DBT-RISE-TGC/riscv/src/internal/vm_riscv.in.cpp

651 lines
28 KiB
C++
Raw Normal View History

2017-08-27 12:10:38 +02:00
////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, MINRES Technologies GmbH
// All rights reserved.
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
2017-09-22 11:23:23 +02:00
//
2017-08-27 12:10:38 +02:00
// Contributors:
// eyck@minres.com - initial API and implementation
2017-08-27 22:14:59 +02:00
//
//
2017-08-27 12:10:38 +02:00
////////////////////////////////////////////////////////////////////////////////
2017-09-22 11:23:23 +02:00
#include <cstring>
2017-08-27 12:10:38 +02:00
#include <iss/debugger/gdb_session.h>
2017-09-22 11:23:23 +02:00
#include <iss/iss.h>
2017-08-27 12:10:38 +02:00
#include <memory>
2017-09-22 11:23:23 +02:00
#include <util/logging.h>
2017-08-27 12:10:38 +02:00
#include "iss/arch/CORE_DEF_NAME.h"
#include "iss/debugger/server.h"
2017-09-22 11:23:23 +02:00
#include "iss/vm_base.h"
2017-08-27 12:10:38 +02:00
#include "iss/arch/riscv_hart_msu_vp.h"
2017-09-22 11:23:23 +02:00
#include <boost/format.hpp>
2017-08-27 12:10:38 +02:00
namespace iss {
namespace CORE_DEF_NAME {
using namespace iss::arch;
using namespace llvm;
using namespace iss::debugger;
2017-09-22 11:23:23 +02:00
template <typename ARCH> struct vm_impl;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> struct target_adapter : public target_adapter_base {
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
target_adapter(server_if *srv, vm_impl<ARCH> *vm) : target_adapter_base(srv), vm(vm) {}
2017-08-27 12:10:38 +02:00
/*============== Thread Control ===============================*/
/* Set generic thread */
2017-09-22 11:23:23 +02:00
status set_gen_thread(rp_thread_ref &thread) override;
2017-08-27 12:10:38 +02:00
/* Set control thread */
2017-09-22 11:23:23 +02:00
status set_ctrl_thread(rp_thread_ref &thread) override;
2017-08-27 12:10:38 +02:00
/* Get thread status */
2017-09-22 11:23:23 +02:00
status is_thread_alive(rp_thread_ref &thread, bool &alive) override;
2017-08-27 12:10:38 +02:00
/*============= Register Access ================================*/
/* Read all registers. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
2017-09-22 11:23:23 +02:00
status read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) override;
2017-08-27 12:10:38 +02:00
/* Write all registers. buf is 4-byte aligned and it is in target
byte order */
2017-09-22 11:23:23 +02:00
status write_registers(const std::vector<uint8_t> &data) override;
2017-08-27 12:10:38 +02:00
/* Read one register. buf is 4-byte aligned and it is in
target byte order. If register is not available
corresponding bytes in avail_buf are 0, otherwise
avail buf is 1 */
2017-09-22 11:23:23 +02:00
status read_single_register(unsigned int reg_no, std::vector<uint8_t> &buf,
std::vector<uint8_t> &avail_buf) override;
2017-08-27 12:10:38 +02:00
/* Write one register. buf is 4-byte aligned and it is in target byte
order */
2017-09-22 11:23:23 +02:00
status write_single_register(unsigned int reg_no, const std::vector<uint8_t> &buf) override;
2017-08-27 12:10:38 +02:00
/*=================== Memory Access =====================*/
/* Read memory, buf is 4-bytes aligned and it is in target
byte order */
2017-09-22 11:23:23 +02:00
status read_mem(uint64_t addr, std::vector<uint8_t> &buf) override;
2017-08-27 12:10:38 +02:00
/* Write memory, buf is 4-bytes aligned and it is in target
byte order */
2017-09-22 11:23:23 +02:00
status write_mem(uint64_t addr, const std::vector<uint8_t> &buf) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status thread_list_query(int first, const rp_thread_ref &arg, std::vector<rp_thread_ref> &result, size_t max_num,
size_t &num, bool &done) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status current_thread_query(rp_thread_ref &thread) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status crc_query(uint64_t addr, size_t len, uint32_t &val) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status raw_query(std::string in_buf, std::string &out_buf) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status threadinfo_query(int first, std::string &out_buf) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
status packetsize_query(std::string &out_buf) override;
2017-08-27 12:10:38 +02:00
status add_break(int type, uint64_t addr, unsigned int length) override;
status remove_break(int type, uint64_t addr, unsigned int length) override;
status resume_from_addr(bool step, int sig, uint64_t addr) override;
protected:
2017-09-22 11:23:23 +02:00
static inline constexpr addr_t map_addr(const addr_t &i) { return i; }
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
vm_impl<ARCH> *vm;
2017-08-27 12:10:38 +02:00
rp_thread_ref thread_idx;
};
2017-09-22 11:23:23 +02:00
template <typename ARCH> struct vm_impl : public vm::vm_base<ARCH> {
using super = typename vm::vm_base<ARCH>;
2017-08-27 12:10:38 +02:00
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
2017-09-22 11:23:23 +02:00
using addr_t = typename super::addr_t;
2017-08-27 12:10:38 +02:00
vm_impl();
2017-09-22 11:23:23 +02:00
vm_impl(ARCH &core, bool dump = false);
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
target_adapter_if *accquire_target_adapter(server_if *srv) {
debugger_if::dbg_enabled = true;
if (vm::vm_base<ARCH>::tgt_adapter == nullptr)
vm::vm_base<ARCH>::tgt_adapter = new target_adapter<ARCH>(srv, this);
2017-08-27 12:10:38 +02:00
return vm::vm_base<ARCH>::tgt_adapter;
}
protected:
2017-09-22 11:23:23 +02:00
template <typename T> inline llvm::ConstantInt *size(T type) {
2017-08-27 12:10:38 +02:00
return llvm::ConstantInt::get(getContext(), llvm::APInt(32, type->getType()->getScalarSizeInBits()));
}
2017-09-22 11:23:23 +02:00
inline llvm::Value *gen_choose(llvm::Value *cond, llvm::Value *trueVal, llvm::Value *falseVal,
unsigned size) const {
2017-08-27 12:10:38 +02:00
return this->gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size));
}
2017-09-22 11:23:23 +02:00
std::tuple<vm::continuation_e, llvm::BasicBlock *> gen_single_inst_behavior(virt_addr_t &, unsigned int &,
llvm::BasicBlock *) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
void gen_leave_behavior(llvm::BasicBlock *leave_blk) override;
2017-08-27 12:10:38 +02:00
void gen_raise_trap(uint16_t trap_id, uint16_t cause);
void gen_leave_trap(unsigned lvl);
void gen_wait(unsigned type);
2017-09-22 11:23:23 +02:00
void gen_trap_behavior(llvm::BasicBlock *) override;
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
void gen_trap_check(llvm::BasicBlock *bb);
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) {
llvm::Value *next_pc_v = this->builder->CreateSExtOrTrunc(this->gen_const(traits<ARCH>::XLEN, pc.val),
this->get_type(traits<ARCH>::XLEN));
2017-08-27 12:10:38 +02:00
this->builder->CreateStore(next_pc_v, get_reg_ptr(reg_num), true);
}
2017-09-22 11:23:23 +02:00
inline llvm::Value *get_reg_ptr(unsigned i) {
void *ptr = this->core.get_regs_base_ptr() + traits<ARCH>::reg_byte_offset(i);
llvm::PointerType *ptrType = nullptr;
switch (traits<ARCH>::reg_bit_width(i) >> 3) {
2017-08-27 12:10:38 +02:00
case 8:
2017-09-22 11:23:23 +02:00
ptrType = llvm::Type::getInt64PtrTy(this->mod->getContext());
2017-08-27 12:10:38 +02:00
break;
case 4:
2017-09-22 11:23:23 +02:00
ptrType = llvm::Type::getInt32PtrTy(this->mod->getContext());
2017-08-27 12:10:38 +02:00
break;
case 2:
2017-09-22 11:23:23 +02:00
ptrType = llvm::Type::getInt16PtrTy(this->mod->getContext());
2017-08-27 12:10:38 +02:00
break;
case 1:
2017-09-22 11:23:23 +02:00
ptrType = llvm::Type::getInt8PtrTy(this->mod->getContext());
2017-08-27 12:10:38 +02:00
break;
default:
throw std::runtime_error("unsupported access with");
break;
}
return llvm::ConstantExpr::getIntToPtr(
2017-09-22 11:23:23 +02:00
llvm::ConstantInt::get(this->mod->getContext(),
llvm::APInt(8 /*bits*/ * sizeof(uint8_t *), reinterpret_cast<uint64_t>(ptr))),
ptrType);
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
inline llvm::Value *gen_reg_load(unsigned i, unsigned level = 0) {
// if(level){
return this->builder->CreateLoad(get_reg_ptr(i), false);
// } else {
// if(!this->loaded_regs[i])
// this->loaded_regs[i]=this->builder->CreateLoad(get_reg_ptr(i),
// false);
// return this->loaded_regs[i];
// }
}
2017-09-22 11:23:23 +02:00
inline void gen_set_pc(virt_addr_t pc) {
llvm::Value *pc_l = this->builder->CreateSExt(this->gen_const(traits<ARCH>::caddr_bit_width, (unsigned)pc),
this->get_type(traits<ARCH>::caddr_bit_width));
2017-08-27 12:10:38 +02:00
super::gen_set_reg(traits<ARCH>::PC, pc_l);
}
// some compile time constants
2017-09-22 11:23:23 +02:00
enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << bit_count(EXTR_MASK16) };
2017-08-27 12:10:38 +02:00
using this_class = vm_impl<ARCH>;
2017-09-22 11:23:23 +02:00
using compile_func = std::tuple<vm::continuation_e, llvm::BasicBlock *> (this_class::*)(virt_addr_t &pc,
code_word_t instr,
llvm::BasicBlock *bb);
2017-08-27 12:10:38 +02:00
compile_func lut[LUT_SIZE];
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
2017-09-22 11:23:23 +02:00
compile_func *qlut[4]; // = {lut_00, lut_01, lut_10, lut_11};
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
const uint32_t lutmasks[4] = {EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32};
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
2017-08-27 12:10:38 +02:00
} else {
2017-09-22 11:23:23 +02:00
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
2017-08-27 12:10:38 +02:00
} else {
2017-09-22 11:23:23 +02:00
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
2017-08-27 12:10:38 +02:00
} else {
2017-09-22 11:23:23 +02:00
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
2017-08-27 12:10:38 +02:00
}
}
}
}
2017-09-22 11:23:23 +02:00
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
2017-08-27 12:10:38 +02:00
} else {
2017-09-22 11:23:23 +02:00
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
2017-08-27 12:10:38 +02:00
}
}
return lut_val;
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
2017-09-22 11:23:23 +02:00
size_t length;
2017-08-27 12:10:38 +02:00
uint32_t value;
uint32_t mask;
compile_func op;
};
/* «start generated code» */
InstructionDesriptor instr_descr[0] = {};
/* «end generated code» */
/****************************************************************************
* end opcode definitions
****************************************************************************/
2017-09-22 11:23:23 +02:00
std::tuple<vm::continuation_e, llvm::BasicBlock *> illegal_intruction(virt_addr_t &pc, code_word_t instr,
llvm::BasicBlock *bb) {
// this->gen_sync(iss::PRE_SYNC);
this->builder->CreateStore(this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), true),
get_reg_ptr(traits<ARCH>::PC), true);
2017-08-27 12:10:38 +02:00
this->builder->CreateStore(
2017-09-22 11:23:23 +02:00
this->builder->CreateAdd(this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::ICOUNT), true),
this->gen_const(64U, 1)),
2017-08-27 12:10:38 +02:00
get_reg_ptr(traits<ARCH>::ICOUNT), true);
2017-09-22 11:23:23 +02:00
if (this->debugging_enabled()) this->gen_sync(iss::PRE_SYNC);
pc = pc + ((instr & 3) == 3 ? 4 : 2);
this->gen_raise_trap(0, 2); // illegal instruction trap
2017-08-27 12:10:38 +02:00
this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */
this->gen_trap_check(this->leave_blk);
return std::make_tuple(iss::vm::BRANCH, nullptr);
}
};
2017-09-22 11:23:23 +02:00
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> vm_impl<ARCH>::vm_impl(ARCH &core, bool dump) : vm::vm_base<ARCH>(core, dump) {
2017-08-27 12:10:38 +02:00
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
2017-09-22 11:23:23 +02:00
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
this->sync_exec = static_cast<sync_type>(this->sync_exec | core.needed_sync());
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
template <typename ARCH>
std::tuple<vm::continuation_e, llvm::BasicBlock *>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, llvm::BasicBlock *this_block) {
2017-08-27 12:10:38 +02:00
// we fetch at max 4 byte, alignment is 2
code_word_t insn = 0;
iss::addr_t paddr;
const typename traits<ARCH>::addr_t upper_bits = ~traits<ARCH>::PGMASK;
try {
2017-09-22 11:23:23 +02:00
uint8_t *const data = (uint8_t *)&insn;
paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
2017-08-27 22:14:59 +02:00
auto res = this->core.read(paddr, 2, data);
2017-09-22 11:23:23 +02:00
if (res != iss::Ok) throw trap_access(1, pc.val);
if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
} else {
2017-08-27 22:14:59 +02:00
auto res = this->core.read(paddr, 4, data);
2017-09-22 11:23:23 +02:00
if (res != iss::Ok) throw trap_access(1, pc.val);
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
} catch (trap_access &ta) {
2017-08-27 12:10:38 +02:00
throw trap_access(ta.id, pc.val);
}
2017-09-22 11:23:23 +02:00
if (insn == 0x0000006f) throw simulation_stopped(0);
2017-08-27 12:10:38 +02:00
// curr pc on stack
typename vm_impl<ARCH>::processing_pc_entry addr(*this, pc, paddr);
++inst_cnt;
auto lut_val = extract_fields(insn);
2017-09-22 11:23:23 +02:00
auto f = qlut[insn & 0x3][lut_val];
if (f == nullptr) {
f = &this_class::illegal_intruction;
2017-08-27 12:10:38 +02:00
}
return (this->*f)(pc, insn, this_block);
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_leave_behavior(llvm::BasicBlock *leave_blk) {
2017-08-27 12:10:38 +02:00
this->builder->SetInsertPoint(leave_blk);
this->builder->CreateRet(this->builder->CreateLoad(get_reg_ptr(arch::traits<ARCH>::NEXT_PC), false));
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(uint16_t trap_id, uint16_t cause) {
auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id);
2017-08-27 12:10:38 +02:00
this->builder->CreateStore(TRAP_val, get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(unsigned lvl) {
std::vector<llvm::Value *> args{
this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, lvl)),
2017-08-27 12:10:38 +02:00
};
this->builder->CreateCall(this->mod->getFunction("leave_trap"), args);
2017-09-22 11:23:23 +02:00
auto *PC_val = this->gen_read_mem(traits<ARCH>::CSR, (lvl << 8) + 0x41, traits<ARCH>::XLEN / 8);
2017-08-27 12:10:38 +02:00
this->builder->CreateStore(PC_val, get_reg_ptr(traits<ARCH>::NEXT_PC), false);
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_wait(unsigned type) {
std::vector<llvm::Value *> args{
this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, type)),
2017-08-27 12:10:38 +02:00
};
this->builder->CreateCall(this->mod->getFunction("wait"), args);
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(llvm::BasicBlock *trap_blk) {
2017-08-27 12:10:38 +02:00
this->builder->SetInsertPoint(trap_blk);
2017-09-22 11:23:23 +02:00
auto *trap_state_val = this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::TRAP_STATE), true);
std::vector<llvm::Value *> args{this->core_ptr, this->adj_to64(trap_state_val),
this->adj_to64(this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::PC), false))};
2017-08-27 12:10:38 +02:00
this->builder->CreateCall(this->mod->getFunction("enter_trap"), args);
2017-09-22 11:23:23 +02:00
auto *trap_addr_val = this->builder->CreateLoad(get_reg_ptr(traits<ARCH>::NEXT_PC), false);
2017-08-27 12:10:38 +02:00
this->builder->CreateRet(trap_addr_val);
}
2017-09-22 11:23:23 +02:00
template <typename ARCH> inline void vm_impl<ARCH>::gen_trap_check(llvm::BasicBlock *bb) {
auto *v = this->builder->CreateLoad(get_reg_ptr(arch::traits<ARCH>::TRAP_STATE), true);
this->gen_cond_branch(this->builder->CreateICmp(
ICmpInst::ICMP_EQ, v,
llvm::ConstantInt::get(getContext(), llvm::APInt(v->getType()->getIntegerBitWidth(), 0))),
bb, this->trap_blk, 1);
2017-08-27 12:10:38 +02:00
}
} // namespace CORE_DEF_NAME
2017-09-22 11:23:23 +02:00
#define CREATE_FUNCS(ARCH) \
template <> std::unique_ptr<vm_if> create<ARCH>(ARCH * core, unsigned short port, bool dump) { \
std::unique_ptr<CORE_DEF_NAME::vm_impl<ARCH>> ret = \
std::make_unique<CORE_DEF_NAME::vm_impl<ARCH>>(*core, dump); \
debugger::server<debugger::gdb_session>::run_server(ret.get(), port); \
return ret; \
} \
template <> std::unique_ptr<vm_if> create<ARCH>(std::string inst_name, unsigned short port, bool dump) { \
return create<ARCH>(new arch::riscv_hart_msu_vp<ARCH>(), port, dump); /* FIXME: memory leak!!!!!!! */ \
} \
template <> std::unique_ptr<vm_if> create<ARCH>(ARCH * core, bool dump) { \
return std::make_unique<CORE_DEF_NAME::vm_impl<ARCH>>(*core, dump); /* FIXME: memory leak!!!!!!! */ \
} \
template <> std::unique_ptr<vm_if> create<ARCH>(std::string inst_name, bool dump) { \
return create<ARCH>(new arch::riscv_hart_msu_vp<ARCH>(), dump); \
}
2017-08-27 12:10:38 +02:00
CREATE_FUNCS(arch::CORE_DEF_NAME)
namespace CORE_DEF_NAME {
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::set_gen_thread(rp_thread_ref &thread) {
thread_idx = thread;
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref &thread) {
thread_idx = thread;
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::is_thread_alive(rp_thread_ref &thread, bool &alive) {
alive = 1;
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
/* List threads. If first is non-zero then start from the first thread,
* otherwise start from arg, result points to array of threads to be
* filled out, result size is number of elements in the result,
* num points to the actual number of threads found, done is
* set if all threads are processed.
*/
template <typename ARCH>
status target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref &arg, std::vector<rp_thread_ref> &result,
size_t max_num, size_t &num, bool &done) {
if (first == 0) {
result.clear();
result.push_back(thread_idx);
num = 1;
done = true;
2017-08-27 12:10:38 +02:00
return Ok;
2017-09-22 11:23:23 +02:00
} else
return NotSupported;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::current_thread_query(rp_thread_ref &thread) {
thread = thread_idx;
return Ok;
}
template <typename ARCH>
status target_adapter<ARCH>::read_registers(std::vector<uint8_t> &data, std::vector<uint8_t> &avail) {
LOG(TRACE) << "reading target registers";
// return idx<0?:;
data.clear();
avail.clear();
const uint8_t* reg_base = vm->get_arch()->get_regs_base_ptr();
2017-09-22 11:23:23 +02:00
for (size_t reg_no = 0; reg_no < arch::traits<ARCH>::NUM_REGS; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no))/8;
unsigned offset = traits<ARCH>::reg_byte_offset(reg_no);
for (size_t j = 0; j < reg_width; ++j) {
data.push_back(*(reg_base+offset+j));
2017-09-22 11:23:23 +02:00
avail.push_back(0xff);
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
}
// work around fill with F type registers
if (arch::traits<ARCH>::NUM_REGS < 65) {
auto reg_width = sizeof(typename arch::traits<ARCH>::reg_t);
for (size_t reg_no = 0; reg_no < 33; ++reg_no) {
for (size_t j = 0; j < reg_width; ++j) {
data.push_back(0x0);
avail.push_back(0x00);
2017-08-27 12:10:38 +02:00
}
}
}
2017-09-22 11:23:23 +02:00
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::write_registers(const std::vector<uint8_t> &data) {
auto reg_count = arch::traits<ARCH>::NUM_REGS;
auto* reg_base = vm->get_arch()->get_regs_base_ptr();
auto iter = data.data();
2017-09-22 11:23:23 +02:00
for (size_t reg_no = 0; reg_no < reg_count; ++reg_no) {
auto reg_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no))/8;
auto offset = traits<ARCH>::reg_byte_offset(reg_no);
std::copy(iter , iter + reg_width, reg_base);
iter+=4;
reg_base+=offset;
2017-09-22 11:23:23 +02:00
}
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH>
status target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t> &data,
std::vector<uint8_t> &avail) {
if (reg_no < 65) {
// auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename
// arch::traits<ARCH>::reg_e>(reg_no))/8;
auto* reg_base = vm->get_arch()->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no))/8;
data.resize(reg_width);
avail.resize(reg_width);
auto offset = traits<ARCH>::reg_byte_offset(reg_no);
std::copy(reg_base+offset, reg_base+offset+reg_width, data.begin());
2017-09-22 11:23:23 +02:00
std::fill(avail.begin(), avail.end(), 0xff);
} else {
typed_addr_t<iss::PHYSICAL> a(iss::DEBUG_READ, traits<ARCH>::CSR, reg_no - 65);
data.resize(sizeof(typename traits<ARCH>::reg_t));
avail.resize(sizeof(typename traits<ARCH>::reg_t));
std::fill(avail.begin(), avail.end(), 0xff);
vm->get_arch()->read(a, data.size(), data.data());
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
return data.size() > 0 ? Ok : Err;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH>
status target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t> &data) {
if (reg_no < 65){
auto* reg_base = vm->get_arch()->get_regs_base_ptr();
auto reg_width = arch::traits<ARCH>::reg_bit_width(static_cast<typename arch::traits<ARCH>::reg_e>(reg_no))/8;
auto offset = traits<ARCH>::reg_byte_offset(reg_no);
std::copy(data.begin(), data.begin() + reg_width, reg_base+offset);
} else {
2017-09-22 11:23:23 +02:00
typed_addr_t<iss::PHYSICAL> a(iss::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - 65);
vm->get_arch()->write(a, data.size(), data.data());
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t> &data) {
auto a = map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr});
auto f = [&]() -> status { return vm->get_arch()->read(a, data.size(), data.data()); };
return srv->execute_syncronized(f);
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t> &data) {
auto a = map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr});
return srv->execute_syncronized(&arch_if::write, vm->get_arch(), a, data.size(), data.data());
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH>
status target_adapter<ARCH>::process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) {
return NotSupported;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) {
text = 0;
data = 0;
bss = 0;
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t &val) {
return NotSupported;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::raw_query(std::string in_buf, std::string &out_buf) {
return NotSupported;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::threadinfo_query(int first, std::string &out_buf) {
if (first) {
std::stringstream ss;
ss << "m" << std::hex << thread_idx.val;
out_buf = ss.str();
} else {
out_buf = "l";
2017-08-27 12:10:38 +02:00
}
2017-09-22 11:23:23 +02:00
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH>
status target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) {
char buf[20];
memset(buf, 0, 20);
sprintf(buf, "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0);
out_buf = buf;
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::packetsize_query(std::string &out_buf) {
out_buf = "PacketSize=1000";
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::add_break(int type, uint64_t addr, unsigned int length) {
auto saddr = map_addr({iss::CODE, iss::PHYSICAL, addr});
auto eaddr = map_addr({iss::CODE, iss::PHYSICAL, addr + length});
target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val);
LOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex
<< saddr.val << std::dec;
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Ok;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::remove_break(int type, uint64_t addr, unsigned int length) {
auto saddr = map_addr({iss::CODE, iss::PHYSICAL, addr});
unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val);
// TODO: check length of addr range
if (handle) {
LOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val
<< std::dec;
target_adapter_base::bp_lut.removeEntry(handle);
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
2017-08-27 12:10:38 +02:00
return Ok;
}
2017-09-22 11:23:23 +02:00
LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints";
return Err;
}
2017-08-27 12:10:38 +02:00
2017-09-22 11:23:23 +02:00
template <typename ARCH> status target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t addr) {
unsigned reg_no = arch::traits<ARCH>::PC;
std::vector<uint8_t> data(8);
*(reinterpret_cast<uint64_t *>(&data[0])) = addr;
vm->get_arch()->set_reg(reg_no, data);
return resume_from_current(step, sig);
}
2017-08-27 12:10:38 +02:00
} // namespace CORE_DEF_NAME
} // namespace iss