Files
opensbi/lib/sbi/sbi_heap.c
Samuel Holland 8dcd1448e7 lib: sbi_heap: Allocate list nodes dynamically
Currently the heap has a fixed housekeeping factor of 16, which means
1/16 of the heap is reserved for list nodes. But this is not enough when
there are many small allocations; in the worst case, 1/3 of the heap is
needed for list nodes (32 byte heap_node for each 64 byte allocation).
This has caused allocation failures on some platforms.

Let's avoid trying to guess the best ratio. Instead, allocate more nodes
as needed. To avoid recursion, the nodes are permanent allocations. So
to minimize fragmentation, allocate them in small batches from the end
of the last free space node. Bootstrap the free space list by embedding
one node in the heap control struct.

Some error paths are avoided because the nodes are allocated up front.

Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Tested-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250617032306.1494528-3-samuel.holland@sifive.com
Signed-off-by: Anup Patel <anup@brainfault.org>
2025-09-01 10:39:11 +05:30

295 lines
6.7 KiB
C

/*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2023 Ventana Micro Systems Inc.
*
* Authors:
* Anup Patel<apatel@ventanamicro.com>
*/
#include <sbi/riscv_locks.h>
#include <sbi/sbi_error.h>
#include <sbi/sbi_heap.h>
#include <sbi/sbi_list.h>
#include <sbi/sbi_scratch.h>
#include <sbi/sbi_string.h>
/* Minimum size and alignment of heap allocations */
#define HEAP_ALLOC_ALIGN 64
/* Number of heap nodes to allocate at once */
#define HEAP_NODE_BATCH_SIZE 8
struct heap_node {
struct sbi_dlist head;
unsigned long addr;
unsigned long size;
};
struct sbi_heap_control {
spinlock_t lock;
unsigned long base;
unsigned long size;
unsigned long resv;
struct sbi_dlist free_node_list;
struct sbi_dlist free_space_list;
struct sbi_dlist used_space_list;
struct heap_node init_free_space_node;
};
struct sbi_heap_control global_hpctrl;
static bool alloc_nodes(struct sbi_heap_control *hpctrl)
{
size_t size = HEAP_NODE_BATCH_SIZE * sizeof(struct heap_node);
struct heap_node *n, *new = NULL;
/* alloc_with_align() requires at most two free nodes */
if (hpctrl->free_node_list.next != hpctrl->free_node_list.prev)
return true;
sbi_list_for_each_entry_reverse(n, &hpctrl->free_space_list, head) {
if (n->size >= size) {
n->size -= size;
if (!n->size) {
sbi_list_del(&n->head);
sbi_list_add_tail(&n->head, &hpctrl->free_node_list);
}
new = (void *)(n->addr + n->size);
break;
}
}
if (!new)
return false;
for (size_t i = 0; i < HEAP_NODE_BATCH_SIZE; i++)
sbi_list_add_tail(&new[i].head, &hpctrl->free_node_list);
hpctrl->resv += size;
return true;
}
static void *alloc_with_align(struct sbi_heap_control *hpctrl,
size_t align, size_t size)
{
void *ret = NULL;
struct heap_node *n, *np, *rem;
unsigned long lowest_aligned;
size_t pad;
if (!size)
return NULL;
size += align - 1;
size &= ~((unsigned long)align - 1);
spin_lock(&hpctrl->lock);
/* Ensure at least two free nodes are available for use below */
if (!alloc_nodes(hpctrl))
goto out;
np = NULL;
sbi_list_for_each_entry(n, &hpctrl->free_space_list, head) {
lowest_aligned = ROUNDUP(n->addr, align);
pad = lowest_aligned - n->addr;
if (size + pad <= n->size) {
np = n;
break;
}
}
if (!np)
goto out;
if (pad) {
n = sbi_list_first_entry(&hpctrl->free_node_list,
struct heap_node, head);
sbi_list_del(&n->head);
if (size + pad < np->size) {
rem = sbi_list_first_entry(&hpctrl->free_node_list,
struct heap_node, head);
sbi_list_del(&rem->head);
rem->addr = np->addr + (size + pad);
rem->size = np->size - (size + pad);
sbi_list_add_tail(&rem->head,
&hpctrl->free_space_list);
}
n->addr = lowest_aligned;
n->size = size;
sbi_list_add_tail(&n->head, &hpctrl->used_space_list);
np->size = pad;
ret = (void *)n->addr;
} else {
if (size < np->size) {
n = sbi_list_first_entry(&hpctrl->free_node_list,
struct heap_node, head);
sbi_list_del(&n->head);
n->addr = np->addr;
n->size = size;
np->addr += size;
np->size -= size;
sbi_list_add_tail(&n->head, &hpctrl->used_space_list);
ret = (void *)n->addr;
} else {
sbi_list_del(&np->head);
sbi_list_add_tail(&np->head, &hpctrl->used_space_list);
ret = (void *)np->addr;
}
}
out:
spin_unlock(&hpctrl->lock);
return ret;
}
void *sbi_malloc_from(struct sbi_heap_control *hpctrl, size_t size)
{
return alloc_with_align(hpctrl, HEAP_ALLOC_ALIGN, size);
}
void *sbi_aligned_alloc_from(struct sbi_heap_control *hpctrl,
size_t alignment, size_t size)
{
if (alignment < HEAP_ALLOC_ALIGN)
alignment = HEAP_ALLOC_ALIGN;
/* Make sure alignment is power of two */
if ((alignment & (alignment - 1)) != 0)
return NULL;
/* Make sure size is multiple of alignment */
if (size % alignment != 0)
return NULL;
return alloc_with_align(hpctrl, alignment, size);
}
void *sbi_zalloc_from(struct sbi_heap_control *hpctrl, size_t size)
{
void *ret = sbi_malloc_from(hpctrl, size);
if (ret)
sbi_memset(ret, 0, size);
return ret;
}
void sbi_free_from(struct sbi_heap_control *hpctrl, void *ptr)
{
struct heap_node *n, *np;
if (!ptr)
return;
spin_lock(&hpctrl->lock);
np = NULL;
sbi_list_for_each_entry(n, &hpctrl->used_space_list, head) {
if ((n->addr <= (unsigned long)ptr) &&
((unsigned long)ptr < (n->addr + n->size))) {
np = n;
break;
}
}
if (!np) {
spin_unlock(&hpctrl->lock);
return;
}
sbi_list_del(&np->head);
sbi_list_for_each_entry(n, &hpctrl->free_space_list, head) {
if ((np->addr + np->size) == n->addr) {
n->addr = np->addr;
n->size += np->size;
sbi_list_add_tail(&np->head, &hpctrl->free_node_list);
np = NULL;
break;
} else if (np->addr == (n->addr + n->size)) {
n->size += np->size;
sbi_list_add_tail(&np->head, &hpctrl->free_node_list);
np = NULL;
break;
} else if ((n->addr + n->size) < np->addr) {
sbi_list_add(&np->head, &n->head);
np = NULL;
break;
}
}
if (np)
sbi_list_add_tail(&np->head, &hpctrl->free_space_list);
spin_unlock(&hpctrl->lock);
}
unsigned long sbi_heap_free_space_from(struct sbi_heap_control *hpctrl)
{
struct heap_node *n;
unsigned long ret = 0;
spin_lock(&hpctrl->lock);
sbi_list_for_each_entry(n, &hpctrl->free_space_list, head)
ret += n->size;
spin_unlock(&hpctrl->lock);
return ret;
}
unsigned long sbi_heap_used_space_from(struct sbi_heap_control *hpctrl)
{
return hpctrl->size - hpctrl->resv - sbi_heap_free_space();
}
unsigned long sbi_heap_reserved_space_from(struct sbi_heap_control *hpctrl)
{
return hpctrl->resv;
}
int sbi_heap_init_new(struct sbi_heap_control *hpctrl, unsigned long base,
unsigned long size)
{
struct heap_node *n;
/* Initialize heap control */
SPIN_LOCK_INIT(hpctrl->lock);
hpctrl->base = base;
hpctrl->size = size;
hpctrl->resv = 0;
SBI_INIT_LIST_HEAD(&hpctrl->free_node_list);
SBI_INIT_LIST_HEAD(&hpctrl->free_space_list);
SBI_INIT_LIST_HEAD(&hpctrl->used_space_list);
/* Prepare free space list */
n = &hpctrl->init_free_space_node;
n->addr = base;
n->size = size;
sbi_list_add_tail(&n->head, &hpctrl->free_space_list);
return 0;
}
int sbi_heap_init(struct sbi_scratch *scratch)
{
/* Sanity checks on heap offset and size */
if (!scratch->fw_heap_size ||
(scratch->fw_heap_size & (HEAP_BASE_ALIGN - 1)) ||
(scratch->fw_heap_offset < scratch->fw_rw_offset) ||
(scratch->fw_size < (scratch->fw_heap_offset + scratch->fw_heap_size)) ||
(scratch->fw_heap_offset & (HEAP_BASE_ALIGN - 1)))
return SBI_EINVAL;
return sbi_heap_init_new(&global_hpctrl,
scratch->fw_start + scratch->fw_heap_offset,
scratch->fw_heap_size);
}
int sbi_heap_alloc_new(struct sbi_heap_control **hpctrl)
{
*hpctrl = sbi_calloc(1, sizeof(struct sbi_heap_control));
return 0;
}