DBT-RISE-TGC/gen_input/templates/interp/vm_CORENAME.cpp.gtl

282 lines
12 KiB
Plaintext
Raw Normal View History

2018-11-19 10:45:50 +01:00
/*******************************************************************************
2020-01-10 07:24:00 +01:00
* Copyright (C) 2020 MINRES Technologies GmbH
2018-11-19 10:45:50 +01:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
2020-05-30 11:27:44 +02:00
#include "../fp_functions.h"
#include <iss/arch/${coreDef.name.toLowerCase()}.h>
#include <iss/arch/riscv_hart_m_p.h>
#include <iss/debugger/gdb_session.h>
#include <iss/debugger/server.h>
#include <iss/iss.h>
2020-01-10 07:24:00 +01:00
#include <iss/interp/vm_base.h>
#include <util/logging.h>
2020-01-10 07:24:00 +01:00
#include <sstream>
2019-07-14 16:51:14 +02:00
#ifndef FMT_HEADER_ONLY
2019-04-11 07:40:02 +02:00
#define FMT_HEADER_ONLY
2019-07-14 16:51:14 +02:00
#endif
2018-11-24 20:29:24 +01:00
#include <fmt/format.h>
#include <array>
2018-11-19 10:45:50 +01:00
#include <iss/debugger/riscv_target_adapter.h>
namespace iss {
2020-01-10 07:24:00 +01:00
namespace interp {
namespace ${coreDef.name.toLowerCase()} {
using namespace iss::arch;
using namespace iss::debugger;
template <typename ARCH> class vm_impl : public iss::interp::vm_base<ARCH> {
public:
using traits = arch::traits<ARCH>;
using super = typename iss::interp::vm_base<ARCH>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using code_word_t = typename super::code_word_t;
using addr_t = typename super::addr_t;
using reg_t = typename traits::reg_t;
using mem_type_e = typename traits::mem_type_e;
vm_impl();
vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0);
void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; }
2018-11-19 10:45:50 +01:00
target_adapter_if *accquire_target_adapter(server_if *srv) override {
debugger_if::dbg_enabled = true;
if (super::tgt_adapter == nullptr)
super::tgt_adapter = new riscv_target_adapter<ARCH>(srv, this->get_arch());
return super::tgt_adapter;
}
protected:
2020-01-10 07:24:00 +01:00
using this_class = vm_impl<ARCH>;
using compile_ret_t = virt_addr_t;
using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr);
inline const char *name(size_t index){return traits::reg_aliases.at(index);}
2018-11-24 20:29:24 +01:00
2020-01-12 18:19:48 +01:00
virt_addr_t execute_inst(virt_addr_t start, std::function<bool(void)> pred) override;
// some compile time constants
// enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 };
enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 };
enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 };
enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) };
std::array<compile_func, LUT_SIZE> lut;
std::array<compile_func, LUT_SIZE_C> lut_00, lut_01, lut_10;
std::array<compile_func, LUT_SIZE> lut_11;
2020-01-12 18:19:48 +01:00
std::array<compile_func *, 4> qlut;
2020-01-12 18:19:48 +01:00
std::array<const uint32_t, 4> lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}};
void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[],
compile_func f) {
if (pos < 0) {
lut[idx] = f;
} else {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f);
} else {
if ((valid & bitmask) == 0) {
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f);
expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f);
} else {
auto new_val = idx << 1;
if ((value & bitmask) != 0) new_val++;
expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f);
}
}
}
}
inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); }
uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) {
if (pos >= 0) {
auto bitmask = 1UL << pos;
if ((mask & bitmask) == 0) {
lut_val = extract_fields(pos - 1, val, mask, lut_val);
} else {
auto new_val = lut_val << 1;
if ((val & bitmask) != 0) new_val++;
lut_val = extract_fields(pos - 1, val, mask, new_val);
}
}
return lut_val;
}
void raise(uint16_t trap_id, uint16_t cause){
2020-01-12 18:19:48 +01:00
auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id;
this->template get_reg<uint32_t>(traits::TRAP_STATE) = trap_val;
this->template get_reg<uint32_t>(traits::NEXT_PC) = std::numeric_limits<uint32_t>::max();
2020-01-12 18:19:48 +01:00
}
void leave(unsigned lvl){
2020-01-12 18:19:48 +01:00
this->core.leave_trap(lvl);
auto pc_val = super::template read_mem<reg_t>(traits::CSR, (lvl << 8) + 0x41);
this->template get_reg<reg_t>(traits::NEXT_PC) = pc_val;
this->template get_reg<uint32_t>(traits::LAST_BRANCH) = std::numeric_limits<uint32_t>::max();
2020-01-12 18:19:48 +01:00
}
void wait(unsigned type){
this->core.wait_until(type);
}
inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint8_t>(space, addr);}
inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint16_t>(space, addr);}
inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint32_t>(space, addr);}
inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){return super::template read_mem<uint64_t>(space, addr);}
inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){super::write_mem(space, addr, data);}
inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){super::write_mem(space, addr, data);}
inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){super::write_mem(space, addr, data);}
inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){super::write_mem(space, addr, data);}
2020-01-12 18:19:48 +01:00
private:
/****************************************************************************
* start opcode definitions
****************************************************************************/
struct InstructionDesriptor {
size_t length;
uint32_t value;
uint32_t mask;
compile_func op;
};
const std::array<InstructionDesriptor, ${instructions.size}> instr_descr = {{
/* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %>
/* instruction ${instr.instruction.name} */
{${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%>
}};
/* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %>
/* instruction ${idx}: ${instr.name} */
compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){
2021-02-06 15:47:06 +01:00
// pre execution stuff
this->do_sync(PRE_SYNC, ${idx});
<%instr.fields.eachLine{%>${it}
<%}%>if(this->disass_enabled){
/* generate console output when executing the command */
<%instr.disass.eachLine{%>${it}
<%}%>
}
// prepare execution
uint${addrDataWidth}_t* X = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::X0]);
uint${addrDataWidth}_t* PC = reinterpret_cast<uint${addrDataWidth}_t*>(this->regs_base_ptr+arch::traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]);
// execute instruction
<%instr.behavior.eachLine{%>${it}
<%}%>// post execution stuff<% if(instr.modifiesPC) { %>
super::template get_reg<reg_t>(arch::traits<ARCH>::NEXT_PC) = super::template get_reg<reg_t>(arch::traits<ARCH>::PC);<% } else { %>
super::template get_reg<reg_t>(arch::traits<ARCH>::NEXT_PC) = pc.val + ${instr.length/8};<% } %>
if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx});
auto& trap_state = super::template get_reg<uint32_t>(arch::traits<ARCH>::TRAP_STATE);
// trap check
if(trap_state!=0){
auto& last_br = super::template get_reg<uint32_t>(arch::traits<ARCH>::LAST_BRANCH);
last_br = std::numeric_limits<uint32_t>::max();
super::core.enter_trap(trap_state, pc.val);
}
pc.val=super::template get_reg<reg_t>(arch::traits<ARCH>::NEXT_PC);
return pc;
}
<%}%>
/****************************************************************************
* end opcode definitions
****************************************************************************/
2020-01-10 07:24:00 +01:00
compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) {
pc = pc + ((instr & 3) == 3 ? 4 : 2);
2020-01-10 07:24:00 +01:00
return pc;
}
};
template <typename CODE_WORD> void debug_fn(CODE_WORD insn) {
volatile CODE_WORD x = insn;
insn = 2 * x;
}
template <typename ARCH> vm_impl<ARCH>::vm_impl() { this(new ARCH()); }
template <typename ARCH>
vm_impl<ARCH>::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id)
: vm_base<ARCH>(core, core_id, cluster_id) {
qlut[0] = lut_00.data();
qlut[1] = lut_01.data();
qlut[2] = lut_10.data();
qlut[3] = lut_11.data();
for (auto instr : instr_descr) {
auto quantrant = instr.value & 0x3;
expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op);
}
}
template <typename ARCH>
2020-01-12 18:19:48 +01:00
typename vm_base<ARCH>::virt_addr_t vm_impl<ARCH>::execute_inst(virt_addr_t start, std::function<bool(void)> pred) {
// we fetch at max 4 byte, alignment is 2
enum {TRAP_ID=1<<16};
const typename traits::addr_t upper_bits = ~traits::PGMASK;
2020-01-12 18:19:48 +01:00
code_word_t insn = 0;
auto *const data = (uint8_t *)&insn;
2020-01-12 18:19:48 +01:00
auto pc=start;
while(pred){
auto paddr = this->core.v2p(pc);
if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary
if (this->core.read(paddr, 2, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
if ((insn & 0x3) == 0x3) // this is a 32bit instruction
if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
} else {
if (this->core.read(paddr, 4, data) != iss::Ok) throw trap_access(TRAP_ID, pc.val);
}
2020-01-12 18:19:48 +01:00
if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0'
auto lut_val = extract_fields(insn);
auto f = qlut[insn & 0x3][lut_val];
if (!f)
f = &this_class::illegal_intruction;
pc = (this->*f)(pc, insn);
}
2020-01-12 18:19:48 +01:00
return pc;
}
2020-01-10 07:24:00 +01:00
} // namespace mnrv32
template <>
std::unique_ptr<vm_if> create<arch::${coreDef.name.toLowerCase()}>(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) {
2018-11-19 10:45:50 +01:00
auto ret = new ${coreDef.name.toLowerCase()}::vm_impl<arch::${coreDef.name.toLowerCase()}>(*core, dump);
if (port != 0) debugger::server<debugger::gdb_session>::run_server(ret, port);
return std::unique_ptr<vm_if>(ret);
}
} // namespace interp
} // namespace iss