initial version of MU hart

This commit is contained in:
Eyck Jentzsch 2021-05-14 13:29:39 +02:00
parent c57884caee
commit 9c456ba8f2
2 changed files with 970 additions and 7 deletions

View File

@ -0,0 +1,961 @@
/*******************************************************************************
* Copyright (C) 2017, 2018, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial implementation
******************************************************************************/
#ifndef _RISCV_CORE_H_
#define _RISCV_CORE_H_
#include "iss/arch/traits.h"
#include "iss/arch_if.h"
#include "iss/instrumentation_if.h"
#include "iss/log_categories.h"
#include "iss/vm_if.h"
#ifndef FMT_HEADER_ONLY
#define FMT_HEADER_ONLY
#endif
#include <array>
#include <elfio/elfio.hpp>
#include <fmt/format.h>
#include <iomanip>
#include <sstream>
#include <type_traits>
#include <unordered_map>
#include <functional>
#include <util/bit_field.h>
#include <util/ities.h>
#include <util/sparse_array.h>
#if defined(__GNUC__)
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
namespace iss {
namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum riscv_csr {
/* user-level CSR */
// User Trap Setup
ustatus = 0x000,
uie = 0x004,
utvec = 0x005,
// User Trap Handling
uscratch = 0x040,
uepc = 0x041,
ucause = 0x042,
utval = 0x043,
uip = 0x044,
// User Floating-Point CSRs
fflags = 0x001,
frm = 0x002,
fcsr = 0x003,
// User Counter/Timers
cycle = 0xC00,
time = 0xC01,
instret = 0xC02,
hpmcounter3 = 0xC03,
hpmcounter4 = 0xC04,
/*...*/
hpmcounter31 = 0xC1F,
cycleh = 0xC80,
timeh = 0xC81,
instreth = 0xC82,
hpmcounter3h = 0xC83,
hpmcounter4h = 0xC84,
/*...*/
hpmcounter31h = 0xC9F,
/* supervisor-level CSR */
// Supervisor Trap Setup
sstatus = 0x100,
sedeleg = 0x102,
sideleg = 0x103,
sie = 0x104,
stvec = 0x105,
scounteren = 0x106,
// Supervisor Trap Handling
sscratch = 0x140,
sepc = 0x141,
scause = 0x142,
stval = 0x143,
sip = 0x144,
// Supervisor Protection and Translation
satp = 0x180,
/* machine-level CSR */
// Machine Information Registers
mvendorid = 0xF11,
marchid = 0xF12,
mimpid = 0xF13,
mhartid = 0xF14,
// Machine Trap Setup
mstatus = 0x300,
misa = 0x301,
medeleg = 0x302,
mideleg = 0x303,
mie = 0x304,
mtvec = 0x305,
mcounteren = 0x306,
// Machine Trap Handling
mscratch = 0x340,
mepc = 0x341,
mcause = 0x342,
mtval = 0x343,
mip = 0x344,
// Machine Protection and Translation
pmpcfg0 = 0x3A0,
pmpcfg1 = 0x3A1,
pmpcfg2 = 0x3A2,
pmpcfg3 = 0x3A3,
pmpaddr0 = 0x3B0,
pmpaddr1 = 0x3B1,
/*...*/
pmpaddr15 = 0x3BF,
// Machine Counter/Timers
mcycle = 0xB00,
minstret = 0xB02,
mhpmcounter3 = 0xB03,
mhpmcounter4 = 0xB04,
/*...*/
mhpmcounter31 = 0xB1F,
mcycleh = 0xB80,
minstreth = 0xB82,
mhpmcounter3h = 0xB83,
mhpmcounter4h = 0xB84,
/*...*/
mhpmcounter31h = 0xB9F,
// Machine Counter Setup
mhpmevent3 = 0x323,
mhpmevent4 = 0x324,
/*...*/
mhpmevent31 = 0x33F,
// Debug/Trace Registers (shared with Debug Mode)
tselect = 0x7A0,
tdata1 = 0x7A1,
tdata2 = 0x7A2,
tdata3 = 0x7A3,
// Debug Mode Registers
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch = 0x7B2
};
namespace {
std::array<const char *, 16> trap_str = {{""
"Instruction address misaligned", // 0
"Instruction access fault", // 1
"Illegal instruction", // 2
"Breakpoint", // 3
"Load address misaligned", // 4
"Load access fault", // 5
"Store/AMO address misaligned", // 6
"Store/AMO access fault", // 7
"Environment call from U-mode", // 8
"Environment call from S-mode", // 9
"Reserved", // a
"Environment call from M-mode", // b
"Instruction page fault", // c
"Load page fault", // d
"Reserved", // e
"Store/AMO page fault"}};
std::array<const char *, 12> irq_str = {
{"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3 };
enum {
ISA_A = 1,
ISA_B = 1 << 1,
ISA_C = 1 << 2,
ISA_D = 1 << 3,
ISA_E = 1 << 4,
ISA_F = 1 << 5,
ISA_G = 1 << 6,
ISA_I = 1 << 8,
ISA_M = 1 << 12,
ISA_N = 1 << 13,
ISA_Q = 1 << 16,
ISA_S = 1 << 18,
ISA_U = 1 << 20
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
: trap_access(5 << 16, badaddr) {}
};
class illegal_instruction_fault : public trap_access {
public:
illegal_instruction_fault(uint64_t badaddr)
: trap_access(2 << 16, badaddr) {}
};
} // namespace
template <typename BASE> class riscv_hart_mu_p : public BASE {
public:
using super = BASE;
using this_class = riscv_hart_mu_p<BASE>;
using phys_addr_t = typename super::phys_addr_t;
using reg_t = typename super::reg_t;
using addr_t = typename super::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
// primary template
template <class T, class Enable = void> struct hart_state {};
// specialization 32bit
template <typename T> class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0;
void write_mstatus(T val) {
auto mask = get_mask();
auto new_val = (mstatus.backing.val & ~mask) | (val & mask);
mstatus = new_val;
}
T satp;
static constexpr uint32_t get_mask() {
return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011 // only machine mode is supported
}
};
constexpr reg_t get_irq_mask() {
return 0b101110111011; // only machine mode is supported
}
riscv_hart_mu_p();
virtual ~riscv_hart_mu_p() = default;
void reset(uint64_t address) override;
std::pair<uint64_t, bool> load_file(std::string name, int type = -1) override;
iss::status read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) override;
iss::status write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) override;
virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_mu_p::enter_trap(flags, fault_data); }
virtual uint64_t enter_trap(uint64_t flags, uint64_t addr) override;
virtual uint64_t leave_trap(uint64_t flags) override;
const reg_t& get_mhartid() const { return mhartid_reg; }
void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; };
void disass_output(uint64_t pc, const std::string instr) override {
CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]",
pc, instr, (reg_t)state.mstatus, this->reg.icount);
};
iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; }
void setMemReadCb(std::function<iss::status(phys_addr_t, unsigned, uint8_t* const)> const& memReadCb) {
mem_read_cb = memReadCb;
}
void setMemWriteCb(std::function<iss::status(phys_addr_t, unsigned, const uint8_t* const)> const& memWriteCb) {
mem_write_cb = memWriteCb;
}
void set_csr(unsigned addr, reg_t val){
csr[addr & csr.page_addr_mask] = val;
}
protected:
struct riscv_instrumentation_if : public iss::instrumentation_if {
riscv_instrumentation_if(riscv_hart_mu_p<BASE> &arch)
: arch(arch) {}
/**
* get the name of this architecture
*
* @return the name of this architecture
*/
const std::string core_type_name() const override { return traits<BASE>::core_type; }
virtual uint64_t get_pc() { return arch.get_pc(); };
virtual uint64_t get_next_pc() { return arch.get_next_pc(); };
virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; };
riscv_hart_mu_p<BASE> &arch;
};
friend struct riscv_instrumentation_if;
addr_t get_pc() { return this->reg.PC; }
addr_t get_next_pc() { return this->reg.NEXT_PC; }
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
virtual iss::status read_csr(unsigned addr, reg_t &val);
virtual iss::status write_csr(unsigned addr, reg_t val);
hart_state<reg_t> state;
uint64_t cycle_offset;
reg_t fault_data;
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
unsigned to_host_wr_cnt = 0;
riscv_instrumentation_if instr_if;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
private:
iss::status read_reg(unsigned addr, reg_t &val);
iss::status write_reg(unsigned addr, reg_t val);
iss::status read_cycle(unsigned addr, reg_t &val);
iss::status read_time(unsigned addr, reg_t &val);
iss::status read_status(unsigned addr, reg_t &val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_hartid(unsigned addr, reg_t &val);
reg_t mhartid_reg{0x0};
std::function<iss::status(phys_addr_t, unsigned, uint8_t *const)>mem_read_cb;
std::function<iss::status(phys_addr_t, unsigned, const uint8_t *const)> mem_write_cb;
protected:
void check_interrupt();
};
template <typename BASE>
riscv_hart_mu_p<BASE>::riscv_hart_mu_p()
: state()
, cycle_offset(0)
, instr_if(*this) {
csr[misa] = traits<BASE>::MISA_VAL;
uart_buf.str("");
for (unsigned addr = mcycle; addr <= hpmcounter31; ++addr) csr_wr_cb[addr] = nullptr;
for (unsigned addr = mcycleh; addr <= hpmcounter31h; ++addr) csr_wr_cb[addr] = nullptr;
// special handling
csr_rd_cb[time] = &riscv_hart_mu_p<BASE>::read_time;
csr_wr_cb[time] = nullptr;
csr_rd_cb[timeh] = &riscv_hart_mu_p<BASE>::read_time;
csr_wr_cb[timeh] = nullptr;
csr_rd_cb[mcycle] = &riscv_hart_mu_p<BASE>::read_cycle;
csr_rd_cb[mcycleh] = &riscv_hart_mu_p<BASE>::read_cycle;
csr_rd_cb[minstret] = &riscv_hart_mu_p<BASE>::read_cycle;
csr_rd_cb[minstreth] = &riscv_hart_mu_p<BASE>::read_cycle;
csr_rd_cb[mstatus] = &riscv_hart_mu_p<BASE>::read_status;
csr_wr_cb[mstatus] = &riscv_hart_mu_p<BASE>::write_status;
csr_rd_cb[mip] = &riscv_hart_mu_p<BASE>::read_ip;
csr_wr_cb[mip] = &riscv_hart_mu_p<BASE>::write_ip;
csr_rd_cb[mie] = &riscv_hart_mu_p<BASE>::read_ie;
csr_wr_cb[mie] = &riscv_hart_mu_p<BASE>::write_ie;
csr_rd_cb[mhartid] = &riscv_hart_mu_p<BASE>::read_hartid;
// common regs
const std::array<unsigned, 6> addrs{{mepc, mtvec, mscratch, mcause, mtval, mscratch}};
for(auto addr: addrs) {
csr_rd_cb[addr] = &riscv_hart_mu_p<BASE>::read_reg;
csr_wr_cb[addr] = &riscv_hart_mu_p<BASE>::write_reg;
}
// read-only registers
csr_rd_cb[misa] = &riscv_hart_mu_p<BASE>::read_reg;
csr_wr_cb[misa] = nullptr;
}
template <typename BASE> std::pair<uint64_t, bool> riscv_hart_mu_p<BASE>::load_file(std::string name, int type) {
FILE *fp = fopen(name.c_str(), "r");
if (fp) {
std::array<char, 5> buf;
auto n = fread(buf.data(), 1, 4, fp);
if (n != 4) throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if (strcmp(buf.data() + 1, "ELF") == 0) {
fclose(fp);
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
// check elf properties
if (reader.get_class() != ELFCLASS32)
if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file");
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if (fsize > 0) {
auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE,
traits<BASE>::MEM, pseg->get_physical_address(),
fsize, reinterpret_cast<const uint8_t *const>(seg_data));
if (res != iss::Ok)
LOG(ERROR) << "problem writing " << fsize << "bytes to 0x" << std::hex
<< pseg->get_physical_address();
}
}
for (const auto sec : reader.sections) {
if (sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return std::make_pair(reader.get_entry(), true);
}
throw std::runtime_error("memory load file is not a valid elf file");
}
throw std::runtime_error("memory load file not found");
}
template <typename BASE>
iss::status riscv_hart_mu_p<BASE>::read(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, uint8_t *const data) {
#ifndef NDEBUG
if (access && iss::access_type::DEBUG) {
LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr;
} else if(access && iss::access_type::FETCH){
LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr;
} else {
LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto res = type==iss::address_type::PHYSICAL?
read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data):
read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok)) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return read_csr(addr, *reinterpret_cast<reg_t *const>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
return iss::Ok;
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr);
if (it != atomic_reservation.end() && it->second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE>
iss::status riscv_hart_mu_p<BASE>::write(const address_type type, const access_type access, const uint32_t space,
const uint64_t addr, const unsigned length, const uint8_t *const data) {
#ifndef NDEBUG
const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : "";
switch (length) {
case 8:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 4:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 2:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
case 1:
LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec
<< ") @addr 0x" << std::hex << addr;
break;
default:
LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr;
}
#endif
try {
switch (space) {
case traits<BASE>::MEM: {
if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) {
fault_data = addr;
if (access && iss::access_type::DEBUG) throw trap_access(0, addr);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
auto res = type==iss::address_type::PHYSICAL?
write_mem(phys_addr_t{access, space, addr}, length, data):
write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data);
if (unlikely(res != iss::Ok))
this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 7 (Store/AMO access fault)
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr});
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
return iss::Ok;
}
case 0x10008008: { // HFROSC base, pllcfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
return iss::Ok;
} break;
default: {}
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return write_csr(addr, *reinterpret_cast<const reg_t *>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr + length) > mem.size()) return iss::Err;
switch (addr) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
atomic_reservation[addr] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_csr(unsigned addr, reg_t &val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::write_csr(unsigned addr, reg_t val) {
if (addr >= csr.size()) return iss::Err;
auto req_priv_lvl = (addr >> 8) & 0x3;
if (this->reg.PRIV < req_priv_lvl) // not having required privileges
throw illegal_instruction_fault(this->fault_data);
if((addr&0xc00)==0xc00) // writing to read-only region
throw illegal_instruction_fault(this->fault_data);
auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end() || !it->second) // non existent register
throw illegal_instruction_fault(this->fault_data);
return (this->*(it->second))(addr, val);
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_reg(unsigned addr, reg_t &val) {
val = csr[addr];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::write_reg(unsigned addr, reg_t val) {
csr[addr] = val;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_cycle(unsigned addr, reg_t &val) {
auto cycle_val = this->reg.icount + cycle_offset;
if (addr == mcycle) {
val = static_cast<reg_t>(cycle_val);
} else if (addr == mcycleh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(cycle_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val = (this->reg.icount + cycle_offset) / (100000000 / 32768 - 1); //-> ~3052;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_status(unsigned addr, reg_t &val) {
val = state.mstatus & hart_state<reg_t>::get_mask();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::write_status(unsigned addr, reg_t val) {
state.write_mstatus(val);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_ie(unsigned addr, reg_t &val) {
val = csr[mie];
val &= csr[mideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_hartid(unsigned addr, reg_t &val) {
val = mhartid_reg;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::write_ie(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::read_ip(unsigned addr, reg_t &val) {
val = csr[mip];
val &= csr[mideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_mu_p<BASE>::write_ip(unsigned addr, reg_t val) {
auto mask = get_irq_mask();
mask &= ~(1 << 7); // MTIP is read only
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_mu_p<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
if(mem_read_cb) return mem_read_cb(paddr, length, data);
switch (paddr.val) {
case 0x0200BFF8: { // CLINT base, mtime reg
if (sizeof(reg_t) < length) return iss::Err;
reg_t time_val;
this->read_csr(time, time_val);
std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data);
} break;
case 0x10008000: {
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
} break;
default: {
const auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
}
}
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_mu_p<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
if(mem_write_cb) return mem_write_cb(paddr, length, data);
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
break;
case 0x10008000: { // HFROSC base, hfrosccfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
} break;
case 0x10008008: { // HFROSC base, pllcfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
} break;
default: {
mem_type::page_type &p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if (paddr.access && iss::access_type::FUNC) {
auto tohost_upper = (traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4));
auto tohost_lower =
(traits<BASE>::XLEN == 32 && paddr.val == tohost);
if (tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask));
if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch (hostvar >> 48) {
case 0:
if (hostvar != 0x1) {
LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
} else {
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
}
this->reg.trap_state=std::numeric_limits<uint32_t>::max();
this->interrupt_sim=hostvar;
break;
//throw(iss::simulation_stopped(hostvar));
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if (c == '\n' || c == 0) {
LOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
to_host_wr_cnt = 0;
} break;
default:
break;
}
} else if (tohost_lower)
to_host_wr_cnt++;
} else if (traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) {
uint64_t fhostvar = *reinterpret_cast<uint64_t *>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}
template <typename BASE> inline void riscv_hart_mu_p<BASE>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state<reg_t>::mstatus_reset_val;
}
template <typename BASE> void riscv_hart_mu_p<BASE>::check_interrupt() {
auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = csr[mip] & csr[mie];
bool mie = state.mstatus.MIE;
auto m_enabled = this->reg.PRIV < PRIV_M || (this->reg.PRIV == PRIV_M && mie);
auto enabled_interrupts = m_enabled ? ena_irq & ~ideleg : 0;
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) {
enabled_interrupts >>= 1;
res++;
}
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE> uint64_t riscv_hart_mu_p<BASE>::enter_trap(uint64_t flags, uint64_t addr) {
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause
// calculate effective privilege level
if (trap_id == 0) { // exception
// store ret addr in xepc register
csr[mepc] = static_cast<reg_t>(addr); // store actual address instruction of exception
csr[mtval] = fault_data;
fault_data = 0;
} else {
csr[mepc] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
}
csr[mcause] = (trap_id << 31) + cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
state.mstatus.MPP = PRIV_M;
state.mstatus.MPIE = state.mstatus.MIE;
state.mstatus.MIE = false;
// get trap vector
auto ivec = csr[mtvec];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x1UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state
this->reg.PRIV = PRIV_M;
this->reg.trap_state = 0;
std::array<char, 32> buffer;
sprintf(buffer.data(), "0x%016lx", addr);
if((flags&0xffffffff) != 0xffffffff)
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '"
<< (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")"
<< " at address " << buffer.data() << " occurred";
return this->reg.NEXT_PC;
}
template <typename BASE> uint64_t riscv_hart_mu_p<BASE>::leave_trap(uint64_t flags) {
state.mstatus.MIE = state.mstatus.MPIE;
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[mepc];
CLOG(INFO, disass) << "Executing xRET";
return this->reg.NEXT_PC;
}
} // namespace arch
} // namespace iss
#endif /* _RISCV_CORE_H_ */

View File

@ -31,14 +31,17 @@
*******************************************************************************/ *******************************************************************************/
#include "sysc/core_complex.h" #include "sysc/core_complex.h"
#include "iss/arch/riscv_hart_m_p.h"
#ifdef CORE_TGC_C #ifdef CORE_TGC_C
#include "iss/arch/riscv_hart_m_p.h"
#include "iss/arch/tgc_c.h" #include "iss/arch/tgc_c.h"
using core_type = iss::arch::tgc_c; using core_type = iss::arch::tgc_c;
using plat_type = iss::arch::riscv_hart_m_p<core_type>;
#endif #endif
#ifdef CORE_TGC_D #ifdef CORE_TGC_D
#include "iss/arch/riscv_hart_mu_p.h"
#include "iss/arch/tgc_d.h" #include "iss/arch/tgc_d.h"
using core_type = iss::arch::tgc_d; using core_type = iss::arch::tgc_d;
using plat_type = iss::arch::riscv_hart_mu_p<core_type>;
#endif #endif
#include "iss/debugger/encoderdecoder.h" #include "iss/debugger/encoderdecoder.h"
#include "iss/debugger/gdb_session.h" #include "iss/debugger/gdb_session.h"
@ -95,9 +98,8 @@ std::array<const char*, 12> irq_str = { {
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt" } }; "User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt" } };
} }
class core_wrapper : public iss::arch::riscv_hart_m_p<core_type> { class core_wrapper : public plat_type {
public: public:
using base_type = arch::riscv_hart_m_p<core_type>;
using phys_addr_t = typename arch::traits<core_type>::phys_addr_t; using phys_addr_t = typename arch::traits<core_type>::phys_addr_t;
core_wrapper(core_complex *owner) core_wrapper(core_complex *owner)
: owner(owner) { } : owner(owner) { }
@ -108,7 +110,7 @@ public:
inline bool get_interrupt_execution() { return this->interrupt_sim; } inline bool get_interrupt_execution() { return this->interrupt_sim; }
base_type::hart_state<base_type::reg_t> &get_state() { return this->state; } plat_type::hart_state<plat_type::reg_t> &get_state() { return this->state; }
void notify_phase(exec_phase p) override { void notify_phase(exec_phase p) override {
if (p == ISTART) owner->sync(this->reg.icount + cycle_offset); if (p == ISTART) owner->sync(this->reg.icount + cycle_offset);
@ -163,7 +165,7 @@ public:
} }
return ret?Ok:Err; return ret?Ok:Err;
} else { } else {
return base_type::read_csr(addr, val); return plat_type::read_csr(addr, val);
} }
} }
@ -172,11 +174,11 @@ public:
do { do {
wait(wfi_evt); wait(wfi_evt);
} while (this->reg.pending_trap == 0); } while (this->reg.pending_trap == 0);
base_type::wait_until(flags); plat_type::wait_until(flags);
} }
void local_irq(short id, bool value) { void local_irq(short id, bool value) {
base_type::reg_t mask = 0; plat_type::reg_t mask = 0;
switch (id) { switch (id) {
case 16: // SW case 16: // SW
mask = 1 << 3; mask = 1 << 3;