DBT-RISE-TGC/src/iss/arch/riscv_hart_m_p.h

559 lines
23 KiB
C++

/*******************************************************************************
* Copyright (C) 2019 - 2023 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
#include "iss/vm_if.h"
#include "iss/vm_types.h"
#include "riscv_hart_common.h"
#include "util/logging.h"
#include <algorithm>
#include <cstdint>
#include <elfio/elf_types.hpp>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/mmio/memory_with_htif.h>
#include <unordered_map>
namespace iss {
namespace arch {
template <typename BASE, features_e FEAT = FEAT_NONE, typename LOGCAT = logging::disass>
class riscv_hart_m_p : public riscv_hart_common<BASE> {
public:
using core = BASE;
using base = riscv_hart_common<BASE>;
using this_class = riscv_hart_m_p<BASE, FEAT, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
static constexpr reg_t get_mstatus_mask() {
if(sizeof(reg_t) == 4)
// return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported
// +-SD
// | +-TSR
// | |+-TW
// | ||+-TVM
// | |||+-MXR
// | ||||+-SUM
// | |||||+-MPRV
// | |||||| +-XS
// | |||||| | +-FS
// | |||||| | | +-MPP
// | |||||| | | | +-SPP
// | |||||| | | | |+-MPIE
// | ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
else if(sizeof(reg_t) == 8)
// return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
//
// +-TSR
// |+-TW
// ||+-TVM
// |||+-MXR
// ||||+-SUM
// |||||+-MPRV
// |||||| +-XS
// |||||| | +-FS
// |||||| | | +-MPP
// |||||| | | | +-SPP
// |||||| | | | |+-MPIE
// ||||||/|/|/| || +-MIE
return 0b00000000000000000001100010001000;
else
assert(false && "Unsupported XLEN value");
}
void write_mstatus(reg_t val) {
auto mask = get_mstatus_mask() & 0xff; // MPP is hardcoded as 0x3
auto new_val = (this->state.mstatus() & ~mask) | (val & mask);
this->state.mstatus = new_val;
}
constexpr reg_t get_irq_mask() {
return 0b100010001000; // only machine mode is supported
}
riscv_hart_m_p(feature_config cfg = feature_config{});
virtual ~riscv_hart_m_p() = default;
void reset(uint64_t address) override;
iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
uint8_t* const data);
iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length,
const uint8_t* const data);
uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, this->fault_data, this->fault_data); }
uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override;
uint64_t leave_trap(uint64_t flags) override;
void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; }
void set_num_of_irq(unsigned i) { this->mcause_max_irq = 1 << util::ilog2(i); }
protected:
using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const);
using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const);
hart_state<reg_t> state;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
iss::status read_status(unsigned addr, reg_t& val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_cause(unsigned addr, reg_t& val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t& val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t& val);
iss::status write_xtvt(unsigned addr, reg_t val);
iss::status write_dcsr(unsigned addr, reg_t val);
iss::status read_debug(unsigned addr, reg_t& val);
iss::status write_dscratch(unsigned addr, reg_t val);
iss::status read_dpc(unsigned addr, reg_t& val);
iss::status write_dpc(unsigned addr, reg_t val);
void check_interrupt();
feature_config cfg;
mmio::memory_with_htif<reg_t> default_mem;
};
template <typename BASE, features_e FEAT, typename LOGCAT>
riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
: cfg(cfg)
, default_mem(base::get_priv_if()) {
const std::array<unsigned, 4> rwaddrs{{mepc, mtvec, mscratch, mtval}};
for(auto addr : rwaddrs) {
this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
// MK_CSR_RD_CB(read_plain(a,r);};
this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
this->csr_rd_cb[mstatus] = MK_CSR_RD_CB(read_status);
this->csr_wr_cb[mstatus] = MK_CSR_WR_CB(write_status);
this->csr_rd_cb[mcause] = MK_CSR_RD_CB(read_cause);
this->csr_wr_cb[mcause] = MK_CSR_WR_CB(write_cause);
this->csr_rd_cb[mtvec] = MK_CSR_RD_CB(read_tvec);
this->csr_wr_cb[mepc] = MK_CSR_WR_CB(write_epc);
this->csr_rd_cb[mip] = MK_CSR_RD_CB(read_ip);
this->csr_wr_cb[mip] = MK_CSR_WR_CB(write_null);
this->csr_rd_cb[mie] = MK_CSR_RD_CB(read_ie);
this->csr_wr_cb[mie] = MK_CSR_WR_CB(write_ie);
this->csr_wr_cb[misa] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mvendorid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[marchid] = MK_CSR_WR_CB(write_null);
this->csr_wr_cb[mimpid] = MK_CSR_WR_CB(write_null);
if(FEAT & FEAT_DEBUG) {
this->csr_wr_cb[dscratch0] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch0] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dscratch1] = MK_CSR_WR_CB(write_dscratch);
this->csr_rd_cb[dscratch1] = MK_CSR_RD_CB(read_debug);
this->csr_wr_cb[dpc] = MK_CSR_WR_CB(write_dpc);
this->csr_rd_cb[dpc] = MK_CSR_RD_CB(read_dpc);
this->csr_wr_cb[dcsr] = MK_CSR_WR_CB(write_dcsr);
this->csr_rd_cb[dcsr] = MK_CSR_RD_CB(read_debug);
}
this->rd_func = util::delegate<arch_if::rd_func_sig>::from<this_class, &this_class::read>(this);
this->wr_func = util::delegate<arch_if::wr_func_sig>::from<this_class, &this_class::write>(this);
this->memories.prepend(*this);
this->memories.append(default_mem);
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t* const data) {
#ifndef NDEBUG
if(access && iss::access_type::DEBUG) {
CPPLOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(is_fetch(access)) {
CPPLOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
CPPLOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch(space) {
case traits<BASE>::MEM: {
auto alignment = is_fetch(access) ? (this->has_compressed() ? 2 : 4) : std::min<unsigned>(length, sizeof(reg_t));
if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) {
this->fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
try {
if(!is_debug(access) && (addr & (alignment - 1))) {
this->reg.trap_state = (1UL << 31) | 4 << 16;
this->fault_data = addr;
return iss::Err;
}
auto res = this->memory.rd_mem(access, addr, length, data);
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
this->fault_data = ta.addr;
}
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return this->read_csr(addr, *reinterpret_cast<reg_t* const>(data));
} break;
case traits<BASE>::FENCE: {
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if(it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
this->fault_data = ta.addr;
}
return iss::Err;
}
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t* const data) {
#ifndef NDEBUG
const char* prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch(length) {
case 8:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 4:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 2:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t*)&data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
case 1:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec << ") @addr 0x"
<< std::hex << addr;
break;
default:
CPPLOG(TRACE) << prefix << "write of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch(space) {
case traits<BASE>::MEM: {
if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
this->fault_data = addr;
if(access && iss::access_type::DEBUG)
throw trap_access(0, addr);
this->reg.trap_state = (1UL << 31); // issue trap 0
return iss::Err;
}
try {
auto alignment = std::min<unsigned>(length, sizeof(reg_t));
if(length > 1 && (addr & (alignment - 1)) && !is_debug(access)) {
this->reg.trap_state = (1UL << 31) | 6 << 16;
this->fault_data = addr;
return iss::Err;
}
auto res = this->memory.wr_mem(access, addr, length, data);
if(unlikely(res != iss::Ok && !is_debug(access))) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
this->fault_data = addr;
}
return res;
} catch(trap_access& ta) {
this->reg.trap_state = (1UL << 31) | ta.id;
this->fault_data = ta.addr;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if(length != sizeof(reg_t))
return iss::Err;
return this->write_csr(addr, *reinterpret_cast<const reg_t*>(data));
} break;
case traits<BASE>::FENCE:
break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch(trap_access& ta) {
if((access & access_type::DEBUG) == 0) {
this->reg.trap_state = (1UL << 31) | ta.id;
this->fault_data = ta.addr;
}
return iss::Err;
}
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_status(unsigned addr, reg_t& val) {
val = this->state.mstatus & get_mstatus_mask();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_status(unsigned addr, reg_t val) {
write_mstatus(val);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_cause(unsigned addr, reg_t& val) {
val = this->csr[addr] & ((1UL << (traits<BASE>::XLEN - 1)) | (this->mcause_max_irq - 1));
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_cause(unsigned addr, reg_t val) {
auto mask = ((1UL << (traits<BASE>::XLEN - 1)) | (this->mcause_max_irq - 1));
this->csr[addr] = (val & mask) | (this->csr[addr] & ~mask);
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_ie(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = this->csr[mie] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
this->csr[mie] = (this->csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_ip(unsigned addr, reg_t& val) {
auto mask = get_irq_mask();
val = this->csr[mip] & mask;
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT> inline void riscv_hart_m_p<BASE, FEAT, LOGCAT>::reset(uint64_t address) {
BASE::reset(address);
this->state.mstatus = hart_state<reg_t>::mstatus_reset_val;
}
template <typename BASE, features_e FEAT, typename LOGCAT> void riscv_hart_m_p<BASE, FEAT, LOGCAT>::check_interrupt() {
// TODO: Implement CLIC functionality
// auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = this->csr[mip] & this->csr[mie];
bool mstatus_mie = this->state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie;
auto enabled_interrupts = m_enabled ? ena_irq : 0;
if(enabled_interrupts != 0) {
int res = 0;
while((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE, features_e FEAT, typename LOGCAT>
uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::enter_trap(uint64_t flags, uint64_t addr, uint64_t tval) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto const trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
// calculate effective privilege level
unsigned new_priv = PRIV_M;
if(trap_id == 0) { // exception
if(cause == 11)
cause = 0x8 + PRIV_M; // adjust environment call cause
// store ret addr in xepc register
this->csr[mepc] = static_cast<reg_t>(addr) & this->get_pc_mask(); // store actual address instruction of exception
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
* or store address-misaligned,
* access, or page-fault exception occurs, mtval is written with the
* faulting effective address.
*/
switch(cause) {
case 0:
this->csr[mtval] = static_cast<reg_t>(tval);
break;
case 2:
this->csr[mtval] = (!this->has_compressed() || (tval & 0x3) == 3) ? tval : tval & 0xffff;
break;
case 3:
if((FEAT & FEAT_DEBUG) && (this->csr[dcsr] & 0x8000)) {
this->reg.DPC = addr;
this->csr[dcsr] = (this->csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi)
new_priv = this->reg.PRIV | PRIV_D;
} else {
this->csr[mtval] = addr;
}
if(this->semihosting_cb) {
// Check for semihosting call
std::array<uint8_t, 8> data;
// check for SLLI_X0_X0_0X1F and SRAI_X0_X0_0X07
this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data());
addr += 8;
this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data() + 4);
const std::array<uint8_t, 8> ref_data = {0x13, 0x10, 0xf0, 0x01, 0x13, 0x50, 0x70, 0x40};
if(data == ref_data) {
this->reg.NEXT_PC = addr + 8;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
NSCLOG(INFO, LOGCAT) << "Semihosting call at address " << buffer.data() << " occurred ";
this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/);
return this->reg.NEXT_PC;
}
}
break;
case 4:
case 6:
this->csr[mtval] = this->fault_data;
break;
default:
this->csr[mtval] = 0;
}
this->fault_data = 0;
} else {
this->csr[mepc] = this->reg.NEXT_PC & this->get_pc_mask(); // store next address if interrupt
this->reg.pending_trap = 0;
}
this->csr[mcause] = (trap_id << (traits<BASE>::XLEN - 1)) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
this->state.mstatus.MPP = PRIV_M;
this->state.mstatus.MPIE = this->state.mstatus.MIE;
this->state.mstatus.MIE = false;
// get trap vector
auto xtvec = this->csr[mtvec];
// calculate adds// set NEXT_PC to trap addressess to jump to based on MODE
if(trap_id != 0 && (xtvec & 0x3UL) == 3UL) {
reg_t data;
auto ret =
this->memory.rd_mem(iss::access_type::DEBUG_READ, this->csr[arch::mtvt], sizeof(reg_t), reinterpret_cast<uint8_t*>(&data));
if(ret == iss::Err)
return this->reg.PC;
this->reg.NEXT_PC = data;
} else {
// bits in mtvec
this->reg.NEXT_PC = xtvec & ~0x3UL;
if((xtvec & 0x1) == 1 && trap_id != 0)
this->reg.NEXT_PC += 4 * cause;
}
// reset trap state
this->reg.PRIV = new_priv;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
#if defined(_MSC_VER)
sprintf(buffer.data(), "0x%016llx", addr);
#else
sprintf(buffer.data(), "0x%016lx", addr);
#endif
if((flags & 0xffffffff) != 0xffffffff)
NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
template <typename BASE, features_e FEAT, typename LOGCAT> uint64_t riscv_hart_m_p<BASE, FEAT, LOGCAT>::leave_trap(uint64_t flags) {
this->state.mstatus.MIE = this->state.mstatus.MPIE;
this->state.mstatus.MPIE = 1;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = this->csr[mepc] & this->get_pc_mask();
NSCLOG(INFO, LOGCAT) << "Executing xRET";
check_interrupt();
this->reg.trap_state = this->reg.pending_trap;
return this->reg.NEXT_PC;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */