DBT-RISE-TGC/incl/iss/arch/riscv_hart_m_p.h

808 lines
33 KiB
C++

/*******************************************************************************
* Copyright (C) 2021, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_HART_M_P_H
#define _RISCV_HART_M_P_H
#include "riscv_hart_common.h"
#include "iss/arch/traits.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iomanip>
#include <sstream>
#include <type_traits>
#include <unordered_map>
#include <functional>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
namespace iss {
namespace arch {
template <typename BASE> class riscv_hart_m_p : public BASE {
protected:
const std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
const std::array<const char *, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
const std::array<const char *, 12> irq_str = {
{"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
public:
using super = BASE;
using this_class = riscv_hart_m_p<BASE>;
using phys_addr_t = typename super::phys_addr_t;
using reg_t = typename super::reg_t;
using addr_t = typename super::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0;
void write_mstatus(T val) {
auto mask = get_mask();
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
T satp;
static constexpr uint32_t get_mask() {
return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011 // only machine mode is supported
}
};
using hart_state_type = hart_state<reg_t>;
constexpr reg_t get_irq_mask() {
return 0b101110111011; // only machine mode is supported
}
riscv_hart_m_p();
virtual ~riscv_hart_m_p() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
iss::status read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) override;
virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data); }
virtual uint64_t enter_trap(uint64_t flags, uint64_t addr) override;
virtual uint64_t leave_trap(uint64_t flags) override;
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
void setMemReadCb(std::function<iss::status(phys_addr_t, unsigned, uint8_t* const)> const& memReadCb) {
mem_read_cb = memReadCb;
}
void setMemWriteCb(std::function<iss::status(phys_addr_t, unsigned, const uint8_t* const)> const& memWriteCb) {
mem_write_cb = memWriteCb;
}
void set_csr(unsigned addr, reg_t val){
csr[addr & csr.page_addr_mask] = val;
}
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_m_p<BASE> &arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
virtual uint64_t get_pc() { return arch.get_pc(); };
virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
riscv_hart_m_p<BASE> &arch;
};
friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
virtual iss::status read_csr(unsigned addr, reg_t &val);
virtual iss::status write_csr(unsigned addr, reg_t val);
hart_state_type state;
uint64_t cycle_offset;
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
unsigned to_host_wr_cnt = 0;
riscv_instrumentation_if instr_if;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
private:
iss::status read_reg(unsigned addr, reg_t &val);
iss::status write_reg(unsigned addr, reg_t val);
iss::status read_cycle(unsigned addr, reg_t &val);
iss::status read_time(unsigned addr, reg_t &val);
iss::status read_status(unsigned addr, reg_t &val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val);
reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
protected:
void check_interrupt();
};
template <typename BASE>
riscv_hart_m_p<BASE>::riscv_hart_m_p()
: state()
, cycle_offset(0)
, instr_if(*this) {
csr[misa] = traits<BASE>::MISA_VAL;
uart_buf.str("");
for (unsigned addr = mcycle; addr <= hpmcounter31; ++addr) csr_wr_cb[addr] = nullptr;
for (unsigned addr = mcycleh; addr <= hpmcounter31h; ++addr) csr_wr_cb[addr] = nullptr;
// special handling
csr_rd_cb[time] = &riscv_hart_m_p<BASE>::read_time;
csr_wr_cb[time] = nullptr;
csr_rd_cb[timeh] = &riscv_hart_m_p<BASE>::read_time;
csr_wr_cb[timeh] = nullptr;
csr_rd_cb[mcycle] = &riscv_hart_m_p<BASE>::read_cycle;
csr_rd_cb[mcycleh] = &riscv_hart_m_p<BASE>::read_cycle;
csr_rd_cb[minstret] = &riscv_hart_m_p<BASE>::read_cycle;
csr_rd_cb[minstreth] = &riscv_hart_m_p<BASE>::read_cycle;
csr_rd_cb[mstatus] = &riscv_hart_m_p<BASE>::read_status;
csr_wr_cb[mstatus] = &riscv_hart_m_p<BASE>::write_status;
csr_rd_cb[mip] = &riscv_hart_m_p<BASE>::read_ip;
csr_wr_cb[mip] = &riscv_hart_m_p<BASE>::write_ip;
csr_rd_cb[mie] = &riscv_hart_m_p<BASE>::read_ie;
csr_wr_cb[mie] = &riscv_hart_m_p<BASE>::write_ie;
csr_rd_cb[mhartid] = &riscv_hart_m_p<BASE>::read_hartid;
// common regs
const std::array<unsigned, 6> addrs{{mepc, mtvec, mscratch, mcause, mtval, mscratch}};
for(auto addr: addrs) {
csr_rd_cb[addr] = &riscv_hart_m_p<BASE>::read_reg;
csr_wr_cb[addr] = &riscv_hart_m_p<BASE>::write_reg;
}
// read-only registers
csr_rd_cb[misa] = &riscv_hart_m_p<BASE>::read_reg;
csr_wr_cb[misa] = nullptr;
}
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_m_p<BASE>::load_file(std::string name, int type) {
FILE *fp = fopen(name.c_str(), "r");
if (fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
if (n != 4) throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if (strcmp(buf.data() + 1, "ELF") == 0) {
fclose(fp);
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
// check elf properties
if (reader.get_class() != ELFCLASS32)
if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file");
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if (fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE,
traits<BASE>::MEM, pseg->get_physical_address(),
fsize, reinterpret_cast<const uint8_t *const>(seg_data));
if (res != iss::Ok)
LOG(ERROR) << "problem writing " << fsize << "bytes to 0x" << std::hex
<< pseg->get_physical_address();
}
}
for (const auto sec : reader.sections) {
if (sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(reader.get_entry(), true);
}
throw std::runtime_error("memory load file is not a valid elf file");
}
throw std::runtime_error("memory load file not found");
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) {
#ifndef NDEBUG
if (access && iss::access_type::DEBUG) {
LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH){
LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto res = type==iss::address_type::PHYSICAL?
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data):
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t *const>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if (it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) {
#ifndef NDEBUG
const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch (length) {
case 8:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 4:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 2:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 1:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
default:
LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto res = type==iss::address_type::PHYSICAL?
write_mem(phys_addr_t{access, space, addr}, length, data):
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok))
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 7 (Store/AMO access fault)
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr});
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
return iss::Ok;
}
case 0x10008008: { // HFROSC base, pllcfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
return iss::Ok;
} break;
default: {}
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t *>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
switch (addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_csr(unsigned addr, reg_t &val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_csr(unsigned addr, reg_t val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr&0xc00)==0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_reg(unsigned addr, reg_t &val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = (this->reg.icount + cycle_offset) / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_status(unsigned addr, reg_t &val) {
val = state.mstatus & hart_state_type::get_mask();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_status(unsigned addr, reg_t val) {
state.write_mstatus(val);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_ie(unsigned addr, reg_t &val) {
val = csr[mie];
val &= csr[mideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_hartid(unsigned addr, reg_t &val) {
val = mhartid_reg;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_ip(unsigned addr, reg_t &val) {
val = csr[mip];
val &= csr[mideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_ip(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
mask &= ~(1 << 7); // MTIP is read only
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
if(mem_read_cb) return mem_read_cb(paddr, length, data);
switch (paddr.val) {
case 0x0200BFF8: { // CLINT base, mtime reg
if (sizeof(reg_t) < length) return iss::Err;
reg_t time_val;
this->read_csr(time, time_val);
std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data);
} break;
case 0x10008000: {
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
} break;
default: {
const auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
}
}
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_m_p<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
if(mem_write_cb) return mem_write_cb(paddr, length, data);
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
break;
case 0x10008000: { // HFROSC base, hfrosccfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
} break;
case 0x10008008: { // HFROSC base, pllcfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
} break;
default: {
mem_type::page_type &p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if (paddr.access && iss::access_type::FUNC) {
auto tohost_upper = (traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4));
auto tohost_lower =
(traits<BASE>::XLEN == 32 && paddr.val == tohost);
if (tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask));
if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch (hostvar >> 48) {
case 0:
if (hostvar != 0x1) {
LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if (c == '\n' || c == 0) {
LOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
to_host_wr_cnt = 0;
} break;
default:
break;
}
} else if (tohost_lower)
to_host_wr_cnt++;
} else if (traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) {
uint64_t fhostvar = *reinterpret_cast<uint64_t *>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}
template <typename BASE> inline void riscv_hart_m_p<BASE>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state_type::mstatus_reset_val;
}
template <typename BASE> void riscv_hart_m_p<BASE>::check_interrupt() {
auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
bool mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || (this->reg.PRIV == PRIV_M && mie);
auto enabled_interrupts = m_enabled ? ena_irq & ~ideleg : 0;
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE> uint64_t riscv_hart_m_p<BASE>::enter_trap(uint64_t flags, uint64_t addr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
// calculate effective privilege level
if (trap_id == 0) { // exception
// store ret addr in xepc register
csr[mepc] = static_cast<reg_t>(addr); // store actual address instruction of exception
csr[mtval] = fault_data;
fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
}
csr[mcause] = (trap_id << 31) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
state.mstatus.MPP = PRIV_M;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
// get trap vector
auto ivec = csr[mtvec];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x1UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state
this->reg.PRIV = PRIV_M;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
sprintf(buffer.data(), "0x%016lx", addr);
if((flags&0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
template <typename BASE> uint64_t riscv_hart_m_p<BASE>::leave_trap(uint64_t flags) {
state.mstatus.MIE = state.mstatus.MPIE;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc];
CLOG(INFO, disass) << "Executing xRET";
return this->reg.NEXT_PC;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_HART_M_P_H */