5 Commits

15 changed files with 332 additions and 376 deletions

View File

@ -109,15 +109,14 @@ if(TARGET yaml-cpp::yaml-cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC yaml-cpp::yaml-cpp)
endif()
if(WITH_LLVM)
find_package(LLVM)
target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
# if(WITH_LLVM)
# target_compile_definitions(${PROJECT_NAME} PUBLIC ${LLVM_DEFINITIONS})
# target_include_directories(${PROJECT_NAME} PUBLIC ${LLVM_INCLUDE_DIRS})
if(BUILD_SHARED_LIBS)
target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
endif()
endif()
# if(BUILD_SHARED_LIBS)
# target_link_libraries(${PROJECT_NAME} PUBLIC ${LLVM_LIBRARIES})
# endif()
# endif()
set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}

View File

@ -131,8 +131,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline bool should_stop() { return interrupt_sim; }
inline uint64_t stop_code() { return interrupt_sim; }
@ -141,8 +139,6 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<%

View File

@ -45,17 +45,17 @@ namespace interp {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|interp", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -66,17 +66,17 @@ namespace llvm {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -88,17 +88,17 @@ namespace tcc {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|tcc", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>
@ -110,17 +110,17 @@ namespace asmjit {
using namespace sysc;
volatile std::array<bool, ${array_count}> ${coreDef.name.toLowerCase()}_init = {
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%if(coreDef.name.toLowerCase()=="tgc5d" || coreDef.name.toLowerCase()=="tgc5e") {%>,
iss_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p_clic_pmp|asmjit", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto* cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto* cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::${coreDef.name.toLowerCase()}, (iss::arch::features_e)(iss::arch::FEAT_PMP | iss::arch::FEAT_EXT_N | iss::arch::FEAT_CLIC)>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::${coreDef.name.toLowerCase()}*>(cpu), gdb_port)}};
})<%}%>

View File

@ -263,6 +263,7 @@ void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){

View File

@ -83,21 +83,21 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
using compile_ret_t = continuation_e;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
<%
if(fcsr != null) {%>
inline const char *fname(size_t index){return index < 32?name(index+traits::F0):"illegal";}
void add_prologue(tu_builder& tu) override;
<%}%>
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &, tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@ -225,8 +225,8 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@ -238,7 +238,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@ -274,9 +273,12 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("return *next_pc;");
}
<%
if(fcsr != null) {%>
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE);
os << add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP);
if(fcsr != null) {%>
os << "uint32_t (*fget_flags)()=" << (uintptr_t)&fget_flags << ";\\n";
os << "uint32_t (*fadd_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fadd_s << ";\\n";
os << "uint32_t (*fsub_s)(uint32_t v1, uint32_t v2, uint8_t mode)=" << (uintptr_t)&fsub_s << ";\\n";
@ -303,9 +305,10 @@ template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
os << "uint64_t (*fcvt_32_64)(uint32_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_32_64 << ";\\n";
os << "uint32_t (*fcvt_64_32)(uint64_t v1, uint32_t op, uint8_t mode)=" << (uintptr_t)&fcvt_64_32 << ";\\n";
os << "uint32_t (*unbox_s)(uint64_t v)=" << (uintptr_t)&unbox_s << ";\\n";
<%}%>
tu.add_prologue(os.str());
}
<%}%>
} // namespace ${coreDef.name.toLowerCase()}

View File

@ -3,13 +3,12 @@
#define ELFIO_NO_INTTYPES
#endif
#include <iostream>
#include <elfio/elfio_dump.hpp>
#include <iostream>
using namespace ELFIO;
int main( int argc, char** argv )
{
int main(int argc, char** argv) {
if(argc != 2) {
printf("Usage: elfdump <file_name>\n");
return 1;

View File

@ -354,7 +354,7 @@ protected:
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream io_buf;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
@ -446,7 +446,7 @@ riscv_hart_m_p<BASE, FEAT, LOGCAT>::riscv_hart_m_p(feature_config cfg)
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
io_buf.str("");
uart_buf.str("");
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
@ -720,7 +720,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
return iss::Err;
}
try {
if(length > 1 && (addr & (length - 1)) && !is_debug(access)) {
if(length > 1 && (addr & (length - 1)) && (access & access_type::DEBUG) != access_type::DEBUG) {
this->reg.trap_state = (1UL << 31) | 6 << 16;
fault_data = addr;
return iss::Err;
@ -740,7 +740,7 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
} else {
res = write_mem(phys_addr, length, data);
}
if(unlikely(res != iss::Ok && !is_debug(access))) {
if(unlikely(res != iss::Ok && (access & access_type::DEBUG) == 0)) {
this->reg.trap_state = (1UL << 31) | (7UL << 16); // issue trap 7 (Store/AMO access fault)
fault_data = addr;
}
@ -756,10 +756,10 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write(const address_type type, c
switch(addr) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
io_buf << (char)data[0];
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
std::cout << io_buf.str();
io_buf.str("");
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
@ -1094,80 +1094,60 @@ iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::read_mem(phys_addr_t paddr, unsi
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_m_p<BASE, FEAT, LOGCAT>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
switch(paddr.val) {
// TODO remove UART, Peripherals should not be part of the ISS
case 0xFFFF0000: // UART0 base, TXFIFO reg
if(((char)data[0]) == '\n' || data[0] == 0) {
CPPLOG(INFO) << "UART" << ((paddr.val >> 12) & 0x3) << " send '" << uart_buf.str() << "'";
uart_buf.str("");
} else if(((char)data[0]) != '\r')
uart_buf << (char)data[0];
break;
default: {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == tohost) {
if(traits<BASE>::XLEN == 32)
tohost &= 0x00000000ffffffff;
// Extract Device (bits 63:56)
uint8_t device = (tohost >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = (tohost >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload = tohost & 0xFFFFFFFFFFFFULL;
if(payload & 1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << payload << std::dec << " (" << payload << "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
} else if(device == 0 && command == 0) {
reg_t payload_addr;
// payload contains the addr of the struct containing information about the syscall
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload, sizeof(reg_t),
reinterpret_cast<uint8_t*>(&payload_addr));
// If the payload_addr is missaligned end simulation
if(payload_addr & 1) {
CPPLOG(FATAL) << "tohost payload value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
auto tohost_upper =
(traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower = (traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if(tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask));
// in case of 32 bit system, two writes to tohost are needed, only evaluate on the second (high) write
if(tohost_upper && (tohost_lower || tohost_lower_written)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
CPPLOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
// read the entire struct into an array
reg_t loaded_payload[8];
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload_addr, sizeof(loaded_payload),
reinterpret_cast<uint8_t*>(loaded_payload));
reg_t syscall_num = loaded_payload[0];
if(syscall_num == 64) { // SYS_WRITE
reg_t fd = loaded_payload[1];
reg_t buf_ptr = loaded_payload[2];
reg_t len = loaded_payload[3];
std::vector<char> buf(len);
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, buf_ptr, len,
reinterpret_cast<uint8_t*>(buf.data()));
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
break;
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if(c == '\n' || c == 0) {
CPPLOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
io_buf << buf[i];
uart_buf << c;
} break;
default:
break;
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
write(address_type::PHYSICAL, access_type::WRITE, traits<BASE>::MEM, fromhost, 1, &ret_val);
} else {
CPPLOG(ERR) << "tohost syscall with number " << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
tohost_lower_written = false;
} else if(tohost_lower)
tohost_lower_written = true;
} else if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}

View File

@ -404,7 +404,7 @@ protected:
mem_type mem;
csr_type csr;
void update_vm_info();
std::stringstream io_buf;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
@ -459,7 +459,7 @@ riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
io_buf.str("");
uart_buf.str("");
for(unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr) {
csr_rd_cb[addr] = &this_class::read_null;
csr_wr_cb[addr] = &this_class::write_csr_reg;
@ -727,12 +727,12 @@ iss::status riscv_hart_msu_vp<BASE>::write(const address_type type, const access
switch(paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
io_buf << (char)data[0];
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
// CPPLOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<io_buf.str()<<"'";
std::cout << io_buf.str();
io_buf.str("");
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
@ -1024,80 +1024,62 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
switch(paddr.val) {
case 0xFFFF0000: // UART0 base, TXFIFO reg
if(((char)data[0]) == '\n' || data[0] == 0) {
CPPLOG(INFO) << "UART" << ((paddr.val >> 12) & 0x3) << " send '" << uart_buf.str() << "'";
uart_buf.str("");
} else if(((char)data[0]) != '\r')
uart_buf << (char)data[0];
break;
default: {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == tohost) {
if(traits<BASE>::XLEN == 32)
tohost &= 0x00000000ffffffff;
// Extract Device (bits 63:56)
uint8_t device = (tohost >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = (tohost >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload = tohost & 0xFFFFFFFFFFFFULL;
if(payload & 1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << payload << std::dec << " (" << payload << "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
} else if(device == 0 && command == 0) {
reg_t payload_addr;
// payload contains the addr of the struct containing information about the syscall
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload, sizeof(reg_t),
reinterpret_cast<uint8_t*>(&payload_addr));
// If the payload_addr is missaligned end simulation
if(payload_addr & 1) {
CPPLOG(FATAL) << "tohost payload value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
auto tohost_upper =
(traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower = (traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if(tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask));
// in case of 32 bit system, two writes to tohost are needed, only evaluate on the second (high) write
if(tohost_upper && (tohost_lower || tohost_lower_written)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
CPPLOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
// read the entire struct into an array
reg_t loaded_payload[8];
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload_addr, sizeof(loaded_payload),
reinterpret_cast<uint8_t*>(loaded_payload));
reg_t syscall_num = loaded_payload[0];
if(syscall_num == 64) { // SYS_WRITE
reg_t fd = loaded_payload[1];
reg_t buf_ptr = loaded_payload[2];
reg_t len = loaded_payload[3];
std::vector<char> buf(len);
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, buf_ptr, len,
reinterpret_cast<uint8_t*>(buf.data()));
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if(c == '\n' || c == 0) {
CPPLOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
io_buf << buf[i];
uart_buf << c;
} break;
default:
break;
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
write(address_type::PHYSICAL, access_type::WRITE, traits<BASE>::MEM, fromhost, 1, &ret_val);
} else {
CPPLOG(ERR) << "tohost syscall with number " << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
tohost_lower_written = false;
} else if(tohost_lower)
tohost_lower_written = true;
} else if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}

View File

@ -380,7 +380,7 @@ protected:
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream io_buf;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
@ -475,7 +475,7 @@ riscv_hart_mu_p<BASE, FEAT, LOGCAT>::riscv_hart_mu_p(feature_config cfg)
csr[marchid] = traits<BASE>::MARCHID_VAL;
csr[mimpid] = 1;
io_buf.str("");
uart_buf.str("");
if(traits<BASE>::FLEN > 0) {
csr_rd_cb[fcsr] = &this_class::read_fcsr;
csr_wr_cb[fcsr] = &this_class::write_fcsr;
@ -938,10 +938,10 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write(const address_type type,
switch(addr) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
io_buf << (char)data[0];
uart_buf << (char)data[0];
if(((char)data[0]) == '\n' || data[0] == 0) {
std::cout << io_buf.str();
io_buf.str("");
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
@ -1312,82 +1312,66 @@ iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::read_mem(phys_addr_t paddr, uns
}
return iss::Ok;
}
template <typename BASE, features_e FEAT, typename LOGCAT>
iss::status riscv_hart_mu_p<BASE, FEAT, LOGCAT>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t* const data) {
switch(paddr.val) {
// TODO remove UART, Peripherals should not be part of the ISS
case 0xFFFF0000: // UART0 base, TXFIFO reg
if(((char)data[0]) == '\n' || data[0] == 0) {
CPPLOG(INFO) << "UART" << ((paddr.val >> 12) & 0x3) << " send '" << uart_buf.str() << "'";
uart_buf.str("");
} else if(((char)data[0]) != '\r')
uart_buf << (char)data[0];
break;
default: {
mem_type::page_type& p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
// according to https://github.com/riscv-software-src/riscv-isa-sim/issues/364#issuecomment-607657754:
if(paddr.access && iss::access_type::FUNC) {
if(paddr.val == tohost) {
if(traits<BASE>::XLEN == 32)
tohost &= 0x00000000ffffffff;
// Extract Device (bits 63:56)
uint8_t device = (tohost >> 56) & 0xFF;
// Extract Command (bits 55:48)
uint8_t command = (tohost >> 48) & 0xFF;
// Extract payload (bits 47:0)
uint64_t payload = tohost & 0xFFFFFFFFFFFFULL;
if(payload & 1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << payload << std::dec << " (" << payload << "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
} else if(device == 0 && command == 0) {
reg_t payload_addr;
// payload contains the addr of the struct containing information about the syscall
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload, sizeof(reg_t),
reinterpret_cast<uint8_t*>(&payload_addr));
// If the payload_addr is missaligned end simulation
if(payload_addr & 1) {
CPPLOG(FATAL) << "tohost payload value is 0x" << std::hex << payload_addr << std::dec << " (" << payload_addr
auto tohost_upper =
(traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower = (traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if(tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask));
// in case of 32 bit system, two writes to tohost are needed, only evaluate on the second (high) write
if(tohost_upper && (tohost_lower || tohost_lower_written)) {
switch(hostvar >> 48) {
case 0:
if(hostvar != 0x1) {
CPPLOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
CPPLOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
// read the entire struct into an array
reg_t loaded_payload[8];
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, payload_addr, sizeof(loaded_payload),
reinterpret_cast<uint8_t*>(loaded_payload));
reg_t syscall_num = loaded_payload[0];
if(syscall_num == 64) { // SYS_WRITE
reg_t fd = loaded_payload[1];
reg_t buf_ptr = loaded_payload[2];
reg_t len = loaded_payload[3];
std::vector<char> buf(len);
read(address_type::PHYSICAL, access_type::READ, traits<BASE>::MEM, buf_ptr, len,
reinterpret_cast<uint8_t*>(buf.data()));
// we disregard the fd and just log to stdout
for(size_t i = 0; i < len; i++) {
if(buf[i] == '\n') {
CPPLOG(INFO) << "tohost send '" << io_buf.str() << "'";
io_buf.str("");
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = hostvar;
#ifndef WITH_TCC
throw(iss::simulation_stopped(hostvar));
#endif
break;
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if(c == '\n' || c == 0) {
CPPLOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
io_buf << buf[i];
uart_buf << c;
} break;
default:
break;
}
// Not sure what the correct return value should be
uint8_t ret_val = 1;
write(address_type::PHYSICAL, access_type::WRITE, traits<BASE>::MEM, fromhost, 1, &ret_val);
} else {
CPPLOG(ERR) << "tohost syscall with number " << std::hex << syscall_num << std::dec << " (" << syscall_num
<< ") not implemented";
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
} else {
CPPLOG(ERR) << "tohost functionality not implemented for device " << device << " and command " << command;
this->reg.trap_state = std::numeric_limits<uint32_t>::max();
this->interrupt_sim = payload;
return iss::Ok;
}
}
if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
tohost_lower_written = false;
} else if(tohost_lower)
tohost_lower_written = true;
} else if((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) || (traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t*>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t*>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}

View File

@ -189,7 +189,7 @@ struct tgc5c: public arch_if {
uint8_t* get_regs_base_ptr() override;
inline uint64_t get_icount() { return reg.icount; }
inline uint64_t get_icount() { return reg.icount; } //This should not be accessible, only through the instrumentation_if
inline bool should_stop() { return interrupt_sim; }
@ -199,7 +199,7 @@ struct tgc5c: public arch_if {
virtual iss::sync_type needed_sync() const { return iss::NO_SYNC; }
inline uint32_t get_last_branch() { return reg.last_branch; }
inline uint32_t get_last_branch() { return reg.last_branch; } //This should also only be accessible through the instrumentation_if
#pragma pack(push, 1)

View File

@ -206,13 +206,21 @@ int main(int argc, char* argv[]) {
if(clim.count("elf"))
for(std::string input : clim["elf"].as<std::vector<std::string>>()) {
auto start_addr = vm->get_arch()->load_file(input);
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
for(std::string input : args) {
auto start_addr = vm->get_arch()->load_file(input); // treat remaining arguments as elf files
if(start_addr.second) // FIXME: this always evaluates to true as load file always returns <sth, true>
if(start_addr.second)
start_address = start_addr.first;
else {
LOG(ERR) << "Error occured while loading file " << input << std::endl;
return 1;
}
}
if(clim.count("reset")) {
auto str = clim["reset"].as<std::string>();

View File

@ -62,12 +62,12 @@ using namespace sysc;
volatile std::array<bool, 2> tgc_init = {
iss_factory::instance().register_creator("tgc5c|m_p|llvm",
[](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_m_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
}),
iss_factory::instance().register_creator("tgc5c|mu_p|llvm", [](unsigned gdb_port, void* data) -> iss_factory::base_t {
auto cc = reinterpret_cast<sysc::tgfs::core_complex*>(data);
auto cc = reinterpret_cast<sysc::tgfs::core_complex_if*>(data);
auto* cpu = new sc_core_adapter<arch::riscv_hart_mu_p<arch::tgc5c>>(cc);
return {sysc::sc_cpu_ptr{cpu}, vm_ptr{create(static_cast<arch::tgc5c*>(cpu), gdb_port)}};
})};

View File

@ -4822,6 +4822,7 @@ void vm_impl<ARCH>::gen_instr_epilogue(jit_holder& jh) {
cmp(cc, current_trap_state, 0);
cc.jne(jh.trap_entry);
cc.inc(get_ptr_for(jh, traits::ICOUNT));
cc.inc(get_ptr_for(jh, traits::CYCLE));
}
template <typename ARCH>
void vm_impl<ARCH>::gen_block_prologue(jit_holder& jh){

View File

@ -275,9 +275,6 @@ template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
// according to
// https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation
#ifdef __GCC__

View File

@ -81,16 +81,18 @@ protected:
using vm_base<ARCH>::get_reg_ptr;
using this_class = vm_impl<ARCH>;
using compile_ret_t = std::tuple<continuation_e>;
using compile_ret_t = continuation_e;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
void add_prologue(tu_builder& tu) override;
void setup_module(std::string m) override {
super::setup_module(m);
}
compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override;
compile_ret_t gen_single_inst_behavior(virt_addr_t &,tu_builder&) override;
void gen_trap_behavior(tu_builder& tu) override;
@ -352,7 +354,7 @@ private:
tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)imm),32));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,0);
@ -387,7 +389,7 @@ private:
tu.store(rd + traits::X0, tu.constant((uint32_t)(PC+(int32_t)imm),32));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,1);
@ -432,7 +434,7 @@ private:
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,2);
@ -489,7 +491,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,3);
@ -538,7 +540,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,4);
@ -587,7 +589,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,5);
@ -636,7 +638,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,6);
@ -685,7 +687,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,7);
@ -734,7 +736,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,8);
@ -783,7 +785,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,9);
@ -823,7 +825,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,10);
@ -863,7 +865,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,11);
@ -903,7 +905,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,12);
@ -943,7 +945,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,13);
@ -983,7 +985,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,14);
@ -1020,7 +1022,7 @@ private:
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),8,false));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,15);
@ -1057,7 +1059,7 @@ private:
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),16,false));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,16);
@ -1094,7 +1096,7 @@ private:
tu.constant((int16_t)sext<12>(imm),16))),32,false),32);
tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0),32,false));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,17);
@ -1132,7 +1134,7 @@ private:
tu.constant((int16_t)sext<12>(imm),16))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,18);
@ -1170,7 +1172,7 @@ private:
tu.constant((int16_t)sext<12>(imm),16))), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,19);
@ -1208,7 +1210,7 @@ private:
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32))), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,20);
@ -1246,7 +1248,7 @@ private:
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,21);
@ -1284,7 +1286,7 @@ private:
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,22);
@ -1322,7 +1324,7 @@ private:
tu.constant((uint32_t)((int16_t)sext<12>(imm)),32)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,23);
@ -1360,7 +1362,7 @@ private:
tu.constant(shamt,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,24);
@ -1398,7 +1400,7 @@ private:
tu.constant(shamt,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,25);
@ -1436,7 +1438,7 @@ private:
tu.constant(shamt,8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,26);
@ -1474,7 +1476,7 @@ private:
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,27);
@ -1512,7 +1514,7 @@ private:
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,28);
@ -1552,7 +1554,7 @@ private:
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64)))));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,29);
@ -1590,7 +1592,7 @@ private:
tu.ext(tu.load(rs2 + traits::X0, 0),32,true)), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,30);
@ -1628,7 +1630,7 @@ private:
tu.load(rs2 + traits::X0, 0)), tu.constant(1,8),tu.constant(0,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,31);
@ -1666,7 +1668,7 @@ private:
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,32);
@ -1706,7 +1708,7 @@ private:
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64)))));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,33);
@ -1746,7 +1748,7 @@ private:
tu.constant((static_cast<uint32_t>(traits:: XLEN)-1),64))))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,34);
@ -1784,7 +1786,7 @@ private:
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,35);
@ -1822,7 +1824,7 @@ private:
tu.load(rs2 + traits::X0, 0)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,36);
@ -1853,7 +1855,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fence), tu.constant((uint8_t)pred<<4|succ,8));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,37);
@ -1879,7 +1881,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_raise_trap(tu, 0, 11);
auto returnValue = std::make_tuple(TRAP);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,38);
@ -1905,7 +1907,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_raise_trap(tu, 0, 3);
auto returnValue = std::make_tuple(TRAP);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,39);
@ -1931,7 +1933,7 @@ private:
this->gen_set_tval(tu, instr);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(NO_JUMP),32));
this->gen_leave_trap(tu, 3);
auto returnValue = std::make_tuple(TRAP);
auto returnValue = TRAP;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,40);
@ -1956,7 +1958,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.callf("wait", tu.constant(1,8));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,41);
@ -1997,7 +1999,7 @@ private:
tu.write_mem(traits::CSR, csr, xrs1);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,42);
@ -2040,7 +2042,7 @@ private:
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,43);
@ -2083,7 +2085,7 @@ private:
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,44);
@ -2121,7 +2123,7 @@ private:
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,45);
@ -2163,7 +2165,7 @@ private:
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,46);
@ -2205,7 +2207,7 @@ private:
tu.store(rd + traits::X0, xrd);
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,47);
@ -2234,7 +2236,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
tu.write_mem(traits::FENCE, static_cast<uint32_t>(traits:: fencei), tu.constant(imm,16));
auto returnValue = std::make_tuple(FLUSH);
auto returnValue = FLUSH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,48);
@ -2273,7 +2275,7 @@ private:
tu.store(rd + traits::X0, tu.ext(res,32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,49);
@ -2314,7 +2316,7 @@ private:
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,50);
@ -2355,7 +2357,7 @@ private:
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,51);
@ -2396,7 +2398,7 @@ private:
tu.constant(static_cast<uint32_t>(traits:: XLEN),32))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,52);
@ -2460,7 +2462,7 @@ private:
tu.close_scope();
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,53);
@ -2510,7 +2512,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,54);
@ -2577,7 +2579,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,55);
@ -2627,7 +2629,7 @@ private:
}
tu.close_scope();
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,56);
@ -2662,7 +2664,7 @@ private:
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,57);
@ -2694,7 +2696,7 @@ private:
tu.load(rs1+8 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.store(rd+8 + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,58);
@ -2726,7 +2728,7 @@ private:
tu.load(rs1+8 + traits::X0, 0),
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2+8 + traits::X0, 0),32,false));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,59);
@ -2763,7 +2765,7 @@ private:
tu.constant((int8_t)sext<6>(imm),8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,60);
@ -2788,7 +2790,7 @@ private:
gen_set_pc(tu, pc, traits::NEXT_PC);
tu.open_scope();
this->gen_set_tval(tu, instr);
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,61);
@ -2819,7 +2821,7 @@ private:
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,62);
@ -2854,7 +2856,7 @@ private:
tu.store(rd + traits::X0, tu.constant((uint32_t)((int8_t)sext<6>(imm)),32));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,63);
@ -2887,7 +2889,7 @@ private:
if(rd!=0) {
tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)sext<18>(imm)),32));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,64);
@ -2921,7 +2923,7 @@ private:
else{
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,65);
@ -2947,7 +2949,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,66);
@ -2977,7 +2979,7 @@ private:
tu.store(rs1+8 + traits::X0, tu.lshr(
tu.load(rs1+8 + traits::X0, 0),
tu.constant(shamt,8)));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,67);
@ -3014,7 +3016,7 @@ private:
tu.constant(64,8))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,68);
@ -3044,7 +3046,7 @@ private:
tu.store(rs1+8 + traits::X0, tu.ext((tu.bitwise_and(
tu.load(rs1+8 + traits::X0, 0),
tu.constant((int8_t)sext<6>(imm),8))),32,false));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,69);
@ -3074,7 +3076,7 @@ private:
tu.store(rd+8 + traits::X0, tu.ext((tu.sub(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0))),32,false));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,70);
@ -3104,7 +3106,7 @@ private:
tu.store(rd+8 + traits::X0, tu.bitwise_xor(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,71);
@ -3134,7 +3136,7 @@ private:
tu.store(rd+8 + traits::X0, tu.bitwise_or(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,72);
@ -3164,7 +3166,7 @@ private:
tu.store(rd+8 + traits::X0, tu.bitwise_and(
tu.load(rd+8 + traits::X0, 0),
tu.load(rs2+8 + traits::X0, 0)));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,73);
@ -3194,7 +3196,7 @@ private:
auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC+(int16_t)sext<12>(imm)),32);
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,74);
@ -3231,7 +3233,7 @@ private:
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
tu.close_scope();
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,75);
@ -3268,7 +3270,7 @@ private:
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(KNOWN_JUMP), 2));
}
tu.close_scope();
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,76);
@ -3305,7 +3307,7 @@ private:
tu.constant(nzuimm,8)));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,77);
@ -3341,7 +3343,7 @@ private:
tu.constant(uimm,8))),32,false),32);
tu.store(rd + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32),32,true),32,false));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,78);
@ -3376,7 +3378,7 @@ private:
tu.store(rd + traits::X0, tu.load(rs2 + traits::X0, 0));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,79);
@ -3413,7 +3415,7 @@ private:
else{
this->gen_raise_trap(tu, 0, 2);
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,80);
@ -3438,7 +3440,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 2);
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,81);
@ -3475,7 +3477,7 @@ private:
tu.load(rs2 + traits::X0, 0))),32,false));
}
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,82);
@ -3515,7 +3517,7 @@ private:
tu.store(traits::NEXT_PC, PC_val_v);
tu.store(traits::LAST_BRANCH, tu.constant(static_cast<int>(UNKNOWN_JUMP), 2));
}
auto returnValue = std::make_tuple(BRANCH);
auto returnValue = BRANCH;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,83);
@ -3540,7 +3542,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, 3);
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,84);
@ -3576,7 +3578,7 @@ private:
tu.constant(uimm,8))),32,false),32);
tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2 + traits::X0, 0),32,false));
}
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,85);
@ -3601,7 +3603,7 @@ private:
tu.open_scope();
this->gen_set_tval(tu, instr);
this->gen_raise_trap(tu, 0, static_cast<int32_t>(traits:: RV_CAUSE_ILLEGAL_INSTRUCTION));
auto returnValue = std::make_tuple(CONT);
auto returnValue = CONT;
tu.close_scope();
vm_base<ARCH>::gen_sync(tu, POST_SYNC,86);
@ -3648,8 +3650,8 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
}()) {}
template <typename ARCH>
std::tuple<continuation_e>
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) {
continuation_e
vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, tu_builder& tu) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t instr = 0;
@ -3661,7 +3663,6 @@ vm_impl<ARCH>::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt,
return ILLEGAL_FETCH;
if (instr == 0x0000006f || (instr&0xffff)==0xa001)
return JUMP_TO_SELF;
++inst_cnt;
uint32_t inst_index = instr_decoder.decode_instr(instr);
compile_func f = nullptr;
if(inst_index < instr_descr.size())
@ -3697,7 +3698,12 @@ template <typename ARCH> void vm_impl<ARCH>::gen_trap_behavior(tu_builder& tu) {
tu("return *next_pc;");
}
template <typename ARCH> void vm_impl<ARCH>::add_prologue(tu_builder& tu){
std::ostringstream os;
os << tu.add_reg_ptr("trap_state", arch::traits<ARCH>::TRAP_STATE, this->regs_base_ptr);
os << tu.add_reg_ptr("pending_trap", arch::traits<ARCH>::PENDING_TRAP, this->regs_base_ptr);
tu.add_prologue(os.str());
}
} // namespace tgc5c
template <>