction C__AND, encoding '0b1000110001100001' */ {16, 0b1000110001100001, 0b1111110001100011, &this_class::__c__and}, /* instruction C__J, encoding '0b1010000000000001' */ {16, 0b1010000000000001, 0b1110000000000011, &this_class::__c__j}, /* instruction C__BEQZ, encoding '0b1100000000000001' */ {16, 0b1100000000000001, 0b1110000000000011, &this_class::__c__beqz}, /* instruction C__BNEZ, encoding '0b1110000000000001' */ {16, 0b1110000000000001, 0b1110000000000011, &this_class::__c__bnez}, /* instruction C__SLLI, encoding '0b0000000000000010' */ {16, 0b0000000000000010, 0b1111000000000011, &this_class::__c__slli}, /* instruction C__LWSP, encoding '0b0100000000000010' */ {16, 0b0100000000000010, 0b1110000000000011, &this_class::__c__lwsp}, /* instruction C__MV, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111000000000011, &this_class::__c__mv}, /* instruction C__JR, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111000001111111, &this_class::__c__jr}, /* instruction __reserved_cmv, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv}, /* instruction C__ADD, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111000000000011, &this_class::__c__add}, /* instruction C__JALR, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111000001111111, &this_class::__c__jalr}, /* instruction C__EBREAK, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111111111111111, &this_class::__c__ebreak}, /* instruction C__SWSP, encoding '0b1100000000000010' */ {16, 0b1100000000000010, 0b1110000000000011, &this_class::__c__swsp}, /* instruction DII, encoding '0b0000000000000000' */ {16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii}, }}; /* instruction definitions */ /* instruction 0: LUI */ continuation_e __lui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLUI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 0); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)((int32_t)imm)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 0); return returnValue; } /* instruction 1: AUIPC */ continuation_e __auipc(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nAUIPC_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 1); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)(PC+(int32_t)imm)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 1); return returnValue; } /* instruction 2: JAL */ continuation_e __jal(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nJAL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 2); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)(PC+ 4)); } auto PC_val_v = (uint32_t)(PC+(int32_t)sext<21>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 2); return returnValue; } /* instruction 3: JALR */ continuation_e __jalr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nJALR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 3); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto addr_mask = (uint32_t)- 2; auto new_pc = gen_ext(jh, (gen_operation(jh, band, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), gen_ext(jh, addr_mask, 64, false)) ), 32, true); auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, urem, new_pc, static_cast(traits::INSTR_ALIGNMENT)) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { gen_raise(jh, 0, 0); } cc.jmp(label_merge); cc.bind(label_else); { if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)(PC+ 4)); } auto PC_val_v = new_pc; cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 3); return returnValue; } /* instruction 4: BEQ */ continuation_e __beq(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBEQ_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 4); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, eq, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 4); return returnValue; } /* instruction 5: BNE */ continuation_e __bne(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBNE_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 5); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 5); return returnValue; } /* instruction 6: BLT */ continuation_e __blt(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBLT_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 6); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, lt, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 6); return returnValue; } /* instruction 7: BGE */ continuation_e __bge(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBGE_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 7); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, gte, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 7); return returnValue; } /* instruction 8: BLTU */ continuation_e __bltu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBLTU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 8); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ltu, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 8); return returnValue; } /* instruction 9: BGEU */ continuation_e __bgeu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nBGEU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 9); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, gteu, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ,0); cc.je(label_merge); { if(imm%static_cast(traits::INSTR_ALIGNMENT)){ gen_raise(jh, 0, 0); } else{ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<13>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } } cc.bind(label_merge); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 9); return returnValue; } /* instruction 10: LB */ continuation_e __lb(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLB_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 10); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto load_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); auto res = gen_ext(jh, gen_read_mem(jh, traits::MEM, load_address, 1), 8, false); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 10); return returnValue; } /* instruction 11: LH */ continuation_e __lh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLH_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 11); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto load_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); auto res = gen_ext(jh, gen_read_mem(jh, traits::MEM, load_address, 2), 16, false); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 11); return returnValue; } /* instruction 12: LW */ continuation_e __lw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLW_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 12); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto load_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); auto res = gen_ext(jh, gen_read_mem(jh, traits::MEM, load_address, 4), 32, false); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 12); return returnValue; } /* instruction 13: LBU */ continuation_e __lbu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLBU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 13); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto load_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); auto res = gen_read_mem(jh, traits::MEM, load_address, 1); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 13); return returnValue; } /* instruction 14: LHU */ continuation_e __lhu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nLHU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 14); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto load_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); auto res = gen_read_mem(jh, traits::MEM, load_address, 2); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 14); return returnValue; } /* instruction 15: SB */ continuation_e __sb(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSB_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 15); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto store_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 8, false), 1); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 15); return returnValue; } /* instruction 16: SH */ continuation_e __sh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSH_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 16); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto store_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 16, false), 2); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 16); return returnValue; } /* instruction 17: SW */ continuation_e __sw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSW_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 17); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto store_address = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true); gen_write_mem(jh, traits::MEM, store_address, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false), 4); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 17); return returnValue; } /* instruction 18: ADDI */ continuation_e __addi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nADDI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 18); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int16_t)sext<12>(imm), 64, true)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 18); return returnValue; } /* instruction 19: SLTI */ continuation_e __slti(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLTI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 19); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ { auto label_then = cc.newLabel(); auto label_merge = cc.newLabel(); auto tmp_reg = get_reg_for(jh, 1); cc.cmp(gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), (int16_t)sext<12>(imm)); cc.jl(label_then); cc.mov(tmp_reg, 0); cc.jmp(label_merge); cc.bind(label_then); cc.mov(tmp_reg, 1); cc.bind(label_merge); cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, tmp_reg , 32, false) ); } } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 19); return returnValue; } /* instruction 20: SLTIU */ continuation_e __sltiu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLTIU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 20); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ { auto label_then = cc.newLabel(); auto label_merge = cc.newLabel(); auto tmp_reg = get_reg_for(jh, 1); cc.cmp(load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm))); cc.jb(label_then); cc.mov(tmp_reg, 0); cc.jmp(label_merge); cc.bind(label_then); cc.mov(tmp_reg, 1); cc.bind(label_merge); cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, tmp_reg , 32, false) ); } } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 20); return returnValue; } /* instruction 21: XORI */ continuation_e __xori(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nXORI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 21); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, bxor, load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm))) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 21); return returnValue; } /* instruction 22: ORI */ continuation_e __ori(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nORI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 22); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, bor, load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm))) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 22); return returnValue; } /* instruction 23: ANDI */ continuation_e __andi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nANDI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 23); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, band, load_reg_from_mem(jh, traits::X0 + rs1), (uint32_t)((int16_t)sext<12>(imm))) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 23); return returnValue; } /* instruction 24: SLLI */ continuation_e __slli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLLI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 24); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, shl, load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, shamt, 32, false)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 24); return returnValue; } /* instruction 25: SRLI */ continuation_e __srli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSRLI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 25); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, shr, load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, shamt, 32, false)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 25); return returnValue; } /* instruction 26: SRAI */ continuation_e __srai(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSRAI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 26); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, sar, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), gen_ext(jh, shamt, 32, false)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 26); return returnValue; } /* instruction 27: ADD */ continuation_e __add(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nADD_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 27); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false)) ), 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 27); return returnValue; } /* instruction 28: SUB */ continuation_e __sub(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSUB_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 28); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, sub, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 28); return returnValue; } /* instruction 29: SLL */ continuation_e __sll(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 29); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, gen_operation(jh, shl, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), (gen_operation(jh, band, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast(traits::XLEN)- 1)) )) , 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 29); return returnValue; } /* instruction 30: SLT */ continuation_e __slt(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLT_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 30); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ { auto label_then = cc.newLabel(); auto label_merge = cc.newLabel(); auto tmp_reg = get_reg_for(jh, 1); cc.cmp(gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, true)); cc.jl(label_then); cc.mov(tmp_reg, 0); cc.jmp(label_merge); cc.bind(label_then); cc.mov(tmp_reg, 1); cc.bind(label_merge); cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, tmp_reg , 32, false) ); } } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 30); return returnValue; } /* instruction 31: SLTU */ continuation_e __sltu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSLTU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 31); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ { auto label_then = cc.newLabel(); auto label_merge = cc.newLabel(); auto tmp_reg = get_reg_for(jh, 1); cc.cmp(load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)); cc.jb(label_then); cc.mov(tmp_reg, 0); cc.jmp(label_merge); cc.bind(label_then); cc.mov(tmp_reg, 1); cc.bind(label_merge); cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, tmp_reg , 32, false) ); } } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 31); return returnValue; } /* instruction 32: XOR */ continuation_e __xor(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nXOR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 32); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, bxor, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 32); return returnValue; } /* instruction 33: SRL */ continuation_e __srl(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSRL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 33); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, gen_operation(jh, shr, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), (gen_operation(jh, band, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast(traits::XLEN)- 1)) )) , 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 33); return returnValue; } /* instruction 34: SRA */ continuation_e __sra(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nSRA_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 34); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_ext(jh, gen_operation(jh, sar, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), (gen_operation(jh, band, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), (static_cast(traits::XLEN)- 1)) )) , 32, true)), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 34); return returnValue; } /* instruction 35: OR */ continuation_e __or(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nOR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 35); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, bor, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 35); return returnValue; } /* instruction 36: AND */ continuation_e __and(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nAND_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 36); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, band, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 36); return returnValue; } /* instruction 37: FENCE */ continuation_e __fence(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t succ = ((bit_sub<20,4>(instr))); uint8_t pred = ((bit_sub<24,4>(instr))); uint8_t fm = ((bit_sub<28,4>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"), fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nFENCE_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 37); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_write_mem(jh, traits::FENCE, static_cast(traits::fence), (uint8_t)pred<< 4|succ, 4); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 37); return returnValue; } /* instruction 38: ECALL */ continuation_e __ecall(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "ecall"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nECALL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 38); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 11); auto returnValue = TRAP; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 38); return returnValue; } /* instruction 39: EBREAK */ continuation_e __ebreak(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "ebreak"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nEBREAK_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 39); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 3); auto returnValue = TRAP; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 39); return returnValue; } /* instruction 40: MRET */ continuation_e __mret(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "mret"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nMRET_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 40); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_leave(jh, 3); auto returnValue = TRAP; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 40); return returnValue; } /* instruction 41: WFI */ continuation_e __wfi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "wfi"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nWFI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 41); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_wait(jh, 1); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 41); return returnValue; } /* instruction 42: CSRRW */ continuation_e __csrrw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRW_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 42); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1); if(rd!= 0){ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); gen_write_mem(jh, traits::CSR, csr, xrs1, 4); cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } else{ gen_write_mem(jh, traits::CSR, csr, xrs1, 4); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 42); return returnValue; } /* instruction 43: CSRRS */ continuation_e __csrrs(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRS_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 43); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1); if(rs1!= 0){ gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, bor, xrd, xrs1) , 4); } if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 43); return returnValue; } /* instruction 44: CSRRC */ continuation_e __csrrc(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRC_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 44); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); auto xrs1 = load_reg_from_mem(jh, traits::X0 + rs1); if(rs1!= 0){ gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, band, xrd, gen_operation(jh, bnot, xrs1)) , 4); } if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 44); return returnValue; } /* instruction 45: CSRRWI */ continuation_e __csrrwi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRWI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 45); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); gen_write_mem(jh, traits::CSR, csr, (uint32_t)zimm, 4); if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 45); return returnValue; } /* instruction 46: CSRRSI */ continuation_e __csrrsi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRSI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 46); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); if(zimm!= 0){ gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, bor, xrd, (uint32_t)zimm) , 4); } if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 46); return returnValue; } /* instruction 47: CSRRCI */ continuation_e __csrrci(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nCSRRCI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 47); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto xrd = gen_read_mem(jh, traits::CSR, csr, 4); if(zimm!= 0){ gen_write_mem(jh, traits::CSR, csr, gen_operation(jh, band, xrd, ~ ((uint32_t)zimm)) , 4); } if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), xrd); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 47); return returnValue; } /* instruction 48: FENCE_I */ continuation_e __fence_i(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nFENCE_I_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 48); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_write_mem(jh, traits::FENCE, static_cast(traits::fencei), imm, 4); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 48); return returnValue; } /* instruction 49: MUL */ continuation_e __mul(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nMUL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 49); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto res = gen_ext(jh, (gen_operation(jh, imul, gen_ext(jh, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, true), 64, true), 128, true)) ), 64, true); if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, res, 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 49); return returnValue; } /* instruction 50: MULH */ continuation_e __mulh(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nMULH_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 50); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto res = gen_ext(jh, (gen_operation(jh, imul, gen_ext(jh, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, true), 64, true), 128, true)) ), 64, true); if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, sar, res, gen_ext(jh, static_cast(traits::XLEN), 64, false)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 50); return returnValue; } /* instruction 51: MULHSU */ continuation_e __mulhsu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nMULHSU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 51); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto res = gen_ext(jh, (gen_operation(jh, imul, gen_ext(jh, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, true), 64, true), 128, true), gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), 128, false)) ), 64, true); if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, sar, res, gen_ext(jh, static_cast(traits::XLEN), 64, false)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 51); return returnValue; } /* instruction 52: MULHU */ continuation_e __mulhu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nMULHU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 52); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto res = gen_ext(jh, (gen_operation(jh, mul, gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), 128, false), gen_ext(jh, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false), 128, false)) ), 64, false); if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, shr, res, gen_ext(jh, static_cast(traits::XLEN), 64, false)) ), 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 52); return returnValue; } /* instruction 53: DIV */ continuation_e __div(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nDIV_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 53); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto dividend = gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, false); auto divisor = gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false); if(rd!= 0){ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, divisor, gen_ext(jh, 0, 32, false)) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { auto MMIN = ((uint32_t)1)<<(static_cast(traits::XLEN)-1); auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, land, gen_operation(jh, eq, load_reg_from_mem(jh, traits::X0 + rs1), MMIN) , gen_operation(jh, eq, divisor, gen_ext(jh, - 1, 32, true)) ) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { cc.mov(get_reg_ptr(jh, traits::X0+ rd), MMIN); } cc.jmp(label_merge); cc.bind(label_else); { cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, idiv, gen_ext(jh, dividend, 64, true), gen_ext(jh, divisor, 64, true)) ), 32, true)); } cc.bind(label_merge); } cc.jmp(label_merge); cc.bind(label_else); { cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)- 1); } cc.bind(label_merge); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 53); return returnValue; } /* instruction 54: DIVU */ continuation_e __divu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nDIVU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 54); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false)) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, div, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ), 32, false)); } } cc.jmp(label_merge); cc.bind(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)- 1); } } cc.bind(label_merge); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 54); return returnValue; } /* instruction 55: REM */ continuation_e __rem(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nREM_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 55); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false)) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { auto MMIN = (uint32_t)1<<(static_cast(traits::XLEN)-1); auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, land, gen_operation(jh, eq, load_reg_from_mem(jh, traits::X0 + rs1), MMIN) , gen_operation(jh, eq, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false), gen_ext(jh, - 1, 32, true)) ) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, 0, 32, false) ); } } cc.jmp(label_merge); cc.bind(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, srem, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 32, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false)) ), 32, true)); } } cc.bind(label_merge); } cc.jmp(label_merge); cc.bind(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), load_reg_from_mem(jh, traits::X0 + rs1)); } } cc.bind(label_merge); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 55); return returnValue; } /* instruction 56: REMU */ continuation_e __remu(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nREMU_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 56); pc=pc+ 4; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rs1>=static_cast(traits::RFS)||rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, load_reg_from_mem(jh, traits::X0 + rs2), gen_ext(jh, 0, 32, false)) ,0); auto label_else = cc.newLabel(); cc.je(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_operation(jh, urem, load_reg_from_mem(jh, traits::X0 + rs1), load_reg_from_mem(jh, traits::X0 + rs2)) ); } } cc.jmp(label_merge); cc.bind(label_else); { if(rd!=0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), load_reg_from_mem(jh, traits::X0 + rs1)); } } cc.bind(label_merge); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 56); return returnValue; } /* instruction 57: C__ADDI4SPN */ continuation_e __c__addi4spn(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<2,3>(instr))); uint16_t imm = ((bit_sub<5,1>(instr) << 3) | (bit_sub<6,1>(instr) << 2) | (bit_sub<7,4>(instr) << 6) | (bit_sub<11,2>(instr) << 4)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__addi4spn"), fmt::arg("rd", name(8+rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__ADDI4SPN_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 57); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(imm){ cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, imm, 64, false)) ), 32, false)); } else{ gen_raise(jh, 0, 2); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 57); return returnValue; } /* instruction 58: C__LW */ continuation_e __c__lw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<2,3>(instr))); uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__lw"), fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__LW_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 58); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto offs = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 64, false), gen_ext(jh, uimm, 64, false)) ), 32, false); cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_ext(jh, gen_ext(jh, gen_read_mem(jh, traits::MEM, offs, 4), 32, false), 32, true)); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 58); return returnValue; } /* instruction 59: C__SW */ continuation_e __c__sw(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__sw"), fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SW_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 59); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto offs = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 64, false), gen_ext(jh, uimm, 64, false)) ), 32, false); gen_write_mem(jh, traits::MEM, offs, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2+ 8), 32, false), 4); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 59); return returnValue; } /* instruction 60: C__ADDI */ continuation_e __c__addi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__addi"), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__ADDI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 60); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rs1!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rs1), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1), 64, false), gen_ext(jh, (int8_t)sext<6>(imm), 64, true)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 60); return returnValue; } /* instruction 61: C__NOP */ continuation_e __c__nop(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "c__nop"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__NOP_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 61); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 61); return returnValue; } /* instruction 62: C__JAL */ continuation_e __c__jal(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__jal"), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__JAL_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 62); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ 1), (uint32_t)(PC+ 2)); auto PC_val_v = (uint32_t)(PC+(int16_t)sext<12>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 62); return returnValue; } /* instruction 63: C__LI */ continuation_e __c__li(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__li"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__LI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 63); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)((int8_t)sext<6>(imm))); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 63); return returnValue; } /* instruction 64: C__LUI */ continuation_e __c__lui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint32_t imm = ((bit_sub<2,5>(instr) << 12) | (bit_sub<12,1>(instr) << 17)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__LUI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 64); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(imm== 0||rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), (uint32_t)((int32_t)sext<18>(imm))); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 64); return returnValue; } /* instruction 65: C__ADDI16SP */ continuation_e __c__addi16sp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t nzimm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 7) | (bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 4) | (bit_sub<12,1>(instr) << 9)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c__addi16sp"), fmt::arg("nzimm", nzimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__ADDI16SP_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 65); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(nzimm){ cc.mov(get_reg_ptr(jh, traits::X0+ 2), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, (int16_t)sext<10>(nzimm), 64, true)) ), 32, true)); } else{ gen_raise(jh, 0, 2); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 65); return returnValue; } /* instruction 66: __reserved_clui */ continuation_e ____reserved_clui(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "__reserved_clui"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\n__reserved_clui_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 66); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 2); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 66); return returnValue; } /* instruction 67: C__SRLI */ continuation_e __c__srli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t shamt = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srli"), fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SRLI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 67); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8), gen_operation(jh, shr, load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, shamt, 32, false)) ); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 67); return returnValue; } /* instruction 68: C__SRAI */ continuation_e __c__srai(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t shamt = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srai"), fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SRAI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 68); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(shamt){ cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8), gen_ext(jh, (gen_operation(jh, sar, (gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 32, false)), gen_ext(jh, shamt, 32, false)) ), 32, true)); } else{ if(static_cast(traits::XLEN)== 128){ cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8), gen_ext(jh, (gen_operation(jh, sar, (gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs1+ 8), 32, false)), gen_ext(jh, 64, 32, false)) ), 32, true)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 68); return returnValue; } /* instruction 69: C__ANDI */ continuation_e __c__andi(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__andi"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__ANDI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 69); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rs1+ 8), gen_ext(jh, (gen_operation(jh, band, load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, (int8_t)sext<6>(imm), 32, true)) ), 32, true)); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 69); return returnValue; } /* instruction 70: C__SUB */ continuation_e __c__sub(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__sub"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SUB_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 70); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_ext(jh, (gen_operation(jh, sub, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rd+ 8), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2+ 8), 64, false)) ), 32, true)); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 70); return returnValue; } /* instruction 71: C__XOR */ continuation_e __c__xor(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__xor"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__XOR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 71); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_operation(jh, bxor, load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8)) ); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 71); return returnValue; } /* instruction 72: C__OR */ continuation_e __c__or(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__or"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__OR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 72); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_operation(jh, bor, load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8)) ); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 72); return returnValue; } /* instruction 73: C__AND */ continuation_e __c__and(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__and"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__AND_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 73); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ cc.mov(get_reg_ptr(jh, traits::X0+ rd+ 8), gen_operation(jh, band, load_reg_from_mem(jh, traits::X0 + rd+ 8), load_reg_from_mem(jh, traits::X0 + rs2+ 8)) ); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 73); return returnValue; } /* instruction 74: C__J */ continuation_e __c__j(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__j"), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__J_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 74); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto PC_val_v = (uint32_t)(PC+(int16_t)sext<12>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 74); return returnValue; } /* instruction 75: C__BEQZ */ continuation_e __c__beqz(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__beqz"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__BEQZ_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 75); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, eq, load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, 0, 32, false)) ,0); cc.je(label_merge); { auto PC_val_v = (uint32_t)(PC+(int16_t)sext<9>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } cc.bind(label_merge); auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 75); return returnValue; } /* instruction 76: C__BNEZ */ continuation_e __c__bnez(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__bnez"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__BNEZ_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 76); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ auto label_merge = cc.newLabel(); cc.cmp(gen_operation(jh, ne, load_reg_from_mem(jh, traits::X0 + rs1+ 8), gen_ext(jh, 0, 32, false)) ,0); cc.je(label_merge); { auto PC_val_v = (uint32_t)(PC+(int16_t)sext<9>(imm)); cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } cc.bind(label_merge); auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 76); return returnValue; } /* instruction 77: C__SLLI */ continuation_e __c__slli(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t nzuimm = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c__slli"), fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SLLI_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 77); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rs1!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rs1), gen_operation(jh, shl, load_reg_from_mem(jh, traits::X0 + rs1), gen_ext(jh, nzuimm, 32, false)) ); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 77); return returnValue; } /* instruction 78: C__LWSP */ continuation_e __c__lwsp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t uimm = ((bit_sub<2,2>(instr) << 6) | (bit_sub<4,3>(instr) << 2) | (bit_sub<12,1>(instr) << 5)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c__lwsp"), fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__LWSP_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 78); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)||rd== 0){ gen_raise(jh, 0, 2); } else{ auto offs = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, uimm, 64, false)) ), 32, false); cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, gen_ext(jh, gen_read_mem(jh, traits::MEM, offs, 4), 32, false), 32, true)); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 78); return returnValue; } /* instruction 79: C__MV */ continuation_e __c__mv(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__mv"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__MV_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 79); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), load_reg_from_mem(jh, traits::X0 + rs2)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 79); return returnValue; } /* instruction 80: C__JR */ continuation_e __c__jr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jr"), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__JR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 80); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs1&&rs1(traits::RFS)){ auto PC_val_v = gen_operation(jh, band, load_reg_from_mem(jh, traits::X0 + rs1%static_cast(traits::RFS)), gen_ext(jh, ~ 0x1, 32, false)) ; cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } else{ gen_raise(jh, 0, 2); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 80); return returnValue; } /* instruction 81: __reserved_cmv */ continuation_e ____reserved_cmv(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "__reserved_cmv"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\n__reserved_cmv_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 81); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 2); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 81); return returnValue; } /* instruction 82: C__ADD */ continuation_e __c__add(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__add"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__ADD_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 82); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rd>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ if(rd!= 0){ cc.mov(get_reg_ptr(jh, traits::X0+ rd), gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rd), 64, false), gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 64, false)) ), 32, false)); } } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 82); return returnValue; } /* instruction 83: C__JALR */ continuation_e __c__jalr(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jalr"), fmt::arg("rs1", name(rs1))); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__JALR_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 83); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs1>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto new_pc = load_reg_from_mem(jh, traits::X0 + rs1); cc.mov(get_reg_ptr(jh, traits::X0+ 1), (uint32_t)(PC+ 2)); auto PC_val_v = gen_operation(jh, band, new_pc, gen_ext(jh, ~ 0x1, 32, false)) ; cc.mov(jh.next_pc, PC_val_v); cc.mov(get_reg_ptr(jh, traits::LAST_BRANCH), 32U); } auto returnValue = BRANCH; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 83); return returnValue; } /* instruction 84: C__EBREAK */ continuation_e __c__ebreak(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "c__ebreak"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__EBREAK_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 84); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 3); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 84); return returnValue; } /* instruction 85: C__SWSP */ continuation_e __c__swsp(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t uimm = ((bit_sub<7,2>(instr) << 6) | (bit_sub<9,4>(instr) << 2)); if(this->disass_enabled){ /* generate disass */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c__swsp"), fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm)); InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nC__SWSP_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 85); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ if(rs2>=static_cast(traits::RFS)){ gen_raise(jh, 0, 2); } else{ auto offs = gen_ext(jh, (gen_operation(jh, add, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + 2), 64, false), gen_ext(jh, uimm, 64, false)) ), 32, false); gen_write_mem(jh, traits::MEM, offs, gen_ext(jh, load_reg_from_mem(jh, traits::X0 + rs2), 32, false), 4); } auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 85); return returnValue; } /* instruction 86: DII */ continuation_e __dii(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; if(this->disass_enabled){ /* generate disass */ //This disass is not yet implemented std::string mnemonic = "dii"; InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("\nDII_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, 86); pc=pc+ 2; gen_instr_prologue(jh, pc.val); cc.comment("\n//behavior:"); /*generate behavior*/ gen_raise(jh, 0, 2); auto returnValue = CONT; gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, 86); return returnValue; } /**************************************************************************** * end opcode definitions ****************************************************************************/ continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) { return BRANCH; } //decoding functionality void populate_decoding_tree(decoding_tree_node* root){ //create submask for(auto instr: root->instrs){ root->submask &= instr.mask; } //put each instr according to submask&encoding into children for(auto instr: root->instrs){ bool foundMatch = false; for(auto child: root->children){ //use value as identifying trait if(child->value == (instr.value&root->submask)){ child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch){ decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); //call populate_decoding_tree for all children if(root->children.size() >1) for(auto child: root->children){ populate_decoding_tree(child); } else{ //sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } compile_func decode_instr(decoding_tree_node* node, code_word_t word){ if(!node->children.size()){ if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs){ if((instr.mask&word) == instr.value) return instr.op; } } else{ for(auto child : node->children){ if (child->value == (node->submask&word)){ return decode_instr(child, word); } } } return nullptr; } }; template void debug_fn(CODE_WORD instr) { volatile CODE_WORD x = instr; instr = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr: instr_descr){ root->instrs.push_back(instr); } populate_decoding_tree(root); } template continuation_e vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) { enum {TRAP_ID=1<<16}; code_word_t instr = 0; phys_addr_t paddr(pc); auto *const data = (uint8_t *)&instr; if(this->core.has_mmu()) paddr = this->core.virt2phys(pc); auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' ++inst_cnt; auto f = decode_instr(root, instr); if (f == nullptr) f = &this_class::illegal_intruction; return (this->*f)(pc, instr, jh); } } // namespace tgc5c template <> std::unique_ptr create(arch::tgc5c *core, unsigned short port, bool dump) { auto ret = new tgc5c::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace asmjit } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("tgc5c|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new asmjit::tgc5c::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t, arch::traits::reg_t)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("tgc5c|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new asmjit::tgc5c::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t, arch::traits::reg_t)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }) }; } } // clang-format on