1 Коммитов

Автор SHA1 Сообщение Дата
7ea3a6261d checkin from eve 2024-12-27 19:17:37 +00:00
22 изменённых файлов: 2864 добавлений и 2101 удалений

Просмотреть файл

@ -18,7 +18,6 @@ add_subdirectory(softfloat)
set(LIB_SOURCES
src/iss/plugin/instruction_count.cpp
src/iss/arch/tgc5c.cpp
src/iss/mmio/memory_if.cpp
src/vm/interp/vm_tgc5c.cpp
src/vm/fp_functions.cpp
src/iss/debugger/csr_names.cpp
@ -110,6 +109,15 @@ if(TARGET yaml-cpp::yaml-cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
# if(WITH_LLVM)
# target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
# target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
# if(BUILD_SHARED_LIBS)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
# endif()
# endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
FRAMEWORK FALSE

Просмотреть файл

@ -96,7 +96,7 @@ protected:
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, jit_holder&) override;
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
enum globals_e {TVAL = 0, GLOBALS_SIZE};
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
@ -221,7 +221,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_holder& jh) {
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
@ -233,6 +233,7 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_hold
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())

Просмотреть файл

@ -199,6 +199,9 @@ template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__

Просмотреть файл

@ -101,7 +101,7 @@ protected:
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, BasicBlock *) override;
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
@ -244,7 +244,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block) {
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@ -256,10 +256,9 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block)
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001){
this->builder.CreateBr(this->leave_blk);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return std::make_tuple(JUMP_TO_SELF, nullptr);
}
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@ -341,10 +340,6 @@ void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* icount_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::ICOUNT), get_reg_ptr(arch::traits<ARCH>::ICOUNT)), this->gen_const(64U, 1));
this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits<ARCH>::ICOUNT), false);
//increment cyclecount
auto* cycle_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::CYCLE), get_reg_ptr(arch::traits<ARCH>::CYCLE)), this->gen_const(64U, 1));
this->builder.CreateStore(cycle_val, get_reg_ptr(arch::traits<ARCH>::CYCLE), false);
}
} // namespace ${coreDef.name.toLowerCase()}

Просмотреть файл

@ -176,7 +176,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ ${instr.length/8};
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
<%instr.behavior.eachLine{%>${it}
@ -273,12 +272,13 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("return *next_pc;");
}
<%
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
<%if(fcsr != null) {%>
os << add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE);
os << add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP);
if(fcsr != null) {%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
@ -309,6 +309,7 @@ template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
tu.add_prologue(os.str());
}
} // namespace ${coreDef.name.toLowerCase()}
template <>

Просмотреть файл

@ -1,233 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MSTATUS_TYPE
#define _MSTATUS_TYPE
#include <cstdint>
#include <type_traits>
#include <util/bit_field.h>
#include <util/ities.h>
namespace iss {
namespace arch {
template <class T, class Enable = void> struct status {};
// specialization 32bit
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); }
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
template <typename T> struct status<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
static inline unsigned SD(T v) { return bit_sub<63, 1>(v); };
// value of XLEN for S-mode
static inline unsigned SXL(T v) { return bit_sub<34, 2>(v); };
// value of XLEN for U-mode
static inline unsigned UXL(T v) { return bit_sub<32, 2>(v); };
// Trap SRET
static inline unsigned TSR(T v) { return bit_sub<22, 1>(v); };
// Timeout Wait
static inline unsigned TW(T v) { return bit_sub<21, 1>(v); };
// Trap Virtual Memory
static inline unsigned TVM(T v) { return bit_sub<20, 1>(v); };
// Make eXecutable Readable
static inline unsigned MXR(T v) { return bit_sub<19, 1>(v); };
// permit Supervisor User Memory access
static inline unsigned SUM(T v) { return bit_sub<18, 1>(v); };
// Modify PRiVilege
static inline unsigned MPRV(T v) { return bit_sub<17, 1>(v); };
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
static inline unsigned XS(T v) { return bit_sub<15, 2>(v); };
// floating-point unit status Off/Initial/Clean/Dirty
static inline unsigned FS(T v) { return bit_sub<13, 2>(v); };
// machine previous privilege
static inline unsigned MPP(T v) { return bit_sub<11, 2>(v); };
// supervisor previous privilege
static inline unsigned SPP(T v) { return bit_sub<8, 1>(v); };
// previous machine interrupt-enable
static inline unsigned MPIE(T v) { return bit_sub<7, 1>(v); };
// previous supervisor interrupt-enable
static inline unsigned SPIE(T v) { return bit_sub<5, 1>(v); };
// previous user interrupt-enable
static inline unsigned UPIE(T v) { return bit_sub<4, 1>(v); };
// machine interrupt-enable
static inline unsigned MIE(T v) { return bit_sub<3, 1>(v); };
// supervisor interrupt-enable
static inline unsigned SIE(T v) { return bit_sub<1, 1>(v); };
// user interrupt-enable
static inline unsigned UIE(T v) { return bit_sub<0, 1>(v); };
};
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
// specialization 64bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR
// XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None
// dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const T mstatus_reset_val = 0x1800;
};
} // namespace arch
} // namespace iss
#endif // _MSTATUS_TYPE

Просмотреть файл

@ -1,5 +1,5 @@
/*******************************************************************************
* Copyright (C) 2017 - 2025 MINRES Technologies GmbH
* Copyright (C) 2017, 2018, 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -35,25 +35,15 @@
#ifndef _RISCV_HART_COMMON
#define _RISCV_HART_COMMON
#include "iss/arch/traits.h"
#include "iss/log_categories.h"
#include "iss/mmio/memory_if.h"
#include "iss/vm_types.h"
#include "mstatus.h"
#include "util/delegate.h"
#include <array>
#include <cstdint>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/semihosting/semihosting.h>
#include <limits>
#include <sstream>
#include <string>
#include <unordered_map>
#include <util/logging.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) ::__builtin_expect(!!(x), 1)
@ -66,7 +56,9 @@
namespace iss {
namespace arch {
enum features_e { FEAT_NONE, FEAT_EXT_N = 1, FEAT_DEBUG = 2 };
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum features_e { FEAT_NONE, FEAT_PMP = 1, FEAT_EXT_N = 2, FEAT_CLIC = 4, FEAT_DEBUG = 8, FEAT_TCM = 16 };
enum riscv_csr {
/* user-level CSR */
@ -242,6 +234,10 @@ struct vm_info {
};
struct feature_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
uint64_t tcm_base{0x10000000};
uint64_t tcm_size{0x8000};
uint64_t io_address{0xf0000000};
@ -274,145 +270,57 @@ public:
: trap_access(15 << 16, badaddr) {}
};
template <typename WORD_TYPE> struct priv_if {
using rd_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, WORD_TYPE)>;
std::function<iss::status(unsigned, WORD_TYPE&)> read_csr;
std::function<iss::status(unsigned, WORD_TYPE)> write_csr;
std::function<iss::status(uint8_t const*)> exec_htif;
std::unordered_map<unsigned, rd_csr_f>& csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f>& csr_wr_cb;
hart_state<WORD_TYPE>& mstatus;
uint64_t& tohost;
uint64_t& fromhost;
unsigned& mcause_max_irq;
};
template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_common : public BASE, public mmio::memory_elem {
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char*, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char*, 12> irq_str = {{"User software interrupt", "Supervisor software interrupt", "Reserved",
"Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt",
"Reserved", "Machine timer interrupt", "User external interrupt",
"Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
constexpr static unsigned MEM = traits<BASE>::MEM;
using core = BASE;
using this_class = riscv_hart_common<BASE, LOGCAT>;
using phys_addr_t = typename core::phys_addr_t;
using reg_t = typename core::reg_t;
using addr_t = typename core::addr_t;
using rd_csr_f = std::function<iss::status(unsigned addr, reg_t&)>;
using wr_csr_f = std::function<iss::status(unsigned addr, reg_t)>;
#define MK_CSR_RD_CB(FCT) [this](unsigned a, reg_t& r) -> iss::status { return this->FCT(a, r); };
#define MK_CSR_WR_CB(FCT) [this](unsigned a, reg_t r) -> iss::status { return this->FCT(a, r); };
riscv_hart_common()
: state()
, instr_if(*this) {
// reset values
csr[misa] = traits<BASE>::MISA_VAL;
csr[mvendorid] = 0x669;
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fcsr] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[fflags] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[fflags] = MK_CSR_WR_CB(write_fcsr);
csr_rd_cb[frm] = MK_CSR_RD_CB(read_fcsr);
csr_wr_cb[frm] = MK_CSR_WR_CB(write_fcsr);
}
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_plain);
}
for(unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
if(traits<BASE>::XLEN == 32)
for(unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_null);
}
// common regs
const std::array<unsigned, 4> roaddrs{{misa, mvendorid, marchid, mimpid}};
for(auto addr : roaddrs) {
csr_rd_cb[addr] = MK_CSR_RD_CB(read_plain);
csr_wr_cb[addr] = MK_CSR_WR_CB(write_null);
}
// special handling & overrides
csr_rd_cb[time] = MK_CSR_RD_CB(read_time);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[timeh] = MK_CSR_RD_CB(read_time);
csr_rd_cb[cycle] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[cycleh] = MK_CSR_RD_CB(read_cycle);
csr_rd_cb[instret] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[instreth] = MK_CSR_RD_CB(read_instret);
csr_rd_cb[mcycle] = MK_CSR_RD_CB(read_cycle);
csr_wr_cb[mcycle] = MK_CSR_WR_CB(write_cycle);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[mcycleh] = MK_CSR_RD_CB(read_cycle);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[mcycleh] = MK_CSR_WR_CB(write_cycle);
csr_rd_cb[minstret] = MK_CSR_RD_CB(read_instret);
csr_wr_cb[minstret] = MK_CSR_WR_CB(write_instret);
if(traits<BASE>::XLEN == 32)
csr_rd_cb[minstreth] = MK_CSR_RD_CB(read_instret);
if(traits<BASE>::XLEN == 32)
csr_wr_cb[minstreth] = MK_CSR_WR_CB(write_instret);
csr_rd_cb[mhartid] = MK_CSR_RD_CB(read_hartid);
};
~riscv_hart_common() {
if(io_buf.str().length()) {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
}
inline void read_reg_uint32(uint64_t offs, uint32_t& reg, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_uint32(uint64_t offs, uint32_t& reg, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs & 0x3) {
case 0:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
struct riscv_hart_common {
riscv_hart_common(){};
~riscv_hart_common(){};
std::unordered_map<std::string, uint64_t> symbol_table;
uint64_t entry_address{0};
uint64_t tohost = std::numeric_limits<uint64_t>::max();
uint64_t fromhost = std::numeric_limits<uint64_t>::max();
std::stringstream io_buf;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
void set_semihosting_callback(semihosting_cb_t<reg_t> cb) { semihosting_cb = cb; };
std::pair<uint64_t, bool> load_file(std::string name, int type) {
return std::make_pair(entry_address, read_elf_file(name, sizeof(reg_t) == 4 ? ELFIO::ELFCLASS32 : ELFIO::ELFCLASS64));
}
bool read_elf_file(std::string name, uint8_t expected_elf_class) {
bool read_elf_file(std::string name, uint8_t expected_elf_class,
std::function<iss::status(uint64_t, uint64_t, const uint8_t* const)> cb) {
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
@ -429,9 +337,8 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
const auto type = pseg->get_type();
if(type == ELFIO::PT_LOAD && fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits<BASE>::MEM,
pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(type == 1 && fsize > 0) {
auto res = cb(pseg->get_physical_address(), fsize, reinterpret_cast<const uint8_t* const>(seg_data));
if(res != iss::Ok)
CPPLOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address();
}
@ -458,10 +365,11 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
}
try {
tohost = symbol_table.at("tohost");
} catch(std::out_of_range& e) {
}
try {
fromhost = symbol_table.at("fromhost");
try {
fromhost = symbol_table.at("fromhost");
} catch(std::out_of_range& e) {
fromhost = tohost + 0x40;
}
} catch(std::out_of_range& e) {
}
}
@ -469,385 +377,6 @@ template <typename BASE, typename LOGCAT = logging::disass> struct riscv_hart_co
}
return false;
};
iss::status execute_sys_write(arch_if* aif, const std::array<uint64_t, 8>& loaded_payload, unsigned mem_type) {
uint64_t fd = loaded_payload[1];
uint64_t buf_ptr = loaded_payload[2];
uint64_t len = loaded_payload[3];
std::vector<char> buf(len);
if(aif->read(address_type::PHYSICAL, access_type::DEBUG_READ, mem_type, buf_ptr, len, reinterpret_cast<uint8_t*>(buf.data()))) {
CPPLOG(ERR) << "SYS_WRITE buffer read went wrong";
return iss::Err;
}
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n' || buf[i] == '\0') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
} else
io_buf << buf[i];
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
if(fromhost != std::numeric_limits<uint64_t>::max())
if(aif->write(address_type::PHYSICAL, access_type::DEBUG_WRITE, mem_type, fromhost, 1, &ret_val)) {
CPPLOG(ERR) << "Fromhost write went wrong";
return iss::Err;
}
return iss::Ok;
}
constexpr bool has_compressed() { return traits<BASE>::MISA_VAL & 0b0100; }
constexpr reg_t get_pc_mask() { return has_compressed() ? (reg_t)~1 : (reg_t)~3; }
void disass_output(uint64_t pc, const std::string instr) override {
// NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};s:0x{:x};c:{}]", pc, instr, lvl[this->reg.PRIV],
// (reg_t)state.mstatus,
// this->reg.cycle + cycle_offset);
NSCLOG(INFO, LOGCAT) << fmt::format("0x{:016x} {:40} [p:{};c:{}]", pc, instr, lvl[this->reg.PRIV],
this->reg.cycle + cycle_offset);
};
void register_csr(unsigned addr, rd_csr_f f) { csr_rd_cb[addr] = f; }
void register_csr(unsigned addr, wr_csr_f f) { csr_wr_cb[addr] = f; }
void register_csr(unsigned addr, rd_csr_f rdf, wr_csr_f wrf) {
csr_rd_cb[addr] = rdf;
csr_wr_cb[addr] = wrf;
}
void unregister_csr_rd(unsigned addr) { csr_rd_cb.erase(addr); }
void unregister_csr_wr(unsigned addr) { csr_wr_cb.erase(addr); }
bool debug_mode_active() { return this->reg.PRIV & 0x4; }
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
iss::status read_csr(unsigned addr, reg_t& val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if(it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status write_csr(unsigned addr, reg_t val) {
if(addr >= csr.size())
return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if(this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr & 0xc00) == 0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if(it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return it->second(addr, val);
}
iss::status read_null(unsigned addr, reg_t& val) {
val = 0;
return iss::Ok;
}
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
iss::status read_cycle(unsigned addr, reg_t& val) {
auto cycle_val = this->reg.cycle + cycle_offset;
if(addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if(addr == mcycleh) {
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
iss::status write_cycle(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
mcycle_csr = static_cast<uint64_t>(val);
} else {
if(addr == mcycle) {
mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val;
} else {
mcycle_csr = (static_cast<uint64_t>(val) << 32) + (mcycle_csr & 0xffffffff);
}
}
cycle_offset = mcycle_csr - this->reg.cycle; // TODO: relying on wrap-around
return iss::Ok;
}
iss::status read_instret(unsigned addr, reg_t& val) {
if((addr & 0xff) == (minstret & 0xff)) {
val = static_cast<reg_t>(this->reg.instret);
} else if((addr & 0xff) == (minstreth & 0xff)) {
val = static_cast<reg_t>(this->reg.instret >> 32);
}
return iss::Ok;
}
iss::status write_instret(unsigned addr, reg_t val) {
if(sizeof(typename traits<BASE>::reg_t) != 4) {
this->reg.instret = static_cast<uint64_t>(val);
} else {
if((addr & 0xff) == (minstret & 0xff)) {
this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val;
} else {
this->reg.instret = (static_cast<uint64_t>(val) << 32) + (this->reg.instret & 0xffffffff);
}
}
this->reg.instret--;
return iss::Ok;
}
iss::status read_time(unsigned addr, reg_t& val) {
uint64_t time_val = this->reg.cycle / (100000000 / 32768 - 1); //-> ~3052;
if(addr == time) {
val = static_cast<reg_t>(time_val);
} else if(addr == timeh) {
if(sizeof(typename traits<BASE>::reg_t) != 4)
return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
iss::status read_tvec(unsigned addr, reg_t& val) {
val = csr[addr] & ~2;
return iss::Ok;
}
iss::status read_hartid(unsigned addr, reg_t& val) {
val = mhartid_reg;
return iss::Ok;
}
iss::status write_epc(unsigned addr, reg_t val) {
csr[addr] = val & get_pc_mask();
return iss::Ok;
}
iss::status write_dcsr(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
// +-------------- ebreakm
// | +---------- stepi
// | | +++----- cause
// | | ||| +- step
csr[addr] = val & 0b1000100111000100U;
return iss::Ok;
}
iss::status read_debug(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = csr[addr];
return iss::Ok;
}
iss::status write_dscratch(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
csr[addr] = val;
return iss::Ok;
}
iss::status read_dpc(unsigned addr, reg_t& val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
val = this->reg.DPC;
return iss::Ok;
}
iss::status write_dpc(unsigned addr, reg_t val) {
if(!debug_mode_active())
throw illegal_instruction_fault(this->fault_data);
this->reg.DPC = val;
return iss::Ok;
}
iss::status read_fcsr(unsigned addr, reg_t& val) {
switch(addr) {
case 1: // fflags, 4:0
val = bit_sub<0, 5>(this->get_fcsr());
break;
case 2: // frm, 7:5
val = bit_sub<5, 3>(this->get_fcsr());
break;
case 3: // fcsr
val = this->get_fcsr();
break;
default:
return iss::Err;
}
return iss::Ok;
}
iss::status write_fcsr(unsigned addr, reg_t val) {
switch(addr) {
case 1: // fflags, 4:0
this->set_fcsr((this->get_fcsr() & 0xffffffe0) | (val & 0x1f));
break;
case 2: // frm, 7:5
this->set_fcsr((this->get_fcsr() & 0xffffff1f) | ((val & 0x7) << 5));
break;
case 3: // fcsr
this->set_fcsr(val & 0xff);
break;
default:
return iss::Err;
}
return iss::Ok;
}
priv_if<reg_t> get_priv_if() {
return priv_if<reg_t>{.read_csr = [this](unsigned addr, reg_t& val) -> iss::status { return read_csr(addr, val); },
.write_csr = [this](unsigned addr, reg_t val) -> iss::status { return write_csr(addr, val); },
.exec_htif = [this](uint8_t const* data) -> iss::status { return execute_htif(data); },
.csr_rd_cb{this->csr_rd_cb},
.csr_wr_cb{csr_wr_cb},
.mstatus{this->state},
.tohost{this->tohost},
.fromhost{this->fromhost},
.mcause_max_irq{mcause_max_irq}};
}
iss::status execute_htif(uint8_t const* data) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = traits<BASE>::XLEN == 32 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL;
if(payload_addr & 1) {
CPPLOG(FATAL) << "this->tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
} else if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
if(memory.rd_mem(access_type::DEBUG_READ, payload_addr, 8 * sizeof(uint64_t),
reinterpret_cast<uint8_t*>(loaded_payload.data())) == iss::Err)
CPPLOG(ERR) << "Syscall read went wrong";
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) { // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, traits<BASE>::MEM);
} else {
CPPLOG(ERR) << "this->tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "this->tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
}
mmio::memory_hierarchy memories;
virtual mmio::memory_if get_mem_if() override {
assert(false || "This function should nevver be called");
return mmio::memory_if{};
}
virtual void set_next(mmio::memory_if mem_if) { memory = mem_if; };
void set_irq_num(unsigned i) { mcause_max_irq = 1 << util::ilog2(i); }
protected:
hart_state<reg_t> state;
static constexpr reg_t get_mstatus_mask_t(unsigned priv_lvl = PRIV_M) {
if(sizeof(reg_t) == 4) {
return priv_lvl == PRIV_U ? 0x80000011UL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x800de133UL // 0b0...0 0001 1000 1001 1001;
: 0x807ff9ddUL;
} else {
return priv_lvl == PRIV_U ? 0x011ULL : // 0b1...0 0001 0001
priv_lvl == PRIV_S ? 0x000de133ULL
: 0x007ff9ddULL;
}
}
mmio::memory_if memory;
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_common<BASE, LOGCAT>& arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
uint64_t get_pc() override { return arch.reg.PC; }
uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }
uint64_t get_instr_word() override { return arch.reg.instruction; }
uint64_t get_instr_count() override { return arch.reg.icount; }
uint64_t get_pendig_traps() override { return arch.reg.trap_state; }
uint64_t get_total_cycles() override { return arch.reg.cycle + arch.cycle_offset; }
void update_last_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }
bool is_branch_taken() override { return arch.reg.last_branch; }
unsigned get_reg_num() override { return traits<BASE>::NUM_REGS; }
unsigned get_reg_size(unsigned num) override { return traits<BASE>::reg_bit_widths[num]; }
std::unordered_map<std::string, uint64_t> const& get_symbol_table(std::string name) override { return arch.symbol_table; }
riscv_hart_common<BASE, LOGCAT>& arch;
};
friend struct riscv_instrumentation_if;
riscv_instrumentation_if instr_if;
instrumentation_if* get_instrumentation_if() override { return &instr_if; };
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
csr_type csr;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
reg_t mhartid_reg{0x0};
uint64_t mcycle_csr{0};
uint64_t minstret_csr{0};
reg_t fault_data;
int64_t cycle_offset{0};
int64_t instret_offset{0};
semihosting_cb_t<reg_t> semihosting_cb;
std::array<vm_info, 2> vm;
unsigned mcause_max_irq{16U};
};
} // namespace arch

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -1,252 +0,0 @@
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
namespace iss {
namespace mmio {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct clic : public memory_elem {
using this_class = clic<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
clic(arch::priv_if<WORD_TYPE> hart_if, clic_config cfg)
: hart_if(hart_if)
, cfg(cfg) {
clic_int_reg.resize(cfg.clic_num_irq, clic_int_reg_t{.raw = 0});
clic_cfg_reg = 0x30;
clic_mact_lvl = clic_mprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
clic_uact_lvl = clic_uprev_lvl = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr_rd_cb[arch::mtvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mtvt] = MK_CSR_WR_CB(write_xtvt);
// hart_if.csr_rd_cb[mxnti] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mxnti] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::mintstatus] = MK_CSR_WR_CB(write_null);
// hart_if.csr_rd_cb[mscratchcsw] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcsw] = MK_CSR_WR_CB(write_plain(a,r);};
// hart_if.csr_rd_cb[mscratchcswl] = MK_CSR_RD_CB(read_plain(a,r);};
// hart_if.csr_wr_cb[mscratchcswl] = MK_CSR_WR_CB(write_plain(a,r);};
hart_if.csr_rd_cb[arch::mintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::mintthresh] = MK_CSR_WR_CB(write_intthresh);
if(cfg.nmode) {
hart_if.csr_rd_cb[arch::utvt] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::utvt] = MK_CSR_WR_CB(write_xtvt);
hart_if.csr_rd_cb[arch::uintstatus] = MK_CSR_RD_CB(read_intstatus);
hart_if.csr_wr_cb[arch::uintstatus] = MK_CSR_WR_CB(write_null);
hart_if.csr_rd_cb[arch::uintthresh] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[arch::uintthresh] = MK_CSR_WR_CB(write_intthresh);
}
hart_if.csr[arch::mintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
hart_if.csr[arch::uintthresh] = (1 << (cfg.clic_int_ctl_bits)) - 1;
}
~clic() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
std::tuple<uint64_t, uint64_t> get_range() override { return {cfg.clic_base, cfg.clic_base + 0x7fff}; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return read_clic(addr, length, data);
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(addr >= cfg.clic_base && (addr + length) < (cfg.clic_base + 0x8000))
return write_clic(addr, length, data);
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_clic(uint64_t addr, unsigned length, uint8_t* data);
iss::status write_clic(uint64_t addr, unsigned length, uint8_t const* data);
iss::status write_null(unsigned addr, reg_t val) { return iss::status::Ok; }
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_xtvt(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & ~0x3fULL;
return iss::Ok;
}
iss::status read_cause(unsigned addr, reg_t& val);
iss::status write_cause(unsigned addr, reg_t val);
iss::status read_intstatus(unsigned addr, reg_t& val);
iss::status write_intthresh(unsigned addr, reg_t val);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
clic_config cfg;
uint8_t clic_cfg_reg{0};
std::array<uint32_t, 32> clic_inttrig_reg;
union clic_int_reg_t {
struct {
uint8_t ip;
uint8_t ie;
uint8_t attr;
uint8_t ctl;
};
uint32_t raw;
};
std::vector<clic_int_reg_t> clic_int_reg;
uint8_t clic_mprev_lvl{0}, clic_uprev_lvl{0};
uint8_t clic_mact_lvl{0}, clic_uact_lvl{0};
};
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_clic(uint64_t addr, unsigned length, uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
*data = clic_cfg_reg;
for(auto i = 1; i < length; ++i)
*(data + i) = 0;
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
read_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
read_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
} else {
for(auto i = 0U; i < length; ++i)
*(data + i) = 0;
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_clic(uint64_t addr, unsigned length, const uint8_t* const data) {
if(addr == cfg.clic_base) { // cliccfg
clic_cfg_reg = (clic_cfg_reg & ~0x1e) | (*data & 0x1e);
} else if(addr >= (cfg.clic_base + 0x40) && (addr + length) <= (cfg.clic_base + 0x40 + cfg.clic_num_trigger * 4)) { // clicinttrig
auto offset = ((addr & 0x7fff) - 0x40) / 4;
write_reg_with_offset(clic_inttrig_reg[offset], addr & 0x3, data, length);
} else if(addr >= (cfg.clic_base + 0x1000) &&
(addr + length) <= (cfg.clic_base + 0x1000 + cfg.clic_num_irq * 4)) { // clicintip/clicintie/clicintattr/clicintctl
auto offset = ((addr & 0x7fff) - 0x1000) / 4;
write_reg_with_offset(clic_int_reg[offset].raw, addr & 0x3, data, length);
clic_int_reg[offset].raw &= 0xf0c70101; // clicIntCtlBits->0xf0, clicintattr->0xc7, clicintie->0x1, clicintip->0x1
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_cause(unsigned addr, reg_t& val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
val = hart_if.csr[addr] & (1UL << (sizeof(reg_t) * 8) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
val |= clic_uprev_lvl << 16;
val |= hart_if.mstatus.UPIE << 27;
break;
default:
val |= clic_mprev_lvl << 16;
val |= hart_if.mstatus.MPIE << 27;
val |= hart_if.mstatus.MPP << 28;
break;
}
} else
val = hart_if.csr[addr] & ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_cause(unsigned addr, reg_t val) {
if((hart_if.csr[arch::mtvec] & 0x3) == 3) {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1) | (0xfUL << 16));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
auto mode = (addr >> 8) & 0x3;
switch(mode) {
case 0:
clic_uprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.mstatus.UPIE = (val >> 27) & 0x1;
break;
default:
clic_mprev_lvl = ((val >> 16) & 0xff) | (1 << (8 - cfg.clic_int_ctl_bits)) - 1;
hart_if.mstatus.MPIE = (val >> 27) & 0x1;
hart_if.mstatus.MPP = (val >> 28) & 0x3;
break;
}
} else {
auto mask = ((1UL << (sizeof(WORD_TYPE) * 8 - 1)) | (hart_if.mcause_max_irq - 1));
hart_if.csr[addr] = (val & mask) | (hart_if.csr[addr] & ~mask);
}
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::read_intstatus(unsigned addr, reg_t& val) {
auto mode = (addr >> 8) & 0x3;
val = clic_uact_lvl & 0xff;
if(mode == 0x3)
val += (clic_mact_lvl & 0xff) << 24;
return iss::Ok;
}
template <typename WORD_TYPE> iss::status clic<WORD_TYPE>::write_intthresh(unsigned addr, reg_t val) {
hart_if.csr[addr] = (val & 0xff) | (1 << (cfg.clic_int_ctl_bits)) - 1;
return iss::Ok;
}
} // namespace mmio
} // namespace iss

Просмотреть файл

@ -1,26 +0,0 @@
#include "memory_if.h"
namespace iss {
namespace mmio {
void memory_hierarchy::prepend(memory_elem& e) {
hierarchy.push_front(e);
update_chain();
}
void memory_hierarchy::append(memory_elem& e) {
hierarchy.push_back(e);
update_chain();
}
void memory_hierarchy::insert_before(memory_elem&) {}
void memory_hierarchy::insert_after(memory_elem&) {}
void memory_hierarchy::replace_last(memory_elem&) {}
void memory_hierarchy::update_chain() {
bool tail = false;
for(size_t i = 0; i < hierarchy.size(); ++i) {
hierarchy[i].get().register_csrs();
if(i)
hierarchy[i - 1].get().set_next(hierarchy[i].get().get_mem_if());
}
}
} // namespace mmio
} // namespace iss

Просмотреть файл

@ -1,76 +0,0 @@
/*******************************************************************************
* Copyright (C) 2025 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _MEMORY_MEMORY_IF_
#define _MEMORY_MEMORY_IF_
#include "iss/vm_types.h"
#include <deque>
#include <functional>
#include <limits>
#include <util/delegate.h>
namespace iss {
namespace mmio {
using rd_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t*);
using wr_mem_func_sig = iss::status(iss::access_type, uint64_t, unsigned, uint8_t const*);
struct memory_if {
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t*)> rd_mem;
util::delegate<iss::status(access_type, uint64_t, unsigned, uint8_t const*)> wr_mem;
};
struct memory_elem {
virtual memory_if get_mem_if() = 0;
virtual void set_next(memory_if) = 0;
virtual void register_csrs() {}
virtual std::tuple<uint64_t, uint64_t> get_range() { return {0, std::numeric_limits<uint64_t>::max()}; }
};
struct memory_hierarchy {
void prepend(memory_elem&);
void append(memory_elem&);
void insert_before(memory_elem&);
void insert_after(memory_elem&);
void replace_last(memory_elem&);
protected:
void update_chain();
std::deque<std::reference_wrapper<memory_elem>> hierarchy;
};
} // namespace mmio
} // namespace iss
#endif

Просмотреть файл

@ -1,62 +0,0 @@
#ifndef _MEMORY_WITH_HTIF_
#define _MEMORY_WITH_HTIF_
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
#include <util/sparse_array.h>
namespace iss {
namespace mmio {
template <typename WORD_TYPE> struct memory_with_htif : public memory_elem {
using this_class = memory_with_htif<WORD_TYPE>;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
memory_with_htif(arch::priv_if<WORD_TYPE> hart_if)
: hart_if(hart_if) {}
~memory_with_htif() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if) override {
// intenrionally left empty, leaf element
}
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
for(auto offs = 0U; offs < length; ++offs) {
*(data + offs) = mem[(addr + offs) % mem.size()];
}
return iss::Ok;
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
mem_type::page_type& p = mem(addr / mem.page_size);
std::copy(data, data + length, p.data() + (addr & mem.page_addr_mask));
// this->tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(access && iss::access_type::FUNC) {
if(addr == hart_if.tohost) {
return hart_if.exec_htif(data);
}
if((WORD_LEN == 32 && addr == hart_if.fromhost + 4) || (WORD_LEN == 64 && addr == hart_if.fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (hart_if.fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (hart_if.tohost & mem.page_addr_mask)) = fhostvar;
}
}
return iss::Ok;
}
protected:
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
mem_type mem;
arch::priv_if<WORD_TYPE> hart_if;
};
} // namespace mmio
} // namespace iss
#endif // _MEMORY_WITH_HTIF_

Просмотреть файл

@ -1,212 +0,0 @@
#include "iss/arch/riscv_hart_common.h"
#include "iss/vm_types.h"
#include "memory_if.h"
#include <util/logging.h>
namespace iss {
namespace mmio {
struct clic_config {
uint64_t clic_base{0xc0000000};
unsigned clic_int_ctl_bits{4};
unsigned clic_num_irq{16};
unsigned clic_num_trigger{0};
bool nmode{false};
};
inline void read_reg_with_offset(uint32_t reg, uint8_t offs, uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 1 + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(data + i) = *(reg_ptr + 2 + i);
break;
case 3:
*data = *(reg_ptr + 3);
break;
}
}
inline void write_reg_with_offset(uint32_t& reg, uint8_t offs, const uint8_t* const data, unsigned length) {
auto reg_ptr = reinterpret_cast<uint8_t*>(&reg);
switch(offs) {
default:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + i) = *(data + i);
break;
case 1:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 1 + i) = *(data + i);
break;
case 2:
for(auto i = 0U; i < length; ++i)
*(reg_ptr + 2 + i) = *(data + i);
break;
case 3:
*(reg_ptr + 3) = *data;
break;
}
}
template <typename WORD_TYPE> struct pmp : public memory_elem {
using this_class = pmp<WORD_TYPE>;
using reg_t = WORD_TYPE;
constexpr static unsigned WORD_LEN = sizeof(WORD_TYPE) * 8;
pmp(arch::priv_if<WORD_TYPE> hart_if, clic_config cfg)
: hart_if(hart_if)
, cfg(cfg) {
for(size_t i = arch::pmpaddr0; i <= arch::pmpaddr15; ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_plain);
}
for(size_t i = arch::pmpcfg0; i < arch::pmpcfg0 + 16 / sizeof(reg_t); ++i) {
hart_if.csr_rd_cb[i] = MK_CSR_RD_CB(read_plain);
hart_if.csr_wr_cb[i] = MK_CSR_WR_CB(write_pmpcfg);
}
}
~pmp() = default;
memory_if get_mem_if() override {
return memory_if{.rd_mem{util::delegate<rd_mem_func_sig>::from<this_class, &this_class::read_mem>(this)},
.wr_mem{util::delegate<wr_mem_func_sig>::from<this_class, &this_class::write_mem>(this)}};
}
void set_next(memory_if mem) override { down_stream_mem = mem; }
private:
iss::status read_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | ((access == access_type::FETCH ? 1 : 5) << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.rd_mem(access, addr, length, data);
}
iss::status write_mem(iss::access_type access, uint64_t addr, unsigned length, uint8_t const* data) {
if(!pmp_check(access, addr, length) && !is_debug(access)) {
hart_if.fault_data = addr;
if(is_debug(access))
throw trap_access(0, addr);
hart_if.reg.trap_state = (1UL << 31) | (7 << 16); // issue trap 1
return iss::Err;
}
return down_stream_mem.wr_mem(access, addr, length, data);
}
iss::status read_plain(unsigned addr, reg_t& val) {
val = hart_if.csr[addr];
return iss::Ok;
}
iss::status write_plain(unsigned addr, reg_t const& val) {
hart_if.csr[addr] = val;
return iss::Ok;
}
iss::status write_pmpcfg(unsigned addr, reg_t val) {
hart_if.csr[addr] = val & 0x9f9f9f9f;
return iss::Ok;
}
bool pmp_check(const access_type type, const uint64_t addr, const unsigned len);
protected:
arch::priv_if<WORD_TYPE> hart_if;
memory_if down_stream_mem;
};
template <typename WORD_TYPE> bool pmp<WORD_TYPE>::pmp_check(const access_type type, const uint64_t addr, const unsigned len) {
constexpr auto PMP_SHIFT = 2U;
constexpr auto PMP_R = 0x1U;
constexpr auto PMP_W = 0x2U;
constexpr auto PMP_X = 0x4U;
constexpr auto PMP_A = 0x18U;
constexpr auto PMP_L = 0x80U;
constexpr auto PMP_TOR = 0x1U;
constexpr auto PMP_NA4 = 0x2U;
constexpr auto PMP_NAPOT = 0x3U;
reg_t base = 0;
auto any_active = false;
auto const cfg_reg_size = sizeof(reg_t);
for(size_t i = 0; i < 16; i++) {
reg_t tor = hart_if.csr[arch::pmpaddr0 + i] << PMP_SHIFT;
uint8_t cfg = hart_if.csr[arch::pmpcfg0 + (i / cfg_reg_size)] >> (i % cfg_reg_size);
if(cfg & PMP_A) {
any_active = true;
auto pmp_a = (cfg & PMP_A) >> 3;
auto is_tor = pmp_a == PMP_TOR;
auto is_na4 = pmp_a == PMP_NA4;
reg_t mask = (hart_if.csr[arch::pmpaddr0 + i] << 1) | (!is_na4);
mask = ~(mask & ~(mask + 1)) << PMP_SHIFT;
// Check each 4-byte sector of the access
auto any_match = false;
auto all_match = true;
for(reg_t offset = 0; offset < len; offset += 1 << PMP_SHIFT) {
reg_t cur_addr = addr + offset;
auto napot_match = ((cur_addr ^ tor) & mask) == 0;
auto tor_match = base <= (cur_addr + len - 1) && cur_addr < tor;
auto match = is_tor ? tor_match : napot_match;
any_match |= match;
all_match &= match;
}
if(any_match) {
// If the PMP matches only a strict subset of the access, fail it
if(!all_match)
return false;
return (hart_if.reg.PRIV == arch::PRIV_M && !(cfg & PMP_L)) || (type == access_type::READ && (cfg & PMP_R)) ||
(type == access_type::WRITE && (cfg & PMP_W)) || (type == access_type::FETCH && (cfg & PMP_X));
}
}
base = tor;
}
// constexpr auto pmp_num_regs = 16;
// reg_t tor_base = 0;
// auto any_active = false;
// auto lower_addr = addr >>2;
// auto upper_addr = (addr+len-1)>>2;
// for (size_t i = 0; i < pmp_num_regs; i++) {
// uint8_t cfg = csr[pmpcfg0+(i/4)]>>(i%4);
// uint8_t cfg_next = i==(pmp_num_regs-1)? 0 : csr[pmpcfg0+((i+1)/4)]>>((i+1)%4);
// auto pmpaddr = csr[pmpaddr0+i];
// if (cfg & PMP_A) {
// any_active=true;
// auto is_tor = bit_sub<3, 2>(cfg) == PMP_TOR;
// auto is_napot = bit_sub<4, 1>(cfg) && bit_sub<3, 2>(cfg_next)!= PMP_TOR;
// if(is_napot) {
// reg_t mask = bit_sub<3, 1>(cfg)?~( pmpaddr & ~(pmpaddr + 1)): 0x3fffffff;
// auto mpmpaddr = pmpaddr & mask;
// if((lower_addr&mask) == mpmpaddr && (upper_addr&mask)==mpmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// } else if(is_tor) {
// if(lower_addr>=tor_base && upper_addr<=pmpaddr)
// return (hart_if.reg.PRIV == PRIV_M && !(cfg & PMP_L)) ||
// (type == access_type::READ && (cfg & PMP_R)) ||
// (type == access_type::WRITE && (cfg & PMP_W)) ||
// (type == access_type::FETCH && (cfg & PMP_X));
// }
// }
// tor_base = pmpaddr;
// }
return !any_active || hart_if.reg.PRIV == arch::PRIV_M;
}
} // namespace mmio
} // namespace iss

Просмотреть файл

@ -387,7 +387,7 @@ template <unsigned int BUSWIDTH> void core_complex<BUSWIDTH>::run() {
quantum_keeper.reset();
cpu->set_interrupt_execution(false);
cpu->start(dump_ir);
} while(!cpu->get_interrupt_execution());
} while(cpu->get_interrupt_execution());
sc_stop();
}

Просмотреть файл

@ -71,61 +71,44 @@ public:
iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) override {
if(addr.access && iss::access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? iss::Ok : iss::Err;
if(addr.val == this->tohost) {
reg_t cur_data = *reinterpret_cast<const reg_t*>(data);
// Extract Device (bits 63:56)
uint8_t device = sizeof(reg_t) == 4 ? 0 : (cur_data >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = sizeof(reg_t) == 4 ? 0 : (cur_data >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload_addr = cur_data & 0xFFFFFFFFFFFFULL; // 24bits
if(payload_addr & 1) {
if(payload_addr != 0x1) {
SCCERR(owner->hier_name()) << "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
<< "), stopping simulation";
} else {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
else {
auto tohost_upper = (sizeof(reg_t) == 4 && addr.val == (this->tohost + 4)) || (sizeof(reg_t) == 8 && addr.val == this->tohost);
auto tohost_lower = (sizeof(reg_t) == 4 && addr.val == this->tohost) || (sizeof(reg_t) == 64 && addr.val == this->tohost);
if(tohost_lower || tohost_upper) {
if(tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
} else {
SCCINFO(owner->hier_name())
<< "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation";
}
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(payload_addr));
throw(iss::simulation_stopped(hostvar));
#endif
break;
default:
break;
}
} else if(tohost_lower)
to_host_wr_cnt++;
return iss::Ok;
}
if(device == 0 && command == 0) {
std::array<uint64_t, 8> loaded_payload;
auto res = owner->read_mem(payload_addr, 8 * sizeof(uint64_t), reinterpret_cast<uint8_t*>(loaded_payload.data()), false)
? iss::Ok
: iss::Err;
if(res == iss::Err) {
SCCERR(owner->hier_name()) << "Syscall read went wrong";
return iss::Ok;
} else {
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
uint64_t syscall_num = loaded_payload.at(0);
if(syscall_num == 64) // SYS_WRITE
return this->execute_sys_write(this, loaded_payload, PLAT::MEM);
SCCERR(owner->hier_name()) << "tohost syscall with number 0x" << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
return res;
}
SCCERR(owner->hier_name()) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload_addr;
return iss::Ok;
}
auto res = owner->write_mem(addr.val, length, data) ? iss::Ok : iss::Err;
// clear MTIP on mtimecmp write
if(addr.val == 0x2004000) {
reg_t val;
this->read_csr(iss::arch::mip, val);
if(val & (1ULL << 7))
this->write_csr(iss::arch::mip, val & ~(1ULL << 7));
}
return res;
}
iss::status read_csr(unsigned addr, reg_t& val) override {
@ -182,6 +165,7 @@ public:
private:
sysc::tgfs::core_complex_if* const owner{nullptr};
sc_core::sc_event wfi_evt;
uint64_t hostvar{std::numeric_limits<uint64_t>::max()};
unsigned to_host_wr_cnt = 0;
bool first{true};
};

Просмотреть файл

@ -94,7 +94,7 @@ protected:
using this_class = vm_impl<ARCH>;
using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&);
continuation_e gen_single_inst_behavior(virt_addr_t&, jit_holder&) override;
continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override;
enum globals_e {TVAL = 0, GLOBALS_SIZE};
void gen_block_prologue(jit_holder& jh) override;
void gen_block_epilogue(jit_holder& jh) override;
@ -4780,7 +4780,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_holder& jh) {
continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) {
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
@ -4792,6 +4792,7 @@ continuation_e vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, jit_hold
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())

Просмотреть файл

@ -263,7 +263,7 @@ private:
return iss::Err;
// }
} else {
if (this->core.read(iss::address_type::PHYSICAL, pc.access, pc.space, pc.val, 4, data) != iss::Ok)
if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok)
return iss::Err;
}
@ -706,9 +706,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t load_address = (uint32_t)((uint64_t)(*(X+rs1) ) + (uint64_t)((int16_t)sext<12>(imm) ));
int8_t res_1 = super::template read_mem<int8_t>(traits::MEM, load_address);
int8_t res_27 = super::template read_mem<int8_t>(traits::MEM, load_address);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
int8_t res = (int8_t)res_1;
int8_t res = (int8_t)res_27;
if(rd != 0) {
*(X+rd) = (uint32_t)res;
}
@ -737,9 +737,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t load_address = (uint32_t)((uint64_t)(*(X+rs1) ) + (uint64_t)((int16_t)sext<12>(imm) ));
int16_t res_2 = super::template read_mem<int16_t>(traits::MEM, load_address);
int16_t res_28 = super::template read_mem<int16_t>(traits::MEM, load_address);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
int16_t res = (int16_t)res_2;
int16_t res = (int16_t)res_28;
if(rd != 0) {
*(X+rd) = (uint32_t)res;
}
@ -768,9 +768,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t load_address = (uint32_t)((uint64_t)(*(X+rs1) ) + (uint64_t)((int16_t)sext<12>(imm) ));
int32_t res_3 = super::template read_mem<int32_t>(traits::MEM, load_address);
int32_t res_29 = super::template read_mem<int32_t>(traits::MEM, load_address);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
int32_t res = (int32_t)res_3;
int32_t res = (int32_t)res_29;
if(rd != 0) {
*(X+rd) = (uint32_t)res;
}
@ -799,9 +799,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t load_address = (uint32_t)((uint64_t)(*(X+rs1) ) + (uint64_t)((int16_t)sext<12>(imm) ));
uint8_t res_4 = super::template read_mem<uint8_t>(traits::MEM, load_address);
uint8_t res_30 = super::template read_mem<uint8_t>(traits::MEM, load_address);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint8_t res = res_4;
uint8_t res = res_30;
if(rd != 0) {
*(X+rd) = (uint32_t)res;
}
@ -830,9 +830,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t load_address = (uint32_t)((uint64_t)(*(X+rs1) ) + (uint64_t)((int16_t)sext<12>(imm) ));
uint16_t res_5 = super::template read_mem<uint16_t>(traits::MEM, load_address);
uint16_t res_31 = super::template read_mem<uint16_t>(traits::MEM, load_address);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint16_t res = res_5;
uint16_t res = res_31;
if(rd != 0) {
*(X+rd) = (uint32_t)res;
}
@ -1538,9 +1538,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
else {
uint32_t xrs1 = *(X+rs1);
if(rd != 0) {
uint32_t res_6 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_32 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_6;
uint32_t xrd = res_32;
super::template write_mem<uint32_t>(traits::CSR, csr, xrs1);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
*(X+rd) = xrd;
@ -1573,9 +1573,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
raise(0, traits::RV_CAUSE_ILLEGAL_INSTRUCTION);
}
else {
uint32_t res_7 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_33 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_7;
uint32_t xrd = res_33;
uint32_t xrs1 = *(X+rs1);
if(rs1 != 0) {
super::template write_mem<uint32_t>(traits::CSR, csr, xrd | xrs1);
@ -1608,9 +1608,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
raise(0, traits::RV_CAUSE_ILLEGAL_INSTRUCTION);
}
else {
uint32_t res_8 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_34 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_8;
uint32_t xrd = res_34;
uint32_t xrs1 = *(X+rs1);
if(rs1 != 0) {
super::template write_mem<uint32_t>(traits::CSR, csr, xrd & ~ xrs1);
@ -1643,9 +1643,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
raise(0, traits::RV_CAUSE_ILLEGAL_INSTRUCTION);
}
else {
uint32_t res_9 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_35 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_9;
uint32_t xrd = res_35;
super::template write_mem<uint32_t>(traits::CSR, csr, (uint32_t)zimm);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
if(rd != 0) {
@ -1675,9 +1675,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
raise(0, traits::RV_CAUSE_ILLEGAL_INSTRUCTION);
}
else {
uint32_t res_10 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_36 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_10;
uint32_t xrd = res_36;
if(zimm != 0) {
super::template write_mem<uint32_t>(traits::CSR, csr, xrd | (uint32_t)zimm);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
@ -1709,9 +1709,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
raise(0, traits::RV_CAUSE_ILLEGAL_INSTRUCTION);
}
else {
uint32_t res_11 = super::template read_mem<uint32_t>(traits::CSR, csr);
uint32_t res_37 = super::template read_mem<uint32_t>(traits::CSR, csr);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
uint32_t xrd = res_11;
uint32_t xrd = res_37;
if(zimm != 0) {
super::template write_mem<uint32_t>(traits::CSR, csr, xrd & ~ ((uint32_t)zimm));
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
@ -2046,9 +2046,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
// execute instruction
{
uint32_t offs = (uint32_t)((uint64_t)(*(X+rs1 + 8) ) + (uint64_t)(uimm ));
int32_t res_12 = super::template read_mem<int32_t>(traits::MEM, offs);
int32_t res_38 = super::template read_mem<int32_t>(traits::MEM, offs);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
*(X+rd + 8) = (uint32_t)(int32_t)res_12;
*(X+rd + 8) = (uint32_t)(int32_t)res_38;
}
break;
}// @suppress("No break at end of case")
@ -2472,9 +2472,9 @@ typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e co
}
else {
uint32_t offs = (uint32_t)((uint64_t)(*(X+2) ) + (uint64_t)(uimm ));
int32_t res_13 = super::template read_mem<int32_t>(traits::MEM, offs);
int32_t res_39 = super::template read_mem<int32_t>(traits::MEM, offs);
if(this->core.reg.trap_state>=0x80000000UL) throw memory_access_exception();
*(X+rd) = (uint32_t)(int32_t)res_13;
*(X+rd) = (uint32_t)(int32_t)res_39;
}
}
break;
@ -2695,12 +2695,11 @@ std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short por
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_msu_vp.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 3> dummy = {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc5c|m_p|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
@ -2720,18 +2719,8 @@ volatile std::array<bool, 3> dummy = {
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc5c|mus_vp|interp", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_msu_vp<iss::arch::tgc5c>();
auto vm = new interp::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::tgc5c>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on
// clang-format on

Просмотреть файл

@ -97,7 +97,7 @@ protected:
return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, BasicBlock *) override;
std::tuple<continuation_e, BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override;
void gen_leave_behavior(BasicBlock *leave_blk) override;
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
@ -4937,7 +4937,7 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
template <typename ARCH>
std::tuple<continuation_e, BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block) {
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@ -4949,10 +4949,9 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, BasicBlock *this_block)
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok)
return std::make_tuple(ILLEGAL_FETCH, nullptr);
if (instr == 0x0000006f || (instr&0xffff)==0xa001){
this->builder.CreateBr(this->leave_blk);
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return std::make_tuple(JUMP_TO_SELF, nullptr);
}
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@ -5034,10 +5033,6 @@ void vm_impl<ARCH>::gen_instr_epilogue(BasicBlock *bb) {
auto* icount_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::ICOUNT), get_reg_ptr(arch::traits<ARCH>::ICOUNT)), this->gen_const(64U, 1));
this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits<ARCH>::ICOUNT), false);
//increment cyclecount
auto* cycle_val = this->builder.CreateAdd(
this->builder.CreateLoad(this->get_typeptr(arch::traits<ARCH>::CYCLE), get_reg_ptr(arch::traits<ARCH>::CYCLE)), this->gen_const(64U, 1));
this->builder.CreateStore(cycle_val, get_reg_ptr(arch::traits<ARCH>::CYCLE), false);
}
} // namespace tgc5c

Просмотреть файл

@ -92,7 +92,7 @@ protected:
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &,tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@ -344,7 +344,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -380,7 +379,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -416,7 +414,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -463,7 +460,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -521,7 +517,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -571,7 +566,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -621,7 +615,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -671,7 +664,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -721,7 +713,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -771,7 +762,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -821,7 +811,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -862,7 +851,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -903,7 +891,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -944,7 +931,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -985,7 +971,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1026,7 +1011,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1064,7 +1048,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1102,7 +1085,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1140,7 +1122,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1179,7 +1160,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1218,7 +1198,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1257,7 +1236,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1296,7 +1274,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1335,7 +1312,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1374,7 +1350,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1413,7 +1388,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1452,7 +1426,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -1491,7 +1464,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1530,7 +1502,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1569,7 +1540,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1610,7 +1580,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1649,7 +1618,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1688,7 +1656,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1727,7 +1694,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1768,7 +1734,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1809,7 +1774,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1848,7 +1812,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -1889,7 +1852,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fence), tu.constant((uint8_t)pred<<4|succ,8));
@ -1915,7 +1877,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -1942,7 +1903,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -1969,7 +1929,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -1996,7 +1955,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.callf("wait", tu.constant(1,8));
@ -2026,7 +1984,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -2068,7 +2025,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -2112,7 +2068,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -2156,7 +2111,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -2195,7 +2149,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -2238,7 +2191,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -2281,7 +2233,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fencei), tu.constant(imm,16));
@ -2311,7 +2262,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2351,7 +2301,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2393,7 +2342,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2435,7 +2383,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2477,7 +2424,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2542,7 +2488,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2593,7 +2538,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2661,7 +2605,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -2711,7 +2654,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(imm) {
@ -2748,7 +2690,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto offs = tu.assignment(tu.ext((tu.add(
@ -2781,7 +2722,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto offs = tu.assignment(tu.ext((tu.add(
@ -2813,7 +2753,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -2849,7 +2788,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto returnValue = CONT;
@ -2876,7 +2814,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -2909,7 +2846,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -2945,7 +2881,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(imm==0||rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -2978,7 +2913,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(nzimm) {
@ -3012,7 +2946,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
@ -3041,7 +2974,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rs1+8 + traits::X0, tu.lshr(
@ -3072,7 +3004,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(shamt){ tu.store(rs1+8 + traits::X0, tu.ext((tu.ashr(
@ -3110,7 +3041,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rs1+8 + traits::X0, tu.ext((tu.bitwise_and(
@ -3141,7 +3071,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.ext((tu.sub(
@ -3172,7 +3101,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_xor(
@ -3203,7 +3131,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_or(
@ -3234,7 +3161,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_and(
@ -3264,7 +3190,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -3296,7 +3221,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -3334,7 +3258,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -3372,7 +3295,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
@ -3410,7 +3332,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rd==0) {
@ -3447,7 +3368,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -3482,7 +3402,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -3518,7 +3437,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 2);
@ -3547,7 +3465,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
@ -3584,7 +3501,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
@ -3623,7 +3539,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 3);
@ -3652,7 +3567,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)) {
@ -3686,7 +3600,6 @@ private:
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
@ -3784,15 +3697,13 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("return *next_pc;");
}
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
tu.add_prologue(os.str());
}
} // namespace tgc5c
template <>