/******************************************************************************* * Copyright (C) 2019 - 2023 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Contributors: * eyck@minres.com - initial implementation ******************************************************************************/ #ifndef _RISCV_HART_M_P_H #define _RISCV_HART_M_P_H #include "iss/vm_if.h" #include "iss/vm_types.h" #include "riscv_hart_common.h" #include "util/logging.h" #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include #include #include namespace iss { namespace arch { template class riscv_hart_m_p : public riscv_hart_common { public: using core = BASE; using base = riscv_hart_common; using this_class = riscv_hart_m_p; using phys_addr_t = typename core::phys_addr_t; using reg_t = typename core::reg_t; using addr_t = typename core::addr_t; static constexpr reg_t get_mstatus_mask() { if(sizeof(reg_t) == 4) // return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported // +-SD // | +-TSR // | |+-TW // | ||+-TVM // | |||+-MXR // | ||||+-SUM // | |||||+-MPRV // | |||||| +-XS // | |||||| | +-FS // | |||||| | | +-MPP // | |||||| | | | +-SPP // | |||||| | | | |+-MPIE // | ||||||/|/|/| || +-MIE return 0b00000000000000000001100010001000; else if(sizeof(reg_t) == 8) // return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011 // // +-TSR // |+-TW // ||+-TVM // |||+-MXR // ||||+-SUM // |||||+-MPRV // |||||| +-XS // |||||| | +-FS // |||||| | | +-MPP // |||||| | | | +-SPP // |||||| | | | |+-MPIE // ||||||/|/|/| || +-MIE return 0b00000000000000000001100010001000; else assert(false && "Unsupported XLEN value"); } void write_mstatus(reg_t val) { auto mask = get_mstatus_mask() & 0xff; // MPP is hardcoded as 0x3 auto new_val = (this->state.mstatus() & ~mask) | (val & mask); this->state.mstatus = new_val; } constexpr reg_t get_irq_mask() { return 0b100010001000; // only machine mode is supported } riscv_hart_m_p(feature_config cfg = feature_config{}); virtual ~riscv_hart_m_p() = default; void reset(uint64_t address) override; iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t* const data); iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t* const data); uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, this->fault_data, this->fault_data); } uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override; uint64_t leave_trap(uint64_t flags) override; void set_csr(unsigned addr, reg_t val) { this->csr[addr & this->csr.page_addr_mask] = val; } void set_num_of_irq(unsigned i) { this->mcause_max_irq = 1 << util::ilog2(i); } protected: using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t* const); using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const* const); hart_state state; std::unordered_map ptw; std::unordered_map atomic_reservation; iss::status read_status(unsigned addr, reg_t& val); iss::status write_status(unsigned addr, reg_t val); iss::status read_cause(unsigned addr, reg_t& val); iss::status write_cause(unsigned addr, reg_t val); iss::status read_ie(unsigned addr, reg_t& val); iss::status write_ie(unsigned addr, reg_t val); iss::status read_ip(unsigned addr, reg_t& val); iss::status write_xtvt(unsigned addr, reg_t val); iss::status write_dcsr(unsigned addr, reg_t val); iss::status read_debug(unsigned addr, reg_t& val); iss::status write_dscratch(unsigned addr, reg_t val); iss::status read_dpc(unsigned addr, reg_t& val); iss::status write_dpc(unsigned addr, reg_t val); void check_interrupt(); feature_config cfg; mmio::memory_with_htif default_mem; }; template riscv_hart_m_p::riscv_hart_m_p(feature_config cfg) : cfg(cfg) , default_mem(base::get_priv_if()) { const std::array rwaddrs{{mepc, mtvec, mscratch, mtval}}; for(auto addr : rwaddrs) { this->csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain); // MK_CSR_RD_CB(read_plain(a,r);}; this->csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain); } this->csr_rd_cb[mstatus] = MK_CSR_RD_CB(read_status); this->csr_wr_cb[mstatus] = MK_CSR_WR_CB(write_status); this->csr_rd_cb[mcause] = MK_CSR_RD_CB(read_cause); this->csr_wr_cb[mcause] = MK_CSR_WR_CB(write_cause); this->csr_rd_cb[mtvec] = MK_CSR_RD_CB(read_tvec); this->csr_wr_cb[mepc] = MK_CSR_WR_CB(write_epc); this->csr_rd_cb[mip] = MK_CSR_RD_CB(read_ip); this->csr_wr_cb[mip] = MK_CSR_WR_CB(write_null); this->csr_rd_cb[mie] = MK_CSR_RD_CB(read_ie); this->csr_wr_cb[mie] = MK_CSR_WR_CB(write_ie); this->csr_wr_cb[misa] = MK_CSR_WR_CB(write_null); this->csr_wr_cb[mvendorid] = MK_CSR_WR_CB(write_null); this->csr_wr_cb[marchid] = MK_CSR_WR_CB(write_null); this->csr_wr_cb[mimpid] = MK_CSR_WR_CB(write_null); if(FEAT & FEAT_DEBUG) { this->csr_wr_cb[dscratch0] = MK_CSR_WR_CB(write_dscratch); this->csr_rd_cb[dscratch0] = MK_CSR_RD_CB(read_debug); this->csr_wr_cb[dscratch1] = MK_CSR_WR_CB(write_dscratch); this->csr_rd_cb[dscratch1] = MK_CSR_RD_CB(read_debug); this->csr_wr_cb[dpc] = MK_CSR_WR_CB(write_dpc); this->csr_rd_cb[dpc] = MK_CSR_RD_CB(read_dpc); this->csr_wr_cb[dcsr] = MK_CSR_WR_CB(write_dcsr); this->csr_rd_cb[dcsr] = MK_CSR_RD_CB(read_debug); } this->rd_func = util::delegate::from(this); this->wr_func = util::delegate::from(this); this->memories.prepend(*this); this->memories.append(default_mem); } template iss::status riscv_hart_m_p::read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t* const data) { #ifndef NDEBUG if(access && iss::access_type::DEBUG) { CPPLOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr; } else if(is_fetch(access)) { CPPLOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr; } else { CPPLOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr; } #endif try { switch(space) { case traits::MEM: { auto alignment = is_fetch(access) ? (this->has_compressed() ? 2 : 4) : std::min(length, sizeof(reg_t)); if(unlikely(is_fetch(access) && (addr & (alignment - 1)))) { this->fault_data = addr; if(is_debug(access)) throw trap_access(0, addr); this->reg.trap_state = (1UL << 31); // issue trap 0 return iss::Err; } try { if(!is_debug(access) && (addr & (alignment - 1))) { this->reg.trap_state = (1UL << 31) | 4 << 16; this->fault_data = addr; return iss::Err; } auto res = this->memory.rd_mem(access, addr, length, data); if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) { this->reg.trap_state = (1UL << 31) | (5 << 16); // issue trap 5 (load access fault this->fault_data = addr; } return res; } catch(trap_access& ta) { if((access & access_type::DEBUG) == 0) { this->reg.trap_state = (1UL << 31) | ta.id; this->fault_data = ta.addr; } return iss::Err; } } break; case traits::CSR: { if(length != sizeof(reg_t)) return iss::Err; return this->read_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: { return iss::Ok; } break; case traits::RES: { auto it = atomic_reservation.find(addr); if(it != atomic_reservation.end() && it->second != 0) { memset(data, 0xff, length); atomic_reservation.erase(addr); } else memset(data, 0, length); } break; default: return iss::Err; // assert("Not supported"); } return iss::Ok; } catch(trap_access& ta) { if((access & access_type::DEBUG) == 0) { this->reg.trap_state = (1UL << 31) | ta.id; this->fault_data = ta.addr; } return iss::Err; } } template iss::status riscv_hart_m_p::write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t* const data) { #ifndef NDEBUG const char* prefix = (access && iss::access_type::DEBUG) ? "debug " : ""; switch(length) { case 8: CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t*)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 4: CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t*)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 2: CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t*)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 1: CPPLOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; default: CPPLOG(TRACE) << prefix << "write of " << length << " bytes @addr 0x" << std::hex << addr; } #endif try { switch(space) { case traits::MEM: { if(unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { this->fault_data = addr; if(access && iss::access_type::DEBUG) throw trap_access(0, addr); this->reg.trap_state = (1UL << 31); // issue trap 0 return iss::Err; } try { auto alignment = std::min(length, sizeof(reg_t)); if(length > 1 && (addr & (alignment - 1)) && !is_debug(access)) { this->reg.trap_state = (1UL << 31) | 6 << 16; this->fault_data = addr; return iss::Err; } auto res = this->memory.wr_mem(access, addr, length, data); if(unlikely(res != iss::Ok && !is_debug(access))) { this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault) this->fault_data = addr; } return res; } catch(trap_access& ta) { this->reg.trap_state = (1UL << 31) | ta.id; this->fault_data = ta.addr; return iss::Err; } } break; case traits::CSR: { if(length != sizeof(reg_t)) return iss::Err; return this->write_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: break; case traits::RES: { atomic_reservation[addr] = data[0]; } break; default: return iss::Err; } return iss::Ok; } catch(trap_access& ta) { if((access & access_type::DEBUG) == 0) { this->reg.trap_state = (1UL << 31) | ta.id; this->fault_data = ta.addr; } return iss::Err; } } template iss::status riscv_hart_m_p::read_status(unsigned addr, reg_t& val) { val = this->state.mstatus & get_mstatus_mask(); return iss::Ok; } template iss::status riscv_hart_m_p::write_status(unsigned addr, reg_t val) { write_mstatus(val); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_cause(unsigned addr, reg_t& val) { val = this->csr[addr] & ((1UL << (traits::XLEN - 1)) | (this->mcause_max_irq - 1)); return iss::Ok; } template iss::status riscv_hart_m_p::write_cause(unsigned addr, reg_t val) { auto mask = ((1UL << (traits::XLEN - 1)) | (this->mcause_max_irq - 1)); this->csr[addr] = (val & mask) | (this->csr[addr] & ~mask); return iss::Ok; } template iss::status riscv_hart_m_p::read_ie(unsigned addr, reg_t& val) { auto mask = get_irq_mask(); val = this->csr[mie] & mask; return iss::Ok; } template iss::status riscv_hart_m_p::write_ie(unsigned addr, reg_t val) { auto mask = get_irq_mask(); this->csr[mie] = (this->csr[mie] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_ip(unsigned addr, reg_t& val) { auto mask = get_irq_mask(); val = this->csr[mip] & mask; return iss::Ok; } template inline void riscv_hart_m_p::reset(uint64_t address) { BASE::reset(address); this->state.mstatus = hart_state::mstatus_reset_val; } template void riscv_hart_m_p::check_interrupt() { // TODO: Implement CLIC functionality // auto ideleg = csr[mideleg]; // Multiple simultaneous interrupts and traps at the same privilege level are // handled in the following decreasing priority order: // external interrupts, software interrupts, timer interrupts, then finally // any synchronous traps. auto ena_irq = this->csr[mip] & this->csr[mie]; bool mstatus_mie = this->state.mstatus.MIE; auto m_enabled = this->reg.PRIV < PRIV_M || mstatus_mie; auto enabled_interrupts = m_enabled ? ena_irq : 0; if(enabled_interrupts != 0) { int res = 0; while((enabled_interrupts & 1) == 0) { enabled_interrupts >>= 1; res++; } this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id } } template uint64_t riscv_hart_m_p::enter_trap(uint64_t flags, uint64_t addr, uint64_t tval) { // flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0] // calculate and write mcause val auto const trap_id = bit_sub<0, 16>(flags); auto cause = bit_sub<16, 15>(flags); // calculate effective privilege level unsigned new_priv = PRIV_M; if(trap_id == 0) { // exception if(cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause // store ret addr in xepc register this->csr[mepc] = static_cast(addr) & this->get_pc_mask(); // store actual address instruction of exception /* * write mtval if new_priv=M_MODE, spec says: * When a hardware breakpoint is triggered, or an instruction-fetch, load, * or store address-misaligned, * access, or page-fault exception occurs, mtval is written with the * faulting effective address. */ switch(cause) { case 0: this->csr[mtval] = static_cast(tval); break; case 2: this->csr[mtval] = (!this->has_compressed() || (tval & 0x3) == 3) ? tval : tval & 0xffff; break; case 3: if((FEAT & FEAT_DEBUG) && (this->csr[dcsr] & 0x8000)) { this->reg.DPC = addr; this->csr[dcsr] = (this->csr[dcsr] & ~0x1c3) | (1 << 6) | PRIV_M; // FIXME: cause should not be 4 (stepi) new_priv = this->reg.PRIV | PRIV_D; } else { this->csr[mtval] = addr; } if(this->semihosting_cb) { // Check for semihosting call std::array data; // check for SLLI_X0_X0_0X1F and SRAI_X0_X0_0X07 this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data()); addr += 8; this->memory.rd_mem(iss::access_type::DEBUG_READ, addr - 4, 4, data.data() + 4); const std::array ref_data = {0x13, 0x10, 0xf0, 0x01, 0x13, 0x50, 0x70, 0x40}; if(data == ref_data) { this->reg.NEXT_PC = addr + 8; std::array buffer; #if defined(_MSC_VER) sprintf(buffer.data(), "0x%016llx", addr); #else sprintf(buffer.data(), "0x%016lx", addr); #endif NSCLOG(INFO, LOGCAT) << "Semihosting call at address " << buffer.data() << " occurred "; this->semihosting_cb(this, &(this->reg.X10) /*a0*/, &(this->reg.X11) /*a1*/); return this->reg.NEXT_PC; } } break; case 4: case 6: this->csr[mtval] = this->fault_data; break; default: this->csr[mtval] = 0; } this->fault_data = 0; } else { this->csr[mepc] = this->reg.NEXT_PC & this->get_pc_mask(); // store next address if interrupt this->reg.pending_trap = 0; } this->csr[mcause] = (trap_id << (traits::XLEN - 1)) + cause; // update mstatus // xPP field of mstatus is written with the active privilege mode at the time // of the trap; the x PIE field of mstatus // is written with the value of the active interrupt-enable bit at the time of // the trap; and the x IE field of mstatus // is cleared // store the actual privilege level in yPP and store interrupt enable flags this->state.mstatus.MPP = PRIV_M; this->state.mstatus.MPIE = this->state.mstatus.MIE; this->state.mstatus.MIE = false; // get trap vector auto xtvec = this->csr[mtvec]; // calculate adds// set NEXT_PC to trap addressess to jump to based on MODE if(trap_id != 0 && (xtvec & 0x3UL) == 3UL) { reg_t data; auto ret = this->memory.rd_mem(iss::access_type::DEBUG_READ, this->csr[arch::mtvt], sizeof(reg_t), reinterpret_cast(&data)); if(ret == iss::Err) return this->reg.PC; this->reg.NEXT_PC = data; } else { // bits in mtvec this->reg.NEXT_PC = xtvec & ~0x3UL; if((xtvec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause; } // reset trap state this->reg.PRIV = new_priv; this->reg.trap_state = 0; std::array buffer; #if defined(_MSC_VER) sprintf(buffer.data(), "0x%016llx", addr); #else sprintf(buffer.data(), "0x%016lx", addr); #endif if((flags & 0xffffffff) != 0xffffffff) NSCLOG(INFO, LOGCAT) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? this->irq_str[cause] : this->trap_str[cause]) << "' (" << cause << ")" << " at address " << buffer.data() << " occurred"; return this->reg.NEXT_PC; } template uint64_t riscv_hart_m_p::leave_trap(uint64_t flags) { this->state.mstatus.MIE = this->state.mstatus.MPIE; this->state.mstatus.MPIE = 1; // sets the pc to the value stored in the x epc register. this->reg.NEXT_PC = this->csr[mepc] & this->get_pc_mask(); NSCLOG(INFO, LOGCAT) << "Executing xRET"; check_interrupt(); this->reg.trap_state = this->reg.pending_trap; return this->reg.NEXT_PC; } } // namespace arch } // namespace iss #endif /* _RISCV_HART_M_P_H */