DBT-RISE-TGC/gen_input/templates/tcc/vm-vm_CORENAME.cpp.gtl

315 lines
12 KiB
Plaintext
Raw Normal View History

2020-01-09 19:37:17 +01:00
/*******************************************************************************
* Copyright (C) 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
2020-01-09 19:37:17 +01:00
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
2020-01-10 07:24:00 +01:00
#include <iss/tcc/vm_base.h>
2020-01-09 19:37:17 +01:00
#include <util/logging.h>
2020-01-10 07:24:00 +01:00
#include <sstream>
2020-01-09 19:37:17 +01:00
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace tcc {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::tcc::vm_base<ARCH> {
2020-01-09 19:37:17 +01:00
public:
2023-05-16 21:51:35 +02:00
using traits = arch::traits<ARCH>;
using super = typename iss::tcc::vm_base<ARCH>;
2020-01-09 19:37:17 +01:00
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
2023-05-16 21:51:35 +02:00
using mem_type_e = typename traits::mem_type_e;
using addr_t = typename super::addr_t;
2020-04-17 19:23:43 +02:00
using tu_builder = typename super::tu_builder;
2020-01-09 19:37:17 +01:00
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
2020-04-17 19:23:43 +02:00
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
2020-01-09 19:37:17 +01:00
2023-05-16 21:51:35 +02:00
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
2020-01-09 19:37:17 +01:00
void setup_module(std::string m) override {
2020-01-09 19:37:17 +01:00
super::setup_module(m);
}
2020-04-17 19:23:43 +02:00
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_trap_behavior(tu_builder& tu) override;
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_leave_trap(tu_builder& tu, unsigned lvl);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
void gen_wait(tu_builder& tu, unsigned type);
2020-01-09 19:37:17 +01:00
2020-04-17 19:23:43 +02:00
inline void gen_trap_check(tu_builder& tu) {
tu("if(*trap_state!=0) goto trap_entry;");
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) {
2020-04-12 12:44:30 +02:00
switch(reg_num){
2023-05-16 21:51:35 +02:00
case traits::NEXT_PC:
2020-04-17 19:23:43 +02:00
tu("*next_pc = {:#x};", pc.val);
2020-04-12 12:44:30 +02:00
break;
2023-05-16 21:51:35 +02:00
case traits::PC:
2020-04-17 19:23:43 +02:00
tu("*pc = {:#x};", pc.val);
2020-04-12 12:44:30 +02:00
break;
default:
2020-04-13 17:03:50 +02:00
if(!tu.defined_regs[reg_num]){
2020-04-17 19:23:43 +02:00
tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast<uintptr_t>(get_reg_ptr(reg_num)));
2020-04-12 12:44:30 +02:00
tu.defined_regs[reg_num]=true;
2020-04-13 17:03:50 +02:00
}
2020-04-17 19:23:43 +02:00
tu("*reg{:02d} = {:#x};", reg_num, pc.val);
2020-04-12 12:44:30 +02:00
}
2020-01-09 19:37:17 +01:00
}
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
2023-05-16 21:51:35 +02:00
enum { LUT_SIZE = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK32)), LUT_SIZE_C = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK16)) };
2020-01-09 19:37:17 +01:00
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
2020-04-13 17:03:50 +02:00
std::array<compile_func *, 4> qlut;
2020-01-09 19:37:17 +01:00
2020-04-13 17:03:50 +02:00
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
2020-01-09 19:37:17 +01:00
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
2023-05-16 21:51:35 +02:00
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
2020-01-09 19:37:17 +01:00
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
2020-06-18 06:18:59 +02:00
/* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */
2023-05-16 21:51:35 +02:00
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
2020-01-09 19:37:17 +01:00
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
2023-05-16 21:51:35 +02:00
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("${instr.name}_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+4;
gen_set_pc(tu, pc, traits::NEXT_PC);
2023-05-16 21:51:35 +02:00
tu.open_scope();<%instr.behavior.eachLine{%>
2020-04-13 17:03:50 +02:00
${it}<%}%>
tu.close_scope();
2023-05-16 21:51:35 +02:00
vm_base<ARCH>::gen_sync(tu, POST_SYNC,${idx});
gen_trap_check(tu);
return returnValue;
2020-01-09 19:37:17 +01:00
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
2020-04-17 19:23:43 +02:00
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
2020-04-12 12:44:30 +02:00
vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size());
2020-01-09 19:37:17 +01:00
pc = pc + ((instr & 3) == 3 ? 4 : 2);
2020-04-13 17:03:50 +02:00
gen_raise_trap(tu, 0, 2); // illegal instruction trap
2020-04-12 12:44:30 +02:00
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
2020-01-09 19:37:17 +01:00
return BRANCH;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
std::tuple<continuation_e>
2020-04-17 19:23:43 +02:00
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
2020-01-09 19:37:17 +01:00
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
2023-05-16 21:51:35 +02:00
const typename traits::addr_t upper_bits = ~traits::PGMASK;
2020-01-09 19:37:17 +01:00
phys_addr_t paddr(pc);
auto *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
auto res = this->core.read(paddr, 2, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
}
} else {
auto res = this->core.read(paddr, 4, data);
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
2020-04-12 12:44:30 +02:00
return (this->*f)(pc, insn, tu);
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
2020-04-13 17:03:50 +02:00
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
2023-05-16 21:51:35 +02:00
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
2023-05-16 21:51:35 +02:00
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
2020-01-09 19:37:17 +01:00
}
2020-04-17 19:23:43 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
2023-05-16 21:51:35 +02:00
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
2020-04-17 19:23:43 +02:00
tu("return *next_pc;");
2020-01-09 19:37:17 +01:00
}
2020-01-10 07:24:00 +01:00
} // namespace mnrv32
2020-01-09 19:37:17 +01:00
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
}
} // namespace iss