251 lines
8.1 KiB
C++
251 lines
8.1 KiB
C++
//============================================================================
|
|
// Name : riscv-bldc.cpp
|
|
// Author : Eyck Jentzsch
|
|
// Version :
|
|
// Copyright : Your copyright notice
|
|
// Description : Hello World in C++, Ansi-style
|
|
//============================================================================
|
|
|
|
#include "riscv-bldc.h"
|
|
#include "delay.h"
|
|
#include "bsp.h"
|
|
#include "plic/plic_driver.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdint>
|
|
|
|
#include "hifive1_io.h"
|
|
|
|
volatile uint32_t nextCommutationStep=0;
|
|
|
|
/* commutation blocks
|
|
* 1 2 3 4 5 6
|
|
* U 0 z +1 +1 z 0
|
|
* V +1 +1 z 0 0 z
|
|
* W z 0 0 z +1 +1
|
|
*/
|
|
|
|
std::array<uint32_t, 6> driveTable { //! Drive pattern for commutation, CW rotation
|
|
((1 << VH) | (1 << UL)), //1
|
|
((1 << VH) | (1 << WL)), //2
|
|
((1 << UH) | (1 << WL)), //3
|
|
((1 << UH) | (1 << VL)), //4
|
|
((1 << WH) | (1 << VL)), //5
|
|
((1 << WH) | (1 << UL)) //6
|
|
};
|
|
|
|
std::array<uint32_t, 6> senseTable { //! channels to sense during the applied pattern
|
|
SENSW_N, //1
|
|
SENSU_P, //2
|
|
SENSV_N, //3
|
|
SENSW_P, //4
|
|
SENSU_N, //5
|
|
SENSV_P //6
|
|
};
|
|
|
|
bool ccw=false;
|
|
|
|
typedef void (*function_ptr_t) (void);
|
|
//! Instance data for the PLIC.
|
|
plic_instance_t g_plic;
|
|
std::array<function_ptr_t,PLIC_NUM_INTERRUPTS> g_ext_interrupt_handlers;
|
|
/*! \brief external interrupt handler
|
|
*
|
|
* routes the peripheral interrupts to the the respective handler
|
|
*
|
|
*/
|
|
extern "C" void handle_m_ext_interrupt() {
|
|
plic_source int_num = PLIC_claim_interrupt(&g_plic);
|
|
if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS))
|
|
g_ext_interrupt_handlers[int_num]();
|
|
else
|
|
exit(1 + (uintptr_t) int_num);
|
|
PLIC_complete_interrupt(&g_plic, int_num);
|
|
}
|
|
/*! \brief mtime interval interrupt
|
|
*
|
|
*/
|
|
extern "C" void handle_m_time_interrupt(){
|
|
clear_csr(mie, MIP_MTIP);
|
|
// Reset the timer for 3s in the future.
|
|
// This also clears the existing timer interrupt.
|
|
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
|
|
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
|
|
uint64_t now = *mtime;
|
|
uint64_t then = now + RTC_FREQ;
|
|
*mtimecmp = then;
|
|
// Re-enable the timer interrupt.
|
|
set_csr(mie, MIP_MTIP);
|
|
}
|
|
/*! \brief dummy interrupt handler
|
|
*
|
|
*/
|
|
void no_interrupt_handler (void) {};
|
|
/*! \brief configure the per-interrupt handler
|
|
*
|
|
*/
|
|
void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1) {
|
|
g_ext_interrupt_handlers[irq_num] = handler;
|
|
// Priority must be set > 0 to trigger the interrupt.
|
|
PLIC_set_priority(&g_plic, irq_num, prio);
|
|
// Have to enable the interrupt both at the GPIO level, and at the PLIC level.
|
|
PLIC_enable_interrupt(&g_plic, irq_num);
|
|
}
|
|
/*!\brief initializes platform
|
|
*
|
|
*/
|
|
void platform_init(){
|
|
// configure clocks
|
|
PRCI_use_hfxosc(1); // is equivalent to
|
|
// init UART0 at 115200 baud
|
|
auto baud_rate=115200;
|
|
gpio0::output_en_reg()=0xffffffff;
|
|
gpio0::iof_sel_reg()&=~IOF0_UART0_MASK;
|
|
gpio0::iof_en_reg()|= IOF0_UART0_MASK;
|
|
uart0::div_reg()=get_cpu_freq() / baud_rate - 1;
|
|
uart0::txctrl_reg().txen=1;
|
|
// init SPI
|
|
gpio0::iof_sel_reg()&=~IOF0_SPI1_MASK;
|
|
gpio0::iof_en_reg()|= IOF0_SPI1_MASK;
|
|
qspi1::sckdiv_reg() = 8;
|
|
|
|
F_CPU=PRCI_measure_mcycle_freq(20, RTC_FREQ);
|
|
printf("core freq at %d Hz\n", F_CPU);
|
|
// initialie interupt & trap handling
|
|
write_csr(mtvec, &trap_entry);
|
|
if (read_csr(misa) & (1 << ('F' - 'A'))) { // if F extension is present
|
|
write_csr(mstatus, MSTATUS_FS); // allow FPU instructions without trapping
|
|
write_csr(fcsr, 0); // initialize rounding mode, undefined at reset
|
|
}
|
|
|
|
PLIC_init(&g_plic, PLIC_CTRL_ADDR, PLIC_NUM_INTERRUPTS, PLIC_NUM_PRIORITIES);
|
|
// Disable the machine & timer interrupts until setup is done.
|
|
clear_csr(mie, MIP_MEIP);
|
|
clear_csr(mie, MIP_MTIP);
|
|
for (auto& h:g_ext_interrupt_handlers) h=no_interrupt_handler;
|
|
configure_irq(40, pwm0::pwm_interrupt_handler);
|
|
configure_irq(6, qspi1::spi_rx_interrupt_handler);
|
|
// Set the machine timer to go off in 1 second.
|
|
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
|
|
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
|
|
uint64_t now = *mtime;
|
|
uint64_t then = now + RTC_FREQ;
|
|
*mtimecmp = then;
|
|
// Enable the Machine-External bit in MIE
|
|
set_csr(mie, MIP_MEIP);
|
|
// Enable the Machine-Timer bit in MIE
|
|
set_csr(mie, MIP_MTIP);
|
|
// Enable interrupts in general.
|
|
set_csr(mstatus, MSTATUS_MIE);
|
|
}
|
|
/*! \brief reads adc channel and returns measured value
|
|
*
|
|
*/
|
|
unsigned read_adc(unsigned channel){
|
|
std::array<uint8_t, 3> bytes{
|
|
uint8_t(0x06 | (channel>>2 & 0x1)), /* start bit, single ended measurement, channel[2] */
|
|
uint8_t((channel&0x3)<<6), /* channel[1:0], fill*/
|
|
0x0 /* fill */
|
|
};
|
|
// set CS of target
|
|
qspi1::csid_reg()=0;
|
|
qspi1::transfer(bytes);
|
|
return (bytes[1]&0xf)*256+bytes[2];
|
|
}
|
|
/*! \brief waits for zero crossing and measures time until
|
|
*
|
|
*/
|
|
unsigned short measured_zc_time(unsigned short max_delay){
|
|
long delay_us = max_delay;
|
|
auto scaling_factor=0;
|
|
while(delay_us/(1<<scaling_factor) > std::numeric_limits<unsigned short>::max()){
|
|
scaling_factor++;
|
|
}
|
|
pwm0::cfg_reg()=0;
|
|
pwm0::count_reg()=0;
|
|
pwm0::cfg_reg().scale = 4+scaling_factor; // divide by 16 so we get 1us per pwm clock
|
|
pwm0::cmp0_reg().cmp0 = delay_us/(1<<scaling_factor);
|
|
pwm0::set_active();
|
|
pwm0::cfg_reg().enoneshot=true;
|
|
uint32_t channel=senseTable[nextCommutationStep]&0x3;
|
|
bool zc_neg = senseTable[nextCommutationStep]>3;
|
|
uint32_t adc_res=0;
|
|
do{
|
|
adc_res=read_adc(channel);
|
|
if((zc_neg && adc_res<2048) || (!zc_neg && adc_res>2047))
|
|
break;
|
|
} while(pwm0::is_active());
|
|
uint32_t sreg = pwm0::s_reg();
|
|
pwm0::cfg_reg().enoneshot=false;
|
|
return sreg*(1<<scaling_factor);
|
|
}
|
|
/*! \brief calculates the next commutation step
|
|
*
|
|
*/
|
|
inline void next_commutation_step(void) {
|
|
if (ccw) {
|
|
nextCommutationStep = nextCommutationStep == 0? 5 : nextCommutationStep-1;
|
|
} else {
|
|
nextCommutationStep = nextCommutationStep == 5? 0 : nextCommutationStep+1;
|
|
}
|
|
}
|
|
/*! \brief write the drive pattern to gpio
|
|
*
|
|
*/
|
|
void setDrivePattern(uint32_t nextDrivePattern) {
|
|
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff) | nextDrivePattern | nextCommutationStep << 24;
|
|
}
|
|
/*! \brief open-loop commutation to start the motor
|
|
*
|
|
*/
|
|
void start_open_loop(void){
|
|
auto delay = 30120U;
|
|
std::array<double, 2> multiplier={0.83, 1.0};
|
|
nextCommutationStep = 0;
|
|
//Preposition.
|
|
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK) | driveTable[nextCommutationStep];
|
|
//fixed_delay(STARTUP_LOCK_DELAY);
|
|
pwm0::oneshot_delay(STARTUP_DELAY);
|
|
next_commutation_step();
|
|
auto nextDrivePattern = driveTable[nextCommutationStep];
|
|
for (size_t i = 0; i < 12; i++){
|
|
setDrivePattern(nextDrivePattern);
|
|
auto channel=senseTable[nextCommutationStep]&0x3;
|
|
auto zcPolRise = senseTable[nextCommutationStep]<4;
|
|
auto bemf_0=read_adc(channel);
|
|
delay*=multiplier[(i/6)%multiplier.size()];
|
|
pwm0::oneshot_delay(delay);
|
|
auto bemf_1=read_adc(channel);
|
|
auto bemf = bemf_1>bemf_0?bemf_1-bemf_0:bemf_0-bemf_1;
|
|
next_commutation_step();
|
|
nextDrivePattern = driveTable[nextCommutationStep];
|
|
}
|
|
}
|
|
/*! \brief closed-loop commutation to run the motor
|
|
*
|
|
*/
|
|
void run_closed_loop(void){
|
|
auto count=0;
|
|
auto zc_delay=0U;
|
|
auto tmp=0U;
|
|
auto nextDrivePattern = driveTable[nextCommutationStep];
|
|
for(;;){
|
|
setDrivePattern(nextDrivePattern);
|
|
zc_delay=measured_zc_time(50000);
|
|
next_commutation_step();
|
|
nextDrivePattern = driveTable[nextCommutationStep];
|
|
}
|
|
}
|
|
/*! \brief main function
|
|
*
|
|
*/
|
|
int main() {
|
|
platform_init();
|
|
printf("Starting motor\n");
|
|
start_open_loop();
|
|
printf("done...\n");
|
|
// Switch to sensor-less closed-loop commutation.
|
|
run_closed_loop();
|
|
return 0;
|
|
}
|