DBT-RISE-TGC/riscv/src/RV32C.core_desc

311 lines
8.6 KiB
Plaintext

import "RV32IBase.core_desc"
InsructionSet RV32CI {
constants {
XLEN
}
address_spaces {
MEM[8]
}
registers {
[31:0] X[XLEN],
PC[XLEN](is_pc)
}
instructions{
C.ADDI4SPN { //(RES, nzuimm=0)
encoding: b000 | nzuimm[5:4] | nzuimm[9:6] | nzuimm[2:2] | nzuimm[3:3] | rd[2:0] | b00;
args_disass: "x%rd$d, 0x%nzuimm$05x";
if(nzuimm == 0)
raise(0, 2);
val rd_idx[5] <= rd+8;
val x2_idx[5] <= 2;
X[rd_idx] <= X[x2_idx] + nzuimm;
}
C.LW { // (RV32)
encoding: b010 | uimm[5:3] | rs1[2:0] | uimm[2:2] | uimm[6:6] | rd[2:0] | b00;
args_disass: "x(8+%rd$d), x(8+%rs1$d), 0x%uimm$05x";
val rs1_idx[5] <= rs1+8;
val adr[XLEN] <= X[rs1_idx]+uimm;
val rd_idx[5] <= rd+8;
X[rd_idx] <= MEM[adr]{32};
}
C.SW {//(RV32)
encoding: b110 | uimm[5:3] | rs1[2:0] | uimm[2:2] | uimm[6:6] | rs2[2:0] | b00;
args_disass: "x(8+%rs1$d), x(8+%rs2$d), 0x%uimm$05x";
val rs1_idx[5] <= rs1+8;
val adr[XLEN] <= X[rs1_idx]+uimm;
val rs2_idx[5] <= rs2+8;
MEM[adr]{32} <= X[rs2_idx];
}
C.NOP {//(RV32)
encoding: b000 | b0 | b00000 | b00000 | b01; //TODO
args_disass: "";
}
C.ADDI {//(RV32)
encoding:b000 | nzimm[5:5]s | rs1[4:0] | nzimm[4:0]s | b01;
args_disass: "x%rs1$d, 0x%nzimm$05x";
if(nzimm == 0)
raise(0, 2);
X[rs1] <= X[rs1] + nzimm;
}
// C.JAL will be overwritten by C.ADDIW for RV64/128
C.JAL(no_cont) {//(RV32)
encoding: b001 | imm[11:11]s | imm[4:4]s | imm[9:8]s | imm[10:10]s | imm[6:6]s | imm[7:7]s | imm[3:1]s | imm[5:5]s | b01;
args_disass: "0x%imm$05x";
val rd[5] <= 1;
X[rd] <= PC+2;
PC<=PC+imm;
}
C.LI {//(RV32)
encoding:b010 | imm[5:5]s | rd[4:0] | imm[4:0]s | b01;
args_disass: "x%rd$d, 0x%imm$05x";
if(rd == 0) raise(0, 2);
X[rd] <= imm;
}
// order matters here as C.ADDI16SP overwrites C.LUI vor rd==2
C.LUI {//(RV32)
encoding:b011 | nzimm[17:17]s | rd[4:0] | nzimm[16:12]s | b01;
args_disass: "x%rd$d, 0x%nzimm$05x";
if(rd == 0) raise(0, 2);
if(rd == 2) raise(0, 2);
if(nzimm == 0) raise(0, 2);
X[rd] <= nzimm;
}
C.ADDI16SP {//(RV32)
encoding:b011 | nzimm[9:9]s | b00010 | nzimm[4:4]s |nzimm[6:6]s | nzimm[8:7]s | nzimm[5:5]s | b01;
args_disass: "0x%nzimm$05x";
val x2_idx[5] <= 2;
X[x2_idx] <= X[x2_idx]s + nzimm;
}
C.SRLI {//(RV32 nse)
encoding:b100 | shamt[5:5] | b00 | rs1[2:0] | shamt[4:0] | b01;
args_disass: "x(8+%rs1$d), %shamt$d";
if(shamt > 31) raise(0, 2);
val rs1_idx[5] <= rs1+8;
X[rs1_idx] <= shrl(X[rs1_idx], shamt);
}
C.SRAI {//(RV32)
encoding:b100 | shamt[5:5] | b01 | rs1[2:0] | shamt[4:0] | b01;
args_disass: "x(8+%rs1$d), %shamt$d";
if(shamt > 31) raise(0, 2);
val rs1_idx[5] <= rs1+8;
X[rs1_idx] <= shra(X[rs1_idx], shamt);
}
C.ANDI {//(RV32)
encoding:b100 | imm[5:5]s | b10 | rs1[2:0] | imm[4:0]s | b01;
args_disass: "x(8+%rs1$d), 0x%imm$05x";
val rs1_idx[5] <= rs1 + 8;
X[rs1_idx] <= X[rs1_idx] & imm;
}
C.SUB {//(RV32)
encoding:b100 | b0 | b11 | rd[2:0] | b00 | rs2[2:0] | b01;
args_disass: "x(8+%rd$d), x(8+%rs2$d)";
val rd_idx[5] <= rd + 8;
val rs2_idx[5] <= rs2 + 8;
X[rd_idx] <= X[rd_idx] - X[rs2_idx];
}
C.XOR {//(RV32)
encoding:b100 | b0 | b11 | rd[2:0] | b01 | rs2[2:0] | b01;
args_disass: "x(8+%rd$d), x(8+%rs2$d)";
val rd_idx[5] <= rd + 8;
val rs2_idx[5] <= rs2 + 8;
X[rd_idx] <= X[rd_idx] ^ X[rs2_idx];
}
C.OR {//(RV32)
encoding:b100 | b0 | b11 | rd[2:0] | b10 | rs2[2:0] | b01;
args_disass: "x(8+%rd$d), x(8+%rs2$d)";
val rd_idx[5] <= rd + 8;
val rs2_idx[5] <= rs2 + 8;
X[rd_idx] <= X[rd_idx] | X[rs2_idx];
}
C.AND {//(RV32)
encoding:b100 | b0 | b11 | rd[2:0] | b11 | rs2[2:0] | b01;
args_disass: "x(8+%rd$d), x(8+%rs2$d)";
val rd_idx[5] <= rd + 8;
val rs2_idx[5] <= rs2 + 8;
X[rd_idx] <= X[rd_idx] & X[rs2_idx];
}
C.J(no_cont) {//(RV32)
encoding:b101 | imm[11:11]s | imm[4:4]s | imm[9:8]s | imm[10:10]s | imm[6:6]s | imm[7:7]s | imm[3:1]s | imm[5:5]s | b01;
args_disass: "0x%imm$05x";
PC<=PC+imm;
}
C.BEQZ(no_cont) {//(RV32)
encoding:b110 | imm[8:8]s | imm[4:3]s | rs1d[2:0] | imm[7:6]s |imm[2:1]s | imm[5:5]s | b01;
args_disass: "x(8+%rs1d$d), 0x%imm$05x";
val rs1[5] <= rs1d+8;
PC<=choose(X[rs1]==0, PC+imm, PC+2);
}
C.BNEZ(no_cont) {//(RV32)
encoding:b111 | imm[8:8] | imm[4:3] | rs1d[2:0] | imm[7:6] | imm[2:1] | imm[5:5] | b01;
args_disass: "x(8+%rs1d$d),, 0x%imm$05x";
val rs1[5] <= rs1d+8;
PC<=choose(X[rs1]!=0, PC+imm, PC+2);
}
C.SLLI {//(RV32)
encoding:b000 | shamt[5:5] | rs1[4:0] | shamt[4:0] | b10;
args_disass: "x%rs1$d, %shamt$d";
if(rs1 == 0) raise(0, 2);
if(shamt > 31) raise(0, 2);
X[rs1] <= shll(X[rs1], shamt);
}
C.LQSP {//(RV128)
encoding:b001 | uimm[5:5] | rd[4:0] | uimm[4:4] | uimm[9:6] | b10;
}
C.LWSP {//
encoding:b010 | uimm[5:5] | rd[4:0] | uimm[4:2] | uimm[7:6] | b10;
args_disass: "x%rd$d, sp, 0x%uimm$05x";
val x2_idx[5] <= 2;
val offs[XLEN] <= X[x2_idx] + uimm;
X[rd] <= MEM[offs]{32};
}
// order matters as C.JR is a special case of C.JR
C.MV {//(RV32)
encoding:b100 | b0 | rd[4:0] | rs2[4:0] | b10;
args_disass: "x%rd$d, x%rs2$d";
X[rd] <= X[rs2];
}
C.JR(no_cont) {//(RV32)
encoding:b100 | b0 | rs1[4:0] | b00000 | b10;
args_disass: "x%rs1$d";
PC <= X[rs1];
}
C.EBREAK(no_cont) {//(RV32)
encoding:b100 | b1 | b00000 | b00000 | b10;
raise(0, 3);
}
// order matters as C.JALR is a special case of C.ADD
C.ADD {//(RV32)
encoding:b100 | b1 | rd[4:0] | rs2[4:0] | b10;
args_disass: "x%rd$d, x%rs2$d";
X[rd] <= X[rd] + X[rs2];
}
C.JALR(no_cont) {//(RV32)
encoding:b100 | b1 | rs1[4:0] | b00000 | b10;
args_disass: "x%rs1$d";
val rd[5] <= 1;
X[rd] <= PC+2;
PC<=X[rs1];
}
C.SWSP {//
encoding:b110 | uimm[5:2] | uimm[7:6] | rs2[4:0] | b10;
args_disass: "x2+0x%uimm$05x, x%rs2$d";
val x2_idx[5] <= 2;
val offs[XLEN] <= X[x2_idx] + uimm;
MEM[offs]{32} <= X[rs2];
}
}
}
InsructionSet RV32CF extends RV32CI {
constants {
XLEN, FLEN
}
address_spaces {
MEM[8]
}
registers {
[31:0] X[XLEN],
[31:0] F[FLEN]
}
instructions{
C.FLD { //(RV32/64)
encoding: b001 | uimm[5:3] | rs1[2:0] | uimm[7:6] | rd[2:0] | b00;
}
C.FLW {//(RV32)
encoding: b011 | uimm[5:3] | rs1[2:0] | uimm[2:2] | uimm[6:6] | rd[2:0] | b00;
}
C.FSD { //(RV32/64)
encoding: b101 | uimm[5:3] | rs1[2:0] | uimm[7:6] | rs2[2:0] | b00;
}
C.FSW {//(RV32)
encoding: b111 | uimm[5:3] | rs1[2:0] | uimm[2:2] | uimm[6:6] | rs2[2:0] | b00;
}
C.FLDSP {//(RV32/64)
encoding:b001 | uimm[5:5] | rd[4:0] | uimm[4:3] | uimm[8:6] | b10;
}
C.FLWSP {//RV32
encoding:b011 | uimm[5:5] | rd[4:0] | uimm[4:2] | uimm[7:6] | b10;
}
C.FSDSP {//(RV32/64)
encoding:b101 | uimm[5:3] | uimm[8:6] | rs2[4:0] | b10;
}
C.FSWSP {//(RV32)
encoding:b111 | uimm[5:2] | uimm[7:6] | rs2[4:0] | b10;
}
}
}
InsructionSet RV64CI extends RV32CI {
constants {
XLEN
}
address_spaces {
MEM[8]
}
registers {
[31:0] X[XLEN],
PC[XLEN](is_pc)
}
instructions{
C.LD {//(RV64/128)
encoding:b011 | uimm[5:3] | rs1[2:0] | uimm[7:6] | rd[2:0] | b00;
}
C.SD { //(RV64/128)
encoding:b111 | uimm[5:3] | rs1[2:0] | uimm[7:6] | rs2[2:0] | b00;
}
C.SUBW {//(RV64/128, RV32 res)
encoding:b100 | b1 | b11 | rd[2:0] | b00 | rs2[2:0] | b01;
args_disass: "x%rd$d, sp, 0x%imm$05x";
}
C.ADDW {//(RV64/128 RV32 res)
encoding:b100 | b1 | b11 | rd[2:0] | b01 | rs2[2:0] | b01;
args_disass: "x%rd$d, sp, 0x%imm$05x";
}
C.ADDIW {//(RV64/128)
encoding:b001 | imm[5:5] | rs1[4:0] | imm[4:0] | b01;
}
C.SRLI64 {//(RV32/64/128)
encoding:b100 | b0 | b00 | rs1[2:0] | b00000 | b01;
}
C.SRAI64 {//(RV32/64/128)
encoding:b100 | b0 | b01 | rs1[2:0] | b00000 | b01;
}
C.SLLI64 {//(RV128 RV32/64)
encoding:b000 | b0 | rs1[4:0] | b00000 | b10;
}
C.LDSP {//(RV64/128
encoding:b011 | uimm[5:5] | rd[4:0] | uimm[4:3] | uimm[8:6] | b10;
args_disass: "x%rd$d, sp, 0x%imm$05x";
}
C.SDSP {//(RV64/128)
encoding:b111 | uimm[5:3] | uimm[8:6] | rs2[4:0] | b10;
}
}
}
InsructionSet RV128CI extends RV64CI {
constants {
XLEN
}
address_spaces {
MEM[8]
}
registers {
[31:0] X[XLEN],
PC[XLEN](is_pc)
}
instructions{
C.LQ { //(RV128)
encoding:b001 | uimm[5:4] | uimm[8:8] | rs1[2:0] | uimm[7:6] | rd[2:0] | b00;
}
C.SQ { //(RV128)
encoding:b101 | uimm[5:4] | uimm[8:8] | rs1[2:0] | uimm[7:6] | rs2[2:0] | b00;
}
C.SQSP {//(RV128)
encoding:b101 | uimm[5:4] | uimm[9:6] | rs2[4:0] | b10;
}
}
}