DBT-RISE-TGC/src/iss/arch/riscv_hart_m_p.h

1350 lines
58 KiB
C++

/*******************************************************************************
* Copyright (C) 2019 - 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
#include "iss/arch/traits.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#include "riscv_hart_common.h"
#include <stdexcept>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <functional>
#include <iomanip>
#include <sstream>
#include <type_traits>
#include <unordered_map>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#include <iss/semihosting/semihosting.h>
#if defined(__GNUC__)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
namespace iss {
namespace arch {
template <typename BASE, features_e FEAT = FEAT_NONE> class riscv_hart_m_p : public BASE, public riscv_hart_common {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
public:
using core = BASE;
using this_class = riscv_hart_m_p<BASE, FEAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t&);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0x1800;
void write_mstatus(T val) {
auto mask = get_mask() & 0xff; // MPP is hardcode as 0x3
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
static constexpr uint32_t get_mask() {
// return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported
// +-SD
// | +-TSR
// | |+-TW
// | ||+-TVM
// | |||+-MXR
// | ||||+-SUM
// | |||||+-MPRV
// | |||||| +-XS
// | |||||| | +-FS
// | |||||| | | +-MPP
// | |||||| | | | +-SPP
// | |||||| | | | |+-MPIE
// | ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
}
};
// specialization 64bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0x1800;
void write_mstatus(T val) {
auto mask = get_mask() & 0xff; // MPP is hardcode as 0x3
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
static constexpr T get_mask() {
// return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
//
// +-TSR
// |+-TW
// ||+-TVM
// |||+-MXR
// ||||+-SUM
// |||||+-MPRV
// |||||| +-XS
// |||||| | +-FS
// |||||| | | +-MPP
// |||||| | | | +-SPP
// |||||| | | | |+-MPIE
// ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
}
};
using hart_state_type = hart_state<reg_t>;
constexpr reg_t get_irq_mask() {
return 0b100010001000; // only machine mode is supported
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
riscv_hart_m_p(feature_config cfg = feature_config{});
virtual ~riscv_hart_m_p() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
uint8_t* const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
const uint8_t* const data) override;
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", pc, instr, (reg_t)state.mstatus,
this->reg.icount + cycle_offset);
};
iss::instrumentation_if* get_instrumentation_if() override { return &instr_if; }
void set_csr(unsigned addr, reg_t val) { csr[addr & csr.page_addr_mask] = val; }
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
void set_semihosting_callback(std::function<void(arch_if*, reg_t, reg_t)>& cb) { semihosting_cb = cb; };
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_m_p<BASE, FEAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.icount + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> get_symbol_table(std::string name) override { return arch.get_sym_table(name); }
riscv_hart_m_p<BASE, FEAT>& arch;
};
friend struct riscv_instrumentation_if;
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data);
iss::status read_clic(uint64_t addr, unsigned length, uint8_t* const data);
iss::status write_clic(uint64_t addr, unsigned length, const uint8_t* const data);
virtual iss::status read_csr(unsigned addr, reg_t& val);
virtual iss::status write_csr(unsigned addr, reg_t val);
hart_state_type state;
int64_t cycle_offset{0};
uint64_t mcycle_csr{0};
int64_t instret_offset{0};
uint64_t minstret_csr{0};
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
bool tohost_lower_written = false;
riscv_instrumentation_if instr_if;
std::function<void(arch_if*, reg_t, reg_t)> semihosting_cb;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
struct {
uint8_t ip;
uint8_t ie;
uint8_t attr;
uint8_t ctl;
};
uint32_t raw;
};
std::vector<clic_int_reg_t> clic_int_reg;
uint8_t clic_mprev_lvl{0};
uint8_t clic_mact_lvl{0};
std::vector<uint8_t> tcm;
iss::status read_csr_reg(unsigned addr, reg_t& val);
iss::status write_csr_reg(unsigned addr, reg_t val);
iss::status read_null(unsigned addr, reg_t& val);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_cycle(unsigned addr, reg_t& val);
iss::status write_cycle(unsigned addr, reg_t val);
iss::status read_instret(unsigned addr, reg_t& val);
iss::status write_instret(unsigned addr, reg_t val);
iss::status read_tvec(unsigned addr, reg_t& val);
iss::status read_time(unsigned addr, reg_t& val);
iss::status read_status(unsigned addr, reg_t& val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_cause(unsigned addr, reg_t& val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t& val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t& val);
iss::status read_hartid(unsigned addr, reg_t& val);
iss::status write_epc(unsigned addr, reg_t val);
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
iss::status write_xtvt(unsigned addr, reg_t val);
iss::status write_dcsr_dcsr(unsigned addr, reg_t val);
iss::status read_dcsr_reg(unsigned addr, reg_t& val);
iss::status write_dcsr_reg(unsigned addr, reg_t val);
iss::status read_dpc_reg(unsigned addr, reg_t& val);
iss::status write_dpc_reg(unsigned addr, reg_t val);
virtual iss::status read_custom_csr_reg(unsigned addr, reg_t& val) { return iss::status::Err; };
virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) { return iss::status::Err; };
void register_custom_csr_rd(unsigned addr) { csr_rd_cb[addr] = &this_class::read_custom_csr_reg; }
void register_custom_csr_wr(unsigned addr) { csr_wr_cb[addr] = &this_class::write_custom_csr_reg; }
reg_t mhartid_reg{0x0};
void check_interrupt();
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
std::vector<std::tuple<uint64_t, uint64_t>> memfn_range;
std::vector<std::function<mem_read_f>> memfn_read;
std::vector<std::function<mem_write_f>> memfn_write;
void insert_mem_range(uint64_t, uint64_t, std::function<mem_read_f>, std::function<mem_write_f>);
feature_config cfg;
unsigned mcause_max_irq{(FEAT & features_e::FEAT_CLIC) ? std::max(16U, static_cast<unsigned>(traits<BASE>::CLIC_NUM_IRQ)) : 16U};
inline bool debug_mode_active() { return this->reg.PRIV & 0x4; }
std::pair<std::function<mem_read_f>, std::function<mem_write_f>> replace_mem_access(std::function<mem_read_f> rd,
std::function<mem_write_f> wr) {
std::pair<std::function<mem_read_f>, std::function<mem_write_f>> ret{hart_mem_rd_delegate, hart_mem_wr_delegate};
hart_mem_rd_delegate = rd;
hart_mem_wr_delegate = wr;
return ret;
}
std::function<mem_read_f> hart_mem_rd_delegate;
std::function<mem_write_f> hart_mem_wr_delegate;
};
template <typename BASE, features_e FEAT>
riscv_hart_m_p<BASE, FEAT>::riscv_hart_m_p(feature_config cfg)
: state()
, instr_if(*this)
, cfg(cfg) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
uart_buf.str("");
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
// csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_null;
}
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr : rwaddrs) {
csr_rd_cb[addr] = &this_class::read_csr_reg;
csr_wr_cb[addr] = &this_class::write_csr_reg;
}
// special handling & overrides
csr_rd_cb[time] = &this_class::read_time;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = &this_class::read_time;
csr_rd_cb[cycle] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = &this_class::read_cycle;
csr_rd_cb[instret] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = &this_class::read_instret;
csr_rd_cb[mcycle] = &this_class::read_cycle;
csr_wr_cb[mcycle] = &this_class::write_cycle;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = &this_class::read_cycle;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = &this_class::write_cycle;
csr_rd_cb[minstret] = &this_class::read_instret;
csr_wr_cb[minstret] = &this_class::write_instret;
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = &this_class::read_instret;
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = &this_class::write_instret;
csr_rd_cb[mstatus] = &this_class::read_status;
csr_wr_cb[mstatus] = &this_class::write_status;
csr_rd_cb[mcause] = &this_class::read_cause;
csr_wr_cb[mcause] = &this_class::write_cause;
csr_rd_cb[mtvec] = &this_class::read_tvec;
csr_wr_cb[mepc] = &this_class::write_epc;
csr_rd_cb[mip] = &this_class::read_ip;
csr_wr_cb[mip] = &this_class::write_null;
csr_rd_cb[mie] = &this_class::read_ie;
csr_wr_cb[mie] = &this_class::write_ie;
csr_rd_cb[mhartid] = &this_class::read_hartid;
csr_wr_cb[misa] = &this_class::write_null;
csr_wr_cb[mvendorid] = &this_class::write_null;
csr_wr_cb[marchid] = &this_class::write_null;
csr_wr_cb[mimpid] = &this_class::write_null;
if(FEAT & FEAT_CLIC) {
csr_rd_cb[mtvt] = &this_class::read_csr_reg;
csr_wr_cb[mtvt] = &this_class::write_xtvt;
// csr_rd_cb[mxnti] = &this_class::read_csr_reg;
// csr_wr_cb[mxnti] = &this_class::write_csr_reg;
csr_rd_cb[mintstatus] = &this_class::read_intstatus;
csr_wr_cb[mintstatus] = &this_class::write_null;
// csr_rd_cb[mscratchcsw] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg;
// csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg;
// csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg;
csr_rd_cb[mintthresh] = &this_class::read_csr_reg;
csr_wr_cb[mintthresh] = &this_class::write_intthresh;
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x20;
clic_mact_lvl = clic_mprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
csr[mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
insert_mem_range(
cfg.clic_base, 0x5000UL,
[this](phys_addr_t addr, unsigned length, uint8_t* const data) { return read_clic(addr.val, length, data); },
[this](phys_addr_t addr, unsigned length, uint8_t const* const data) { return write_clic(addr.val, length, data); });
}
if(FEAT & FEAT_TCM) {
tcm.resize(cfg.tcm_size);
std::function<mem_read_f> read_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t* const data) {
auto offset = addr.val - this->cfg.tcm_base;
std::copy(tcm.data() + offset, tcm.data() + offset + length, data);
return iss::Ok;
};
std::function<mem_write_f> write_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t const* const data) {
auto offset = addr.val - this->cfg.tcm_base;
std::copy(data, data + length, tcm.data() + offset);
return iss::Ok;
};
insert_mem_range(cfg.tcm_base, cfg.tcm_size, read_clic_cb, write_clic_cb);
}
if(FEAT & FEAT_DEBUG) {
csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg;
csr_wr_cb[dscratch1] = &this_class::write_dcsr_reg;
csr_rd_cb[dscratch1] = &this_class::read_dcsr_reg;
csr_wr_cb[dpc] = &this_class::write_dpc_reg;
csr_rd_cb[dpc] = &this_class::read_dpc_reg;
csr_wr_cb[dcsr] = &this_class::write_dcsr_dcsr;
csr_rd_cb[dcsr] = &this_class::read_dcsr_reg;
}
hart_mem_rd_delegate = [this](phys_addr_t a, unsigned l, uint8_t* const d) -> iss::status { return this->read_mem(a, l, d); };
hart_mem_wr_delegate = [this](phys_addr_t a, unsigned l, uint8_t const* const d) -> iss::status { return this->write_mem(a, l, d); };
}
template <typename BASE, features_e FEAT> std::pair<uint64_t, bool> riscv_hart_m_p<BASE, FEAT>::load_file(std::string name, int type) {
get_sym_table(name);
try {
tohost = symbol_table.at("tohost");
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
}
FILE* fp = fopen(name.c_str(), "r");
if(fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
fclose(fp);
if(n != 4)
throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if(strcmp(buf.data() + 1, "ELF") == 0) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if(!reader.load(name))
throw std::runtime_error("could not process elf file");
// check elf properties
if(reader.get_class() != ELFCLASS32)
if(sizeof(reg_t) == 4)
throw std::runtime_error("wrong elf class in file");
if(reader.get_type() != ET_EXEC)
throw std::runtime_error("wrong elf type in file");
if(reader.get_machine() != EM_RISCV)
throw std::runtime_error("wrong elf machine in file");
auto entry = reader.get_entry();
for(const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if(fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
}
for(const auto sec : reader.sections) {
if(sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(entry, true);
}
throw std::runtime_error(fmt::format("memory load file {} is not a valid elf file", name));
}
throw std::runtime_error(fmt::format("memory load file not found, check if {} is a valid file", name));
}
template <typename BASE, features_e FEAT>
inline void riscv_hart_m_p<BASE, FEAT>::insert_mem_range(uint64_t base, uint64_t size, std::function<mem_read_f> rd_f,
std::function<mem_write_f> wr_fn) {
std::tuple<uint64_t, uint64_t> entry{base, size};
auto it = std::upper_bound(
memfn_range.begin(), memfn_range.end(), entry,
[](std::tuple<uint64_t, uint64_t> const& a, std::tuple<uint64_t, uint64_t> const& b) { return std::get<0>(a) < std::get<0>(b); });
auto idx = std::distance(memfn_range.begin(), it);
memfn_range.insert(it, entry);
memfn_read.insert(std::begin(memfn_read) + idx, rd_f);
memfn_write.insert(std::begin(memfn_write) + idx, wr_fn);
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr,
const unsigned length, uint8_t* const data) {
#ifndef NDEBUG
if(access && iss::access_type::DEBUG) {
CPPLOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH) {
CPPLOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
CPPLOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch(space) {
case traits<BASE>::MEM: {
auto alignment = is_fetch(access) ? (has_compressed() ? 2 : 4) : length;
if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) {
fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
try {
if(!is_debug(access) && (addr & (alignment - 1))) {
this->reg.trap_state = (1UL << 31) | 4 << 16;
fault_data = addr;
return iss::Err;
}
phys_addr_t phys_addr{access, space, addr};
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()) {
auto it =
std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a) {
return std::get<0>(a) <= phys_addr.val && (std::get<0>(a) + std::get<1>(a)) > phys_addr.val;
});
if(it != std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_read[idx](phys_addr, length, data);
} else
res = hart_mem_rd_delegate(phys_addr, length, data);
} else {
res = hart_mem_rd_delegate(phys_addr, length, data);
}
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault
fault_data = addr;
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
return iss::Err;
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if(it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
return iss::Err;
}
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr,
const unsigned length, const uint8_t* const data) {
#ifndef NDEBUG
const char* prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch(length) {
case 8:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 4:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 2:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 1:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
default:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
}
#endif
try {
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
try {
if(length > 1 && (addr & (length - 1)) && (access & access_type::DEBUG) != access_type::DEBUG) {
this->reg.trap_state = (1UL << 31) | 6 << 16;
fault_data = addr;
return iss::Err;
}
phys_addr_t phys_addr{access, space, addr};
auto res = iss::Err;
if(access != access_type::FETCH && memfn_range.size()) {
auto it =
std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple<uint64_t, uint64_t> const& a) {
return std::get<0>(a) <= phys_addr.val && (std::get<0>(a) + std::get<1>(a)) > phys_addr.val;
});
if(it != std::end(memfn_range)) {
auto idx = std::distance(std::begin(memfn_range), it);
res = memfn_write[idx](phys_addr, length, data);
} else
res = write_mem(phys_addr, length, data);
} else {
res = write_mem(phys_addr, length, data);
}
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
fault_data = addr;
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
return iss::Err;
}
if((addr + length) > mem.size())
return iss::Err;
switch(addr) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
// CPPLOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
auto& p = mem(addr / mem.page_size);
auto offs = addr & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto& x = *(p.data() + offs + 3);
if(x & 0x40)
x |= 0x80; // hfroscrdy = 1 if hfroscen==1
return iss::Ok;
}
case 0x10008008: { // HFROSC base, pllcfg reg
auto& p = mem(addr / mem.page_size);
auto offs = addr & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto& x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
return iss::Ok;
} break;
default: {
}
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE: {
if((addr + length) > mem.size())
return iss::Err;
switch(addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
fault_data = ta.addr;
return iss::Err;
}
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_csr_reg(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_csr_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.icount + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.icount; // TODO: relying on wrap-around
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_tvec(unsigned addr, reg_t& val) {
val = FEAT & features_e::FEAT_CLIC ? csr[addr] : csr[addr] & ~2;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_status(unsigned addr, reg_t& val) {
val = state.mstatus & hart_state_type::get_mask();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_status(unsigned addr, reg_t val) {
state.write_mstatus(val);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_cause(unsigned addr, reg_t& val) {
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec] & 0x3) == 3) {
val = csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1) | (0xfUL << 16));
val |= clic_mprev_lvl << 16;
val |= state.mstatus.MPIE << 27;
val |= state.mstatus.MPP << 28;
} else
val = csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1));
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_cause(unsigned addr, reg_t val) {
if((FEAT & features_e::FEAT_CLIC) && (csr[mtvec] & 0x3) == 3) {
auto mask = ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1) | (0xfUL << 16));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
state.mstatus.MPIE = (val >> 27) & 0x1;
state.mstatus.MPP = (val >> 28) & 0x3;
} else {
auto mask = ((1UL << (traits<BASE>::XLEN - 1)) | (mcause_max_irq - 1));
csr[addr] = (val & mask) | (csr[addr] & ~mask);
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_ie(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = csr[mie] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_ip(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = csr[mip] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dcsr_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_dcsr_reg(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dcsr_reg(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_dpc_reg(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_dpc_reg(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::read_intstatus(unsigned addr, reg_t& val) {
val = (clic_mact_lvl & 0xff) << 24;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_intthresh(unsigned addr, reg_t val) {
csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
template <typename BASE, features_e FEAT> iss::status riscv_hart_m_p<BASE, FEAT>::write_xtvt(unsigned addr, reg_t val) {
csr[addr] = val & ~0x3fULL;
return iss::Ok;
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_mem(phys_addr_t paddr, unsigned length, uint8_t* const data) {
switch(paddr.val) {
default: {
for(auto offs = 0U; offs < length; ++offs) {
*(data + offs) = mem[(paddr.val + offs) % mem.size()];
}
}
}
return iss::Ok;
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
switch(paddr.val) {
// TODO remove UART, Peripherals should not be part of the ISS
case 0xFFFF0000: // UART0 base, TXFIFO reg
if(((char)data[0]) == '\n' || data[0] == 0) {
CPPLOG(INFO) << "UART" << ((paddr.val >> 12) & 0x3) << " send '" << uart_buf.str() << "'";
uart_buf.str("");
} else if(((char)data[0]) != '\r')
uart_buf << (char)data[0];
break;
default: {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if(paddr.access && iss::access_type::FUNC) {
auto tohost_upper =
(traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower = (traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if(tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask));
// in case of 32 bit system, two writes to tohost are needed, only evaluate on the second (high) write
if(tohost_upper && (tohost_lower || tohost_lower_written)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
CPPLOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if(c == '\n' || c == 0) {
CPPLOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
} break;
default:
break;
}
tohost_lower_written = false;
} else if(tohost_lower)
tohost_lower_written = true;
} else if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::read_clic(uint64_t addr, unsigned length, uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
*data = clic_cfg_reg;
for(auto i = 1; i < length; ++i)
*(data + i) = 0;
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
read_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
read_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
} else {
for(auto i = 0U; i < length; ++i)
*(data + i) = 0;
}
return iss::Ok;
}
template <typename BASE, features_e FEAT>
iss::status riscv_hart_m_p<BASE, FEAT>::write_clic(uint64_t addr, unsigned length, const uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
clic_cfg_reg = (clic_cfg_reg & ~0x1e) | (*data & 0x1e);
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
write_reg_uint32(addr, clic_inttrig_reg[offset], data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
write_reg_uint32(addr, clic_int_reg[offset].raw, data, length);
clic_int_reg[offset].raw &= 0xf0c70101; // clicIntCtlBits->0xf0, clicintattr->0xc7, clicintie->0x1, clicintip->0x1
}
return iss::Ok;
}
template <typename BASE, features_e FEAT> inline void riscv_hart_m_p<BASE, FEAT>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state_type::mstatus_reset_val;
}
template <typename BASE, features_e FEAT> void riscv_hart_m_p<BASE, FEAT>::check_interrupt() {
// TODO: Implement CLIC functionality
// auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
bool mstatus_mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie;
auto enabled_interrupts = m_enabled ? ena_irq : 0;
if(enabled_interrupts != 0) {
int res = 0;
while((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto const trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
// calculate effective privilege level
unsigned new_priv = PRIV_M;
if(trap_id == 0) { // exception
if(cause == 11)
cause = 0x8 + PRIV_M; // adjust environment call cause
// store ret addr in xepc register
csr[mepc] = static_cast<reg_t>(addr) & get_pc_mask(); // store actual address instruction of exception
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
* or store address-misaligned,
* access, or page-fault exception occurs, mtval is written with the
* faulting effective address.
*/
switch(cause) {
case 0:
csr[mtval] = static_cast<reg_t>(addr);
break;
case 2:
csr[mtval] = (!has_compressed() || (instr & 0x3) == 3) ? instr : instr & 0xffff;
break;
case 3:
if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
csr[mtval] = addr;
}
if(semihosting_cb) {
// Check for semihosting call
phys_addr_t p_addr(access_type::DEBUG_READ, traits<BASE>::MEM, addr - 4);
std::array<uint8_t, 8> data;
// check for SLLI_X0_X0_0X1F and SRAI_X0_X0_0X07
this->read_mem(p_addr, 4, data.data());
p_addr.val += 8;
this->read_mem(p_addr, 4, data.data() + 4);
const std::array<uint8_t, 8> ref_data = {0x13, 0x10, 0xf0, 0x01, 0x13, 0x50, 0x70, 0x40};
if(data == ref_data) {
this->reg.NEXT_PC = addr + 8;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
CLOG(INFO, disass) << "Semihosting call at address " << buffer.data() << " occurred ";
semihosting_callback(this, this->reg.X10 /*a0*/, this->reg.X11 /*a1*/);
return this->reg.NEXT_PC;
}
}
break;
case 4:
case 6:
csr[mtval] = fault_data;
break;
default:
csr[mtval] = 0;
}
fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
}
csr[mcause] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
state.mstatus.MPP = PRIV_M;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
// get trap vector
auto xtvec = csr[mtvec];
// calculate adds// set NEXT_PC to trap addressess to jump to based on MODE
if((FEAT & features_e::FEAT_CLIC) && trap_id != 0 && (xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret = read(address_type::LOGICAL, access_type::READ, 0, csr[mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else {
// bits in mtvec
this->reg.NEXT_PC = xtvec & ~0x3UL;
if((xtvec & 0x1) == 1 && trap_id != 0)
this->reg.NEXT_PC += 4 * cause;
}
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags & 0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause]) << "' ("
<< cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
template <typename BASE, features_e FEAT> uint64_t riscv_hart_m_p<BASE, FEAT>::leave_trap(uint64_t flags) {
state.mstatus.MIE = state.mstatus.MPIE;
state.mstatus.MPIE = 1;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc] & get_pc_mask();
CLOG(INFO, disass) << "Executing xRET";
check_interrupt();
this->reg.trap_state = this->reg.pending_trap;
return this->reg.NEXT_PC;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */