Refactored hart vm implementation to use more structured description

This commit is contained in:
Eyck Jentzsch 2017-10-04 23:10:29 +02:00
parent d59dfa93f6
commit 768df67646

View File

@ -45,6 +45,7 @@
#include <unordered_map>
#include <util/ities.h>
#include <util/sparse_array.h>
#include <util/bit_field.h>
namespace iss {
namespace arch {
@ -245,166 +246,8 @@ struct trap_store_page_fault : public trap_access {
};
}
using mstatus32_t = union {
uint32_t val;
struct /*mstatus*/ {
uint32_t SD : 1, // SD bit is read-only and is set when either the FS or XS
// bits encode a Dirty state (i.e., SD=((FS==11) OR
// (XS==11)))
_WPRI3 : 8, // unused
TSR : 1, // Trap SRET
TW : 1, // Timeout Wait
TVM : 1, // Trap Virtual Memory
MXR : 1, // Make eXecutable Readable
SUM : 1, // permit Supervisor User Memory access
MPRV : 1, // Modify PRiVilege
XS : 2, // status of additional user-mode extensions and associated
// state, All off/None dirty or clean, some on/None dirty, some
// clean/Some dirty
FS : 2, // floating-point unit status Off/Initial/Clean/Dirty
MPP : 2, // machine previous privilege
_WPRI2 : 2, // unused
SPP : 1, // supervisor previous privilege
MPIE : 1, // previous machine interrupt-enable
_WPRI1 : 1, // unused
SPIE : 1, // previous supervisor interrupt-enable
UPIE : 1, // previous user interrupt-enable
MIE : 1, // machine interrupt-enable
_WPRI0 : 1, // unused
SIE : 1, // supervisor interrupt-enable
UIE : 1; // user interrupt-enable
} m;
struct /*sstatus*/ {
uint32_t SD : 1, _WPRI4 : 11, MXR : 1, SUM : 1, _WPRI3 : 1, XS : 2, FS : 2, _WPRI2 : 4, SPP : 1, _WPRI1 : 2,
SPIE : 1, UPIE : 1, _WPRI0 : 2, SIE : 1, UIE : 1;
} s;
struct /*ustatus*/ {
uint32_t SD : 1, _WPRI4 : 11, MXR : 1, SUM : 1, _WPRI3 : 1, XS : 2, FS : 2, _WPRI2 : 8, UPIE : 1, _WPRI0 : 3,
UIE : 1;
} u;
};
using mstatus64_t = union {
uint64_t val;
struct /*mstatus*/ {
uint64_t SD : 1, // SD bit is read-only and is set when either the FS or XS
// bits encode a Dirty state (i.e., SD=((FS==11) OR
// (XS==11)))
_WPRI4 : 27, // unused
SXL : 2, // value of XLEN for S-mode
UXL : 2, // value of XLEN for U-mode
_WPRI3 : 9, // unused
TSR : 1, // Trap SRET
TW : 1, // Timeout Wait
TVM : 1, // Trap Virtual Memory
MXR : 1, // Make eXecutable Readable
SUM : 1, // permit Supervisor User Memory access
MPRV : 1, // Modify PRiVilege
XS : 2, // status of additional user-mode extensions and associated
// state, All off/None dirty or clean, some on/None dirty, some
// clean/Some dirty
FS : 2, // floating-point unit status Off/Initial/Clean/Dirty
MPP : 2, // machine previous privilege
_WPRI2 : 2, // unused
SPP : 1, // supervisor previous privilege
MPIE : 1, // previous machine interrupt-enable
_WPRI1 : 1, // unused
SPIE : 1, // previous supervisor interrupt-enable
UPIE : 1, // previous user interrupt-enable
MIE : 1, // machine interrupt-enable
_WPRI0 : 1, // unused
SIE : 1, // supervisor interrupt-enable
UIE : 1; // user interrupt-enable
} m;
struct /*sstatus*/ {
uint64_t SD : 1,
_WPRI5 : 29, // unused
UXL : 2, // value of XLEN for U-mode
_WPRI4 : 12, MXR : 1, SUM : 1, _WPRI3 : 1, XS : 2, FS : 2, _WPRI2 : 4, SPP : 1, _WPRI1 : 2, SPIE : 1,
UPIE : 1, _WPRI0 : 2, SIE : 1, UIE : 1;
} s;
struct /*ustatus*/ {
uint32_t SD : 1,
_WPRI4 : 29, // unused
UXL : 2, // value of XLEN for U-mode
_WPRI3 : 12, MXR : 1, SUM : 1, _WPRI2 : 1, XS : 2, FS : 2, _WPRI1 : 8, UPIE : 1, _WPRI0 : 3, UIE : 1;
} u;
};
template <unsigned L> inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr);
template <> inline vm_info decode_vm_info<32u>(uint32_t state, uint64_t sptbr) {
if (state == PRIV_M) {
return {0, 0, 0, 0};
} else if (state <= PRIV_S) {
switch (bit_sub<31, 1>(sptbr)) {
case 0: // off
return {0, 0, 0, 0};
case 1: // SV32
return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT};
default:
abort();
}
} else {
abort();
}
return {0, 0, 0, 0}; // dummy
}
template <> inline vm_info decode_vm_info<64u>(uint32_t state, uint64_t sptbr) {
if (state == PRIV_M) {
return {0, 0, 0, 0};
} else if (state <= PRIV_S) {
switch (bit_sub<60, 4>(sptbr)) {
case 0: // off
return {0, 0, 0, 0};
case 8: // SV39
return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};
case 9: // SV48
return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};
case 10: // SV57
return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};
case 11: // SV64
return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};
default:
abort();
}
} else {
abort();
}
return {0, 0, 0, 0}; // dummy
}
constexpr uint32_t get_mask(unsigned priv_lvl, uint32_t mask) {
switch (priv_lvl) {
case PRIV_U:
return mask & 0x80000011UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001
case PRIV_S:
return mask & 0x800de133UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011
default:
return mask & 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011
}
}
constexpr uint64_t get_mask(unsigned priv_lvl, uint64_t mask) {
switch (priv_lvl) {
case PRIV_U:
return mask & 0x8000000000000011ULL; // 0b1...0 1111 0000 0000 0111 1111
// 1111 1001 1011 1011
case PRIV_S:
return mask & 0x80000003000de133ULL; // 0b1...0 0011 0000 0000 0000 1101
// 1110 0001 0011 0011
default:
return mask & 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111
// 1111 1001 1011 1011
}
}
constexpr uint32_t get_misa(uint32_t mask) { return (1UL << 30) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
constexpr uint64_t get_misa(uint64_t mask) { return (2ULL << 62) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
template <typename BASE> struct riscv_hart_msu_vp : public BASE {
template <typename BASE> class riscv_hart_msu_vp : public BASE {
public:
using super = BASE;
using this_class = riscv_hart_msu_vp<BASE>;
using virt_addr_t = typename super::virt_addr_t;
@ -415,6 +258,148 @@ template <typename BASE> struct riscv_hart_msu_vp : public BASE {
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
// primary template
template<class T, class Enable = void> struct hart_state { };
// specialization 32bit
template <typename T>
struct hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
T satp;
static constexpr T get_misa() { return (1UL << 30) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
static constexpr uint32_t get_mask(unsigned priv_lvl) {
switch (priv_lvl) {
case PRIV_U: return 0x80000011UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001
case PRIV_S: return 0x800de133UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011
default: return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011
}
}
static inline vm_info decode_vm_info(uint32_t state, T sptbr) {
if (state == PRIV_M) return {0, 0, 0, 0};
if (state <= PRIV_S)
switch (bit_sub<31, 1>(sptbr)) {
case 0: return {0, 0, 0, 0}; // off
case 1: return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default: abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
};
// specialization 64bit
template <typename T>
struct hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
T satp;
static constexpr T get_misa() { return (2ULL << 62) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
static constexpr T get_mask(unsigned priv_lvl) {
switch (priv_lvl) {
case PRIV_U: return 0x8000000000000011ULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
case PRIV_S: return 0x80000003000de133ULL; // 0b1...0 0011 0000 0000 0000 1101 1110 0001 0011 0011
default: return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
}
}
static inline vm_info decode_vm_info(uint32_t state, T sptbr) {
if (state == PRIV_M) return {0, 0, 0, 0};
if (state <= PRIV_S)
switch (bit_sub<60, 4>(sptbr)) {
case 0: return {0, 0, 0, 0}; // off
case 8: return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV39
case 9: return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV48
case 10: return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV57
case 11: return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV64
default: abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
};
const typename super::reg_t PGSIZE = 1 << PGSHIFT;
const typename super::reg_t PGMASK = PGSIZE - 1;
@ -446,7 +431,7 @@ template <typename BASE> struct riscv_hart_msu_vp : public BASE {
virtual std::string get_additional_disass_info() {
std::stringstream s;
s << "[p:" << lvl[this->reg.machine_state] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << mstatus_r << std::dec << ";c:" << this->reg.icount << "]";
<< std::setw(sizeof(reg_t) * 2) << (reg_t)state.mstatus << std::dec << ";c:" << this->reg.icount << "]";
return s.str();
};
@ -466,8 +451,7 @@ protected:
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
reg_t &mstatus_r;
reg_t &satp_r;
hart_state<reg_t> state;
unsigned to_host_wr_cnt = 0;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
@ -490,9 +474,8 @@ private:
template <typename BASE>
riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
: mstatus_r(csr[mstatus])
, satp_r(csr[satp]) {
csr[misa] = traits<BASE>::XLEN == 32 ? 1ULL << (traits<BASE>::XLEN - 2) : 2ULL << (traits<BASE>::XLEN - 2);
: state() {
csr[misa] = hart_state<reg_t>::get_misa();
uart_buf.str("");
// read-only registers
csr_wr_cb[misa] = nullptr;
@ -539,13 +522,10 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::load_file(std::string nam
// Load ELF data
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
// check elf properties
// TODO: fix ELFCLASS like:
// if ( reader.get_class() != ELFCLASS32 ) throw std::runtime_error("wrong
// elf class in file");
if ( reader.get_class() != ELFCLASS32 )
if(sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
// TODO: fix machine type like:
// if ( reader.get_machine() != EM_RISCV ) throw std::runtime_error("wrong
// elf machine in file");
if ( reader.get_machine() != EM_RISCV ) throw std::runtime_error("wrong elf machine in file");
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
@ -588,7 +568,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const iss::addr_t &addr, unsigned leng
}
try {
if ((addr.val & ~PGMASK) != ((addr.val + length - 1) & ~PGMASK)) { // we may cross a page boundary
vm_info vm = decode_vm_info<traits<BASE>::XLEN>(this->reg.machine_state, csr[satp]);
vm_info vm = hart_state<reg_t>::decode_vm_info(this->reg.machine_state, state.satp);
if (vm.levels != 0) { // VM is active
auto split_addr = (addr.val + length) & ~PGMASK;
auto len1 = split_addr - addr.val;
@ -616,8 +596,7 @@ iss::status riscv_hart_msu_vp<BASE>::read(const iss::addr_t &addr, unsigned leng
switch (addr.val) {
case 2: // SFENCE:VMA lower
case 3: { // SFENCE:VMA upper
auto status = csr[mstatus];
auto tvm = status & (1 << 20);
auto tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
@ -677,7 +656,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const iss::addr_t &addr, unsigned len
}
try {
if ((addr.val & ~PGMASK) != ((addr.val + length - 1) & ~PGMASK)) { // we may cross a page boundary
vm_info vm = decode_vm_info<traits<BASE>::XLEN>(this->reg.machine_state, csr[satp]);
vm_info vm = hart_state<reg_t>::decode_vm_info(this->reg.machine_state, state.satp);
if (vm.levels != 0) { // VM is active
auto split_addr = (addr.val + length) & ~PGMASK;
auto len1 = split_addr - addr.val;
@ -738,8 +717,7 @@ iss::status riscv_hart_msu_vp<BASE>::write(const iss::addr_t &addr, unsigned len
case 2:
case 3: {
ptw.clear();
auto status = csr[mstatus];
auto tvm = status & (1 << 20);
auto tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
@ -799,18 +777,17 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_cycle(unsigne
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_status(unsigned addr, reg_t &val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
auto mask = get_mask(req_priv_lvl, (reg_t)(std::numeric_limits<reg_t>::max()));
val = csr[mstatus] & mask;
val = state.mstatus & hart_state<reg_t>::get_mask(req_priv_lvl);
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_status(unsigned addr, reg_t val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
auto mask = get_mask(req_priv_lvl, (reg_t)std::numeric_limits<reg_t>::max());
auto old_val = csr[mstatus];
auto mask = hart_state<reg_t>::get_mask(req_priv_lvl);
auto old_val = state.mstatus;
auto new_val = (old_val & ~mask) | (val & mask);
csr[mstatus] = new_val;
state.mstatus = new_val;
check_interrupt();
return iss::Ok;
}
@ -836,9 +813,9 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ie(unsigned
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned addr, reg_t &val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
val = csr[mie];
if (addr < mie) val &= csr[mideleg];
if (addr < sie) val &= csr[sideleg];
val = csr[mip];
if (addr < mip) val &= csr[mideleg];
if (addr < sip) val &= csr[sideleg];
return iss::Ok;
}
@ -852,26 +829,24 @@ template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ip(unsigned
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t &val) {
auto status = csr[mstatus];
auto tvm = status & (1 << 20);
reg_t tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
val = csr[satp];
val = state.satp;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) {
auto status = csr[mstatus];
auto tvm = status & (1 << 20);
reg_t tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
csr[satp] = val;
state.satp = val;
return iss::Ok;
}
@ -973,7 +948,7 @@ iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned lengt
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
auto status = csr[mstatus];
auto status = state.mstatus;
auto ip = csr[mip];
auto ie = csr[mie];
auto ideleg = csr[mideleg];
@ -983,19 +958,19 @@ template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
// any synchronous traps.
auto ena_irq = ip & ie;
auto mie = (csr[mstatus] >> 3) & 1;
auto mie = state.mstatus.MIE;
auto m_enabled = this->reg.machine_state < PRIV_M || (this->reg.machine_state == PRIV_M && mie);
auto enabled_interrupts = m_enabled ? ena_irq & ~ideleg : 0;
if (enabled_interrupts == 0) {
auto sie = (csr[mstatus] >> 1) & 1;
auto sie = state.mstatus.SIE;
auto s_enabled = this->reg.machine_state < PRIV_S || (this->reg.machine_state == PRIV_S && sie);
enabled_interrupts = s_enabled ? ena_irq & ideleg : 0;
}
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++;
this->reg.pending_trap = res << 16 | 1;
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
@ -1011,12 +986,11 @@ typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_hart_msu_vp<BASE>::v2p(const
}
const auto type = (access_type)(addr.getAccessType() & ~iss::DEBUG);
uint32_t mode = type != iss::FETCH && bit_sub<17, 1>(mstatus_r) ? // MPRV
mode = bit_sub<11, 2>(mstatus_r)
: // MPV
uint32_t mode = type != iss::FETCH && state.mstatus.MPRV ? // MPRV
mode = state.mstatus.MPP:
this->reg.machine_state;
const vm_info vm = decode_vm_info<traits<BASE>::XLEN>(mode, satp_r);
const vm_info vm = hart_state<reg_t>::decode_vm_info(mode, state.satp);
if (vm.levels == 0) {
phys_addr_t ret(addr);
@ -1025,8 +999,8 @@ typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_hart_msu_vp<BASE>::v2p(const
}
const bool s_mode = mode == PRIV_S;
const bool sum = bit_sub<18, 1>(mstatus_r); // MSTATUS_SUM);
const bool mxr = bit_sub<19, 1>(mstatus_r); // MSTATUS_MXR);
const bool sum = state.mstatus.SUM;
const bool mxr = state.mstatus.MXR;
auto it = ptw.find(addr.val >> PGSHIFT);
if (it != ptw.end()) {
@ -1110,9 +1084,10 @@ typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_hart_msu_vp<BASE>::v2p(const
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t flags, uint64_t addr) {
auto cur_priv = this->reg.machine_state;
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto trap_id = flags & 0xffff;
auto cause = (flags >> 16) & 0x7fff;
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + cur_priv; // adjust environment call cause
// calculate effective privilege level
auto new_priv = PRIV_M;
@ -1143,26 +1118,23 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
auto status = csr[mstatus];
auto xie = (status >> cur_priv) & 1;
// store the actual privilege level in yPP
// store the actual privilege level in yPP and store interrupt enable flags
switch (new_priv) {
case PRIV_M:
status &= ~(3 << 11);
status |= (cur_priv & 0x3) << 11;
state.mstatus.MPP=cur_priv;
state.mstatus.MPIE=state.mstatus.MIE;
break;
case PRIV_S:
status &= ~(1 << 8);
status |= (cur_priv & 0x1) << 8;
state.mstatus.SPP = cur_priv;
state.mstatus.SPIE=state.mstatus.SIE;
break;
case PRIV_U:
state.mstatus.UPIE=state.mstatus.UIE;
break;
default:
break;
}
// store interrupt enable flags
status &= ~(1 << (new_priv + 4) | 1 << cur_priv); // clear respective xPIE and yIE
status |= (xie << (new_priv + 4)); // store yIE
csr[mstatus] = status;
// get trap vector
auto ivec = csr[utvec | (new_priv << 8)];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
@ -1174,7 +1146,7 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
this->reg.trap_state = 0;
char buffer[32];
sprintf(buffer, "0x%016lx", addr);
CLOG(INFO, disass) << (trap_id ? "Interrupt " : "Trap ") << trap_id << " with cause '" << irq_str[cause]
CLOG(INFO, disass) << (trap_id ? "Interrupt " : "Trap ") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause])
<< "' at address " << buffer << " occurred, changing privilege level from " << lvl[cur_priv]
<< " to " << lvl[new_priv];
return this->reg.NEXT_PC;
@ -1183,10 +1155,9 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t f
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t flags) {
auto cur_priv = this->reg.machine_state;
auto inst_priv = flags & 0x3;
auto status = csr[mstatus];
auto ppl = inst_priv; // previous privilege level
auto status = state.mstatus;
auto tsr = status & (1 << 22);
auto tsr = state.mstatus.TSR;
if (cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
@ -1194,33 +1165,32 @@ template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t f
}
// pop the relevant lower-privilege interrupt enable and privilege mode stack
// clear respective yIE
switch (inst_priv) {
case PRIV_M:
ppl = (status >> 11) & 0x3;
status &= ~(0x3 << 11); // clear mpp to U mode
this->reg.machine_state = state.mstatus.MPP;
state.mstatus.MPP=0; // clear mpp to U mode
state.mstatus.MIE=state.mstatus.MPIE;
break;
case PRIV_S:
ppl = (status >> 8) & 1;
status &= ~(1 << 8); // clear spp to U mode
this->reg.machine_state = state.mstatus.SPP;
state.mstatus.SPP= 0; // clear spp to U mode
state.mstatus.SIE=state.mstatus.SPIE;
break;
case PRIV_U:
ppl = 0;
this->reg.machine_state = 0;
state.mstatus.UIE=state.mstatus.UPIE;
break;
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[uepc | inst_priv << 8];
status &= ~(1 << ppl); // clear respective yIE
auto pie = (status >> (inst_priv + 4)) & 0x1; // previous interrupt enable
status |= pie << inst_priv; // and set the pie
csr[mstatus] = status;
this->reg.machine_state = ppl;
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << lvl[cur_priv] << " to " << lvl[ppl];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << lvl[cur_priv] << " to " << lvl[this->reg.machine_state];
return this->reg.NEXT_PC;
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::wait_until(uint64_t flags) {
auto status = csr[mstatus];
auto tw = status & (1 << 21);
auto status = state.mstatus;
auto tw = status.TW;
if (this->reg.machine_state == PRIV_S && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;