DBT-RISE-TGC/src/vm/tcc/vm_tgc5c.cpp

3675 lines
158 KiB
C++

/*******************************************************************************
* Copyright (C) 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
// clang-format off
#include <iss/arch/tgc5c.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/tcc/vm_base.h>
#include <util/logging.h>
#include <sstream>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace tcc {
namespace tgc5c {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::tcc::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::tcc::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using mem_type_e = typename traits::mem_type_e;
using addr_t = typename super::addr_t;
using tu_builder = typename super::tu_builder;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (vm_base<ARCH>::tgt_adapter == nullptr)
vm_base<ARCH>::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return vm_base<ARCH>::tgt_adapter;
}
protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause);
void gen_leave_trap(tu_builder& tu, unsigned lvl);
void gen_wait(tu_builder& tu, unsigned type);
inline void gen_trap_check(tu_builder& tu) {
tu("if(*trap_state!=0) goto trap_entry;");
}
inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) {
switch(reg_num){
case traits::NEXT_PC:
tu("*next_pc = {:#x};", pc.val);
break;
case traits::PC:
tu("*pc = {:#x};", pc.val);
break;
default:
if(!tu.defined_regs[reg_num]){
tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast<uintptr_t>(get_reg_ptr(reg_num)));
tu.defined_regs[reg_num]=true;
}
tu("*reg{:02d} = {:#x};", reg_num, pc.val);
}
}
template<unsigned W, typename U, typename S = typename std::make_signed<U>::type>
inline S sext(U from) {
auto mask = (1ULL<<W) - 1;
auto sign_mask = 1ULL<<(W-1);
return (from & mask) | ((from & sign_mask) ? ~mask : 0);
}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct instruction_descriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
struct decoding_tree_node{
std::vector<instruction_descriptor> instrs;
std::vector<decoding_tree_node*> children;
uint32_t submask = std::numeric_limits<uint32_t>::max();
uint32_t value;
decoding_tree_node(uint32_t value) : value(value){}
};
decoding_tree_node* root {nullptr};
const std::array<instruction_descriptor, 87> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */
/* instruction LUI, encoding '0b00000000000000000000000000110111' */
{32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui},
/* instruction AUIPC, encoding '0b00000000000000000000000000010111' */
{32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc},
/* instruction JAL, encoding '0b00000000000000000000000001101111' */
{32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal},
/* instruction JALR, encoding '0b00000000000000000000000001100111' */
{32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr},
/* instruction BEQ, encoding '0b00000000000000000000000001100011' */
{32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq},
/* instruction BNE, encoding '0b00000000000000000001000001100011' */
{32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne},
/* instruction BLT, encoding '0b00000000000000000100000001100011' */
{32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt},
/* instruction BGE, encoding '0b00000000000000000101000001100011' */
{32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge},
/* instruction BLTU, encoding '0b00000000000000000110000001100011' */
{32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu},
/* instruction BGEU, encoding '0b00000000000000000111000001100011' */
{32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu},
/* instruction LB, encoding '0b00000000000000000000000000000011' */
{32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb},
/* instruction LH, encoding '0b00000000000000000001000000000011' */
{32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh},
/* instruction LW, encoding '0b00000000000000000010000000000011' */
{32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw},
/* instruction LBU, encoding '0b00000000000000000100000000000011' */
{32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu},
/* instruction LHU, encoding '0b00000000000000000101000000000011' */
{32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu},
/* instruction SB, encoding '0b00000000000000000000000000100011' */
{32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb},
/* instruction SH, encoding '0b00000000000000000001000000100011' */
{32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh},
/* instruction SW, encoding '0b00000000000000000010000000100011' */
{32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw},
/* instruction ADDI, encoding '0b00000000000000000000000000010011' */
{32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi},
/* instruction SLTI, encoding '0b00000000000000000010000000010011' */
{32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti},
/* instruction SLTIU, encoding '0b00000000000000000011000000010011' */
{32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu},
/* instruction XORI, encoding '0b00000000000000000100000000010011' */
{32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori},
/* instruction ORI, encoding '0b00000000000000000110000000010011' */
{32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori},
/* instruction ANDI, encoding '0b00000000000000000111000000010011' */
{32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi},
/* instruction SLLI, encoding '0b00000000000000000001000000010011' */
{32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli},
/* instruction SRLI, encoding '0b00000000000000000101000000010011' */
{32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli},
/* instruction SRAI, encoding '0b01000000000000000101000000010011' */
{32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai},
/* instruction ADD, encoding '0b00000000000000000000000000110011' */
{32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add},
/* instruction SUB, encoding '0b01000000000000000000000000110011' */
{32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub},
/* instruction SLL, encoding '0b00000000000000000001000000110011' */
{32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll},
/* instruction SLT, encoding '0b00000000000000000010000000110011' */
{32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt},
/* instruction SLTU, encoding '0b00000000000000000011000000110011' */
{32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu},
/* instruction XOR, encoding '0b00000000000000000100000000110011' */
{32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor},
/* instruction SRL, encoding '0b00000000000000000101000000110011' */
{32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl},
/* instruction SRA, encoding '0b01000000000000000101000000110011' */
{32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra},
/* instruction OR, encoding '0b00000000000000000110000000110011' */
{32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or},
/* instruction AND, encoding '0b00000000000000000111000000110011' */
{32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and},
/* instruction FENCE, encoding '0b00000000000000000000000000001111' */
{32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence},
/* instruction ECALL, encoding '0b00000000000000000000000001110011' */
{32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall},
/* instruction EBREAK, encoding '0b00000000000100000000000001110011' */
{32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak},
/* instruction MRET, encoding '0b00110000001000000000000001110011' */
{32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret},
/* instruction WFI, encoding '0b00010000010100000000000001110011' */
{32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi},
/* instruction CSRRW, encoding '0b00000000000000000001000001110011' */
{32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw},
/* instruction CSRRS, encoding '0b00000000000000000010000001110011' */
{32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs},
/* instruction CSRRC, encoding '0b00000000000000000011000001110011' */
{32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc},
/* instruction CSRRWI, encoding '0b00000000000000000101000001110011' */
{32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi},
/* instruction CSRRSI, encoding '0b00000000000000000110000001110011' */
{32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi},
/* instruction CSRRCI, encoding '0b00000000000000000111000001110011' */
{32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci},
/* instruction FENCE_I, encoding '0b00000000000000000001000000001111' */
{32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i},
/* instruction MUL, encoding '0b00000010000000000000000000110011' */
{32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul},
/* instruction MULH, encoding '0b00000010000000000001000000110011' */
{32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh},
/* instruction MULHSU, encoding '0b00000010000000000010000000110011' */
{32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu},
/* instruction MULHU, encoding '0b00000010000000000011000000110011' */
{32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu},
/* instruction DIV, encoding '0b00000010000000000100000000110011' */
{32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div},
/* instruction DIVU, encoding '0b00000010000000000101000000110011' */
{32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu},
/* instruction REM, encoding '0b00000010000000000110000000110011' */
{32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem},
/* instruction REMU, encoding '0b00000010000000000111000000110011' */
{32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu},
/* instruction C__ADDI4SPN, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1110000000000011, &this_class::__c__addi4spn},
/* instruction C__LW, encoding '0b0100000000000000' */
{16, 0b0100000000000000, 0b1110000000000011, &this_class::__c__lw},
/* instruction C__SW, encoding '0b1100000000000000' */
{16, 0b1100000000000000, 0b1110000000000011, &this_class::__c__sw},
/* instruction C__ADDI, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110000000000011, &this_class::__c__addi},
/* instruction C__NOP, encoding '0b0000000000000001' */
{16, 0b0000000000000001, 0b1110111110000011, &this_class::__c__nop},
/* instruction C__JAL, encoding '0b0010000000000001' */
{16, 0b0010000000000001, 0b1110000000000011, &this_class::__c__jal},
/* instruction C__LI, encoding '0b0100000000000001' */
{16, 0b0100000000000001, 0b1110000000000011, &this_class::__c__li},
/* instruction C__LUI, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1110000000000011, &this_class::__c__lui},
/* instruction C__ADDI16SP, encoding '0b0110000100000001' */
{16, 0b0110000100000001, 0b1110111110000011, &this_class::__c__addi16sp},
/* instruction __reserved_clui, encoding '0b0110000000000001' */
{16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui},
/* instruction C__SRLI, encoding '0b1000000000000001' */
{16, 0b1000000000000001, 0b1111110000000011, &this_class::__c__srli},
/* instruction C__SRAI, encoding '0b1000010000000001' */
{16, 0b1000010000000001, 0b1111110000000011, &this_class::__c__srai},
/* instruction C__ANDI, encoding '0b1000100000000001' */
{16, 0b1000100000000001, 0b1110110000000011, &this_class::__c__andi},
/* instruction C__SUB, encoding '0b1000110000000001' */
{16, 0b1000110000000001, 0b1111110001100011, &this_class::__c__sub},
/* instruction C__XOR, encoding '0b1000110000100001' */
{16, 0b1000110000100001, 0b1111110001100011, &this_class::__c__xor},
/* instruction C__OR, encoding '0b1000110001000001' */
{16, 0b1000110001000001, 0b1111110001100011, &this_class::__c__or},
/* instruction C__AND, encoding '0b1000110001100001' */
{16, 0b1000110001100001, 0b1111110001100011, &this_class::__c__and},
/* instruction C__J, encoding '0b1010000000000001' */
{16, 0b1010000000000001, 0b1110000000000011, &this_class::__c__j},
/* instruction C__BEQZ, encoding '0b1100000000000001' */
{16, 0b1100000000000001, 0b1110000000000011, &this_class::__c__beqz},
/* instruction C__BNEZ, encoding '0b1110000000000001' */
{16, 0b1110000000000001, 0b1110000000000011, &this_class::__c__bnez},
/* instruction C__SLLI, encoding '0b0000000000000010' */
{16, 0b0000000000000010, 0b1111000000000011, &this_class::__c__slli},
/* instruction C__LWSP, encoding '0b0100000000000010' */
{16, 0b0100000000000010, 0b1110000000000011, &this_class::__c__lwsp},
/* instruction C__MV, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000000000011, &this_class::__c__mv},
/* instruction C__JR, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111000001111111, &this_class::__c__jr},
/* instruction __reserved_cmv, encoding '0b1000000000000010' */
{16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv},
/* instruction C__ADD, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000000000011, &this_class::__c__add},
/* instruction C__JALR, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111000001111111, &this_class::__c__jalr},
/* instruction C__EBREAK, encoding '0b1001000000000010' */
{16, 0b1001000000000010, 0b1111111111111111, &this_class::__c__ebreak},
/* instruction C__SWSP, encoding '0b1100000000000010' */
{16, 0b1100000000000010, 0b1110000000000011, &this_class::__c__swsp},
/* instruction DII, encoding '0b0000000000000000' */
{16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii},
}};
/* instruction definitions */
/* instruction 0: LUI */
compile_ret_t __lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LUI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,0);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)((int32_t)imm),32));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,0);
return returnValue;
}
/* instruction 1: AUIPC */
compile_ret_t __auipc(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("AUIPC_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,1);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,20>(instr) << 12));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)(PC+(int32_t)imm),32));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,1);
return returnValue;
}
/* instruction 2: JAL */
compile_ret_t __jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("JAL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,2);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint32_t imm = ((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)(PC+ 4),32));
}
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int32_t)sext<21>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,2);
return returnValue;
}
/* instruction 3: JALR */
compile_ret_t __jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("JALR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,3);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto addr_mask = tu.assignment(tu.constant((uint32_t)- 2,32),32);
auto new_pc = tu.assignment(tu.ext((tu.bitwise_and(
(tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),
addr_mask)),32,false),32);
tu.open_if(tu.urem(
new_pc,
tu.constant(static_cast<uint32_t>(traits:: INSTR_ALIGNMENT),32)));
this->gen_raise_trap(tu, 0, 0);
tu.open_else();
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)(PC+ 4),32));
}
auto PC_val_v = tu.assignment("PC_val", new_pc,32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,3);
return returnValue;
}
/* instruction 4: BEQ */
compile_ret_t __beq(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BEQ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,4);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,4);
return returnValue;
}
/* instruction 5: BNE */
compile_ret_t __bne(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BNE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,5);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,5);
return returnValue;
}
/* instruction 6: BLT */
compile_ret_t __blt(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BLT_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,6);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.ext(tu.load(rs2+ traits::X0, 0),32,true)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,6);
return returnValue;
}
/* instruction 7: BGE */
compile_ret_t __bge(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BGE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,7);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_SGE,
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.ext(tu.load(rs2+ traits::X0, 0),32,true)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,7);
return returnValue;
}
/* instruction 8: BLTU */
compile_ret_t __bltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BLTU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,8);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,8);
return returnValue;
}
/* instruction 9: BGEU */
compile_ret_t __bgeu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("BGEU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,9);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"),
fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_UGE,
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
if(imm%static_cast<uint32_t>(traits:: INSTR_ALIGNMENT)){ this->gen_raise_trap(tu, 0, 0);
}
else{
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<13>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,9);
return returnValue;
}
/* instruction 10: LB */
compile_ret_t __lb(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,10);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 8),8,true),8);
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,10);
return returnValue;
}
/* instruction 11: LH */
compile_ret_t __lh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,11);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 16),16,true),16);
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,11);
return returnValue;
}
/* instruction 12: LW */
compile_ret_t __lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,12);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 32),32,true),32);
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,12);
return returnValue;
}
/* instruction 13: LBU */
compile_ret_t __lbu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LBU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,13);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 8),8);
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,13);
return returnValue;
}
/* instruction 14: LHU */
compile_ret_t __lhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("LHU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,14);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto load_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 16),16);
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,14);
return returnValue;
}
/* instruction 15: SB */
compile_ret_t __sb(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,15);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2+ traits::X0, 0),8,false));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,15);
return returnValue;
}
/* instruction 16: SH */
compile_ret_t __sh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,16);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2+ traits::X0, 0),16,false));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,16);
return returnValue;
}
/* instruction 17: SW */
compile_ret_t __sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,17);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"),
fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto store_address = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2+ traits::X0, 0),32,false));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,17);
return returnValue;
}
/* instruction 18: ADDI */
compile_ret_t __addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ADDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,18);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int16_t)sext<12>(imm),16))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,18);
return returnValue;
}
/* instruction 19: SLTI */
compile_ret_t __slti(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,19);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.constant((int16_t)sext<12>(imm),16))), tu.constant( 1,8),tu.constant( 0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,19);
return returnValue;
}
/* instruction 20: SLTIU */
compile_ret_t __sltiu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTIU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,20);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1+ traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32))), tu.constant( 1,8),tu.constant( 0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,20);
return returnValue;
}
/* instruction 21: XORI */
compile_ret_t __xori(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("XORI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,21);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_xor(
tu.load(rs1+ traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,21);
return returnValue;
}
/* instruction 22: ORI */
compile_ret_t __ori(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ORI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,22);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_or(
tu.load(rs1+ traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,22);
return returnValue;
}
/* instruction 23: ANDI */
compile_ret_t __andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ANDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,23);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_and(
tu.load(rs1+ traits::X0, 0),
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,23);
return returnValue;
}
/* instruction 24: SLLI */
compile_ret_t __slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,24);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.shl(
tu.load(rs1+ traits::X0, 0),
tu.constant(shamt,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,24);
return returnValue;
}
/* instruction 25: SRLI */
compile_ret_t __srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,25);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.lshr(
tu.load(rs1+ traits::X0, 0),
tu.constant(shamt,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,25);
return returnValue;
}
/* instruction 26: SRAI */
compile_ret_t __srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRAI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,26);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t shamt = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.ashr(
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.constant(shamt,8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,26);
return returnValue;
}
/* instruction 27: ADD */
compile_ret_t __add(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ADD_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,27);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,27);
return returnValue;
}
/* instruction 28: SUB */
compile_ret_t __sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SUB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,28);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.sub(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,28);
return returnValue;
}
/* instruction 29: SLL */
compile_ret_t __sll(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,29);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.shl(
tu.load(rs1+ traits::X0, 0),
(tu.bitwise_and(
tu.load(rs2+ traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)- 1),64)))));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,29);
return returnValue;
}
/* instruction 30: SLT */
compile_ret_t __slt(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLT_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,30);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_SLT,
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.ext(tu.load(rs2+ traits::X0, 0),32,true)), tu.constant( 1,8),tu.constant( 0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,30);
return returnValue;
}
/* instruction 31: SLTU */
compile_ret_t __sltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SLTU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,31);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_ULT,
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)), tu.constant( 1,8),tu.constant( 0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,31);
return returnValue;
}
/* instruction 32: XOR */
compile_ret_t __xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("XOR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,32);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_xor(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,32);
return returnValue;
}
/* instruction 33: SRL */
compile_ret_t __srl(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,33);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.lshr(
tu.load(rs1+ traits::X0, 0),
(tu.bitwise_and(
tu.load(rs2+ traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)- 1),64)))));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,33);
return returnValue;
}
/* instruction 34: SRA */
compile_ret_t __sra(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("SRA_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,34);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.ashr(
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
(tu.bitwise_and(
tu.load(rs2+ traits::X0, 0),
tu.constant((static_cast<uint32_t>(traits:: XLEN)- 1),64))))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,34);
return returnValue;
}
/* instruction 35: OR */
compile_ret_t __or(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("OR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,35);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_or(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,35);
return returnValue;
}
/* instruction 36: AND */
compile_ret_t __and(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("AND_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,36);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.bitwise_and(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,36);
return returnValue;
}
/* instruction 37: FENCE */
compile_ret_t __fence(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("FENCE_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,37);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t succ = ((bit_sub<20,4>(instr)));
uint8_t pred = ((bit_sub<24,4>(instr)));
uint8_t fm = ((bit_sub<28,4>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"),
fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fence), tu.constant((uint8_t)pred<< 4|succ,8));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,37);
return returnValue;
}
/* instruction 38: ECALL */
compile_ret_t __ecall(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("ECALL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,38);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "ecall");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 11);
auto returnValue = std::make_tuple(TRAP);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,38);
return returnValue;
}
/* instruction 39: EBREAK */
compile_ret_t __ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("EBREAK_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,39);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "ebreak");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 3);
auto returnValue = std::make_tuple(TRAP);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,39);
return returnValue;
}
/* instruction 40: MRET */
compile_ret_t __mret(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MRET_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,40);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "mret");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_leave_trap(tu, 3);
auto returnValue = std::make_tuple(TRAP);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,40);
return returnValue;
}
/* instruction 41: WFI */
compile_ret_t __wfi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("WFI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,41);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "wfi");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_wait(tu, 1);
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,41);
return returnValue;
}
/* instruction 42: CSRRW */
compile_ret_t __csrrw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,42);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrs1 = tu.assignment(tu.load(rs1+ traits::X0, 0),32);
if(rd!= 0){ auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
tu.write_mem(traits::CSR, csr, xrs1);
tu.store(rd + traits::X0,
xrd);
}
else{
tu.write_mem(traits::CSR, csr, xrs1);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,42);
return returnValue;
}
/* instruction 43: CSRRS */
compile_ret_t __csrrs(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRS_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,43);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
auto xrs1 = tu.assignment(tu.load(rs1+ traits::X0, 0),32);
if(rs1!= 0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_or(
xrd,
xrs1));
}
if(rd!= 0) {
tu.store(rd + traits::X0,
xrd);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,43);
return returnValue;
}
/* instruction 44: CSRRC */
compile_ret_t __csrrc(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRC_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,44);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
auto xrs1 = tu.assignment(tu.load(rs1+ traits::X0, 0),32);
if(rs1!= 0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_and(
xrd,
tu.logical_neg(xrs1)));
}
if(rd!= 0) {
tu.store(rd + traits::X0,
xrd);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,44);
return returnValue;
}
/* instruction 45: CSRRWI */
compile_ret_t __csrrwi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRWI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,45);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
tu.write_mem(traits::CSR, csr, tu.constant((uint32_t)zimm,32));
if(rd!= 0) {
tu.store(rd + traits::X0,
xrd);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,45);
return returnValue;
}
/* instruction 46: CSRRSI */
compile_ret_t __csrrsi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRSI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,46);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
if(zimm!= 0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_or(
xrd,
tu.constant((uint32_t)zimm,32)));
}
if(rd!= 0) {
tu.store(rd + traits::X0,
xrd);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,46);
return returnValue;
}
/* instruction 47: CSRRCI */
compile_ret_t __csrrci(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("CSRRCI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,47);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t zimm = ((bit_sub<15,5>(instr)));
uint16_t csr = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"),
fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32),32);
if(zimm!= 0) {
tu.write_mem(traits::CSR, csr, tu.bitwise_and(
xrd,
tu.constant(~ ((uint32_t)zimm),32)));
}
if(rd!= 0) {
tu.store(rd + traits::X0,
xrd);
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,47);
return returnValue;
}
/* instruction 48: FENCE_I */
compile_ret_t __fence_i(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("FENCE_I_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,48);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint16_t imm = ((bit_sub<20,12>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"),
fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fencei), tu.constant(imm,16));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,48);
return returnValue;
}
/* instruction 49: MUL */
compile_ret_t __mul(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MUL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,49);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto res = tu.assignment(tu.ext((tu.mul(
tu.ext(tu.ext(tu.load(rs1+ traits::X0, 0),32,true),64,true),
tu.ext(tu.ext(tu.load(rs2+ traits::X0, 0),32,true),64,true))),64,true),64);
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,49);
return returnValue;
}
/* instruction 50: MULH */
compile_ret_t __mulh(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULH_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,50);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto res = tu.assignment(tu.ext((tu.mul(
tu.ext(tu.ext(tu.load(rs1+ traits::X0, 0),32,true),64,true),
tu.ext(tu.ext(tu.load(rs2+ traits::X0, 0),32,true),64,true))),64,true),64);
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext((tu.ashr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,50);
return returnValue;
}
/* instruction 51: MULHSU */
compile_ret_t __mulhsu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULHSU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,51);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto res = tu.assignment(tu.ext((tu.mul(
tu.ext(tu.ext(tu.load(rs1+ traits::X0, 0),32,true),64,true),
tu.ext(tu.load(rs2+ traits::X0, 0),64,false))),64,true),64);
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext((tu.ashr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,51);
return returnValue;
}
/* instruction 52: MULHU */
compile_ret_t __mulhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("MULHU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,52);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto res = tu.assignment(tu.ext((tu.mul(
tu.ext(tu.load(rs1+ traits::X0, 0),64,false),
tu.ext(tu.load(rs2+ traits::X0, 0),64,false))),64,false),64);
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext((tu.lshr(
res,
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,52);
return returnValue;
}
/* instruction 53: DIV */
compile_ret_t __div(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DIV_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,53);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto dividend = tu.assignment(tu.ext(tu.load(rs1+ traits::X0, 0),32,true),32);
auto divisor = tu.assignment(tu.ext(tu.load(rs2+ traits::X0, 0),32,true),32);
if(rd!= 0){ tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
divisor,
tu.constant( 0,8)));
auto MMIN = tu.assignment(tu.constant(((uint32_t)1)<<(static_cast<uint32_t>(traits:: XLEN)-1),32),32);
tu.open_if(tu.logical_and(
tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1+ traits::X0, 0),
MMIN),
tu.icmp(ICmpInst::ICMP_EQ,
divisor,
tu.constant(- 1,8))));
tu.store(rd + traits::X0,
MMIN);
tu.open_else();
tu.store(rd + traits::X0,
tu.ext((tu.sdiv(
dividend,
divisor)),32,false));
tu.close_scope();
tu.open_else();
tu.store(rd + traits::X0,
tu.constant((uint32_t)- 1,32));
tu.close_scope();
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,53);
return returnValue;
}
/* instruction 54: DIVU */
compile_ret_t __divu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DIVU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,54);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2+ traits::X0, 0),
tu.constant( 0,8)));
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext((tu.udiv(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0))),32,false));
}
tu.open_else();
if(rd!=0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)- 1,32));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,54);
return returnValue;
}
/* instruction 55: REM */
compile_ret_t __rem(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("REM_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,55);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2+ traits::X0, 0),
tu.constant( 0,8)));
auto MMIN = tu.assignment(tu.constant((uint32_t)1<<(static_cast<uint32_t>(traits:: XLEN)-1),32),32);
tu.open_if(tu.logical_and(
tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1+ traits::X0, 0),
MMIN),
tu.icmp(ICmpInst::ICMP_EQ,
tu.ext(tu.load(rs2+ traits::X0, 0),32,true),
tu.constant(- 1,8))));
if(rd!=0) {
tu.store(rd + traits::X0,
tu.constant( 0,8));
}
tu.open_else();
if(rd!=0) {
tu.store(rd + traits::X0,
tu.ext((tu.srem(
tu.ext(tu.load(rs1+ traits::X0, 0),32,true),
tu.ext(tu.load(rs2+ traits::X0, 0),32,true))),32,false));
}
tu.close_scope();
tu.open_else();
if(rd!=0) {
tu.store(rd + traits::X0,
tu.load(rs1+ traits::X0, 0));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,55);
return returnValue;
}
/* instruction 56: REMU */
compile_ret_t __remu(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("REMU_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,56);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
uint8_t rs1 = ((bit_sub<15,5>(instr)));
uint8_t rs2 = ((bit_sub<20,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"),
fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 4;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rs1>=static_cast<uint32_t>(traits:: RFS)||rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs2+ traits::X0, 0),
tu.constant( 0,8)));
if(rd!=0) {
tu.store(rd + traits::X0,
tu.urem(
tu.load(rs1+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0)));
}
tu.open_else();
if(rd!=0) {
tu.store(rd + traits::X0,
tu.load(rs1+ traits::X0, 0));
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,56);
return returnValue;
}
/* instruction 57: C__ADDI4SPN */
compile_ret_t __c__addi4spn(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI4SPN_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,57);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint16_t imm = ((bit_sub<5,1>(instr) << 3) | (bit_sub<6,1>(instr) << 2) | (bit_sub<7,4>(instr) << 6) | (bit_sub<11,2>(instr) << 4));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__addi4spn"),
fmt::arg("rd", name(8+rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(imm) {
tu.store(rd+ 8 + traits::X0,
tu.ext((tu.add(
tu.load(2+ traits::X0, 0),
tu.constant(imm,16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, 2);
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,57);
return returnValue;
}
/* instruction 58: C__LW */
compile_ret_t __c__lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,58);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__lw"),
fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.store(rd+ 8 + traits::X0,
tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,58);
return returnValue;
}
/* instruction 59: C__SW */
compile_ret_t __c__sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SW_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,59);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__sw"),
fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2+ 8+ traits::X0, 0),32,false));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,59);
return returnValue;
}
/* instruction 60: C__ADDI */
compile_ret_t __c__addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,60);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__addi"),
fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rs1!= 0) {
tu.store(rs1 + traits::X0,
tu.ext((tu.add(
tu.load(rs1+ traits::X0, 0),
tu.constant((int8_t)sext<6>(imm),8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,60);
return returnValue;
}
/* instruction 61: C__NOP */
compile_ret_t __c__nop(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__NOP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,61);
uint64_t PC = pc.val;
uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "c__nop");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,61);
return returnValue;
}
/* instruction 62: C__JAL */
compile_ret_t __c__jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JAL_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,62);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__jal"),
fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(1 + traits::X0,
tu.constant((uint32_t)(PC+ 2),32));
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,62);
return returnValue;
}
/* instruction 63: C__LI */
compile_ret_t __c__li(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,63);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__li"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)((int8_t)sext<6>(imm)),32));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,63);
return returnValue;
}
/* instruction 64: C__LUI */
compile_ret_t __c__lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LUI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,64);
uint64_t PC = pc.val;
uint32_t imm = ((bit_sub<2,5>(instr) << 12) | (bit_sub<12,1>(instr) << 17));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__lui"),
fmt::arg("rd", name(rd)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(imm== 0||rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.constant((uint32_t)((int32_t)sext<18>(imm)),32));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,64);
return returnValue;
}
/* instruction 65: C__ADDI16SP */
compile_ret_t __c__addi16sp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADDI16SP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,65);
uint64_t PC = pc.val;
uint16_t nzimm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 7) | (bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 4) | (bit_sub<12,1>(instr) << 9));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c__addi16sp"),
fmt::arg("nzimm", nzimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(nzimm) {
tu.store(2 + traits::X0,
tu.ext((tu.add(
tu.load(2+ traits::X0, 0),
tu.constant((int16_t)sext<10>(nzimm),16))),32,false));
}
else{
this->gen_raise_trap(tu, 0, 2);
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,65);
return returnValue;
}
/* instruction 66: __reserved_clui */
compile_ret_t ____reserved_clui(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("__reserved_clui_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,66);
uint64_t PC = pc.val;
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "__reserved_clui");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 2);
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,66);
return returnValue;
}
/* instruction 67: C__SRLI */
compile_ret_t __c__srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SRLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,67);
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srli"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rs1+ 8 + traits::X0,
tu.lshr(
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant(shamt,8)));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,67);
return returnValue;
}
/* instruction 68: C__SRAI */
compile_ret_t __c__srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SRAI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,68);
uint64_t PC = pc.val;
uint8_t shamt = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srai"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(shamt){ tu.store(rs1+ 8 + traits::X0,
tu.ext((tu.ashr(
(tu.ext(tu.load(rs1+ 8+ traits::X0, 0),32,true)),
tu.constant(shamt,8))),32,false));
}
else{
if(static_cast<uint32_t>(traits:: XLEN)== 128){ tu.store(rs1+ 8 + traits::X0,
tu.ext((tu.ashr(
(tu.ext(tu.load(rs1+ 8+ traits::X0, 0),32,true)),
tu.constant( 64,8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,68);
return returnValue;
}
/* instruction 69: C__ANDI */
compile_ret_t __c__andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ANDI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,69);
uint64_t PC = pc.val;
uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__andi"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rs1+ 8 + traits::X0,
tu.ext((tu.bitwise_and(
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant((int8_t)sext<6>(imm),8))),32,false));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,69);
return returnValue;
}
/* instruction 70: C__SUB */
compile_ret_t __c__sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SUB_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,70);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__sub"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rd+ 8 + traits::X0,
tu.ext((tu.sub(
tu.load(rd+ 8+ traits::X0, 0),
tu.load(rs2+ 8+ traits::X0, 0))),32,false));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,70);
return returnValue;
}
/* instruction 71: C__XOR */
compile_ret_t __c__xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__XOR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,71);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__xor"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rd+ 8 + traits::X0,
tu.bitwise_xor(
tu.load(rd+ 8+ traits::X0, 0),
tu.load(rs2+ 8+ traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,71);
return returnValue;
}
/* instruction 72: C__OR */
compile_ret_t __c__or(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__OR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,72);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__or"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rd+ 8 + traits::X0,
tu.bitwise_or(
tu.load(rd+ 8+ traits::X0, 0),
tu.load(rs2+ 8+ traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,72);
return returnValue;
}
/* instruction 73: C__AND */
compile_ret_t __c__and(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__AND_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,73);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,3>(instr)));
uint8_t rd = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__and"),
fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.store(rd+ 8 + traits::X0,
tu.bitwise_and(
tu.load(rd+ 8+ traits::X0, 0),
tu.load(rs2+ 8+ traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,73);
return returnValue;
}
/* instruction 74: C__J */
compile_ret_t __c__j(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__J_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,74);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__j"),
fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,74);
return returnValue;
}
/* instruction 75: C__BEQZ */
compile_ret_t __c__beqz(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__BEQZ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,75);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__beqz"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.open_if(tu.icmp(ICmpInst::ICMP_EQ,
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant( 0,8)));
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<9>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
tu.close_scope();
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,75);
return returnValue;
}
/* instruction 76: C__BNEZ */
compile_ret_t __c__bnez(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__BNEZ_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,76);
uint64_t PC = pc.val;
uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8));
uint8_t rs1 = ((bit_sub<7,3>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__bnez"),
fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
tu.open_if(tu.icmp(ICmpInst::ICMP_NE,
tu.load(rs1+ 8+ traits::X0, 0),
tu.constant( 0,8)));
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<9>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
tu.close_scope();
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,76);
return returnValue;
}
/* instruction 77: C__SLLI */
compile_ret_t __c__slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SLLI_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,77);
uint64_t PC = pc.val;
uint8_t nzuimm = ((bit_sub<2,5>(instr)));
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c__slli"),
fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rs1!= 0) {
tu.store(rs1 + traits::X0,
tu.shl(
tu.load(rs1+ traits::X0, 0),
tu.constant(nzuimm,8)));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,77);
return returnValue;
}
/* instruction 78: C__LWSP */
compile_ret_t __c__lwsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__LWSP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,78);
uint64_t PC = pc.val;
uint8_t uimm = ((bit_sub<2,2>(instr) << 6) | (bit_sub<4,3>(instr) << 2) | (bit_sub<12,1>(instr) << 5));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c__lwsp"),
fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)||rd== 0) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(2+ traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.store(rd + traits::X0,
tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,78);
return returnValue;
}
/* instruction 79: C__MV */
compile_ret_t __c__mv(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__MV_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,79);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__mv"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.load(rs2+ traits::X0, 0));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,79);
return returnValue;
}
/* instruction 80: C__JR */
compile_ret_t __c__jr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,80);
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jr"),
fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs1&&rs1<static_cast<uint32_t>(traits:: RFS)) {
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(
tu.load(rs1%static_cast<uint32_t>(traits:: RFS)+ traits::X0, 0),
tu.constant(~ 0x1,8)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
else{
this->gen_raise_trap(tu, 0, 2);
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,80);
return returnValue;
}
/* instruction 81: __reserved_cmv */
compile_ret_t ____reserved_cmv(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("__reserved_cmv_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,81);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "__reserved_cmv");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 2);
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,81);
return returnValue;
}
/* instruction 82: C__ADD */
compile_ret_t __c__add(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__ADD_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,82);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t rd = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__add"),
fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rd>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
if(rd!= 0) {
tu.store(rd + traits::X0,
tu.ext((tu.add(
tu.load(rd+ traits::X0, 0),
tu.load(rs2+ traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,82);
return returnValue;
}
/* instruction 83: C__JALR */
compile_ret_t __c__jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__JALR_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,83);
uint64_t PC = pc.val;
uint8_t rs1 = ((bit_sub<7,5>(instr)));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jalr"),
fmt::arg("rs1", name(rs1)));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs1>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto new_pc = tu.assignment(tu.load(rs1+ traits::X0, 0),32);
tu.store(1 + traits::X0,
tu.constant((uint32_t)(PC+ 2),32));
auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(
new_pc,
tu.constant(~ 0x1,8)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(2U, 2));
}
auto returnValue = std::make_tuple(BRANCH);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,83);
return returnValue;
}
/* instruction 84: C__EBREAK */
compile_ret_t __c__ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__EBREAK_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,84);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "c__ebreak");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 3);
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,84);
return returnValue;
}
/* instruction 85: C__SWSP */
compile_ret_t __c__swsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("C__SWSP_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,85);
uint64_t PC = pc.val;
uint8_t rs2 = ((bit_sub<2,5>(instr)));
uint8_t uimm = ((bit_sub<7,2>(instr) << 6) | (bit_sub<9,4>(instr) << 2));
if(this->disass_enabled){
/* generate console output when executing the command */
auto mnemonic = fmt::format(
"{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c__swsp"),
fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm));
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic);
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
if(rs2>=static_cast<uint32_t>(traits:: RFS)) {
this->gen_raise_trap(tu, 0, 2);
}
else{
auto offs = tu.assignment(tu.ext((tu.add(
tu.load(2+ traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2+ traits::X0, 0),32,false));
}
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,85);
return returnValue;
}
/* instruction 86: DII */
compile_ret_t __dii(virt_addr_t& pc, code_word_t instr, tu_builder& tu){
tu("DII_{:#010x}:", pc.val);
vm_base<ARCH>::gen_sync(tu, PRE_SYNC,86);
uint64_t PC = pc.val;
if(this->disass_enabled){
/* generate console output when executing the command */
tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "dii");
}
auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]);
pc=pc+ 2;
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_raise_trap(tu, 0, 2);
auto returnValue = std::make_tuple(CONT);
tu.close_scope();
gen_trap_check(tu);
vm_base<ARCH>::gen_sync(tu, POST_SYNC,86);
return returnValue;
}
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) {
vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size());
pc = pc + ((instr & 3) == 3 ? 4 : 2);
gen_raise_trap(tu, 0, 2); // illegal instruction trap
vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size());
vm_impl::gen_trap_check(tu);
return BRANCH;
}
//decoding functionality
void populate_decoding_tree(decoding_tree_node* root){
//create submask
for(auto instr: root->instrs){
root->submask &= instr.mask;
}
//put each instr according to submask&encoding into children
for(auto instr: root->instrs){
bool foundMatch = false;
for(auto child: root->children){
//use value as identifying trait
if(child->value == (instr.value&root->submask)){
child->instrs.push_back(instr);
foundMatch = true;
}
}
if(!foundMatch){
decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask);
child->instrs.push_back(instr);
root->children.push_back(child);
}
}
root->instrs.clear();
//call populate_decoding_tree for all children
if(root->children.size() >1)
for(auto child: root->children){
populate_decoding_tree(child);
}
else{
//sort instrs by value of the mask, this works bc we want to have the least restrictive one last
std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) {
return instr1.mask > instr2.mask;
});
}
}
compile_func decode_instr(decoding_tree_node* node, code_word_t word){
if(!node->children.size()){
if(node->instrs.size() == 1) return node->instrs[0].op;
for(auto instr : node->instrs){
if((instr.mask&word) == instr.value) return instr.op;
}
}
else{
for(auto child : node->children){
if (child->value == (node->submask&word)){
return decode_instr(child, word);
}
}
}
return nullptr;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD instr) {
volatile CODE_WORD x = instr;
instr = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
root = new decoding_tree_node(std::numeric_limits<uint32_t>::max());
for(auto instr:instr_descr){
root->instrs.push_back(instr);
}
populate_decoding_tree(root);
}
template <typename ARCH>
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
phys_addr_t paddr(pc);
if(this->core.has_mmu())
paddr = this->core.virt2phys(pc);
//TODO: re-add page handling
// if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
// auto res = this->core.read(paddr, 2, data);
// if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// if ((insn & 0x3) == 0x3) { // this is a 32bit instruction
// res = this->core.read(this->core.v2p(pc + 2), 2, data + 2);
// }
// } else {
auto res = this->core.read(paddr, 4, reinterpret_cast<uint8_t*>(&instr));
if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val);
// }
if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
// curr pc on stack
++inst_cnt;
auto f = decode_instr(root, instr);
if (f == nullptr) {
f = &this_class::illegal_intruction;
}
return (this->*f)(pc, instr, tu);
}
template <typename ARCH> void vm_impl<ARCH>::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) {
tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id);
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_leave_trap(tu_builder& tu, unsigned lvl) {
tu("leave_trap(core_ptr, {});", lvl);
tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN));
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(), 32));
}
template <typename ARCH> void vm_impl<ARCH>::gen_wait(tu_builder& tu, unsigned type) {
}
template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("trap_entry:");
this->gen_sync(tu, POST_SYNC, -1);
tu("enter_trap(core_ptr, *trap_state, *pc, 0);");
tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits<uint32_t>::max(),32));
tu("return *next_pc;");
}
} // namespace tgc5c
template <>
std::unique_ptr<vm_if> create<arch::tgc5c>(arch::tgc5c *core, unsigned short port, bool dump) {
auto ret = new tgc5c::vm_impl<arch::tgc5c>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namesapce tcc
} // namespace iss
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/arch/riscv_hart_mu_p.h>
#include <iss/factory.h>
namespace iss {
namespace {
volatile std::array<bool, 2> dummy = {
core_factory::instance().register_creator("tgc5c|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_m_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::tgc5c>::reg_t, arch::traits<arch::tgc5c>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
}),
core_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple<cpu_ptr, vm_ptr>{
auto* cpu = new iss::arch::riscv_hart_mu_p<iss::arch::tgc5c>();
auto vm = new tcc::tgc5c::vm_impl<arch::tgc5c>(*cpu, false);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(vm, port);
if(init_data){
auto* cb = reinterpret_cast<std::function<void(arch_if*, arch::traits<arch::tgc5c>::reg_t, arch::traits<arch::tgc5c>::reg_t)>*>(init_data);
cpu->set_semihosting_callback(*cb);
}
return {cpu_ptr{cpu}, vm_ptr{vm}};
})
};
}
}
// clang-format on