fix desscriptions to conform to ISA spec version 20191213 and TGF-C

This commit is contained in:
Eyck Jentzsch 2021-03-07 10:51:00 +00:00
parent dae8acb8a3
commit c251fe15d5
9 changed files with 905 additions and 815 deletions

View File

@ -0,0 +1,76 @@
/*******************************************************************************
* Copyright (C) 2017 - 2020 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
<%
def getRegisterSizes(){
def regs = registers.collect{it.size}
regs[-1]=64 // correct for NEXT_PC
regs+=[32, 32, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT
return regs
}
%>
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio>
#include <cstring>
#include <fstream>
using namespace iss::arch;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() {
reg.icount = 0;
}
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default;
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) {
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
reg.PC=address;
reg.NEXT_PC=reg.PC;
reg.PRIV=0x3;
reg.trap_state=0;
reg.icount=0;
}
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() {
return reinterpret_cast<uint8_t*>(&reg);
}
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) {
return phys_addr_t(pc); // change logical address to physical address
}

View File

@ -168,14 +168,16 @@ struct ${coreDef.name.toLowerCase()}: public arch_if {
inline uint32_t get_last_branch() { return reg.last_branch; } inline uint32_t get_last_branch() { return reg.last_branch; }
protected: protected:
#pragma pack(push, 1)
struct ${coreDef.name}_regs {<% struct ${coreDef.name}_regs {<%
registers.each { reg -> if(reg.size>0) {%> registers.each { reg -> if(reg.size>0) {%>
uint${byteSize(reg.size)}_t ${reg.name} = 0;<% uint${byteSize(reg.size)}_t ${reg.name} = 0;<%
}}%> }}%>
uint32_t trap_state = 0, pending_trap = 0, machine_state = 0, last_branch = 0; uint32_t trap_state = 0, pending_trap = 0;
uint64_t icount = 0; uint64_t icount = 0;
uint32_t last_branch;
} reg; } reg;
#pragma pack(pop)
std::array<address_type, 4> addr_mode; std::array<address_type, 4> addr_mode;
uint64_t interrupt_sim=0; uint64_t interrupt_sim=0;

View File

@ -1,5 +1,5 @@
/******************************************************************************* /*******************************************************************************
* Copyright (C) 2017 - 2020 MINRES Technologies GmbH * Copyright (C) 2021 MINRES Technologies GmbH
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
@ -29,48 +29,273 @@
* POSSIBILITY OF SUCH DAMAGE. * POSSIBILITY OF SUCH DAMAGE.
* *
*******************************************************************************/ *******************************************************************************/
<%
def getRegisterSizes(){ #include "../fp_functions.h"
def regs = registers.collect{it.size}
regs[-1]=64 // correct for NEXT_PC
regs+=[32, 32, 64] // append TRAP_STATE, PENDING_TRAP, ICOUNT
return regs
}
%>
#include "util/ities.h"
#include <util/logging.h>
#include <iss/arch/${coreDef.name.toLowerCase()}.h> #include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <cstdio> #include <iss/arch/riscv_hart_m_p.h>
#include <cstring> #include <iss/debugger/gdb_session.h>
#include <fstream> #include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
#include <util/logging.h>
#include <sstream>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace interp {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch; using namespace iss::arch;
using namespace iss::debugger;
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_names; template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
constexpr std::array<const char*, ${registers.size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_aliases; public:
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_bit_widths; using traits = arch::traits<ARCH>;
constexpr std::array<const uint32_t, ${getRegisterSizes().size}> iss::arch::traits<iss::arch::${coreDef.name.toLowerCase()}>::reg_byte_offsets; using super = typename iss::interp::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
using reg_t = typename traits::reg_t;
using mem_type_e = typename traits::mem_type_e;
${coreDef.name.toLowerCase()}::${coreDef.name.toLowerCase()}() { vm_impl();
reg.icount = 0;
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (super::tgt_adapter == nullptr)
super::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return super::tgt_adapter;
} }
${coreDef.name.toLowerCase()}::~${coreDef.name.toLowerCase()}() = default; protected:
using this_class = vm_impl<ARCH>;
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
void ${coreDef.name.toLowerCase()}::reset(uint64_t address) { inline const char *name(size_t index){return traits::reg_aliases.at(index);}
for(size_t i=0; i<traits<${coreDef.name.toLowerCase()}>::NUM_REGS; ++i) set_reg(i, std::vector<uint8_t>(sizeof(traits<${coreDef.name.toLowerCase()}>::reg_t),0));
reg.PC=address; virt_addr_t execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) override;
reg.NEXT_PC=reg.PC;
reg.trap_state=0; // some compile time constants
reg.machine_state=0x3; // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
reg.icount=0; enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
} }
uint8_t *${coreDef.name.toLowerCase()}::get_regs_base_ptr() { inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
return reinterpret_cast<uint8_t*>(&reg);
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
} }
${coreDef.name.toLowerCase()}::phys_addr_t ${coreDef.name.toLowerCase()}::virt2phys(const iss::addr_t &pc) { inline void raise(uint16_t trap_id, uint16_t cause){
return phys_addr_t(pc); // change logical address to physical address auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
} }
inline void leave(unsigned lvl){
this->core.leave_trap(lvl);
auto pc_val = super::template read_mem<reg_t>(traits::CSR, (lvl << 8) + 0x41);
this->template get_reg<reg_t>(traits::NEXT_PC) = pc_val;
}
inline void wait(unsigned type){
this->core.wait_until(type);
}
template<typename T>
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint8_t>(space, addr);}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint16_t>(space, addr);}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint32_t>(space, addr);}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint64_t>(space, addr);}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){super::write_mem(space, addr, data);}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){super::write_mem(space, addr, data);}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){super::write_mem(space, addr, data);}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){super::write_mem(space, addr, data);}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
// pre execution stuff
this->do_sync(PRE_SYNC, ${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
// prepare execution
uint${addrDataWidth}_t* X = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::X0]);
uint${addrDataWidth}_t* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
uint${addrDataWidth}_t* NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
<%instr.behavior.eachLine{%>${it}
<%}%>// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val);
}
pc.val=*NEXT_PC;
return pc;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
this->do_sync(PRE_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
uint32_t* PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
uint32_t* NEXT_PC = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2);
raise(0, 11);
// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast<unsigned>(arch::traits<ARCH>::opcode_e::MAX_OPCODE));
auto* trap_state = reinterpret_cast<uint32_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::TRAP_STATE]);
// trap check
if(*trap_state!=0){
super::core.enter_trap(*trap_state, pc.val);
}
pc.val=*NEXT_PC;
return pc;
}
static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK;
iss::status fetch_ins(virt_addr_t pc, uint8_t * data){
auto phys_pc = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err;
if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction
if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err;
} else {
if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err;
}
return iss::Ok;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
code_word_t insn = 0;
auto *const data = (uint8_t *)&insn;
auto pc=start;
while(pred(pc)){
auto res = fetch_ins(pc, data);
if(res!=iss::Ok){
auto new_pc = super::core.enter_trap(TRAP_ID, pc.val);
res = fetch_ins(virt_addr_t{access_type::FETCH, new_pc}, data);
if(res!=iss::Ok) throw simulation_stopped(0);
}
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (!f)
f = &this_class::illegal_intruction;
pc = (this->*f)(pc, insn);
}
return pc;
}
} // namespace mnrv32
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace interp
} // namespace iss

View File

@ -1,280 +0,0 @@
/*******************************************************************************
* Copyright (C) 2021 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include "../fp_functions.h"
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
#include <iss/interp/vm_base.h>
#include <util/logging.h>
#include <sstream>
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <fmt/format.h>
#include <array>
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
namespace interp {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::interp::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
using reg_t = typename traits::reg_t;
using mem_type_e = typename traits::mem_type_e;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (super::tgt_adapter == nullptr)
super::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return super::tgt_adapter;
}
protected:
using this_class = vm_impl<ARCH>;
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
virt_addr_t execute_inst(virt_addr_t start, std::function<bool(void)> pred) override;
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
std::array<compile_func *, 4> qlut;
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
void raise(uint16_t trap_id, uint16_t cause){
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
}
void leave(unsigned lvl){
this->core.leave_trap(lvl);
auto pc_val = super::template read_mem<reg_t>(traits::CSR, (lvl << 8) + 0x41);
this->template get_reg<reg_t>(traits::NEXT_PC) = pc_val;
}
void wait(unsigned type){
this->core.wait_until(type);
}
template<typename T>
T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint8_t>(space, addr);}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint16_t>(space, addr);}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint32_t>(space, addr);}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint64_t>(space, addr);}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){super::write_mem(space, addr, data);}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){super::write_mem(space, addr, data);}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){super::write_mem(space, addr, data);}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){super::write_mem(space, addr, data);}
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
// pre execution stuff
this->do_sync(PRE_SYNC, ${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
// prepare execution
uint${addrDataWidth}_t* X = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::X0]);
uint${addrDataWidth}_t* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
uint${addrDataWidth}_t* NEXT_PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::NEXT_PC]);
*NEXT_PC = *PC + ${instr.length/8};
// execute instruction
<%instr.behavior.eachLine{%>${it}
<%}%>// post execution stuff
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
auto& trap_state = super::template get_reg<uint32_t>(arch::traits<ARCH>::TRAP_STATE);
// trap check
if(trap_state!=0){
super::core.enter_trap(trap_state, pc.val);
}
pc.val=super::template get_reg<reg_t>(arch::traits<ARCH>::NEXT_PC);
return pc;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
pc = pc + ((instr & 3) == 3 ? 4 : 2);
return pc;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(void)> pred) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
const typename traits::addr_t upper_bits = ~traits::PGMASK;
code_word_t insn = 0;
auto *const data = (uint8_t *)&insn;
auto pc=start;
while(pred){
auto paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
if (this->core.read(paddr, 2, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) // this is a 32bit instruction
if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
} else {
if (this->core.read(paddr, 4, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (!f)
f = &this_class::illegal_intruction;
pc = (this->*f)(pc, insn);
}
return pc;
}
} // namespace mnrv32
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace interp
} // namespace iss

View File

@ -354,6 +354,10 @@ public:
mem_write_cb = memWriteCb; mem_write_cb = memWriteCb;
} }
void set_csr(unsigned addr, reg_t val){
csr[addr & csr.page_addr_mask] = val;
}
protected: protected:
struct riscv_instrumentation_if : public iss::instrumentation_if { struct riscv_instrumentation_if : public iss::instrumentation_if {
@ -405,6 +409,8 @@ protected:
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb; std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
private: private:
iss::status read_reg(unsigned addr, reg_t &val);
iss::status write_reg(unsigned addr, reg_t val);
iss::status read_cycle(unsigned addr, reg_t &val); iss::status read_cycle(unsigned addr, reg_t &val);
iss::status read_time(unsigned addr, reg_t &val); iss::status read_time(unsigned addr, reg_t &val);
iss::status read_status(unsigned addr, reg_t &val); iss::status read_status(unsigned addr, reg_t &val);
@ -450,6 +456,12 @@ riscv_hart_m_p<BASE>::riscv_hart_m_p()
csr_rd_cb[mie] = &riscv_hart_m_p<BASE>::read_ie; csr_rd_cb[mie] = &riscv_hart_m_p<BASE>::read_ie;
csr_wr_cb[mie] = &riscv_hart_m_p<BASE>::write_ie; csr_wr_cb[mie] = &riscv_hart_m_p<BASE>::write_ie;
csr_rd_cb[mhartid] = &riscv_hart_m_p<BASE>::read_hartid; csr_rd_cb[mhartid] = &riscv_hart_m_p<BASE>::read_hartid;
// common regs
const std::array<unsigned, 6> addrs{{mepc, mtvec, mscratch, mcause, mtval, mscratch}};
for(auto addr: addrs) {
csr_rd_cb[addr] = &riscv_hart_m_p<BASE>::read_reg;
csr_wr_cb[addr] = &riscv_hart_m_p<BASE>::write_reg;
}
} }
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_m_p<BASE>::load_file(std::string name, int type) { template <typename BASE> std::pair<uint64_t, bool> riscv_hart_m_p<BASE>::load_file(std::string name, int type) {
@ -664,32 +676,35 @@ iss::status riscv_hart_m_p<BASE>::write(const address_type type, const access_ty
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_csr(unsigned addr, reg_t &val) { template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_csr(unsigned addr, reg_t &val) {
if (addr >= csr.size()) return iss::Err; if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3; auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) throw illegal_instruction_fault(this->fault_data); if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr); auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end()) { if (it == csr_rd_cb.end() || !it->second) // non existent register
val = csr[addr & csr.page_addr_mask]; throw illegal_instruction_fault(this->fault_data);
return iss::Ok; return (this->*(it->second))(addr, val);
}
rd_csr_f f = it->second;
if (f == nullptr) throw illegal_instruction_fault(this->fault_data);
return (this->*f)(addr, val);
} }
template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_csr(unsigned addr, reg_t val) { template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_csr(unsigned addr, reg_t val) {
if (addr >= csr.size()) return iss::Err; if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3; auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data); throw illegal_instruction_fault(this->fault_data);
if((addr&0xc00)==0xc00) if((addr&0xc00)==0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data); throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr); auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end()) { if (it == csr_wr_cb.end() || !it->second) // non existent register
csr[addr & csr.page_addr_mask] = val; throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_reg(unsigned addr, reg_t &val) {
val = csr[addr];
return iss::Ok; return iss::Ok;
} }
wr_csr_f f = it->second;
if (f == nullptr) throw illegal_instruction_fault(this->fault_data); template <typename BASE> iss::status riscv_hart_m_p<BASE>::write_reg(unsigned addr, reg_t val) {
return (this->*f)(addr, val); csr[addr] = val;
return iss::Ok;
} }
template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) { template <typename BASE> iss::status riscv_hart_m_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
@ -931,6 +946,7 @@ template <typename BASE> uint64_t riscv_hart_m_p<BASE>::enter_trap(uint64_t flag
} }
template <typename BASE> uint64_t riscv_hart_m_p<BASE>::leave_trap(uint64_t flags) { template <typename BASE> uint64_t riscv_hart_m_p<BASE>::leave_trap(uint64_t flags) {
/* TODO: configurable support of User mode
auto cur_priv = this->reg.PRIV; auto cur_priv = this->reg.PRIV;
auto inst_priv = flags & 0x3; auto inst_priv = flags & 0x3;
auto status = state.mstatus; auto status = state.mstatus;
@ -943,8 +959,7 @@ template <typename BASE> uint64_t riscv_hart_m_p<BASE>::leave_trap(uint64_t flag
state.mstatus.MIE = state.mstatus.MPIE; state.mstatus.MIE = state.mstatus.MPIE;
} else { } else {
CLOG(ERROR, disass) << "Unsupported mode:" << inst_priv; CLOG(ERROR, disass) << "Unsupported mode:" << inst_priv;
} }*/
// sets the pc to the value stored in the x epc register. // sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc]; this->reg.NEXT_PC = csr[mepc];
CLOG(INFO, disass) << "Executing xRET"; CLOG(INFO, disass) << "Executing xRET";

View File

@ -53,7 +53,7 @@ template <> struct traits<tgf_c> {
static constexpr std::array<const char*, 35> reg_aliases{ static constexpr std::array<const char*, 35> reg_aliases{
{"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV"}}; {"X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20", "X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29", "X30", "X31", "PC", "NEXT_PC", "PRIV"}};
enum constants {XLEN=32, PCLEN=32, MISA_VAL=0b1000000000000000001000100000100, PGSIZE=0x1000, PGMASK=0b111111111111, CSR_SIZE=4096, fence=0, fencei=1, fencevmal=2, fencevmau=3, MUL_LEN=64}; enum constants {XLEN=32, PCLEN=32, MISA_VAL=0b01000000000000000001000100000100, PGSIZE=0x1000, PGMASK=0b111111111111, CSR_SIZE=4096, fence=0, fencei=1, fencevmal=2, fencevmau=3, eei_aligned_addresses=1, MUL_LEN=64};
constexpr static unsigned FP_REGS_SIZE = 0; constexpr static unsigned FP_REGS_SIZE = 0;
@ -78,8 +78,7 @@ template <> struct traits<tgf_c> {
{32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32,32,64}}; {32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,8,32,32,64}};
static constexpr std::array<const uint32_t, 38> reg_byte_offsets{ static constexpr std::array<const uint32_t, 38> reg_byte_offsets{
{0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124, {0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,137,141,145}};
128,132,136,137,141,145}};
static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1); static const uint64_t addr_mask = (reg_t(1) << (XLEN - 1)) | ((reg_t(1) << (XLEN - 1)) - 1);

View File

@ -85,7 +85,7 @@ protected:
inline const char *name(size_t index){return traits::reg_aliases.at(index);} inline const char *name(size_t index){return traits::reg_aliases.at(index);}
virt_addr_t execute_inst(virt_addr_t start, std::function<bool(void)> pred) override; virt_addr_t execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) override;
// some compile time constants // some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
@ -2055,14 +2055,14 @@ vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
} }
template <typename ARCH> template <typename ARCH>
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(void)> pred) { typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(virt_addr_t&)> pred) {
// we fetch at max 4 byte, alignment is 2 // we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16}; enum {TRAP_ID=1<<16};
const typename traits::addr_t upper_bits = ~traits::PGMASK; const typename traits::addr_t upper_bits = ~traits::PGMASK;
code_word_t insn = 0; code_word_t insn = 0;
auto *const data = (uint8_t *)&insn; auto *const data = (uint8_t *)&insn;
auto pc=start; auto pc=start;
while(pred){ while(pred(pc)){
auto paddr = this->core.v2p(pc); auto paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
if (this->core.read(paddr, 2, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val); if (this->core.read(paddr, 2, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val);

File diff suppressed because it is too large Load Diff