308 lines
14 KiB
Plaintext
308 lines
14 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (C) 2021 MINRES Technologies GmbH
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*******************************************************************************/
|
|
|
|
#include "../fp_functions.h"
|
|
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
|
|
#include <iss/arch/riscv_hart_m_p.h>
|
|
#include <iss/debugger/gdb_session.h>
|
|
#include <iss/debugger/server.h>
|
|
#include <iss/iss.h>
|
|
#include <iss/interp/vm_base.h>
|
|
#include <util/logging.h>
|
|
#include <sstream>
|
|
|
|
#ifndef FMT_HEADER_ONLY
|
|
#define FMT_HEADER_ONLY
|
|
#endif
|
|
#include <fmt/format.h>
|
|
|
|
#include <array>
|
|
#include <iss/debugger/riscv_target_adapter.h>
|
|
|
|
namespace iss {
|
|
namespace interp {
|
|
namespace ${coreDef.name.toLowerCase()} {
|
|
using namespace iss::arch;
|
|
using namespace iss::debugger;
|
|
|
|
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
|
|
public:
|
|
using traits = arch::traits<ARCH>;
|
|
using super = typename iss::interp::vm_base<ARCH>;
|
|
using virt_addr_t = typename super::virt_addr_t;
|
|
using phys_addr_t = typename super::phys_addr_t;
|
|
using code_word_t = typename super::code_word_t;
|
|
using addr_t = typename super::addr_t;
|
|
using reg_t = typename traits::reg_t;
|
|
using mem_type_e = typename traits::mem_type_e;
|
|
|
|
vm_impl();
|
|
|
|
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
|
|
|
|
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
|
|
|
|
target_adapter_if *accquire_target_adapter(server_if *srv) override {
|
|
debugger_if::dbg_enabled = true;
|
|
if (super::tgt_adapter == nullptr)
|
|
super::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
|
|
return super::tgt_adapter;
|
|
}
|
|
|
|
protected:
|
|
using this_class = vm_impl<ARCH>;
|
|
using compile_ret_t = virt_addr_t;
|
|
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
|
|
|
|
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
|
|
|
|
virt_addr_t execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) override;
|
|
|
|
// some compile time constants
|
|
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
|
|
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
|
|
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
|
|
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
|
|
|
|
std::array<compile_func, LUT_SIZE> lut;
|
|
|
|
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
|
|
std::array<compile_func, LUT_SIZE> lut_11;
|
|
|
|
std::array<compile_func *, 4> qlut;
|
|
|
|
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
|
|
|
|
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
|
|
compile_func f) {
|
|
if (pos < 0) {
|
|
lut[idx] = f;
|
|
} else {
|
|
auto bitmask = 1UL << pos;
|
|
if ((mask & bitmask) == 0) {
|
|
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
|
|
} else {
|
|
if ((valid & bitmask) == 0) {
|
|
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
|
|
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
|
|
} else {
|
|
auto new_val = idx << 1;
|
|
if ((value & bitmask) != 0) new_val++;
|
|
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
|
|
|
|
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
|
|
if (pos >= 0) {
|
|
auto bitmask = 1UL << pos;
|
|
if ((mask & bitmask) == 0) {
|
|
lut_val = extract_fields(pos - 1, val, mask, lut_val);
|
|
} else {
|
|
auto new_val = lut_val << 1;
|
|
if ((val & bitmask) != 0) new_val++;
|
|
lut_val = extract_fields(pos - 1, val, mask, new_val);
|
|
}
|
|
}
|
|
return lut_val;
|
|
}
|
|
|
|
inline void raise(uint16_t trap_id, uint16_t cause){
|
|
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
|
|
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
|
|
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
|
|
}
|
|
|
|
inline void leave(unsigned lvl){
|
|
this->core.leave_trap(lvl);
|
|
auto pc_val = super::template read_mem<reg_t>(traits::CSR, (lvl << 8) + 0x41);
|
|
this->template get_reg<reg_t>(traits::NEXT_PC) = pc_val;
|
|
}
|
|
|
|
inline void wait(unsigned type){
|
|
this->core.wait_until(type);
|
|
}
|
|
|
|
template<typename T>
|
|
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
|
|
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint8_t>(space, addr);}
|
|
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint16_t>(space, addr);}
|
|
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint32_t>(space, addr);}
|
|
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint64_t>(space, addr);}
|
|
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){super::write_mem(space, addr, data);}
|
|
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){super::write_mem(space, addr, data);}
|
|
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){super::write_mem(space, addr, data);}
|
|
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){super::write_mem(space, addr, data);}
|
|
template<unsigned W, typename T>
|
|
inline T sext(T from) {
|
|
auto mask = (1ULL<<W) - 1;
|
|
auto sign_mask = 1ULL<<(W-1);
|
|
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
|
|
}
|
|
|
|
private:
|
|
/****************************************************************************
|
|
* start opcode definitions
|
|
****************************************************************************/
|
|
struct InstructionDesriptor {
|
|
size_t length;
|
|
uint32_t value;
|
|
uint32_t mask;
|
|
compile_func op;
|
|
};
|
|
|
|
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
|
|
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
|
|
/* instruction ${instr.instruction.name} */
|
|
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
|
|
}};
|
|
|
|
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
|
|
/* instruction ${idx}: ${instr.name} */
|
|
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
|
|
// pre execution stuff
|
|
this->do_sync(PRE_SYNC, ${idx});
|
|
<%instr.fields.eachLine{%>${it}
|
|
<%}%>if(this->disass_enabled){
|
|
/* generate console output when executing the command */
|
|
<%instr.disass.eachLine{%>${it}
|
|
<%}%>
|
|
}
|
|
// prepare execution
|
|
uint${addrDataWidth}_t* X = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::X0]);
|
|
uint${addrDataWidth}_t* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
|
|
uint${addrDataWidth}_t* NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
|
|
*NEXT_PC = *PC + ${instr.length/8};
|
|
// execute instruction
|
|
<%instr.behavior.eachLine{%>${it}
|
|
<%}%>// post execution stuff
|
|
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
|
|
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
|
|
// trap check
|
|
if(*trap_state!=0){
|
|
super::core.enter_trap(*trap_state, pc.val);
|
|
}
|
|
pc.val=*NEXT_PC;
|
|
return pc;
|
|
}
|
|
<%}%>
|
|
/****************************************************************************
|
|
* end opcode definitions
|
|
****************************************************************************/
|
|
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
|
|
this->do_sync(PRE_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
|
|
uint32_t* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
|
|
uint32_t* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
|
|
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
|
|
raise(0, 11);
|
|
// post execution stuff
|
|
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
|
|
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
|
|
// trap check
|
|
if(*trap_state!=0){
|
|
super::core.enter_trap(*trap_state, pc.val);
|
|
}
|
|
pc.val=*NEXT_PC;
|
|
return pc;
|
|
}
|
|
|
|
static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
|
|
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
|
|
auto phys_pc = this->core.v2p(pc);
|
|
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
|
|
if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
|
|
if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
|
|
if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
|
|
} else {
|
|
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
|
|
}
|
|
return iss::Ok;
|
|
}
|
|
};
|
|
|
|
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
|
|
volatile CODE_WORD x = insn;
|
|
insn = 2 * x;
|
|
}
|
|
|
|
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
|
|
|
|
template <typename ARCH>
|
|
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
|
|
: vm_base<ARCH>(core, core_id, cluster_id) {
|
|
qlut[0] = lut_00.data();
|
|
qlut[1] = lut_01.data();
|
|
qlut[2] = lut_10.data();
|
|
qlut[3] = lut_11.data();
|
|
for (auto instr : instr_descr) {
|
|
auto quantrant = instr.value & 0x3;
|
|
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
|
|
}
|
|
}
|
|
|
|
template <typename ARCH>
|
|
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) {
|
|
// we fetch at max 4 byte, alignment is 2
|
|
enum {TRAP_ID=1<<16};
|
|
code_word_t insn = 0;
|
|
auto *const data = (uint8_t *)&insn;
|
|
auto pc=start;
|
|
while(pred(pc)){
|
|
auto res = fetch_ins(pc, data);
|
|
if(res!=iss::Ok){
|
|
auto new_pc = super::core.enter_trap(TRAP_ID, pc.val);
|
|
res = fetch_ins(virt_addr_t{access_type::FETCH, new_pc}, data);
|
|
if(res!=iss::Ok) throw simulation_stopped(0);
|
|
}
|
|
auto lut_val = extract_fields(insn);
|
|
auto f = qlut[insn & 0x3][lut_val];
|
|
if (!f)
|
|
f = &this_class::illegal_intruction;
|
|
pc = (this->*f)(pc, insn);
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
} // namespace mnrv32
|
|
|
|
template <>
|
|
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
|
|
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
|
|
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
|
|
return std::unique_ptr<vm_if>(ret);
|
|
}
|
|
} // namespace interp
|
|
} // namespace iss
|