SystemC-Components-Test/examples/simple_system/test_initiator.cpp
2020-05-27 17:09:24 +02:00

273 lines
7.9 KiB
C++

////////////////////////////////////////////////////////////////////////////////
// Copyright 2017 eyck@minres.com
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
////////////////////////////////////////////////////////////////////////////////
/*
* test_initiator.cpp
*
* Created on: 17.09.2017
* Author: eyck@minres.com
*/
#include "test_initiator.h"
#include <array>
#include <scc/report.h>
#include <scc/utilities.h>
// todo: move into gen folder somewhere (adapt code-generator)
#define PLIC_PRIO1_REG 0x0C000004
#define PLIC_PRIO2_REG 0x0C000008
#define PLIC_PRIO3_REG 0x0C00000C
#define PLIC_PRIO4_REG 0x0C000010
#define PLIC_PENDING_REG 0x0C001000
#define PLIC_ENABLE_REG 0x0C002000
#define PLIC_PRIO_TRESHOLD_REG 0x0C200000
#define PLIC_CLAIM_COMPLETE_REG 0x0C200004
namespace sysc {
using namespace sc_core;
test_initiator::test_initiator(sc_module_name nm)
: sc_module(nm)
, NAMED(intor)
, NAMED(rst_i)
, NAMED(global_interrupts_o, 256)
, NAMED(core_interrupt_i) {
SC_THREAD(run);
SC_METHOD(core_irq_handler);
sensitive << core_interrupt_i;
dont_initialize();
}
void test_initiator::run() {
// wait for reset
if (rst_i.read() == false) wait(rst_i.posedge_event());
wait(rst_i.negedge_event());
wait(10_ns);
// apply test-sequences
test_unique_irq();
test_frequent_irq();
test_parallel_irq();
test_irq_stress();
// todo: review irq sequences from FW point of view ... expected ???
wait(100_ns);
sc_stop();
}
void test_initiator::test_unique_irq() {
//// enable reg is not set
// -> irq to be ignored
// -> no core_interrupt
// -> no entry in pending reg
// generate interrupt pulse (note: 1 is lowest usable register)
global_interrupts_o[2].write(true);
wait(10_ns);
global_interrupts_o[2].write(false);
wait(10_ns);
reg_check(PLIC_PENDING_REG, 0x0);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x0);
wait(10_ns);
//// enable reg is set, then
// -> pending bit change expected
// -> core_interrupt expected
read_bus(PLIC_PRIO1_REG);
wait(10_ns);
// enable single interrupt
write_bus(PLIC_PRIO1_REG, 0x1);
wait(10_ns);
write_bus(PLIC_ENABLE_REG, 0x2);
wait(10_ns);
// generate interrupt pulse (note: 1 is lowest usable register)
global_interrupts_o[1].write(true);
wait(10_ns);
global_interrupts_o[1].write(false);
wait(10_ns);
// read claim_complete register
reg_check(PLIC_PENDING_REG, 0x2);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x1);
wait(10_ns);
//// after writing to claim_complete reg (per fw)
// -> pending bit expected to be unset
// -> enable bit expected to be set ... test with / without enable being set
write_bus(PLIC_CLAIM_COMPLETE_REG, 0x1);
wait(10_ns);
reg_check(PLIC_PENDING_REG, 0x0);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x0);
wait(10_ns);
// todo: remove wait statements once the tlm_initiator is in place
// todo: evaluate error messages ... provide correct pass/fail verdict
wait(100_ns);
}
void test_initiator::test_frequent_irq() {}
void test_initiator::test_parallel_irq() {
//// create three parallel global_int requests
// -> read and clear bits one after the other
// -> different priorities applied (reverse order)
// -> correct priority handing expected
// -> three core interrupts expected in total
// reverse order priority configuration
write_bus(PLIC_PRIO1_REG, 0x3);
wait(10_ns);
write_bus(PLIC_PRIO2_REG, 0x2);
wait(10_ns);
write_bus(PLIC_PRIO3_REG, 0x1);
wait(10_ns);
// enable all three interrupts
write_bus(PLIC_ENABLE_REG, 0xE);
wait(10_ns);
// generate interrupt pulse (note: 1 is lowest usable register)
global_interrupts_o[1].write(true);
wait(10_ns);
global_interrupts_o[1].write(false);
wait(10_ns);
global_interrupts_o[2].write(true);
wait(10_ns);
global_interrupts_o[2].write(false);
wait(10_ns);
global_interrupts_o[3].write(true);
wait(10_ns);
global_interrupts_o[3].write(false);
wait(10_ns);
// expect three pending registers
reg_check(PLIC_PENDING_REG, 0xE);
wait(10_ns);
// expect lowest interrupt id to be highest int
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x1);
wait(10_ns);
//// after writing to claim_complete reg (per fw)
// -> next int to become highest irq
write_bus(PLIC_CLAIM_COMPLETE_REG, 0x1);
wait(10_ns);
reg_check(PLIC_PENDING_REG, 0xC);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x2);
wait(10_ns);
//// after writing to claim_complete reg again (per fw)
// -> next int to become highest irq
write_bus(PLIC_CLAIM_COMPLETE_REG, 0x2);
wait(10_ns);
reg_check(PLIC_PENDING_REG, 0x8);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x3);
wait(10_ns);
//// after last writing to claim_complete reg again (per fw)
// -> no further pending irq expected
write_bus(PLIC_CLAIM_COMPLETE_REG, 0x3);
wait(10_ns);
reg_check(PLIC_PENDING_REG, 0x0);
wait(10_ns);
reg_check(PLIC_CLAIM_COMPLETE_REG, 0x0);
wait(10_ns);
// todo: advance upon register-write access ... remove above 10_ns waits
// todo: evaluate error messages ... provide correct pass/fail verdict
wait(100_ns);
}
void test_initiator::test_irq_stress() {}
void test_initiator::write_bus(std::uint32_t adr, std::uint32_t dat) {
tlm::tlm_generic_payload gp;
std::array<uint8_t, 4> data;
data[3] = 0xff & dat >> 24;
data[2] = 0xff & dat >> 16;
data[1] = 0xff & dat >> 8;
data[0] = 0xff & dat;
SCCDEBUG("test_initiator") << "write_bus(0x" << std::hex << adr << ") : " << dat;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_address(adr);
gp.set_data_ptr(data.data());
gp.set_data_length(data.size());
gp.set_streaming_width(4);
sc_time delay;
intor->b_transport(gp, delay);
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
throw std::exception();
}
}
std::uint32_t test_initiator::read_bus(std::uint32_t adr) {
tlm::tlm_generic_payload gp;
std::array<uint8_t, 4> data;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(adr);
gp.set_data_ptr(data.data());
gp.set_data_length(data.size());
gp.set_streaming_width(4);
sc_time delay;
intor->b_transport(gp, delay);
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
// todo: improve output in case of exception, define own exception class to carry transaction-infos
// ... i.e. out-of-range report with info about legal mem boundaries
throw std::exception();
}
// todo: use reinterpret_cast instead
std::uint32_t rdat = data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0];
SCCDEBUG("test_initiator") << "read_bus(0x" << std::hex << adr << ") -> " << rdat;
return rdat;
}
void test_initiator::reg_check(std::uint32_t adr, std::uint32_t exp) {
uint32_t dat = read_bus(adr);
if (dat != exp) {
SCCERR("test_initiator") << "register check failed for address 0x" << std::hex << adr << ": " << dat << " != " << exp;
} else {
SCCDEBUG("test_initiator") << "register check passed for address 0x" << std::hex << adr << ": " << dat;
}
}
void test_initiator::core_irq_handler() {
SCCDEBUG("test_initiator") << "core_interrupt_i edge detected -> " << core_interrupt_i.read();
}
} /* namespace sysc */