2234 lines
61 KiB
C
2234 lines
61 KiB
C
#define DEBUG_PRINTF( ... ) /*printf(__VA_ARGS__)*/
|
|
|
|
/**
|
|
* \defgroup uip The uIP TCP/IP stack
|
|
* @{
|
|
*
|
|
* uIP is an implementation of the TCP/IP protocol stack intended for
|
|
* small 8-bit and 16-bit microcontrollers.
|
|
*
|
|
* uIP provides the necessary protocols for Internet communication,
|
|
* with a very small code footprint and RAM requirements - the uIP
|
|
* code size is on the order of a few kilobytes and RAM usage is on
|
|
* the order of a few hundred bytes.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* The uIP TCP/IP stack code.
|
|
* \author Adam Dunkels <adam@dunkels.com>
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2003, Adam Dunkels.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the uIP TCP/IP stack.
|
|
*
|
|
* $Id: uip.c,v 1.65 2006/06/11 21:46:39 adam Exp $
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* uIP is a small implementation of the IP, UDP and TCP protocols (as
|
|
* well as some basic ICMP stuff). The implementation couples the IP,
|
|
* UDP, TCP and the application layers very tightly. To keep the size
|
|
* of the compiled code down, this code frequently uses the goto
|
|
* statement. While it would be possible to break the uip_process()
|
|
* function into many smaller functions, this would increase the code
|
|
* size because of the overhead of parameter passing and the fact that
|
|
* the optimier would not be as efficient.
|
|
*
|
|
* The principle is that we have a small buffer, called the uip_buf,
|
|
* in which the device driver puts an incoming packet. The TCP/IP
|
|
* stack parses the headers in the packet, and calls the
|
|
* application. If the remote host has sent data to the application,
|
|
* this data is present in the uip_buf and the application read the
|
|
* data from there. It is up to the application to put this data into
|
|
* a byte stream if needed. The application will not be fed with data
|
|
* that is out of sequence.
|
|
*
|
|
* If the application whishes to send data to the peer, it should put
|
|
* its data into the uip_buf. The uip_appdata pointer points to the
|
|
* first available byte. The TCP/IP stack will calculate the
|
|
* checksums, and fill in the necessary header fields and finally send
|
|
* the packet back to the peer.
|
|
*/
|
|
#include "uip.h"
|
|
#include "uipopt.h"
|
|
#include "uip_arch.h"
|
|
#include "uip_arp.h"
|
|
#include "FreeRTOS.h"
|
|
|
|
#if UIP_CONF_IPV6
|
|
#include "uip-neighbor.h"
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
#include <string.h>
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/* Variable definitions. */
|
|
|
|
/* The IP address of this host. If it is defined to be fixed (by
|
|
setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
|
|
here. Otherwise, the address */
|
|
#if UIP_FIXEDADDR > 0
|
|
const uip_ipaddr_t uip_hostaddr = { HTONS( (UIP_IPADDR0 << 8) | UIP_IPADDR1 ), HTONS( (UIP_IPADDR2 << 8) | UIP_IPADDR3 ) };
|
|
const uip_ipaddr_t uip_draddr = { HTONS( (UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1 ), HTONS( (UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3 ) };
|
|
const uip_ipaddr_t uip_netmask = { HTONS( (UIP_NETMASK0 << 8) | UIP_NETMASK1 ), HTONS( (UIP_NETMASK2 << 8) | UIP_NETMASK3 ) };
|
|
#else
|
|
uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask;
|
|
#endif /* UIP_FIXEDADDR */
|
|
|
|
static const uip_ipaddr_t all_ones_addr =
|
|
#if UIP_CONF_IPV6
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff };
|
|
#else /* UIP_CONF_IPV6 */
|
|
{
|
|
0xffff, 0xffff
|
|
};
|
|
#endif /* UIP_CONF_IPV6 */
|
|
static const uip_ipaddr_t all_zeroes_addr =
|
|
#if UIP_CONF_IPV6
|
|
{ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 };
|
|
#else /* UIP_CONF_IPV6 */
|
|
{
|
|
0x0000, 0x0000
|
|
};
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
#if UIP_FIXEDETHADDR
|
|
const struct uip_eth_addr uip_ethaddr = { { UIP_ETHADDR0, UIP_ETHADDR1, UIP_ETHADDR2, UIP_ETHADDR3, UIP_ETHADDR4, UIP_ETHADDR5 } };
|
|
#else
|
|
struct uip_eth_addr uip_ethaddr = { { 0, 0, 0, 0, 0, 0 } };
|
|
#endif
|
|
#ifndef UIP_CONF_EXTERNAL_BUFFER
|
|
#ifdef __ICCARM__
|
|
#pragma data_alignment = 4
|
|
u8_t uip_buf[UIP_BUFSIZE + 2]; /* The packet buffer that contains incoming packets. */
|
|
#else
|
|
u8_t uip_buf[UIP_BUFSIZE + 2] ALIGN_STRUCT_END; /* The packet buffer that contains incoming packets. */
|
|
#endif
|
|
#endif /* UIP_CONF_EXTERNAL_BUFFER */
|
|
|
|
void *uip_appdata; /* The uip_appdata pointer points to
|
|
application data. */
|
|
void *uip_sappdata; /* The uip_appdata pointer points to
|
|
the application data which is to
|
|
be sent. */
|
|
#if UIP_URGDATA > 0
|
|
void *uip_urgdata; /* The uip_urgdata pointer points to
|
|
urgent data (out-of-band data), if
|
|
present. */
|
|
u16_t uip_urglen, uip_surglen;
|
|
#endif /* UIP_URGDATA > 0 */
|
|
|
|
u16_t uip_len, uip_slen;
|
|
|
|
/* The uip_len is either 8 or 16 bits,
|
|
depending on the maximum packet
|
|
size. */
|
|
u8_t uip_flags; /* The uip_flags variable is used for
|
|
communication between the TCP/IP stack
|
|
and the application program. */
|
|
struct uip_conn *uip_conn; /* uip_conn always points to the current
|
|
connection. */
|
|
|
|
struct uip_conn uip_conns[UIP_CONNS];
|
|
|
|
/* The uip_conns array holds all TCP
|
|
connections. */
|
|
u16_t uip_listenports[UIP_LISTENPORTS];
|
|
|
|
/* The uip_listenports list all currently
|
|
listning ports. */
|
|
#if UIP_UDP
|
|
struct uip_udp_conn *uip_udp_conn;
|
|
struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
|
|
#endif /* UIP_UDP */
|
|
|
|
static u16_t ipid; /* Ths ipid variable is an increasing
|
|
number that is used for the IP ID
|
|
field. */
|
|
|
|
void uip_setipid( u16_t id )
|
|
{
|
|
ipid = id;
|
|
}
|
|
|
|
static u8_t iss[4]; /* The iss variable is used for the TCP
|
|
initial sequence number. */
|
|
|
|
#if UIP_ACTIVE_OPEN
|
|
static u16_t lastport; /* Keeps track of the last port used for
|
|
a new connection. */
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
/* Temporary variables. */
|
|
u8_t uip_acc32[4];
|
|
static u8_t c, opt;
|
|
static u16_t tmp16;
|
|
|
|
/* Structures and definitions. */
|
|
#define TCP_FIN 0x01
|
|
#define TCP_SYN 0x02
|
|
#define TCP_RST 0x04
|
|
#define TCP_PSH 0x08
|
|
#define TCP_ACK 0x10
|
|
#define TCP_URG 0x20
|
|
#define TCP_CTL 0x3f
|
|
|
|
#define TCP_OPT_END 0 /* End of TCP options list */
|
|
#define TCP_OPT_NOOP 1 /* "No-operation" TCP option */
|
|
#define TCP_OPT_MSS 2 /* Maximum segment size TCP option */
|
|
|
|
#define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */
|
|
|
|
#define ICMP_ECHO_REPLY 0
|
|
#define ICMP_ECHO 8
|
|
|
|
#define ICMP6_ECHO_REPLY 129
|
|
#define ICMP6_ECHO 128
|
|
#define ICMP6_NEIGHBOR_SOLICITATION 135
|
|
#define ICMP6_NEIGHBOR_ADVERTISEMENT 136
|
|
|
|
#define ICMP6_FLAG_S ( 1 << 6 )
|
|
#define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1
|
|
#define ICMP6_OPTION_TARGET_LINK_ADDRESS 2
|
|
|
|
/* Macros. */
|
|
#define BUF ( ( struct uip_tcpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
|
|
#define FBUF ( ( struct uip_tcpip_hdr * ) &uip_reassbuf[0] )
|
|
#define ICMPBUF ( ( struct uip_icmpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
|
|
#define UDPBUF ( ( struct uip_udpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
|
|
#if UIP_STATISTICS == 1
|
|
struct uip_stats uip_stat;
|
|
#define UIP_STAT( s ) s
|
|
#else
|
|
#define UIP_STAT( s )
|
|
#endif /* UIP_STATISTICS == 1 */
|
|
|
|
#if UIP_LOGGING == 1
|
|
#include <stdio.h>
|
|
void uip_log( char *msg );
|
|
#define UIP_LOG( m ) uip_log( m )
|
|
#else
|
|
#define UIP_LOG( m )
|
|
#endif /* UIP_LOGGING == 1 */
|
|
|
|
#if !UIP_ARCH_ADD32
|
|
void uip_add32( u8_t *op32, u16_t op16 )
|
|
{
|
|
uip_acc32[3] = op32[3] + ( op16 & 0xff );
|
|
uip_acc32[2] = op32[2] + ( op16 >> 8 );
|
|
uip_acc32[1] = op32[1];
|
|
uip_acc32[0] = op32[0];
|
|
|
|
if( uip_acc32[2] < (op16 >> 8) )
|
|
{
|
|
++uip_acc32[1];
|
|
if( uip_acc32[1] == 0 )
|
|
{
|
|
++uip_acc32[0];
|
|
}
|
|
}
|
|
|
|
if( uip_acc32[3] < (op16 & 0xff) )
|
|
{
|
|
++uip_acc32[2];
|
|
if( uip_acc32[2] == 0 )
|
|
{
|
|
++uip_acc32[1];
|
|
if( uip_acc32[1] == 0 )
|
|
{
|
|
++uip_acc32[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* UIP_ARCH_ADD32 */
|
|
|
|
#if !UIP_ARCH_CHKSUM
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
static u16_t chksum( u16_t sum, const u8_t *data, u16_t len )
|
|
{
|
|
u16_t t;
|
|
const u8_t *dataptr;
|
|
const u8_t *last_byte;
|
|
|
|
dataptr = data;
|
|
last_byte = data + len - 1;
|
|
|
|
while( dataptr < last_byte )
|
|
{ /* At least two more bytes */
|
|
t = ( dataptr[0] << 8 ) + dataptr[1];
|
|
sum += t;
|
|
if( sum < t )
|
|
{
|
|
sum++; /* carry */
|
|
}
|
|
|
|
dataptr += 2;
|
|
}
|
|
|
|
if( dataptr == last_byte )
|
|
{
|
|
t = ( dataptr[0] << 8 ) + 0;
|
|
sum += t;
|
|
if( sum < t )
|
|
{
|
|
sum++; /* carry */
|
|
}
|
|
}
|
|
|
|
/* Return sum in host byte order. */
|
|
return sum;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
u16_t uip_chksum( u16_t *data, u16_t len )
|
|
{
|
|
return htons( chksum(0, ( u8_t * ) data, len) );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#ifndef UIP_ARCH_IPCHKSUM
|
|
u16_t uip_ipchksum( void )
|
|
{
|
|
u16_t sum;
|
|
|
|
sum = chksum( 0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN );
|
|
DEBUG_PRINTF( "uip_ipchksum: sum 0x%04x\n", sum );
|
|
return( sum == 0 ) ? 0xffff : htons( sum );
|
|
}
|
|
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
static u16_t upper_layer_chksum( u8_t proto )
|
|
{
|
|
u16_t upper_layer_len;
|
|
u16_t sum;
|
|
|
|
#if UIP_CONF_IPV6
|
|
upper_layer_len = ( ((u16_t) (BUF->len[0]) << 8) + BUF->len[1] );
|
|
#else /* UIP_CONF_IPV6 */
|
|
upper_layer_len = ( ((u16_t) (BUF->len[0]) << 8) + BUF->len[1] ) - UIP_IPH_LEN;
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
/* First sum pseudoheader. */
|
|
|
|
/* IP protocol and length fields. This addition cannot carry. */
|
|
sum = upper_layer_len + proto;
|
|
|
|
/* Sum IP source and destination addresses. */
|
|
sum = chksum( sum, ( u8_t * ) &BUF->srcipaddr[0], 2 * sizeof(uip_ipaddr_t) );
|
|
|
|
/* Sum TCP header and data. */
|
|
sum = chksum( sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], upper_layer_len );
|
|
|
|
return( sum == 0 ) ? 0xffff : htons( sum );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#if UIP_CONF_IPV6
|
|
u16_t uip_icmp6chksum( void )
|
|
{
|
|
return upper_layer_chksum( UIP_PROTO_ICMP6 );
|
|
}
|
|
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
u16_t uip_tcpchksum( void )
|
|
{
|
|
return upper_layer_chksum( UIP_PROTO_TCP );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#if UIP_UDP_CHECKSUMS
|
|
u16_t uip_udpchksum( void )
|
|
{
|
|
return upper_layer_chksum( UIP_PROTO_UDP );
|
|
}
|
|
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
#endif /* UIP_ARCH_CHKSUM */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void uip_init( void )
|
|
{
|
|
for( c = 0; c < UIP_LISTENPORTS; ++c )
|
|
{
|
|
uip_listenports[c] = 0;
|
|
}
|
|
|
|
for( c = 0; c < UIP_CONNS; ++c )
|
|
{
|
|
uip_conns[c].tcpstateflags = UIP_CLOSED;
|
|
}
|
|
|
|
#if UIP_ACTIVE_OPEN
|
|
lastport = 1024;
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
#if UIP_UDP
|
|
for( c = 0; c < UIP_UDP_CONNS; ++c )
|
|
{
|
|
uip_udp_conns[c].lport = 0;
|
|
}
|
|
|
|
#endif /* UIP_UDP */
|
|
|
|
/* IPv4 initialization. */
|
|
#if UIP_FIXEDADDR == 0
|
|
|
|
/* uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
|
|
#endif /* UIP_FIXEDADDR */
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#if UIP_ACTIVE_OPEN
|
|
struct uip_conn *uip_connect( uip_ipaddr_t *ripaddr, u16_t rport )
|
|
{
|
|
register struct uip_conn *conn, *cconn;
|
|
|
|
/* Find an unused local port. */
|
|
again:
|
|
++lastport;
|
|
|
|
if( lastport >= 32000 )
|
|
{
|
|
lastport = 4096;
|
|
}
|
|
|
|
/* Check if this port is already in use, and if so try to find
|
|
another one. */
|
|
for( c = 0; c < UIP_CONNS; ++c )
|
|
{
|
|
conn = &uip_conns[c];
|
|
if( conn->tcpstateflags != UIP_CLOSED && conn->lport == htons(lastport) )
|
|
{
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
conn = 0;
|
|
for( c = 0; c < UIP_CONNS; ++c )
|
|
{
|
|
cconn = &uip_conns[c];
|
|
if( cconn->tcpstateflags == UIP_CLOSED )
|
|
{
|
|
conn = cconn;
|
|
break;
|
|
}
|
|
|
|
if( cconn->tcpstateflags == UIP_TIME_WAIT )
|
|
{
|
|
if( conn == 0 || cconn->timer > conn->timer )
|
|
{
|
|
conn = cconn;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( conn == 0 )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
conn->tcpstateflags = UIP_SYN_SENT;
|
|
|
|
conn->snd_nxt[0] = iss[0];
|
|
conn->snd_nxt[1] = iss[1];
|
|
conn->snd_nxt[2] = iss[2];
|
|
conn->snd_nxt[3] = iss[3];
|
|
|
|
conn->initialmss = conn->mss = UIP_TCP_MSS;
|
|
|
|
conn->len = 1; /* TCP length of the SYN is one. */
|
|
conn->nrtx = 0;
|
|
conn->timer = 1; /* Send the SYN next time around. */
|
|
conn->rto = UIP_RTO;
|
|
conn->sa = 0;
|
|
conn->sv = 16; /* Initial value of the RTT variance. */
|
|
conn->lport = htons( lastport );
|
|
conn->rport = rport;
|
|
uip_ipaddr_copy( &conn->ripaddr, ripaddr );
|
|
|
|
return conn;
|
|
}
|
|
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
#if UIP_UDP
|
|
struct uip_udp_conn *uip_udp_new( uip_ipaddr_t *ripaddr, u16_t rport )
|
|
{
|
|
register struct uip_udp_conn *conn;
|
|
|
|
/* Find an unused local port. */
|
|
again:
|
|
++lastport;
|
|
|
|
if( lastport >= 32000 )
|
|
{
|
|
lastport = 4096;
|
|
}
|
|
|
|
for( c = 0; c < UIP_UDP_CONNS; ++c )
|
|
{
|
|
if( uip_udp_conns[c].lport == htons(lastport) )
|
|
{
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
conn = 0;
|
|
for( c = 0; c < UIP_UDP_CONNS; ++c )
|
|
{
|
|
if( uip_udp_conns[c].lport == 0 )
|
|
{
|
|
conn = &uip_udp_conns[c];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( conn == 0 )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
conn->lport = HTONS( lastport );
|
|
conn->rport = rport;
|
|
if( ripaddr == NULL )
|
|
{
|
|
memset( conn->ripaddr, 0, sizeof(uip_ipaddr_t) );
|
|
}
|
|
else
|
|
{
|
|
uip_ipaddr_copy( &conn->ripaddr, ripaddr );
|
|
}
|
|
|
|
conn->ttl = UIP_TTL;
|
|
|
|
return conn;
|
|
}
|
|
|
|
#endif /* UIP_UDP */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void uip_unlisten( u16_t port )
|
|
{
|
|
for( c = 0; c < UIP_LISTENPORTS; ++c )
|
|
{
|
|
if( uip_listenports[c] == port )
|
|
{
|
|
uip_listenports[c] = 0;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void uip_listen( u16_t port )
|
|
{
|
|
for( c = 0; c < UIP_LISTENPORTS; ++c )
|
|
{
|
|
if( uip_listenports[c] == 0 )
|
|
{
|
|
uip_listenports[c] = port;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/* XXX: IP fragment reassembly: not well-tested. */
|
|
#if UIP_REASSEMBLY && !UIP_CONF_IPV6
|
|
#define UIP_REASS_BUFSIZE ( UIP_BUFSIZE - UIP_LLH_LEN )
|
|
static u8_t uip_reassbuf[UIP_REASS_BUFSIZE];
|
|
static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / ( 8 * 8 )];
|
|
static const u8_t bitmap_bits[8] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 };
|
|
static u16_t uip_reasslen;
|
|
static u8_t uip_reassflags;
|
|
#define UIP_REASS_FLAG_LASTFRAG 0x01
|
|
static u8_t uip_reasstmr;
|
|
|
|
#define IP_MF 0x20
|
|
|
|
static u8_t uip_reass( void )
|
|
{
|
|
u16_t offset, len;
|
|
u16_t i;
|
|
|
|
/* If ip_reasstmr is zero, no packet is present in the buffer, so we
|
|
write the IP header of the fragment into the reassembly
|
|
buffer. The timer is updated with the maximum age. */
|
|
if( uip_reasstmr == 0 )
|
|
{
|
|
memcpy( uip_reassbuf, &BUF->vhl, UIP_IPH_LEN );
|
|
uip_reasstmr = UIP_REASS_MAXAGE;
|
|
uip_reassflags = 0;
|
|
|
|
/* Clear the bitmap. */
|
|
memset( uip_reassbitmap, 0, sizeof(uip_reassbitmap) );
|
|
}
|
|
|
|
/* Check if the incoming fragment matches the one currently present
|
|
in the reasembly buffer. If so, we proceed with copying the
|
|
fragment into the buffer. */
|
|
if
|
|
(
|
|
BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
|
|
BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
|
|
BUF->destipaddr[0] == FBUF->destipaddr[0] &&
|
|
BUF->destipaddr[1] == FBUF->destipaddr[1] &&
|
|
BUF->ipid[0] == FBUF->ipid[0] &&
|
|
BUF->ipid[1] == FBUF->ipid[1]
|
|
)
|
|
{
|
|
len = ( BUF->len[0] << 8 ) + BUF->len[1] - ( BUF->vhl & 0x0f ) * 4;
|
|
offset = ( ((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1] ) * 8;
|
|
|
|
/* If the offset or the offset + fragment length overflows the
|
|
reassembly buffer, we discard the entire packet. */
|
|
if( offset > UIP_REASS_BUFSIZE || offset + len > UIP_REASS_BUFSIZE )
|
|
{
|
|
uip_reasstmr = 0;
|
|
goto nullreturn;
|
|
}
|
|
|
|
/* Copy the fragment into the reassembly buffer, at the right
|
|
offset. */
|
|
memcpy( &uip_reassbuf[UIP_IPH_LEN + offset], ( char * ) BUF + ( int ) ((BUF->vhl & 0x0f) * 4), len );
|
|
|
|
/* Update the bitmap. */
|
|
if( offset / (8 * 8) == (offset + len) / (8 * 8) )
|
|
{
|
|
/* If the two endpoints are in the same byte, we only update
|
|
that byte. */
|
|
uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7] &~bitmap_bits[( (offset + len) / 8 ) & 7];
|
|
}
|
|
else
|
|
{
|
|
/* If the two endpoints are in different bytes, we update the
|
|
bytes in the endpoints and fill the stuff inbetween with
|
|
0xff. */
|
|
uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7];
|
|
for( i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i )
|
|
{
|
|
uip_reassbitmap[i] = 0xff;
|
|
}
|
|
|
|
uip_reassbitmap[( offset + len ) / ( 8 * 8 )] |= ~bitmap_bits[( (offset + len) / 8 ) & 7];
|
|
}
|
|
|
|
/* If this fragment has the More Fragments flag set to zero, we
|
|
know that this is the last fragment, so we can calculate the
|
|
size of the entire packet. We also set the
|
|
IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
|
|
the final fragment. */
|
|
if( (BUF->ipoffset[0] & IP_MF) == 0 )
|
|
{
|
|
uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
|
|
uip_reasslen = offset + len;
|
|
}
|
|
|
|
/* Finally, we check if we have a full packet in the buffer. We do
|
|
this by checking if we have the last fragment and if all bits
|
|
in the bitmap are set. */
|
|
if( uip_reassflags & UIP_REASS_FLAG_LASTFRAG )
|
|
{
|
|
/* Check all bytes up to and including all but the last byte in
|
|
the bitmap. */
|
|
for( i = 0; i < uip_reasslen / (8 * 8) - 1; ++i )
|
|
{
|
|
if( uip_reassbitmap[i] != 0xff )
|
|
{
|
|
goto nullreturn;
|
|
}
|
|
}
|
|
|
|
/* Check the last byte in the bitmap. It should contain just the
|
|
right amount of bits. */
|
|
if( uip_reassbitmap[uip_reasslen / (8 * 8)] != (u8_t)~bitmap_bits[uip_reasslen / 8 & 7] )
|
|
{
|
|
goto nullreturn;
|
|
}
|
|
|
|
/* If we have come this far, we have a full packet in the
|
|
buffer, so we allocate a pbuf and copy the packet into it. We
|
|
also reset the timer. */
|
|
uip_reasstmr = 0;
|
|
memcpy( BUF, FBUF, uip_reasslen );
|
|
|
|
/* Pretend to be a "normal" (i.e., not fragmented) IP packet
|
|
from now on. */
|
|
BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
|
|
BUF->len[0] = uip_reasslen >> 8;
|
|
BUF->len[1] = uip_reasslen & 0xff;
|
|
BUF->ipchksum = 0;
|
|
BUF->ipchksum = ~( uip_ipchksum() );
|
|
|
|
return uip_reasslen;
|
|
}
|
|
}
|
|
|
|
nullreturn:
|
|
return 0;
|
|
}
|
|
|
|
#endif /* UIP_REASSEMBLY */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
static void uip_add_rcv_nxt( u16_t n )
|
|
{
|
|
uip_add32( uip_conn->rcv_nxt, n );
|
|
uip_conn->rcv_nxt[0] = uip_acc32[0];
|
|
uip_conn->rcv_nxt[1] = uip_acc32[1];
|
|
uip_conn->rcv_nxt[2] = uip_acc32[2];
|
|
uip_conn->rcv_nxt[3] = uip_acc32[3];
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void uip_process( u8_t flag )
|
|
{
|
|
register struct uip_conn *uip_connr = uip_conn;
|
|
|
|
#if UIP_UDP
|
|
if( flag == UIP_UDP_SEND_CONN )
|
|
{
|
|
goto udp_send;
|
|
}
|
|
|
|
#endif /* UIP_UDP */
|
|
|
|
uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
|
|
|
|
/* Check if we were invoked because of a poll request for a
|
|
particular connection. */
|
|
if( flag == UIP_POLL_REQUEST )
|
|
{
|
|
if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && !uip_outstanding(uip_connr) )
|
|
{
|
|
uip_flags = UIP_POLL;
|
|
UIP_APPCALL();
|
|
goto appsend;
|
|
}
|
|
|
|
goto drop;
|
|
|
|
/* Check if we were invoked because of the perodic timer fireing. */
|
|
}
|
|
else if( flag == UIP_TIMER )
|
|
{
|
|
#if UIP_REASSEMBLY
|
|
if( uip_reasstmr != 0 )
|
|
{
|
|
--uip_reasstmr;
|
|
}
|
|
|
|
#endif /* UIP_REASSEMBLY */
|
|
|
|
/* Increase the initial sequence number. */
|
|
if( ++iss[3] == 0 )
|
|
{
|
|
if( ++iss[2] == 0 )
|
|
{
|
|
if( ++iss[1] == 0 )
|
|
{
|
|
++iss[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset the length variables. */
|
|
uip_len = 0;
|
|
uip_slen = 0;
|
|
|
|
/* Check if the connection is in a state in which we simply wait
|
|
for the connection to time out. If so, we increase the
|
|
connection's timer and remove the connection if it times
|
|
out. */
|
|
if( uip_connr->tcpstateflags == UIP_TIME_WAIT || uip_connr->tcpstateflags == UIP_FIN_WAIT_2 )
|
|
{
|
|
++( uip_connr->timer );
|
|
if( uip_connr->timer == UIP_TIME_WAIT_TIMEOUT )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
}
|
|
}
|
|
else if( uip_connr->tcpstateflags != UIP_CLOSED )
|
|
{
|
|
/* If the connection has outstanding data, we increase the
|
|
connection's timer and see if it has reached the RTO value
|
|
in which case we retransmit. */
|
|
if( uip_outstanding(uip_connr) )
|
|
{
|
|
uip_connr->timer = uip_connr->timer - 1;
|
|
if( uip_connr->timer == 0 )
|
|
{
|
|
if
|
|
(
|
|
uip_connr->nrtx == UIP_MAXRTX ||
|
|
(
|
|
(uip_connr->tcpstateflags == UIP_SYN_SENT || uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
|
|
uip_connr->nrtx == UIP_MAXSYNRTX
|
|
)
|
|
)
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
|
|
/* We call UIP_APPCALL() with uip_flags set to
|
|
UIP_TIMEDOUT to inform the application that the
|
|
connection has timed out. */
|
|
uip_flags = UIP_TIMEDOUT;
|
|
UIP_APPCALL();
|
|
|
|
/* We also send a reset packet to the remote host. */
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* Exponential backoff. */
|
|
uip_connr->timer = UIP_RTO << ( uip_connr->nrtx > 4 ? 4 : uip_connr->nrtx );
|
|
++( uip_connr->nrtx );
|
|
|
|
/* Ok, so we need to retransmit. We do this differently
|
|
depending on which state we are in. In ESTABLISHED, we
|
|
call upon the application so that it may prepare the
|
|
data for the retransmit. In SYN_RCVD, we resend the
|
|
SYNACK that we sent earlier and in LAST_ACK we have to
|
|
retransmit our FINACK. */
|
|
UIP_STAT( ++uip_stat.tcp.rexmit );
|
|
switch( uip_connr->tcpstateflags & UIP_TS_MASK )
|
|
{
|
|
case UIP_SYN_RCVD:
|
|
/* In the SYN_RCVD state, we should retransmit our
|
|
SYNACK. */
|
|
goto tcp_send_synack;
|
|
|
|
#if UIP_ACTIVE_OPEN
|
|
|
|
case UIP_SYN_SENT:
|
|
/* In the SYN_SENT state, we retransmit out SYN. */
|
|
BUF->flags = 0;
|
|
goto tcp_send_syn;
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
case UIP_ESTABLISHED:
|
|
/* In the ESTABLISHED state, we call upon the application
|
|
to do the actual retransmit after which we jump into
|
|
the code for sending out the packet (the apprexmit
|
|
label). */
|
|
uip_flags = UIP_REXMIT;
|
|
UIP_APPCALL();
|
|
goto apprexmit;
|
|
|
|
case UIP_FIN_WAIT_1:
|
|
case UIP_CLOSING:
|
|
case UIP_LAST_ACK:
|
|
/* In all these states we should retransmit a FINACK. */
|
|
goto tcp_send_finack;
|
|
}
|
|
}
|
|
}
|
|
else if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED )
|
|
{
|
|
/* If there was no need for a retransmission, we poll the
|
|
application for new data. */
|
|
uip_flags = UIP_POLL;
|
|
UIP_APPCALL();
|
|
goto appsend;
|
|
}
|
|
}
|
|
|
|
goto drop;
|
|
}
|
|
|
|
#if UIP_UDP
|
|
if( flag == UIP_UDP_TIMER )
|
|
{
|
|
if( uip_udp_conn->lport != 0 )
|
|
{
|
|
uip_conn = NULL;
|
|
uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
uip_len = uip_slen = 0;
|
|
uip_flags = UIP_POLL;
|
|
UIP_UDP_APPCALL();
|
|
goto udp_send;
|
|
}
|
|
else
|
|
{
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* This is where the input processing starts. */
|
|
UIP_STAT( ++uip_stat.ip.recv );
|
|
|
|
/* Start of IP input header processing code. */
|
|
#if UIP_CONF_IPV6
|
|
|
|
/* Check validity of the IP header. */
|
|
if( (BUF->vtc & 0xf0) != 0x60 )
|
|
{ /* IP version and header length. */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.vhlerr );
|
|
UIP_LOG( "ipv6: invalid version." );
|
|
goto drop;
|
|
}
|
|
|
|
#else /* UIP_CONF_IPV6 */
|
|
|
|
/* Check validity of the IP header. */
|
|
if( BUF->vhl != 0x45 )
|
|
{ /* IP version and header length. */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.vhlerr );
|
|
UIP_LOG( "ip: invalid version or header length." );
|
|
goto drop;
|
|
}
|
|
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
/* Check the size of the packet. If the size reported to us in
|
|
uip_len is smaller the size reported in the IP header, we assume
|
|
that the packet has been corrupted in transit. If the size of
|
|
uip_len is larger than the size reported in the IP packet header,
|
|
the packet has been padded and we set uip_len to the correct
|
|
value.. */
|
|
if( (BUF->len[0] << 8) + BUF->len[1] <= uip_len )
|
|
{
|
|
uip_len = ( BUF->len[0] << 8 ) + BUF->len[1];
|
|
#if UIP_CONF_IPV6
|
|
uip_len += 40; /* The length reported in the IPv6 header is the
|
|
length of the payload that follows the
|
|
header. However, uIP uses the uip_len variable
|
|
for holding the size of the entire packet,
|
|
including the IP header. For IPv4 this is not a
|
|
problem as the length field in the IPv4 header
|
|
contains the length of the entire packet. But
|
|
for IPv6 we need to add the size of the IPv6
|
|
header (40 bytes). */
|
|
#endif /* UIP_CONF_IPV6 */
|
|
}
|
|
else
|
|
{
|
|
UIP_LOG( "ip: packet shorter than reported in IP header." );
|
|
goto drop;
|
|
}
|
|
|
|
#if !UIP_CONF_IPV6
|
|
|
|
/* Check the fragment flag. */
|
|
if( (BUF->ipoffset[0] & 0x3f) != 0 || BUF->ipoffset[1] != 0 )
|
|
{
|
|
#if UIP_REASSEMBLY
|
|
uip_len = uip_reass();
|
|
if( uip_len == 0 )
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
#else /* UIP_REASSEMBLY */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.fragerr );
|
|
UIP_LOG( "ip: fragment dropped." );
|
|
goto drop;
|
|
#endif /* UIP_REASSEMBLY */
|
|
}
|
|
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
if( uip_ipaddr_cmp(uip_hostaddr, all_zeroes_addr) )
|
|
{
|
|
/* If we are configured to use ping IP address configuration and
|
|
hasn't been assigned an IP address yet, we accept all ICMP
|
|
packets. */
|
|
#if UIP_PINGADDRCONF && !UIP_CONF_IPV6
|
|
if( BUF->proto == UIP_PROTO_ICMP )
|
|
{
|
|
UIP_LOG( "ip: possible ping config packet received." );
|
|
goto icmp_input;
|
|
}
|
|
else
|
|
{
|
|
UIP_LOG( "ip: packet dropped since no address assigned." );
|
|
goto drop;
|
|
}
|
|
|
|
#endif /* UIP_PINGADDRCONF */
|
|
}
|
|
else
|
|
{
|
|
/* If IP broadcast support is configured, we check for a broadcast
|
|
UDP packet, which may be destined to us. */
|
|
#if UIP_BROADCAST
|
|
DEBUG_PRINTF( "UDP IP checksum 0x%04x\n", uip_ipchksum() );
|
|
if( BUF->proto == UIP_PROTO_UDP && uip_ipaddr_cmp(BUF->destipaddr, all_ones_addr) /*&&
|
|
uip_ipchksum() == 0xffff*/ )
|
|
{
|
|
goto udp_input;
|
|
}
|
|
|
|
#endif /* UIP_BROADCAST */
|
|
|
|
/* Check if the packet is destined for our IP address. */
|
|
#if !UIP_CONF_IPV6
|
|
if( !uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) )
|
|
{
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
goto drop;
|
|
}
|
|
|
|
#else /* UIP_CONF_IPV6 */
|
|
|
|
/* For IPv6, packet reception is a little trickier as we need to
|
|
make sure that we listen to certain multicast addresses (all
|
|
hosts multicast address, and the solicited-node multicast
|
|
address) as well. However, we will cheat here and accept all
|
|
multicast packets that are sent to the ff02::/16 addresses. */
|
|
if( !uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) && BUF->destipaddr[0] != HTONS(0xff02) )
|
|
{
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
goto drop;
|
|
}
|
|
|
|
#endif /* UIP_CONF_IPV6 */
|
|
}
|
|
|
|
#if !UIP_CONF_IPV6
|
|
if( uip_ipchksum() != 0xffff )
|
|
{ /* Compute and check the IP header
|
|
checksum. */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.chkerr );
|
|
UIP_LOG( "ip: bad checksum." );
|
|
goto drop;
|
|
}
|
|
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
if( BUF->proto == UIP_PROTO_TCP )
|
|
{ /* Check for TCP packet. If so,
|
|
proceed with TCP input
|
|
processing. */
|
|
goto tcp_input;
|
|
}
|
|
|
|
#if UIP_UDP
|
|
if( BUF->proto == UIP_PROTO_UDP )
|
|
{
|
|
goto udp_input;
|
|
}
|
|
|
|
#endif /* UIP_UDP */
|
|
|
|
#if !UIP_CONF_IPV6
|
|
|
|
/* ICMPv4 processing code follows. */
|
|
if( BUF->proto != UIP_PROTO_ICMP )
|
|
{ /* We only allow ICMP packets from
|
|
here. */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.protoerr );
|
|
UIP_LOG( "ip: neither tcp nor icmp." );
|
|
goto drop;
|
|
}
|
|
|
|
#if UIP_PINGADDRCONF
|
|
icmp_input :
|
|
#endif /* UIP_PINGADDRCONF */
|
|
UIP_STAT( ++uip_stat.icmp.recv );
|
|
|
|
/* ICMP echo (i.e., ping) processing. This is simple, we only change
|
|
the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
|
|
checksum before we return the packet. */
|
|
if( ICMPBUF->type != ICMP_ECHO )
|
|
{
|
|
UIP_STAT( ++uip_stat.icmp.drop );
|
|
UIP_STAT( ++uip_stat.icmp.typeerr );
|
|
UIP_LOG( "icmp: not icmp echo." );
|
|
goto drop;
|
|
}
|
|
|
|
/* If we are configured to use ping IP address assignment, we use
|
|
the destination IP address of this ping packet and assign it to
|
|
ourself. */
|
|
#if UIP_PINGADDRCONF
|
|
if( (uip_hostaddr[0] | uip_hostaddr[1]) == 0 )
|
|
{
|
|
uip_hostaddr[0] = BUF->destipaddr[0];
|
|
uip_hostaddr[1] = BUF->destipaddr[1];
|
|
}
|
|
|
|
#endif /* UIP_PINGADDRCONF */
|
|
|
|
ICMPBUF->type = ICMP_ECHO_REPLY;
|
|
|
|
if( ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8)) )
|
|
{
|
|
ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 ) + 1;
|
|
}
|
|
else
|
|
{
|
|
ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 );
|
|
}
|
|
|
|
/* Swap IP addresses. */
|
|
uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
|
|
uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
|
|
|
|
UIP_STAT( ++uip_stat.icmp.sent );
|
|
goto send;
|
|
|
|
/* End of IPv4 input header processing code. */
|
|
#else /* !UIP_CONF_IPV6 */
|
|
|
|
/* This is IPv6 ICMPv6 processing code. */
|
|
DEBUG_PRINTF( "icmp6_input: length %d\n", uip_len );
|
|
|
|
if( BUF->proto != UIP_PROTO_ICMP6 )
|
|
{ /* We only allow ICMPv6 packets from
|
|
here. */
|
|
UIP_STAT( ++uip_stat.ip.drop );
|
|
UIP_STAT( ++uip_stat.ip.protoerr );
|
|
UIP_LOG( "ip: neither tcp nor icmp6." );
|
|
goto drop;
|
|
}
|
|
|
|
UIP_STAT( ++uip_stat.icmp.recv );
|
|
|
|
/* If we get a neighbor solicitation for our address we should send
|
|
a neighbor advertisement message back. */
|
|
if( ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION )
|
|
{
|
|
if( uip_ipaddr_cmp(ICMPBUF->icmp6data, uip_hostaddr) )
|
|
{
|
|
if( ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS )
|
|
{
|
|
/* Save the sender's address in our neighbor list. */
|
|
uip_neighbor_add( ICMPBUF->srcipaddr, &(ICMPBUF->options[2]) );
|
|
}
|
|
|
|
/* We should now send a neighbor advertisement back to where the
|
|
neighbor solicication came from. */
|
|
ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
|
|
ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */
|
|
|
|
ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
|
|
|
|
uip_ipaddr_copy( ICMPBUF->destipaddr, ICMPBUF->srcipaddr );
|
|
uip_ipaddr_copy( ICMPBUF->srcipaddr, uip_hostaddr );
|
|
ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
|
|
ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */
|
|
memcpy( &(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr) );
|
|
ICMPBUF->icmpchksum = 0;
|
|
ICMPBUF->icmpchksum = ~uip_icmp6chksum();
|
|
goto send;
|
|
}
|
|
|
|
goto drop;
|
|
}
|
|
else if( ICMPBUF->type == ICMP6_ECHO )
|
|
{
|
|
/* ICMP echo (i.e., ping) processing. This is simple, we only
|
|
change the ICMP type from ECHO to ECHO_REPLY and update the
|
|
ICMP checksum before we return the packet. */
|
|
ICMPBUF->type = ICMP6_ECHO_REPLY;
|
|
|
|
uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
|
|
uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
|
|
ICMPBUF->icmpchksum = 0;
|
|
ICMPBUF->icmpchksum = ~uip_icmp6chksum();
|
|
|
|
UIP_STAT( ++uip_stat.icmp.sent );
|
|
goto send;
|
|
}
|
|
else
|
|
{
|
|
DEBUG_PRINTF( "Unknown icmp6 message type %d\n", ICMPBUF->type );
|
|
UIP_STAT( ++uip_stat.icmp.drop );
|
|
UIP_STAT( ++uip_stat.icmp.typeerr );
|
|
UIP_LOG( "icmp: unknown ICMP message." );
|
|
goto drop;
|
|
}
|
|
|
|
/* End of IPv6 ICMP processing. */
|
|
#endif /* !UIP_CONF_IPV6 */
|
|
|
|
#if UIP_UDP
|
|
|
|
/* UDP input processing. */
|
|
udp_input :
|
|
/* UDP processing is really just a hack. We don't do anything to the
|
|
UDP/IP headers, but let the UDP application do all the hard
|
|
work. If the application sets uip_slen, it has a packet to
|
|
send. */
|
|
#if UIP_UDP_CHECKSUMS
|
|
uip_len = uip_len - UIP_IPUDPH_LEN;
|
|
uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
if( UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff )
|
|
{
|
|
UIP_STAT( ++uip_stat.udp.drop );
|
|
UIP_STAT( ++uip_stat.udp.chkerr );
|
|
UIP_LOG( "udp: bad checksum." );
|
|
goto drop;
|
|
}
|
|
|
|
#else /* UIP_UDP_CHECKSUMS */
|
|
uip_len = uip_len - UIP_IPUDPH_LEN;
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
|
|
/* Demultiplex this UDP packet between the UDP "connections". */
|
|
for( uip_udp_conn = &uip_udp_conns[0]; uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; ++uip_udp_conn )
|
|
{
|
|
/* If the local UDP port is non-zero, the connection is considered
|
|
to be used. If so, the local port number is checked against the
|
|
destination port number in the received packet. If the two port
|
|
numbers match, the remote port number is checked if the
|
|
connection is bound to a remote port. Finally, if the
|
|
connection is bound to a remote IP address, the source IP
|
|
address of the packet is checked. */
|
|
if
|
|
(
|
|
uip_udp_conn->lport != 0 &&
|
|
UDPBUF->destport == uip_udp_conn->lport &&
|
|
(uip_udp_conn->rport == 0 || UDPBUF->srcport == uip_udp_conn->rport) &&
|
|
(
|
|
uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_zeroes_addr) ||
|
|
uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_ones_addr) ||
|
|
uip_ipaddr_cmp(BUF->srcipaddr, uip_udp_conn->ripaddr)
|
|
)
|
|
)
|
|
{
|
|
goto udp_found;
|
|
}
|
|
}
|
|
|
|
UIP_LOG( "udp: no matching connection found" );
|
|
goto drop;
|
|
|
|
udp_found:
|
|
UIP_STAT( ++uip_stat.udp.recv );
|
|
uip_conn = NULL;
|
|
uip_flags = UIP_NEWDATA;
|
|
uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
|
|
uip_slen = 0;
|
|
UIP_UDP_APPCALL();
|
|
udp_send:
|
|
if( uip_slen == 0 )
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
uip_len = uip_slen + UIP_IPUDPH_LEN;
|
|
|
|
#if UIP_CONF_IPV6
|
|
|
|
/* For IPv6, the IP length field does not include the IPv6 IP header
|
|
length. */
|
|
BUF->len[0] = ( (uip_len - UIP_IPH_LEN) >> 8 );
|
|
BUF->len[1] = ( (uip_len - UIP_IPH_LEN) & 0xff );
|
|
#else /* UIP_CONF_IPV6 */
|
|
BUF->len[0] = ( uip_len >> 8 );
|
|
BUF->len[1] = ( uip_len & 0xff );
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
BUF->ttl = uip_udp_conn->ttl;
|
|
BUF->proto = UIP_PROTO_UDP;
|
|
|
|
UDPBUF->udplen = HTONS( uip_slen + UIP_UDPH_LEN );
|
|
UDPBUF->udpchksum = 0;
|
|
|
|
BUF->srcport = uip_udp_conn->lport;
|
|
BUF->destport = uip_udp_conn->rport;
|
|
|
|
uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
|
|
uip_ipaddr_copy( BUF->destipaddr, uip_udp_conn->ripaddr );
|
|
|
|
uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
|
|
|
|
#if UIP_UDP_CHECKSUMS
|
|
|
|
/* Calculate UDP checksum. */
|
|
UDPBUF->udpchksum = ~( uip_udpchksum() );
|
|
if( UDPBUF->udpchksum == 0 )
|
|
{
|
|
UDPBUF->udpchksum = 0xffff;
|
|
}
|
|
|
|
#endif /* UIP_UDP_CHECKSUMS */
|
|
UIP_STAT( ++uip_stat.udp.sent );
|
|
goto ip_send_nolen;
|
|
#endif /* UIP_UDP */
|
|
|
|
/* TCP input processing. */
|
|
tcp_input : UIP_STAT( ++uip_stat.tcp.recv );
|
|
|
|
/* Start of TCP input header processing code. */
|
|
if( uip_tcpchksum() != 0xffff )
|
|
{ /* Compute and check the TCP
|
|
checksum. */
|
|
UIP_STAT( ++uip_stat.tcp.drop );
|
|
UIP_STAT( ++uip_stat.tcp.chkerr );
|
|
UIP_LOG( "tcp: bad checksum." );
|
|
goto drop;
|
|
}
|
|
|
|
/* Demultiplex this segment. */
|
|
|
|
/* First check any active connections. */
|
|
for( uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1]; ++uip_connr )
|
|
{
|
|
if
|
|
(
|
|
uip_connr->tcpstateflags != UIP_CLOSED &&
|
|
BUF->destport == uip_connr->lport &&
|
|
BUF->srcport == uip_connr->rport &&
|
|
uip_ipaddr_cmp(BUF->srcipaddr, uip_connr->ripaddr)
|
|
)
|
|
{
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* If we didn't find and active connection that expected the packet,
|
|
either this packet is an old duplicate, or this is a SYN packet
|
|
destined for a connection in LISTEN. If the SYN flag isn't set,
|
|
it is an old packet and we send a RST. */
|
|
if( (BUF->flags & TCP_CTL) != TCP_SYN )
|
|
{
|
|
goto reset;
|
|
}
|
|
|
|
tmp16 = BUF->destport;
|
|
|
|
/* Next, check listening connections. */
|
|
for( c = 0; c < UIP_LISTENPORTS; ++c )
|
|
{
|
|
if( tmp16 == uip_listenports[c] )
|
|
{
|
|
goto found_listen;
|
|
}
|
|
}
|
|
|
|
/* No matching connection found, so we send a RST packet. */
|
|
UIP_STAT( ++uip_stat.tcp.synrst );
|
|
reset:
|
|
/* We do not send resets in response to resets. */
|
|
if( BUF->flags & TCP_RST )
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
UIP_STAT( ++uip_stat.tcp.rst );
|
|
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
uip_len = UIP_IPTCPH_LEN;
|
|
BUF->tcpoffset = 5 << 4;
|
|
|
|
/* Flip the seqno and ackno fields in the TCP header. */
|
|
c = BUF->seqno[3];
|
|
BUF->seqno[3] = BUF->ackno[3];
|
|
BUF->ackno[3] = c;
|
|
|
|
c = BUF->seqno[2];
|
|
BUF->seqno[2] = BUF->ackno[2];
|
|
BUF->ackno[2] = c;
|
|
|
|
c = BUF->seqno[1];
|
|
BUF->seqno[1] = BUF->ackno[1];
|
|
BUF->ackno[1] = c;
|
|
|
|
c = BUF->seqno[0];
|
|
BUF->seqno[0] = BUF->ackno[0];
|
|
BUF->ackno[0] = c;
|
|
|
|
/* We also have to increase the sequence number we are
|
|
acknowledging. If the least significant byte overflowed, we need
|
|
to propagate the carry to the other bytes as well. */
|
|
if( ++BUF->ackno[3] == 0 )
|
|
{
|
|
if( ++BUF->ackno[2] == 0 )
|
|
{
|
|
if( ++BUF->ackno[1] == 0 )
|
|
{
|
|
++BUF->ackno[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Swap port numbers. */
|
|
tmp16 = BUF->srcport;
|
|
BUF->srcport = BUF->destport;
|
|
BUF->destport = tmp16;
|
|
|
|
/* Swap IP addresses. */
|
|
uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
|
|
uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
|
|
|
|
/* And send out the RST packet! */
|
|
goto tcp_send_noconn;
|
|
|
|
/* This label will be jumped to if we matched the incoming packet
|
|
with a connection in LISTEN. In that case, we should create a new
|
|
connection and send a SYNACK in return. */
|
|
found_listen:
|
|
/* First we check if there are any connections avaliable. Unused
|
|
connections are kept in the same table as used connections, but
|
|
unused ones have the tcpstate set to CLOSED. Also, connections in
|
|
TIME_WAIT are kept track of and we'll use the oldest one if no
|
|
CLOSED connections are found. Thanks to Eddie C. Dost for a very
|
|
nice algorithm for the TIME_WAIT search. */
|
|
uip_connr = 0;
|
|
for( c = 0; c < UIP_CONNS; ++c )
|
|
{
|
|
if( uip_conns[c].tcpstateflags == UIP_CLOSED )
|
|
{
|
|
uip_connr = &uip_conns[c];
|
|
break;
|
|
}
|
|
|
|
if( uip_conns[c].tcpstateflags == UIP_TIME_WAIT )
|
|
{
|
|
if( uip_connr == 0 || uip_conns[c].timer > uip_connr->timer )
|
|
{
|
|
uip_connr = &uip_conns[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
if( uip_connr == 0 )
|
|
{
|
|
/* All connections are used already, we drop packet and hope that
|
|
the remote end will retransmit the packet at a time when we
|
|
have more spare connections. */
|
|
UIP_STAT( ++uip_stat.tcp.syndrop );
|
|
UIP_LOG( "tcp: found no unused connections." );
|
|
goto drop;
|
|
}
|
|
|
|
uip_conn = uip_connr;
|
|
|
|
/* Fill in the necessary fields for the new connection. */
|
|
uip_connr->rto = uip_connr->timer = UIP_RTO;
|
|
uip_connr->sa = 0;
|
|
uip_connr->sv = 4;
|
|
uip_connr->nrtx = 0;
|
|
uip_connr->lport = BUF->destport;
|
|
uip_connr->rport = BUF->srcport;
|
|
uip_ipaddr_copy( uip_connr->ripaddr, BUF->srcipaddr );
|
|
uip_connr->tcpstateflags = UIP_SYN_RCVD;
|
|
|
|
uip_connr->snd_nxt[0] = iss[0];
|
|
uip_connr->snd_nxt[1] = iss[1];
|
|
uip_connr->snd_nxt[2] = iss[2];
|
|
uip_connr->snd_nxt[3] = iss[3];
|
|
uip_connr->len = 1;
|
|
|
|
/* rcv_nxt should be the seqno from the incoming packet + 1. */
|
|
uip_connr->rcv_nxt[3] = BUF->seqno[3];
|
|
uip_connr->rcv_nxt[2] = BUF->seqno[2];
|
|
uip_connr->rcv_nxt[1] = BUF->seqno[1];
|
|
uip_connr->rcv_nxt[0] = BUF->seqno[0];
|
|
uip_add_rcv_nxt( 1 );
|
|
|
|
/* Parse the TCP MSS option, if present. */
|
|
if( (BUF->tcpoffset & 0xf0) > 0x50 )
|
|
{
|
|
for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; )
|
|
{
|
|
opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
|
|
if( opt == TCP_OPT_END )
|
|
{
|
|
/* End of options. */
|
|
break;
|
|
}
|
|
else if( opt == TCP_OPT_NOOP )
|
|
{
|
|
++c;
|
|
|
|
/* NOP option. */
|
|
}
|
|
else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN )
|
|
{
|
|
/* An MSS option with the right option length. */
|
|
tmp16 = ( (u16_t) uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | ( u16_t ) uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
|
|
uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16;
|
|
|
|
/* And we are done processing options. */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* All other options have a length field, so that we easily
|
|
can skip past them. */
|
|
if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 )
|
|
{
|
|
/* If the length field is zero, the options are malformed
|
|
and we don't process them further. */
|
|
break;
|
|
}
|
|
|
|
c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Our response will be a SYNACK. */
|
|
#if UIP_ACTIVE_OPEN
|
|
tcp_send_synack : BUF->flags = TCP_ACK;
|
|
|
|
tcp_send_syn:
|
|
BUF->flags |= TCP_SYN;
|
|
#else /* UIP_ACTIVE_OPEN */
|
|
tcp_send_synack : BUF->flags = TCP_SYN | TCP_ACK;
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
/* We send out the TCP Maximum Segment Size option with our
|
|
SYNACK. */
|
|
BUF->optdata[0] = TCP_OPT_MSS;
|
|
BUF->optdata[1] = TCP_OPT_MSS_LEN;
|
|
BUF->optdata[2] = ( UIP_TCP_MSS ) / 256;
|
|
BUF->optdata[3] = ( UIP_TCP_MSS ) & 255;
|
|
uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
|
|
BUF->tcpoffset = ( (UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4 ) << 4;
|
|
goto tcp_send;
|
|
|
|
/* This label will be jumped to if we found an active connection. */
|
|
found:
|
|
uip_conn = uip_connr;
|
|
uip_flags = 0;
|
|
|
|
/* We do a very naive form of TCP reset processing; we just accept
|
|
any RST and kill our connection. We should in fact check if the
|
|
sequence number of this reset is wihtin our advertised window
|
|
before we accept the reset. */
|
|
if( BUF->flags & TCP_RST )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
UIP_LOG( "tcp: got reset, aborting connection." );
|
|
uip_flags = UIP_ABORT;
|
|
UIP_APPCALL();
|
|
goto drop;
|
|
}
|
|
|
|
/* Calculated the length of the data, if the application has sent
|
|
any data to us. */
|
|
c = ( BUF->tcpoffset >> 4 ) << 2;
|
|
|
|
/* uip_len will contain the length of the actual TCP data. This is
|
|
calculated by subtracing the length of the TCP header (in
|
|
c) and the length of the IP header (20 bytes). */
|
|
uip_len = uip_len - c - UIP_IPH_LEN;
|
|
|
|
/* First, check if the sequence number of the incoming packet is
|
|
what we're expecting next. If not, we send out an ACK with the
|
|
correct numbers in. */
|
|
if( !(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))) )
|
|
{
|
|
if
|
|
(
|
|
(uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
|
|
(
|
|
BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
|
|
BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
|
|
BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
|
|
BUF->seqno[3] != uip_connr->rcv_nxt[3]
|
|
)
|
|
)
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
}
|
|
|
|
/* Next, check if the incoming segment acknowledges any outstanding
|
|
data. If so, we update the sequence number, reset the length of
|
|
the outstanding data, calculate RTT estimations, and reset the
|
|
retransmission timer. */
|
|
if( (BUF->flags & TCP_ACK) && uip_outstanding(uip_connr) )
|
|
{
|
|
uip_add32( uip_connr->snd_nxt, uip_connr->len );
|
|
|
|
if
|
|
(
|
|
BUF->ackno[0] == uip_acc32[0] &&
|
|
BUF->ackno[1] == uip_acc32[1] &&
|
|
BUF->ackno[2] == uip_acc32[2] &&
|
|
BUF->ackno[3] == uip_acc32[3]
|
|
)
|
|
{
|
|
/* Update sequence number. */
|
|
uip_connr->snd_nxt[0] = uip_acc32[0];
|
|
uip_connr->snd_nxt[1] = uip_acc32[1];
|
|
uip_connr->snd_nxt[2] = uip_acc32[2];
|
|
uip_connr->snd_nxt[3] = uip_acc32[3];
|
|
|
|
/* Do RTT estimation, unless we have done retransmissions. */
|
|
if( uip_connr->nrtx == 0 )
|
|
{
|
|
signed char m;
|
|
m = uip_connr->rto - uip_connr->timer;
|
|
|
|
/* This is taken directly from VJs original code in his paper */
|
|
m = m - ( uip_connr->sa >> 3 );
|
|
uip_connr->sa += m;
|
|
if( m < 0 )
|
|
{
|
|
m = -m;
|
|
}
|
|
|
|
m = m - ( uip_connr->sv >> 2 );
|
|
uip_connr->sv += m;
|
|
uip_connr->rto = ( uip_connr->sa >> 3 ) + uip_connr->sv;
|
|
}
|
|
|
|
/* Set the acknowledged flag. */
|
|
uip_flags = UIP_ACKDATA;
|
|
|
|
/* Reset the retransmission timer. */
|
|
uip_connr->timer = uip_connr->rto;
|
|
|
|
/* Reset length of outstanding data. */
|
|
uip_connr->len = 0;
|
|
}
|
|
}
|
|
|
|
/* Do different things depending on in what state the connection is. */
|
|
switch( uip_connr->tcpstateflags & UIP_TS_MASK )
|
|
{
|
|
/* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
|
|
implemented, since we force the application to close when the
|
|
peer sends a FIN (hence the application goes directly from
|
|
ESTABLISHED to LAST_ACK). */
|
|
case UIP_SYN_RCVD:
|
|
/* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
|
|
we are waiting for an ACK that acknowledges the data we sent
|
|
out the last time. Therefore, we want to have the UIP_ACKDATA
|
|
flag set. If so, we enter the ESTABLISHED state. */
|
|
if( uip_flags & UIP_ACKDATA )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_ESTABLISHED;
|
|
uip_flags = UIP_CONNECTED;
|
|
uip_connr->len = 0;
|
|
if( uip_len > 0 )
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
uip_add_rcv_nxt( uip_len );
|
|
}
|
|
|
|
uip_slen = 0;
|
|
UIP_APPCALL();
|
|
goto appsend;
|
|
}
|
|
|
|
goto drop;
|
|
#if UIP_ACTIVE_OPEN
|
|
|
|
case UIP_SYN_SENT:
|
|
/* In SYN_SENT, we wait for a SYNACK that is sent in response to
|
|
our SYN. The rcv_nxt is set to sequence number in the SYNACK
|
|
plus one, and we send an ACK. We move into the ESTABLISHED
|
|
state. */
|
|
if( (uip_flags & UIP_ACKDATA) && (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK) )
|
|
{
|
|
/* Parse the TCP MSS option, if present. */
|
|
if( (BUF->tcpoffset & 0xf0) > 0x50 )
|
|
{
|
|
for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; )
|
|
{
|
|
opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
|
|
if( opt == TCP_OPT_END )
|
|
{
|
|
/* End of options. */
|
|
break;
|
|
}
|
|
else if( opt == TCP_OPT_NOOP )
|
|
{
|
|
++c;
|
|
|
|
/* NOP option. */
|
|
}
|
|
else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN )
|
|
{
|
|
/* An MSS option with the right option length. */
|
|
tmp16 = ( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
|
|
uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16;
|
|
|
|
/* And we are done processing options. */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* All other options have a length field, so that we easily
|
|
can skip past them. */
|
|
if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 )
|
|
{
|
|
/* If the length field is zero, the options are malformed
|
|
and we don't process them further. */
|
|
break;
|
|
}
|
|
|
|
c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
|
|
}
|
|
}
|
|
}
|
|
|
|
uip_connr->tcpstateflags = UIP_ESTABLISHED;
|
|
uip_connr->rcv_nxt[0] = BUF->seqno[0];
|
|
uip_connr->rcv_nxt[1] = BUF->seqno[1];
|
|
uip_connr->rcv_nxt[2] = BUF->seqno[2];
|
|
uip_connr->rcv_nxt[3] = BUF->seqno[3];
|
|
uip_add_rcv_nxt( 1 );
|
|
uip_flags = UIP_CONNECTED | UIP_NEWDATA;
|
|
uip_connr->len = 0;
|
|
uip_len = 0;
|
|
uip_slen = 0;
|
|
UIP_APPCALL();
|
|
goto appsend;
|
|
}
|
|
|
|
/* Inform the application that the connection failed */
|
|
uip_flags = UIP_ABORT;
|
|
UIP_APPCALL();
|
|
|
|
/* The connection is closed after we send the RST */
|
|
uip_conn->tcpstateflags = UIP_CLOSED;
|
|
goto reset;
|
|
#endif /* UIP_ACTIVE_OPEN */
|
|
|
|
case UIP_ESTABLISHED:
|
|
/* In the ESTABLISHED state, we call upon the application to feed
|
|
data into the uip_buf. If the UIP_ACKDATA flag is set, the
|
|
application should put new data into the buffer, otherwise we are
|
|
retransmitting an old segment, and the application should put that
|
|
data into the buffer.
|
|
|
|
If the incoming packet is a FIN, we should close the connection on
|
|
this side as well, and we send out a FIN and enter the LAST_ACK
|
|
state. We require that there is no outstanding data; otherwise the
|
|
sequence numbers will be screwed up. */
|
|
if( BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED) )
|
|
{
|
|
if( uip_outstanding(uip_connr) )
|
|
{
|
|
goto drop;
|
|
}
|
|
|
|
uip_add_rcv_nxt( 1 + uip_len );
|
|
uip_flags |= UIP_CLOSE;
|
|
if( uip_len > 0 )
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
}
|
|
|
|
UIP_APPCALL();
|
|
uip_connr->len = 1;
|
|
uip_connr->tcpstateflags = UIP_LAST_ACK;
|
|
uip_connr->nrtx = 0;
|
|
tcp_send_finack:
|
|
BUF->flags = TCP_FIN | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* Check the URG flag. If this is set, the segment carries urgent
|
|
data that we must pass to the application. */
|
|
if( (BUF->flags & TCP_URG) != 0 )
|
|
{
|
|
#if UIP_URGDATA > 0
|
|
uip_urglen = ( BUF->urgp[0] << 8 ) | BUF->urgp[1];
|
|
if( uip_urglen > uip_len )
|
|
{
|
|
/* There is more urgent data in the next segment to come. */
|
|
uip_urglen = uip_len;
|
|
}
|
|
|
|
uip_add_rcv_nxt( uip_urglen );
|
|
uip_len -= uip_urglen;
|
|
uip_urgdata = uip_appdata;
|
|
uip_appdata += uip_urglen;
|
|
}
|
|
else
|
|
{
|
|
uip_urglen = 0;
|
|
#else /* UIP_URGDATA > 0 */
|
|
uip_appdata = ( ( char * ) uip_appdata ) + ( (BUF->urgp[0] << 8) | BUF->urgp[1] );
|
|
uip_len -= ( BUF->urgp[0] << 8 ) | BUF->urgp[1];
|
|
#endif /* UIP_URGDATA > 0 */
|
|
}
|
|
|
|
/* If uip_len > 0 we have TCP data in the packet, and we flag this
|
|
by setting the UIP_NEWDATA flag and update the sequence number
|
|
we acknowledge. If the application has stopped the dataflow
|
|
using uip_stop(), we must not accept any data packets from the
|
|
remote host. */
|
|
if( uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED) )
|
|
{
|
|
uip_flags |= UIP_NEWDATA;
|
|
uip_add_rcv_nxt( uip_len );
|
|
}
|
|
|
|
/* Check if the available buffer space advertised by the other end
|
|
is smaller than the initial MSS for this connection. If so, we
|
|
set the current MSS to the window size to ensure that the
|
|
application does not send more data than the other end can
|
|
handle.
|
|
|
|
If the remote host advertises a zero window, we set the MSS to
|
|
the initial MSS so that the application will send an entire MSS
|
|
of data. This data will not be acknowledged by the receiver,
|
|
and the application will retransmit it. This is called the
|
|
"persistent timer" and uses the retransmission mechanim.
|
|
*/
|
|
tmp16 = ( (u16_t) BUF->wnd[0] << 8 ) + ( u16_t ) BUF->wnd[1];
|
|
if( tmp16 > (uip_connr->initialmss * FRAME_MULTIPLE) || tmp16 == 0 )
|
|
{
|
|
tmp16 = uip_connr->initialmss * FRAME_MULTIPLE;
|
|
}
|
|
|
|
uip_connr->mss = tmp16;
|
|
|
|
/* If this packet constitutes an ACK for outstanding data (flagged
|
|
by the UIP_ACKDATA flag, we should call the application since it
|
|
might want to send more data. If the incoming packet had data
|
|
from the peer (as flagged by the UIP_NEWDATA flag), the
|
|
application must also be notified.
|
|
|
|
When the application is called, the global variable uip_len
|
|
contains the length of the incoming data. The application can
|
|
access the incoming data through the global pointer
|
|
uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
|
|
bytes into the uip_buf array.
|
|
|
|
If the application wishes to send any data, this data should be
|
|
put into the uip_appdata and the length of the data should be
|
|
put into uip_len. If the application don't have any data to
|
|
send, uip_len must be set to 0. */
|
|
if( uip_flags & (UIP_NEWDATA | UIP_ACKDATA) )
|
|
{
|
|
uip_slen = 0;
|
|
UIP_APPCALL();
|
|
|
|
appsend:
|
|
if( uip_flags & UIP_ABORT )
|
|
{
|
|
uip_slen = 0;
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
BUF->flags = TCP_RST | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
if( uip_flags & UIP_CLOSE )
|
|
{
|
|
uip_slen = 0;
|
|
uip_connr->len = 1;
|
|
uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
|
|
uip_connr->nrtx = 0;
|
|
BUF->flags = TCP_FIN | TCP_ACK;
|
|
goto tcp_send_nodata;
|
|
}
|
|
|
|
/* If uip_slen > 0, the application has data to be sent. */
|
|
if( uip_slen > 0 )
|
|
{
|
|
/* If the connection has acknowledged data, the contents of
|
|
the ->len variable should be discarded. */
|
|
if( (uip_flags & UIP_ACKDATA) != 0 )
|
|
{
|
|
uip_connr->len = 0;
|
|
}
|
|
|
|
/* If the ->len variable is non-zero the connection has
|
|
already data in transit and cannot send anymore right
|
|
now. */
|
|
if( uip_connr->len == 0 )
|
|
{
|
|
/* The application cannot send more than what is allowed by
|
|
the mss (the minumum of the MSS and the available
|
|
window). */
|
|
if( uip_slen > uip_connr->mss )
|
|
{
|
|
uip_slen = uip_connr->mss;
|
|
}
|
|
|
|
/* Remember how much data we send out now so that we know
|
|
when everything has been acknowledged. */
|
|
uip_connr->len = uip_slen;
|
|
}
|
|
else
|
|
{
|
|
/* If the application already had unacknowledged data, we
|
|
make sure that the application does not send (i.e.,
|
|
retransmit) out more than it previously sent out. */
|
|
uip_slen = uip_connr->len;
|
|
}
|
|
}
|
|
|
|
uip_connr->nrtx = 0;
|
|
apprexmit:
|
|
uip_appdata = uip_sappdata;
|
|
|
|
/* If the application has data to be sent, or if the incoming
|
|
packet had new data in it, we must send out a packet. */
|
|
if( uip_slen > 0 && uip_connr->len > 0 )
|
|
{
|
|
/* Add the length of the IP and TCP headers. */
|
|
uip_len = uip_connr->len + UIP_TCPIP_HLEN;
|
|
|
|
/* We always set the ACK flag in response packets. */
|
|
BUF->flags = TCP_ACK | TCP_PSH;
|
|
|
|
/* Send the packet. */
|
|
goto tcp_send_noopts;
|
|
}
|
|
|
|
/* If there is no data to send, just send out a pure ACK if
|
|
there is newdata. */
|
|
if( uip_flags & UIP_NEWDATA )
|
|
{
|
|
uip_len = UIP_TCPIP_HLEN;
|
|
BUF->flags = TCP_ACK;
|
|
goto tcp_send_noopts;
|
|
}
|
|
}
|
|
|
|
goto drop;
|
|
|
|
case UIP_LAST_ACK:
|
|
/* We can close this connection if the peer has acknowledged our
|
|
FIN. This is indicated by the UIP_ACKDATA flag. */
|
|
if( uip_flags & UIP_ACKDATA )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSED;
|
|
uip_flags = UIP_CLOSE;
|
|
UIP_APPCALL();
|
|
}
|
|
|
|
break;
|
|
|
|
case UIP_FIN_WAIT_1:
|
|
/* The application has closed the connection, but the remote host
|
|
hasn't closed its end yet. Thus we do nothing but wait for a
|
|
FIN from the other side. */
|
|
if( uip_len > 0 )
|
|
{
|
|
uip_add_rcv_nxt( uip_len );
|
|
}
|
|
|
|
if( BUF->flags & TCP_FIN )
|
|
{
|
|
if( uip_flags & UIP_ACKDATA )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
uip_connr->len = 0;
|
|
}
|
|
else
|
|
{
|
|
uip_connr->tcpstateflags = UIP_CLOSING;
|
|
}
|
|
|
|
uip_add_rcv_nxt( 1 );
|
|
uip_flags = UIP_CLOSE;
|
|
UIP_APPCALL();
|
|
goto tcp_send_ack;
|
|
}
|
|
else if( uip_flags & UIP_ACKDATA )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
|
|
uip_connr->len = 0;
|
|
goto drop;
|
|
}
|
|
|
|
if( uip_len > 0 )
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
|
|
goto drop;
|
|
|
|
case UIP_FIN_WAIT_2:
|
|
if( uip_len > 0 )
|
|
{
|
|
uip_add_rcv_nxt( uip_len );
|
|
}
|
|
|
|
if( BUF->flags & TCP_FIN )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
uip_add_rcv_nxt( 1 );
|
|
uip_flags = UIP_CLOSE;
|
|
UIP_APPCALL();
|
|
goto tcp_send_ack;
|
|
}
|
|
|
|
if( uip_len > 0 )
|
|
{
|
|
goto tcp_send_ack;
|
|
}
|
|
|
|
goto drop;
|
|
|
|
case UIP_TIME_WAIT:
|
|
goto tcp_send_ack;
|
|
|
|
case UIP_CLOSING:
|
|
if( uip_flags & UIP_ACKDATA )
|
|
{
|
|
uip_connr->tcpstateflags = UIP_TIME_WAIT;
|
|
uip_connr->timer = 0;
|
|
}
|
|
}
|
|
|
|
goto drop;
|
|
|
|
/* We jump here when we are ready to send the packet, and just want
|
|
to set the appropriate TCP sequence numbers in the TCP header. */
|
|
tcp_send_ack:
|
|
BUF->flags = TCP_ACK;
|
|
tcp_send_nodata:
|
|
uip_len = UIP_IPTCPH_LEN;
|
|
tcp_send_noopts:
|
|
BUF->tcpoffset = ( UIP_TCPH_LEN / 4 ) << 4;
|
|
tcp_send:
|
|
/* We're done with the input processing. We are now ready to send a
|
|
reply. Our job is to fill in all the fields of the TCP and IP
|
|
headers before calculating the checksum and finally send the
|
|
packet. */
|
|
BUF->ackno[0] = uip_connr->rcv_nxt[0];
|
|
BUF->ackno[1] = uip_connr->rcv_nxt[1];
|
|
BUF->ackno[2] = uip_connr->rcv_nxt[2];
|
|
BUF->ackno[3] = uip_connr->rcv_nxt[3];
|
|
|
|
BUF->seqno[0] = uip_connr->snd_nxt[0];
|
|
BUF->seqno[1] = uip_connr->snd_nxt[1];
|
|
BUF->seqno[2] = uip_connr->snd_nxt[2];
|
|
BUF->seqno[3] = uip_connr->snd_nxt[3];
|
|
|
|
BUF->proto = UIP_PROTO_TCP;
|
|
|
|
BUF->srcport = uip_connr->lport;
|
|
BUF->destport = uip_connr->rport;
|
|
|
|
uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
|
|
uip_ipaddr_copy( BUF->destipaddr, uip_connr->ripaddr );
|
|
|
|
if( uip_connr->tcpstateflags & UIP_STOPPED )
|
|
{
|
|
/* If the connection has issued uip_stop(), we advertise a zero
|
|
window so that the remote host will stop sending data. */
|
|
BUF->wnd[0] = BUF->wnd[1] = 0;
|
|
}
|
|
else
|
|
{
|
|
BUF->wnd[0] = ( (UIP_RECEIVE_WINDOW) >> 8 );
|
|
BUF->wnd[1] = ( (UIP_RECEIVE_WINDOW) & 0xff );
|
|
}
|
|
|
|
tcp_send_noconn:
|
|
BUF->ttl = UIP_TTL;
|
|
#if UIP_CONF_IPV6
|
|
|
|
/* For IPv6, the IP length field does not include the IPv6 IP header
|
|
length. */
|
|
BUF->len[0] = ( (uip_len - UIP_IPH_LEN) >> 8 );
|
|
BUF->len[1] = ( (uip_len - UIP_IPH_LEN) & 0xff );
|
|
#else /* UIP_CONF_IPV6 */
|
|
BUF->len[0] = ( uip_len >> 8 );
|
|
BUF->len[1] = ( uip_len & 0xff );
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
BUF->urgp[0] = BUF->urgp[1] = 0;
|
|
|
|
/* Calculate TCP checksum. */
|
|
BUF->tcpchksum = 0;
|
|
BUF->tcpchksum = ~( uip_tcpchksum() );
|
|
|
|
#if UIP_UDP
|
|
ip_send_nolen :
|
|
#endif
|
|
#if UIP_CONF_IPV6
|
|
BUF->vtc = 0x60;
|
|
BUF->tcflow = 0x00;
|
|
BUF->flow = 0x00;
|
|
#else /* UIP_CONF_IPV6 */
|
|
BUF->vhl = 0x45;
|
|
BUF->tos = 0;
|
|
BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
|
|
++ipid;
|
|
BUF->ipid[0] = ipid >> 8;
|
|
BUF->ipid[1] = ipid & 0xff;
|
|
|
|
/* Calculate IP checksum. */
|
|
BUF->ipchksum = 0;
|
|
BUF->ipchksum = ~( uip_ipchksum() );
|
|
DEBUG_PRINTF( "uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum() );
|
|
#endif /* UIP_CONF_IPV6 */
|
|
|
|
UIP_STAT( ++uip_stat.tcp.sent );
|
|
send:
|
|
DEBUG_PRINTF( "Sending packet with length %d (%d)\n", uip_len, (BUF->len[0] << 8) | BUF->len[1] );
|
|
|
|
UIP_STAT( ++uip_stat.ip.sent );
|
|
|
|
/* Return and let the caller do the actual transmission. */
|
|
uip_flags = 0;
|
|
return;
|
|
drop:
|
|
uip_len = 0;
|
|
uip_flags = 0;
|
|
return;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
u16_t htons( u16_t val )
|
|
{
|
|
return HTONS( val );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void uip_send( const void *data, int len )
|
|
{
|
|
if( len > 0 )
|
|
{
|
|
uip_slen = len;
|
|
if( data != uip_sappdata )
|
|
{
|
|
memcpy( uip_sappdata, (data), uip_slen );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int uip_fast_send( int xARP )
|
|
{
|
|
( void ) xARP;
|
|
#if NOT_YET_COMPLETE
|
|
|
|
u16_t tcplen, len1 = 0, uiAccumulatedLen = 0, len_previous = 0, split_len;
|
|
int iSplitNo = 0;
|
|
extern int uip_low_level_output( unsigned char *pcBuf, int ilen );
|
|
|
|
if( xARP == pdTRUE )
|
|
{
|
|
if( BUF->proto == UIP_PROTO_TCP && uip_slen > 1 )
|
|
{
|
|
tcplen = uip_len - UIP_TCPIP_HLEN;
|
|
|
|
if( tcplen > UIP_TCP_MSS )
|
|
{
|
|
split_len = UIP_TCP_MSS;
|
|
}
|
|
else
|
|
{
|
|
split_len = tcplen / 2;
|
|
}
|
|
|
|
while( tcplen > 0 )
|
|
{
|
|
uiAccumulatedLen += len1;
|
|
|
|
if( tcplen > split_len )
|
|
{
|
|
len1 = split_len;
|
|
tcplen -= split_len;
|
|
}
|
|
else
|
|
{
|
|
len1 = tcplen;
|
|
tcplen = 0;
|
|
}
|
|
|
|
uip_len = len1 + UIP_TCPIP_HLEN;
|
|
BUF->len[0] = uip_len >> 8;
|
|
BUF->len[1] = uip_len & 0xff;
|
|
if( iSplitNo == 0 )
|
|
{
|
|
iSplitNo++;
|
|
|
|
/* Create the first packet. This is done by altering the length
|
|
field of the IP header and updating the checksums. */
|
|
}
|
|
else
|
|
{
|
|
/* Now, create the second packet. To do this, it is not enough to
|
|
just alter the length field, but we must also update the TCP
|
|
sequence number and point the uip_appdata to a new place in
|
|
memory. This place is determined by the length of the first
|
|
packet (len1). */
|
|
|
|
/* uip_appdata += len1;*/
|
|
memcpy( uip_appdata, ( u8_t * ) uip_appdata + uiAccumulatedLen, len1 );
|
|
uip_add32( BUF->seqno, len_previous );
|
|
BUF->seqno[0] = uip_acc32[0];
|
|
BUF->seqno[1] = uip_acc32[1];
|
|
BUF->seqno[2] = uip_acc32[2];
|
|
BUF->seqno[3] = uip_acc32[3];
|
|
}
|
|
|
|
/* Recalculate the TCP checksum. */
|
|
BUF->tcpchksum = 0;
|
|
BUF->tcpchksum = ~( uip_tcpchksum() );
|
|
|
|
/* Recalculate the IP checksum. */
|
|
BUF->ipchksum = 0;
|
|
BUF->ipchksum = ~( uip_ipchksum() );
|
|
|
|
/* Transmit the packet. */
|
|
uip_arp_out();
|
|
uip_low_level_output( uip_buf, uip_len );
|
|
|
|
len_previous = len1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uip_arp_out();
|
|
uip_low_level_output( uip_buf, uip_len );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uip_low_level_output( uip_buf, uip_len );
|
|
}
|
|
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/** @} */
|