DBT-RISE-TGC/gen_input/templates/interp/CORENAME.cpp.gtl

354 lines
14 KiB
Plaintext

/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
import com.minres.coredsl.util.BigIntegerWithRadix
def nativeTypeSize(int size){
if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64;
}
%>
#include <vm/fp_functions.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
#include <util/logging.h>
#include <sstream>
#include <boost/coroutine2/all.hpp>
#include <functional>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace interp {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
using namespace std::placeholders;
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::interp::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
using reg_t = typename traits::reg_t;
using mem_type_e = typename traits::mem_type_e;
using opcode_e = typename traits::opcode_e;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (super::tgt_adapter == nullptr)
super::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return super::tgt_adapter;
}
protected:
using this_class = vm_impl<ARCH>;
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
typename arch::traits<ARCH>::opcode_e decode_inst_id(code_word_t instr);
virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override;
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum {
LUT_SIZE = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK32)),
LUT_SIZE_C = 1 << util::bit_count(static_cast<uint32_t>(EXTR_MASK16))
};
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
struct instruction_pattern {
uint32_t value;
uint32_t mask;
typename arch::traits<ARCH>::opcode_e id;
};
std::array<std::vector<instruction_pattern>, 4> qlut;
inline void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->core.trap_state = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
}
inline void leave(unsigned lvl){
this->core.leave_trap(lvl);
}
inline void wait(unsigned type){
this->core.wait_until(type);
}
using yield_t = boost::coroutines2::coroutine<void>::push_type;
using coro_t = boost::coroutines2::coroutine<void>::pull_type;
std::vector<coro_t> spawn_blocks;
template<typename T>
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint8_t>(space, addr);
if(this->core.trap_state) throw 0;
return ret;
}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint16_t>(space, addr);
if(this->core.trap_state) throw 0;
return ret;
}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint32_t>(space, addr);
if(this->core.trap_state) throw 0;
return ret;
}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){
auto ret = super::template read_mem<uint64_t>(space, addr);
if(this->core.trap_state) throw 0;
return ret;
}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){
super::write_mem(space, addr, data);
if(this->core.trap_state) throw 0;
}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){
super::write_mem(space, addr, data);
if(this->core.trap_state) throw 0;
}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){
super::write_mem(space, addr, data);
if(this->core.trap_state) throw 0;
}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){
super::write_mem(space, addr, data);
if(this->core.trap_state) throw 0;
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
inline void process_spawn_blocks() {
for(auto it = std::begin(spawn_blocks); it!=std::end(spawn_blocks);)
if(*it){
(*it)();
++it;
} else
spawn_blocks.erase(it);
}
<%functions.each{ it.eachLine { %>
${it}<%}%>
<%}%>
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
typename arch::traits<ARCH>::opcode_e op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
{${instr.length}, ${instr.encoding}, ${instr.mask}, arch::traits<ARCH>::opcode_e::${instr.instruction.name}},<%}%>
}};
//static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
auto phys_pc = this->core.v2p(pc);
//if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
// if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
// if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
//} else {
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
//}
return iss::Ok;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__
constexpr size_t bit_count(uint32_t u) { return __builtin_popcount(u); }
#elif __cplusplus < 201402L
constexpr size_t uCount(uint32_t u) { return u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); }
constexpr size_t bit_count(uint32_t u) { return ((uCount(u) + (uCount(u) >> 3)) & 030707070707) % 63; }
#else
constexpr size_t bit_count(uint32_t u) {
size_t uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
#endif
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
unsigned id=0;
for (auto instr : instr_descr) {
auto quadrant = instr.value & 0x3;
qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op});
}
for(auto& lut: qlut){
std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){
return bit_count(a.mask) > bit_count(b.mask);
});
}
}
inline bool is_count_limit_enabled(finish_cond_e cond){
return (cond & finish_cond_e::COUNT_LIMIT) == finish_cond_e::COUNT_LIMIT;
}
inline bool is_jump_to_self_enabled(finish_cond_e cond){
return (cond & finish_cond_e::JUMP_TO_SELF) == finish_cond_e::JUMP_TO_SELF;
}
template <typename ARCH>
typename arch::traits<ARCH>::opcode_e vm_impl<ARCH>::decode_inst_id(code_word_t instr){
for(auto& e: qlut[instr&0x3]){
if(!((instr&e.mask) ^ e.value )) return e.id;
}
return arch::traits<ARCH>::opcode_e::MAX_OPCODE;
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){
auto pc=start;
auto* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
auto* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
auto& trap_state = this->core.trap_state;
auto& icount = this->core.icount;
auto& cycle = this->core.cycle;
auto& instret = this->core.instret;
auto& instr = this->core.instruction;
// we fetch at max 4 byte, alignment is 2
auto *const data = reinterpret_cast<uint8_t*>(&instr);
while(!this->core.should_stop() &&
!(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){
if(fetch_ins(pc, data)!=iss::Ok){
this->do_sync(POST_SYNC, std::numeric_limits<unsigned>::max());
pc.val = super::core.enter_trap(std::numeric_limits<uint64_t>::max(), pc.val, 0);
} else {
if (is_jump_to_self_enabled(cond) &&
(instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto inst_id = decode_inst_id(instr);
// pre execution stuff
if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast<unsigned>(inst_id));
switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %>
case arch::traits<ARCH>::opcode_e::${instr.name}: {
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */<%instr.disass.eachLine{%>
${it}<%}%>
}
// used registers<%instr.usedVariables.each{ k,v->
if(v.isArray) {%>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}0]);<% }else{ %>
auto* ${k} = reinterpret_cast<uint${nativeTypeSize(v.type.size)}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::${k}]);
<%}}%>// calculate next pc value
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction<%instr.behavior.eachLine{%>
${it}<%}%>
TRAP_${instr.name}:break;
}// @suppress("No break at end of case")<%}%>
default: {
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 2);
}
}
// post execution stuff
process_spawn_blocks();
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(inst_id));
// trap check
if(trap_state!=0){
super::core.enter_trap(trap_state, pc.val, instr);
} else {
icount++;
instret++;
}
cycle++;
pc.val=*NEXT_PC;
this->core.reg.PC = this->core.reg.NEXT_PC;
this->core.trap_state = this->core.pending_trap;
}
}
return pc;
}
}
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace interp
} // namespace iss