DBT-RISE-TGC/src/vm/tcc/vm_tgc5c.cpp

3836 lines
166 KiB
C++

/*******************************************************************************
* Copyright (C) 2020-2024 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/tcc/vm_base.h>
#include <util/logging.h>
#include <sstream>
#include <iss/instruction_decoder.h>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace tcc {
namespace tgc5c {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::tcc::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::tcc::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename traits::mem_type_e;
using addr_t = typename super::addr_t;
using tu_builder = typename super::tu_builder;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = continuation_e;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause);
void gen_leave_trap(tu_builder& tu, unsigned lvl);
inline void gen_set_tval(tu_builder& tu, uint64_t new_tval);
inline void gen_set_tval(tu_builder& tu, value new_tval);
inline void gen_trap_check(tu_builder& tu) {
tu("if(*trap_state!=0) goto trap_entry;");
}
inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) {
switch(reg_num){
case traits::NEXT_PC:
tu("*next_pc = {:#x};", pc.val);
break;
case traits::PC:
tu("*pc = {:#x};", pc.val);
break;
default:
if(!tu.defined_regs[reg_num]){
tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast<uintptr_t>(get_reg_ptr(reg_num)));
tu.defined_regs[reg_num]=true;
}
tu("*reg{:02d} = {:#x};", reg_num, pc.val);
}
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
uint32_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<instruction_descriptor, 87> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
/* instruction LUI, encoding '0b00000000000000000000000000110111' */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui},
/* instruction AUIPC, encoding '0b00000000000000000000000000010111' */
{32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc},
/* instruction JAL, encoding '0b00000000000000000000000001101111' */
{32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal},
/* instruction JALR, encoding '0b00000000000000000000000001100111' */
{32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr},
/* instruction BEQ, encoding '0b00000000000000000000000001100011' */
{32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq},
/* instruction BNE, encoding '0b00000000000000000001000001100011' */
{32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne},
/* instruction BLT, encoding '0b00000000000000000100000001100011' */
{32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt},
/* instruction BGE, encoding '0b00000000000000000101000001100011' */
{32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge},
/* instruction BLTU, encoding '0b00000000000000000110000001100011' */
{32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu},
/* instruction BGEU, encoding '0b00000000000000000111000001100011' */
{32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu},
/* instruction LB, encoding '0b00000000000000000000000000000011' */
{32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb},
/* instruction LH, encoding '0b00000000000000000001000000000011' */
{32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh},
/* instruction LW, encoding '0b00000000000000000010000000000011' */
{32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw},
/* instruction LBU, encoding '0b00000000000000000100000000000011' */
{32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu},
/* instruction LHU, encoding '0b00000000000000000101000000000011' */
{32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu},
/* instruction SB, encoding '0b00000000000000000000000000100011' */
{32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb},
/* instruction SH, encoding '0b00000000000000000001000000100011' */
{32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh},
/* instruction SW, encoding '0b00000000000000000010000000100011' */
{32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw},
/* instruction ADDI, encoding '0b00000000000000000000000000010011' */
{32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi},
/* instruction SLTI, encoding '0b00000000000000000010000000010011' */
{32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti},
/* instruction SLTIU, encoding '0b00000000000000000011000000010011' */
{32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu},
/* instruction XORI, encoding '0b00000000000000000100000000010011' */
{32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori},
/* instruction ORI, encoding '0b00000000000000000110000000010011' */
{32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori},
/* instruction ANDI, encoding '0b00000000000000000111000000010011' */
{32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi},
/* instruction SLLI, encoding '0b00000000000000000001000000010011' */
{32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli},
/* instruction SRLI, encoding '0b00000000000000000101000000010011' */
{32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli},
/* instruction SRAI, encoding '0b01000000000000000101000000010011' */
{32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai},
/* instruction ADD, encoding '0b00000000000000000000000000110011' */
{32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add},
/* instruction SUB, encoding '0b01000000000000000000000000110011' */
{32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub},
/* instruction SLL, encoding '0b00000000000000000001000000110011' */
{32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll},
/* instruction SLT, encoding '0b00000000000000000010000000110011' */
{32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt},
/* instruction SLTU, encoding '0b00000000000000000011000000110011' */
{32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu},
/* instruction XOR, encoding '0b00000000000000000100000000110011' */
{32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor},
/* instruction SRL, encoding '0b00000000000000000101000000110011' */
{32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl},
/* instruction SRA, encoding '0b01000000000000000101000000110011' */
{32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra},
/* instruction OR, encoding '0b00000000000000000110000000110011' */
{32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or},
/* instruction AND, encoding '0b00000000000000000111000000110011' */
{32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and},
/* instruction FENCE, encoding '0b00000000000000000000000000001111' */
{32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence},
/* instruction ECALL, encoding '0b00000000000000000000000001110011' */
{32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall},
/* instruction EBREAK, encoding '0b00000000000100000000000001110011' */
{32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak},
/* instruction MRET, encoding '0b00110000001000000000000001110011' */
{32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret},
/* instruction WFI, encoding '0b00010000010100000000000001110011' */
{32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi},
/* instruction CSRRW, encoding '0b00000000000000000001000001110011' */
{32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw},
/* instruction CSRRS, encoding '0b00000000000000000010000001110011' */
{32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs},
/* instruction CSRRC, encoding '0b00000000000000000011000001110011' */
{32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc},
/* instruction CSRRWI, encoding '0b00000000000000000101000001110011' */
{32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi},
/* instruction CSRRSI, encoding '0b00000000000000000110000001110011' */
{32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi},
/* instruction CSRRCI, encoding '0b00000000000000000111000001110011' */
{32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci},
/* instruction FENCE_I, encoding '0b00000000000000000001000000001111' */
{32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i},
/* instruction MUL, encoding '0b00000010000000000000000000110011' */
{32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul},
/* instruction MULH, encoding '0b00000010000000000001000000110011' */
{32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh},
/* instruction MULHSU, encoding '0b00000010000000000010000000110011' */
{32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu},
/* instruction MULHU, encoding '0b00000010000000000011000000110011' */
{32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu},
/* instruction DIV, encoding '0b00000010000000000100000000110011' */
{32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div},
/* instruction DIVU, encoding '0b00000010000000000101000000110011' */
{32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu},
/* instruction REM, encoding '0b00000010000000000110000000110011' */
{32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem},
/* instruction REMU, encoding '0b00000010000000000111000000110011' */
{32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu},
/* instruction C__ADDI4SPN, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1110000000000011, &this_class::__c__addi4spn},
/* instruction C__LW, encoding '0b0100000000000000' */
{16, 0b0100000000000000, 0b1110000000000011, &this_class::__c__lw},
/* instruction C__SW, encoding '0b1100000000000000' */
{16, 0b1100000000000000, 0b1110000000000011, &this_class::__c__sw},
/* instruction C__ADDI, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110000000000011, &this_class::__c__addi},
/* instruction C__NOP, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110111110000011, &this_class::__c__nop},
/* instruction C__JAL, encoding '0b0010000000000001' */
{16, 0b0010000000000001, 0b1110000000000011, &this_class::__c__jal},
/* instruction C__LI, encoding '0b0100000000000001' */
{16, 0b0100000000000001, 0b1110000000000011, &this_class::__c__li},
/* instruction C__LUI, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1110000000000011, &this_class::__c__lui},
/* instruction C__ADDI16SP, encoding '0b0110000100000001' */
{16, 0b0110000100000001, 0b1110111110000011, &this_class::__c__addi16sp},
/* instruction __reserved_clui, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui},
/* instruction C__SRLI, encoding '0b1000000000000001' */
{16, 0b1000000000000001, 0b1111110000000011, &this_class::__c__srli},
/* instruction C__SRAI, encoding '0b1000010000000001' */
{16, 0b1000010000000001, 0b1111110000000011, &this_class::__c__srai},
/* instruction C__ANDI, encoding '0b1000100000000001' */
{16, 0b1000100000000001, 0b1110110000000011, &this_class::__c__andi},
/* instruction C__SUB, encoding '0b1000110000000001' */
{16, 0b1000110000000001, 0b1111110001100011, &this_class::__c__sub},
/* instruction C__XOR, encoding '0b1000110000100001' */
{16, 0b1000110000100001, 0b1111110001100011, &this_class::__c__xor},
/* instruction C__OR, encoding '0b1000110001000001' */
{16, 0b1000110001000001, 0b1111110001100011, &this_class::__c__or},
/* instruction C__AND, encoding '0b1000110001100001' */
{16, 0b1000110001100001, 0b1111110001100011, &this_class::__c__and},
/* instruction C__J, encoding '0b1010000000000001' */
{16, 0b1010000000000001, 0b1110000000000011, &this_class::__c__j},
/* instruction C__BEQZ, encoding '0b1100000000000001' */
{16, 0b1100000000000001, 0b1110000000000011, &this_class::__c__beqz},
/* instruction C__BNEZ, encoding '0b1110000000000001' */
{16, 0b1110000000000001, 0b1110000000000011, &this_class::__c__bnez},
/* instruction C__SLLI, encoding '0b0000000000000010' */
{16, 0b0000000000000010, 0b1111000000000011, &this_class::__c__slli},
/* instruction C__LWSP, encoding '0b0100000000000010' */
{16, 0b0100000000000010, 0b1110000000000011, &this_class::__c__lwsp},
/* instruction C__MV, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000000000011, &this_class::__c__mv},
/* instruction C__JR, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000001111111, &this_class::__c__jr},
/* instruction __reserved_cmv, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv},
/* instruction C__ADD, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000000000011, &this_class::__c__add},
/* instruction C__JALR, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000001111111, &this_class::__c__jalr},
/* instruction C__EBREAK, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111111111111111, &this_class::__c__ebreak},
/* instruction C__SWSP, encoding '0b1100000000000010' */
{16, 0b1100000000000010, 0b1110000000000011, &this_class::__c__swsp},
/* instruction DII, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii},
}};
//needs to be declared after instr_descr
decoder instr_decoder;
/* instruction definitions */
/* instruction 0: LUI */
compile_ret_t __lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LUI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,0);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)imm),32));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,0);
gen_trap_check(tu);
return returnValue;
}
/* instruction 1: AUIPC */
compile_ret_t __auipc(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("AUIPC_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,1);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)(PC+(int32_t)imm),32));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,1);
gen_trap_check(tu);
return returnValue;
}
/* instruction 2: JAL */
compile_ret_t __jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("JAL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,2);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto new_pc = (uint32_t)(PC+(int32_t)sext<21>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)(PC+4),32));
}
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,2);
gen_trap_check(tu);
return returnValue;
}
/* instruction 3: JALR */
compile_ret_t __jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("JALR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,3);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask = (uint32_t)- 2;
auto new_pc = tu.assignment(tu.ext((tu.bitwise_and(
(tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),
tu.constant(addr_mask,32))),32,false),32);
tu.open_if(tu.urem(
new_pc,
tu.constant(static_cast<uint32_t>(traits:: INSTR_ALIGNMENT),32)));
{
this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
tu.open_else();
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)(PC+4),32));
}
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 2));
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,3);
gen_trap_check(tu);
return returnValue;
}
/* instruction 4: BEQ */
compile_ret_t __beq(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BEQ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,4);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,4);
gen_trap_check(tu);
return returnValue;
}
/* instruction 5: BNE */
compile_ret_t __bne(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BNE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,5);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,5);
gen_trap_check(tu);
return returnValue;
}
/* instruction 6: BLT */
compile_ret_t __blt(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BLT_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,6);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,6);
gen_trap_check(tu);
return returnValue;
}
/* instruction 7: BGE */
compile_ret_t __bge(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BGE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,7);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SGE,
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,7);
gen_trap_check(tu);
return returnValue;
}
/* instruction 8: BLTU */
compile_ret_t __bltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BLTU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,8);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,8);
gen_trap_check(tu);
return returnValue;
}
/* instruction 9: BGEU */
compile_ret_t __bgeu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BGEU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,9);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_UGE,
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
{
auto new_pc = (uint32_t)(PC+(int16_t)sext<13>(imm));
if(new_pc%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_set_tval(tu, new_pc);
this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
tu.close_scope();
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,9);
gen_trap_check(tu);
return returnValue;
}
/* instruction 10: LB */
compile_ret_t __lb(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,10);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 8),8,true),8);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,10);
gen_trap_check(tu);
return returnValue;
}
/* instruction 11: LH */
compile_ret_t __lh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,11);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 16),16,true),16);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,11);
gen_trap_check(tu);
return returnValue;
}
/* instruction 12: LW */
compile_ret_t __lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,12);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 32),32,true),32);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,12);
gen_trap_check(tu);
return returnValue;
}
/* instruction 13: LBU */
compile_ret_t __lbu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LBU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,13);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 8),8);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,13);
gen_trap_check(tu);
return returnValue;
}
/* instruction 14: LHU */
compile_ret_t __lhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LHU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,14);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 16),16);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,14);
gen_trap_check(tu);
return returnValue;
}
/* instruction 15: SB */
compile_ret_t __sb(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,15);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),8,false));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,15);
gen_trap_check(tu);
return returnValue;
}
/* instruction 16: SH */
compile_ret_t __sh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,16);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),16,false));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,16);
gen_trap_check(tu);
return returnValue;
}
/* instruction 17: SW */
compile_ret_t __sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,17);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),32,false));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,17);
gen_trap_check(tu);
return returnValue;
}
/* instruction 18: ADDI */
compile_ret_t __addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ADDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,18);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,18);
gen_trap_check(tu);
return returnValue;
}
/* instruction 19: SLTI */
compile_ret_t __slti(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,19);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.constant((int16_t)sext<12>(imm),16))), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,19);
gen_trap_check(tu);
return returnValue;
}
/* instruction 20: SLTIU */
compile_ret_t __sltiu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTIU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,20);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1 + traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32))), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,20);
gen_trap_check(tu);
return returnValue;
}
/* instruction 21: XORI */
compile_ret_t __xori(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("XORI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,21);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_xor(
tu.load(rs1 + traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,21);
gen_trap_check(tu);
return returnValue;
}
/* instruction 22: ORI */
compile_ret_t __ori(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ORI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,22);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_or(
tu.load(rs1 + traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,22);
gen_trap_check(tu);
return returnValue;
}
/* instruction 23: ANDI */
compile_ret_t __andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ANDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,23);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_and(
tu.load(rs1 + traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,23);
gen_trap_check(tu);
return returnValue;
}
/* instruction 24: SLLI */
compile_ret_t __slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,24);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.shl(
tu.load(rs1 + traits::X0, 0),
tu.constant(shamt,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,24);
gen_trap_check(tu);
return returnValue;
}
/* instruction 25: SRLI */
compile_ret_t __srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,25);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.lshr(
tu.load(rs1 + traits::X0, 0),
tu.constant(shamt,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,25);
gen_trap_check(tu);
return returnValue;
}
/* instruction 26: SRAI */
compile_ret_t __srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRAI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,26);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.ashr(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.constant(shamt,8))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,26);
gen_trap_check(tu);
return returnValue;
}
/* instruction 27: ADD */
compile_ret_t __add(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ADD_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,27);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,27);
gen_trap_check(tu);
return returnValue;
}
/* instruction 28: SUB */
compile_ret_t __sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SUB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,28);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.sub(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,28);
gen_trap_check(tu);
return returnValue;
}
/* instruction 29: SLL */
compile_ret_t __sll(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,29);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.shl(
tu.load(rs1 + traits::X0, 0),
(tu.bitwise_and(
tu.load(rs2 + traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64)))));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,29);
gen_trap_check(tu);
return returnValue;
}
/* instruction 30: SLT */
compile_ret_t __slt(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLT_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,30);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,30);
gen_trap_check(tu);
return returnValue;
}
/* instruction 31: SLTU */
compile_ret_t __sltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,31);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,31);
gen_trap_check(tu);
return returnValue;
}
/* instruction 32: XOR */
compile_ret_t __xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("XOR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,32);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_xor(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,32);
gen_trap_check(tu);
return returnValue;
}
/* instruction 33: SRL */
compile_ret_t __srl(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,33);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.lshr(
tu.load(rs1 + traits::X0, 0),
(tu.bitwise_and(
tu.load(rs2 + traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64)))));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,33);
gen_trap_check(tu);
return returnValue;
}
/* instruction 34: SRA */
compile_ret_t __sra(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRA_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,34);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.ashr(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
(tu.bitwise_and(
tu.load(rs2 + traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64))))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,34);
gen_trap_check(tu);
return returnValue;
}
/* instruction 35: OR */
compile_ret_t __or(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("OR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,35);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_or(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,35);
gen_trap_check(tu);
return returnValue;
}
/* instruction 36: AND */
compile_ret_t __and(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("AND_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,36);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.bitwise_and(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,36);
gen_trap_check(tu);
return returnValue;
}
/* instruction 37: FENCE */
compile_ret_t __fence(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("FENCE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,37);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t succ = ((bit_sub<20,4>(instr)));
uint8_t pred = ((bit_sub<24,4>(instr)));
uint8_t fm = ((bit_sub<28,4>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"),
fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fence), tu.constant((uint8_t)pred<<4|succ,8));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,37);
gen_trap_check(tu);
return returnValue;
}
/* instruction 38: ECALL */
compile_ret_t __ecall(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ECALL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,38);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "ecall";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_raise_trap(tu, 0, 11);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,38);
gen_trap_check(tu);
return returnValue;
}
/* instruction 39: EBREAK */
compile_ret_t __ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("EBREAK_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,39);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "ebreak";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_raise_trap(tu, 0, 3);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,39);
gen_trap_check(tu);
return returnValue;
}
/* instruction 40: MRET */
compile_ret_t __mret(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MRET_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,40);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "mret";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_leave_trap(tu, 3);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,40);
gen_trap_check(tu);
return returnValue;
}
/* instruction 41: WFI */
compile_ret_t __wfi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("WFI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,41);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "wfi";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.callf("wait", tu.constant(1,8));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,41);
gen_trap_check(tu);
return returnValue;
}
/* instruction 42: CSRRW */
compile_ret_t __csrrw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,42);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0),32);
if(rd!=0){ auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
tu.write_mem(traits::CSR, csr, xrs1);
tu.store(rd + traits::X0, xrd);
}
else{
tu.write_mem(traits::CSR, csr, xrs1);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,42);
gen_trap_check(tu);
return returnValue;
}
/* instruction 43: CSRRS */
compile_ret_t __csrrs(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRS_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,43);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0),32);
if(rs1!=0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_or(
xrd,
xrs1));
}
if(rd!=0) {
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,43);
gen_trap_check(tu);
return returnValue;
}
/* instruction 44: CSRRC */
compile_ret_t __csrrc(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRC_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,44);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0),32);
if(rs1!=0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_and(
xrd,
tu.logical_neg(xrs1)));
}
if(rd!=0) {
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,44);
gen_trap_check(tu);
return returnValue;
}
/* instruction 45: CSRRWI */
compile_ret_t __csrrwi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRWI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,45);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
tu.write_mem(traits::CSR, csr, tu.constant((uint32_t)zimm,32));
if(rd!=0) {
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,45);
gen_trap_check(tu);
return returnValue;
}
/* instruction 46: CSRRSI */
compile_ret_t __csrrsi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRSI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,46);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
if(zimm!=0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_or(
xrd,
tu.constant((uint32_t)zimm,32)));
}
if(rd!=0) {
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,46);
gen_trap_check(tu);
return returnValue;
}
/* instruction 47: CSRRCI */
compile_ret_t __csrrci(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRCI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,47);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
if(zimm!=0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_and(
xrd,
tu.constant(~ ((uint32_t)zimm),32)));
}
if(rd!=0) {
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,47);
gen_trap_check(tu);
return returnValue;
}
/* instruction 48: FENCE_I */
compile_ret_t __fence_i(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("FENCE_I_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,48);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"),
fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fencei), tu.constant(imm,16));
auto returnValue = FLUSH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,48);
gen_trap_check(tu);
return returnValue;
}
/* instruction 49: MUL */
compile_ret_t __mul(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MUL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,49);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)),64);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,49);
gen_trap_check(tu);
return returnValue;
}
/* instruction 50: MULH */
compile_ret_t __mulh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,50);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)),64);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.ashr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,50);
gen_trap_check(tu);
return returnValue;
}
/* instruction 51: MULHSU */
compile_ret_t __mulhsu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULHSU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,51);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.load(rs2 + traits::X0, 0)),64);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.ashr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,51);
gen_trap_check(tu);
return returnValue;
}
/* instruction 52: MULHU */
compile_ret_t __mulhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULHU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,52);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto res = tu.assignment(tu.mul(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)),64);
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.lshr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,52);
gen_trap_check(tu);
return returnValue;
}
/* instruction 53: DIV */
compile_ret_t __div(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DIV_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,53);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto dividend = tu.assignment(tu.ext(tu.load(rs1 + traits::X0, 0),32,true),32);
auto divisor = tu.assignment(tu.ext(tu.load(rs2 + traits::X0, 0),32,true),32);
if(rd!=0){ tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
divisor,
tu.constant(0,8)));
{
auto MMIN = ((uint32_t)1)<<(static_cast<uint32_t>(traits:: XLEN)-1);
tu.open_if(tu.logical_and(
tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1 + traits::X0, 0),
tu.constant(MMIN,32)),
tu.icmp(ICmpInst::ICMP_EQ,
divisor,
tu.constant(- 1,8))));
{
tu.store(rd + traits::X0, tu.constant(MMIN,32));
}
tu.open_else();
{
tu.store(rd + traits::X0, tu.ext((tu.sdiv(
dividend,
divisor)),32,false));
}
tu.close_scope();
}
tu.open_else();
{
tu.store(rd + traits::X0, tu.constant((uint32_t)- 1,32));
}
tu.close_scope();
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,53);
gen_trap_check(tu);
return returnValue;
}
/* instruction 54: DIVU */
compile_ret_t __divu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DIVU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,54);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2 + traits::X0, 0),
tu.constant(0,8)));
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.udiv(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
}
}
tu.open_else();
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)- 1,32));
}
}
tu.close_scope();
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,54);
gen_trap_check(tu);
return returnValue;
}
/* instruction 55: REM */
compile_ret_t __rem(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("REM_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,55);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2 + traits::X0, 0),
tu.constant(0,8)));
{
auto MMIN = (uint32_t)1<<(static_cast<uint32_t>(traits:: XLEN)-1);
tu.open_if(tu.logical_and(
tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1 + traits::X0, 0),
tu.constant(MMIN,32)),
tu.icmp(ICmpInst::ICMP_EQ,
tu.ext(tu.load(rs2 + traits::X0, 0),32,true),
tu.constant(- 1,8))));
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant(0,8));
}
}
tu.open_else();
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.srem(
tu.ext(tu.load(rs1 + traits::X0, 0),32,true),
tu.ext(tu.load(rs2 + traits::X0, 0),32,true))),32,false));
}
}
tu.close_scope();
}
tu.open_else();
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.load(rs1 + traits::X0, 0));
}
}
tu.close_scope();
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,55);
gen_trap_check(tu);
return returnValue;
}
/* instruction 56: REMU */
compile_ret_t __remu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("REMU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,56);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2 + traits::X0, 0),
tu.constant(0,8)));
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.urem(
tu.load(rs1 + traits::X0, 0),
tu.load(rs2 + traits::X0, 0)));
}
}
tu.open_else();
{
if(rd!=0) {
tu.store(rd + traits::X0, tu.load(rs1 + traits::X0, 0));
}
}
tu.close_scope();
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,56);
gen_trap_check(tu);
return returnValue;
}
/* instruction 57: C__ADDI4SPN */
compile_ret_t __c__addi4spn(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI4SPN_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,57);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint16_t imm = ((bit_sub<5,1>(instr) << 3) | (bit_sub<6,1>(instr) << 2) | (bit_sub<7,4>(instr) << 6) | (bit_sub<11,2>(instr) << 4));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.addi4spn"),
fmt::arg("rd", name(8+rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(imm) {
tu.store(rd+8 + traits::X0, tu.ext((tu.add(
tu.load(2 + traits::X0, 0),
tu.constant(imm,16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,57);
gen_trap_check(tu);
return returnValue;
}
/* instruction 58: C__LW */
compile_ret_t __c__lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,58);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c.lw"),
fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(rs1+8 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.store(rd+8 + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,58);
gen_trap_check(tu);
return returnValue;
}
/* instruction 59: C__SW */
compile_ret_t __c__sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,59);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c.sw"),
fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(rs1+8 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2+8 + traits::X0, 0),32,false));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,59);
gen_trap_check(tu);
return returnValue;
}
/* instruction 60: C__ADDI */
compile_ret_t __c__addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,60);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.addi"),
fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
tu.store(rs1 + traits::X0, tu.ext((tu.add(
tu.load(rs1 + traits::X0, 0),
tu.constant((int8_t)sext<6>(imm),8))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,60);
gen_trap_check(tu);
return returnValue;
}
/* instruction 61: C__NOP */
compile_ret_t __c__nop(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__NOP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,61);
uint64_t PC = pc.val;
uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "c.nop";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,61);
gen_trap_check(tu);
return returnValue;
}
/* instruction 62: C__JAL */
compile_ret_t __c__jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JAL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,62);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c.jal"),
fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
tu.store(1 + traits::X0, tu.constant((uint32_t)(PC+2),32));
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,62);
gen_trap_check(tu);
return returnValue;
}
/* instruction 63: C__LI */
compile_ret_t __c__li(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,63);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.li"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)((int8_t)sext<6>(imm)),32));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,63);
gen_trap_check(tu);
return returnValue;
}
/* instruction 64: C__LUI */
compile_ret_t __c__lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LUI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,64);
uint64_t PC = pc.val;
uint32_t imm = ((bit_sub<2,5>(instr) << 12) | (bit_sub<12,1>(instr) << 17));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c.lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(imm==0||rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)sext<18>(imm)),32));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,64);
gen_trap_check(tu);
return returnValue;
}
/* instruction 65: C__ADDI16SP */
compile_ret_t __c__addi16sp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI16SP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,65);
uint64_t PC = pc.val;
uint16_t nzimm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 7) | (bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 4) | (bit_sub<12,1>(instr) << 9));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c.addi16sp"),
fmt::arg("nzimm", nzimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(nzimm) {
tu.store(2 + traits::X0, tu.ext((tu.add(
tu.load(2 + traits::X0, 0),
tu.constant((int16_t)sext<10>(nzimm),16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,65);
gen_trap_check(tu);
return returnValue;
}
/* instruction 66: __reserved_clui */
compile_ret_t ____reserved_clui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("__reserved_clui_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,66);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = ".reserved_clui";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,66);
gen_trap_check(tu);
return returnValue;
}
/* instruction 67: C__SRLI */
compile_ret_t __c__srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SRLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,67);
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c.srli"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rs1+8 + traits::X0, tu.lshr(
tu.load(rs1+8 + traits::X0, 0),
tu.constant(shamt,8)));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,67);
gen_trap_check(tu);
return returnValue;
}
/* instruction 68: C__SRAI */
compile_ret_t __c__srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SRAI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,68);
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c.srai"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(shamt){ tu.store(rs1+8 + traits::X0, tu.ext((tu.ashr(
(tu.ext(tu.load(rs1+8 + traits::X0, 0),32,true)),
tu.constant(shamt,8))),32,false));
}
else{
if(static_cast<uint32_t>(traits:: XLEN)==128){ tu.store(rs1+8 + traits::X0, tu.ext((tu.ashr(
(tu.ext(tu.load(rs1+8 + traits::X0, 0),32,true)),
tu.constant(64,8))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,68);
gen_trap_check(tu);
return returnValue;
}
/* instruction 69: C__ANDI */
compile_ret_t __c__andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ANDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,69);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.andi"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rs1+8 + traits::X0, tu.ext((tu.bitwise_and(
tu.load(rs1+8 + traits::X0, 0),
tu.constant((int8_t)sext<6>(imm),8))),32,false));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,69);
gen_trap_check(tu);
return returnValue;
}
/* instruction 70: C__SUB */
compile_ret_t __c__sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SUB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,70);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.sub"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.ext((tu.sub(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0))),32,false));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,70);
gen_trap_check(tu);
return returnValue;
}
/* instruction 71: C__XOR */
compile_ret_t __c__xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__XOR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,71);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.xor"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_xor(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,71);
gen_trap_check(tu);
return returnValue;
}
/* instruction 72: C__OR */
compile_ret_t __c__or(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__OR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,72);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.or"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_or(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,72);
gen_trap_check(tu);
return returnValue;
}
/* instruction 73: C__AND */
compile_ret_t __c__and(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__AND_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,73);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.and"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(rd+8 + traits::X0, tu.bitwise_and(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,73);
gen_trap_check(tu);
return returnValue;
}
/* instruction 74: C__J */
compile_ret_t __c__j(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__J_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,74);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c.j"),
fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,74);
gen_trap_check(tu);
return returnValue;
}
/* instruction 75: C__BEQZ */
compile_ret_t __c__beqz(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__BEQZ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,75);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.beqz"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
tu.open_if(tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1+8 + traits::X0, 0),
tu.constant(0,8)));
{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<9>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
tu.close_scope();
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,75);
gen_trap_check(tu);
return returnValue;
}
/* instruction 76: C__BNEZ */
compile_ret_t __c__bnez(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__BNEZ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,76);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c.bnez"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs1+8 + traits::X0, 0),
tu.constant(0,8)));
{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<9>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
tu.close_scope();
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,76);
gen_trap_check(tu);
return returnValue;
}
/* instruction 77: C__SLLI */
compile_ret_t __c__slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SLLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,77);
uint64_t PC = pc.val;
uint8_t nzuimm = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c.slli"),
fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rs1!=0) {
tu.store(rs1 + traits::X0, tu.shl(
tu.load(rs1 + traits::X0, 0),
tu.constant(nzuimm,8)));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,77);
gen_trap_check(tu);
return returnValue;
}
/* instruction 78: C__LWSP */
compile_ret_t __c__lwsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LWSP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,78);
uint64_t PC = pc.val;
uint8_t uimm = ((bit_sub<2,2>(instr) << 6) | (bit_sub<4,3>(instr) << 2) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c.lwsp"),
fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)||rd==0) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(2 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.store(rd + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,78);
gen_trap_check(tu);
return returnValue;
}
/* instruction 79: C__MV */
compile_ret_t __c__mv(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__MV_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,79);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.mv"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.load(rs2 + traits::X0, 0));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,79);
gen_trap_check(tu);
return returnValue;
}
/* instruction 80: C__JR */
compile_ret_t __c__jr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,80);
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c.jr"),
fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs1&&rs1<static_cast<uint32_t>(traits:: RFS)){ auto addr_mask = (uint32_t)- 2;
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(
tu.load(rs1%static_cast<uint32_t>(traits:: RFS) + traits::X0, 0),
tu.constant(addr_mask,32)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 2));
}
else{
this->gen_raise_trap(tu, 0, 2);
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,80);
gen_trap_check(tu);
return returnValue;
}
/* instruction 81: __reserved_cmv */
compile_ret_t ____reserved_cmv(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("__reserved_cmv_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,81);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = ".reserved_cmv";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 2);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,81);
gen_trap_check(tu);
return returnValue;
}
/* instruction 82: C__ADD */
compile_ret_t __c__add(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADD_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,82);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c.add"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
if(rd!=0) {
tu.store(rd + traits::X0, tu.ext((tu.add(
tu.load(rd + traits::X0, 0),
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,82);
gen_trap_check(tu);
return returnValue;
}
/* instruction 83: C__JALR */
compile_ret_t __c__jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JALR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,83);
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c.jalr"),
fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto addr_mask = (uint32_t)- 2;
auto new_pc = tu.assignment(tu.load(rs1 + traits::X0, 0),32);
tu.store(1 + traits::X0, tu.constant((uint32_t)(PC+2),32));
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(
new_pc,
tu.constant(addr_mask,32)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 2));
}
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,83);
gen_trap_check(tu);
return returnValue;
}
/* instruction 84: C__EBREAK */
compile_ret_t __c__ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__EBREAK_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,84);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "c.ebreak";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 3);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,84);
gen_trap_check(tu);
return returnValue;
}
/* instruction 85: C__SWSP */
compile_ret_t __c__swsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SWSP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,85);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t uimm = ((bit_sub<7,2>(instr) << 6) | (bit_sub<9,4>(instr) << 2));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c.swsp"),
fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
if(rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(2 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2 + traits::X0, 0),32,false));
}
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,85);
gen_trap_check(tu);
return returnValue;
}
/* instruction 86: DII */
compile_ret_t __dii(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DII_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,86);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
//No disass specified, using instruction name
std::string mnemonic = "dii";
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu("(*cycle)++;");
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,86);
gen_trap_check(tu);
return returnValue;
}
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_instruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size());
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, std::string("illegal_instruction"));
}
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
this->gen_set_tval(tu, instr);
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
return ILLEGAL_INSTR;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id)
, instr_decoder([this]() {
std::vector<generic_instruction_descriptor> g_instr_descr;
g_instr_descr.reserve(instr_descr.size());
for (uint32_t i = 0; i < instr_descr.size(); ++i) {
generic_instruction_descriptor new_instr_descr {instr_descr[i].value, instr_descr[i].mask, i};
g_instr_descr.push_back(new_instr_descr);
}
return std::move(g_instr_descr);
}()) {}
template <typename ARCH>
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok)
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
f = instr_descr[inst_index].op;
if (f == nullptr) {
f = &this_class::illegal_instruction;
}
return (this->*f)(pc, instr, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_set_tval(tu_builder& tu, uint64_t new_tval) {
tu(fmt::format("tval = {};", new_tval));
}
template <typename ARCH> void vm_impl<ARCH>::gen_set_tval(tu_builder& tu, value new_tval) {
tu(fmt::format("tval = {};", new_tval.str));
}
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
this->gen_sync(tu, POST_SYNC, -1);
tu("enter_trap(core_ptr, *trap_state, *pc, tval);");
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP),32));
tu("return *next_pc;");
}
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
os << tu.add_reg_ptr("cycle", arch::traits<ARCH>::CYCLE, this->regs_base_ptr);
tu.add_prologue(os.str());
}
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namesapce tcc
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc5c|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::tgc5c>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<semihosting_cb_t<arch::traits<arch::tgc5c>::reg_t>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on