654 lines
23 KiB
C
654 lines
23 KiB
C
|
/*
|
||
|
* FreeRTOS+TCP V2.0.11
|
||
|
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
|
* this software and associated documentation files (the "Software"), to deal in
|
||
|
* the Software without restriction, including without limitation the rights to
|
||
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
||
|
* subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
*
|
||
|
* http://aws.amazon.com/freertos
|
||
|
* http://www.FreeRTOS.org
|
||
|
*/
|
||
|
|
||
|
/* Standard includes. */
|
||
|
#include <stdint.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/* FreeRTOS includes. */
|
||
|
#include "FreeRTOS.h"
|
||
|
#include "task.h"
|
||
|
#include "queue.h"
|
||
|
#include "semphr.h"
|
||
|
|
||
|
/* FreeRTOS+TCP includes. */
|
||
|
#include "FreeRTOS_IP.h"
|
||
|
#include "FreeRTOS_Sockets.h"
|
||
|
#include "FreeRTOS_IP_Private.h"
|
||
|
#include "FreeRTOS_ARP.h"
|
||
|
#include "FreeRTOS_UDP_IP.h"
|
||
|
#include "FreeRTOS_DHCP.h"
|
||
|
#if( ipconfigUSE_LLMNR == 1 )
|
||
|
#include "FreeRTOS_DNS.h"
|
||
|
#endif /* ipconfigUSE_LLMNR */
|
||
|
#include "NetworkInterface.h"
|
||
|
#include "NetworkBufferManagement.h"
|
||
|
|
||
|
|
||
|
/* When the age of an entry in the ARP table reaches this value (it counts down
|
||
|
to zero, so this is an old entry) an ARP request will be sent to see if the
|
||
|
entry is still valid and can therefore be refreshed. */
|
||
|
#define arpMAX_ARP_AGE_BEFORE_NEW_ARP_REQUEST ( 3 )
|
||
|
|
||
|
/* The time between gratuitous ARPs. */
|
||
|
#ifndef arpGRATUITOUS_ARP_PERIOD
|
||
|
#define arpGRATUITOUS_ARP_PERIOD ( pdMS_TO_TICKS( 20000 ) )
|
||
|
#endif
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* Lookup an MAC address in the ARP cache from the IP address.
|
||
|
*/
|
||
|
static eARPLookupResult_t prvCacheLookup( uint32_t ulAddressToLookup, MACAddress_t * const pxMACAddress );
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* The ARP cache. */
|
||
|
static ARPCacheRow_t xARPCache[ ipconfigARP_CACHE_ENTRIES ];
|
||
|
|
||
|
/* The time at which the last gratuitous ARP was sent. Gratuitous ARPs are used
|
||
|
to ensure ARP tables are up to date and to detect IP address conflicts. */
|
||
|
static TickType_t xLastGratuitousARPTime = ( TickType_t ) 0;
|
||
|
|
||
|
/*
|
||
|
* IP-clash detection is currently only used internally. When DHCP doesn't respond, the
|
||
|
* driver can try out a random LinkLayer IP address (169.254.x.x). It will send out a
|
||
|
* gratuitos ARP message and, after a period of time, check the variables here below:
|
||
|
*/
|
||
|
#if( ipconfigARP_USE_CLASH_DETECTION != 0 )
|
||
|
/* Becomes non-zero if another device responded to a gratuitos ARP message. */
|
||
|
BaseType_t xARPHadIPClash;
|
||
|
/* MAC-address of the other device containing the same IP-address. */
|
||
|
MACAddress_t xARPClashMacAddress;
|
||
|
#endif /* ipconfigARP_USE_CLASH_DETECTION */
|
||
|
|
||
|
/* Part of the Ethernet and ARP headers are always constant when sending an IPv4
|
||
|
ARP packet. This array defines the constant parts, allowing this part of the
|
||
|
packet to be filled in using a simple memcpy() instead of individual writes. */
|
||
|
static const uint8_t xDefaultPartARPPacketHeader[] =
|
||
|
{
|
||
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* Ethernet destination address. */
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Ethernet source address. */
|
||
|
0x08, 0x06, /* Ethernet frame type (ipARP_FRAME_TYPE). */
|
||
|
0x00, 0x01, /* usHardwareType (ipARP_HARDWARE_TYPE_ETHERNET). */
|
||
|
0x08, 0x00, /* usProtocolType. */
|
||
|
ipMAC_ADDRESS_LENGTH_BYTES, /* ucHardwareAddressLength. */
|
||
|
ipIP_ADDRESS_LENGTH_BYTES, /* ucProtocolAddressLength. */
|
||
|
0x00, 0x01, /* usOperation (ipARP_REQUEST). */
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* xSenderHardwareAddress. */
|
||
|
0x00, 0x00, 0x00, 0x00, /* ulSenderProtocolAddress. */
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* xTargetHardwareAddress. */
|
||
|
};
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
eFrameProcessingResult_t eARPProcessPacket( ARPPacket_t * const pxARPFrame )
|
||
|
{
|
||
|
eFrameProcessingResult_t eReturn = eReleaseBuffer;
|
||
|
ARPHeader_t *pxARPHeader;
|
||
|
uint32_t ulTargetProtocolAddress, ulSenderProtocolAddress;
|
||
|
|
||
|
pxARPHeader = &( pxARPFrame->xARPHeader );
|
||
|
|
||
|
/* The field ulSenderProtocolAddress is badly aligned, copy byte-by-byte. */
|
||
|
memcpy( ( void *)&( ulSenderProtocolAddress ), ( void * )pxARPHeader->ucSenderProtocolAddress, sizeof( ulSenderProtocolAddress ) );
|
||
|
/* The field ulTargetProtocolAddress is well-aligned, a 32-bits copy. */
|
||
|
ulTargetProtocolAddress = pxARPHeader->ulTargetProtocolAddress;
|
||
|
|
||
|
traceARP_PACKET_RECEIVED();
|
||
|
|
||
|
/* Don't do anything if the local IP address is zero because
|
||
|
that means a DHCP request has not completed. */
|
||
|
if( *ipLOCAL_IP_ADDRESS_POINTER != 0UL )
|
||
|
{
|
||
|
switch( pxARPHeader->usOperation )
|
||
|
{
|
||
|
case ipARP_REQUEST :
|
||
|
/* The packet contained an ARP request. Was it for the IP
|
||
|
address of the node running this code? */
|
||
|
if( ulTargetProtocolAddress == *ipLOCAL_IP_ADDRESS_POINTER )
|
||
|
{
|
||
|
iptraceSENDING_ARP_REPLY( ulSenderProtocolAddress );
|
||
|
|
||
|
/* The request is for the address of this node. Add the
|
||
|
entry into the ARP cache, or refresh the entry if it
|
||
|
already exists. */
|
||
|
vARPRefreshCacheEntry( &( pxARPHeader->xSenderHardwareAddress ), ulSenderProtocolAddress );
|
||
|
|
||
|
/* Generate a reply payload in the same buffer. */
|
||
|
pxARPHeader->usOperation = ( uint16_t ) ipARP_REPLY;
|
||
|
if( ulTargetProtocolAddress == ulSenderProtocolAddress )
|
||
|
{
|
||
|
/* A double IP address is detected! */
|
||
|
/* Give the sources MAC address the value of the broadcast address, will be swapped later */
|
||
|
memcpy( pxARPFrame->xEthernetHeader.xSourceAddress.ucBytes, xBroadcastMACAddress.ucBytes, sizeof( xBroadcastMACAddress ) );
|
||
|
memset( pxARPHeader->xTargetHardwareAddress.ucBytes, '\0', sizeof( MACAddress_t ) );
|
||
|
pxARPHeader->ulTargetProtocolAddress = 0UL;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
memcpy( pxARPHeader->xTargetHardwareAddress.ucBytes, pxARPHeader->xSenderHardwareAddress.ucBytes, sizeof( MACAddress_t ) );
|
||
|
pxARPHeader->ulTargetProtocolAddress = ulSenderProtocolAddress;
|
||
|
}
|
||
|
memcpy( pxARPHeader->xSenderHardwareAddress.ucBytes, ( void * ) ipLOCAL_MAC_ADDRESS, sizeof( MACAddress_t ) );
|
||
|
memcpy( ( void* )pxARPHeader->ucSenderProtocolAddress, ( void* )ipLOCAL_IP_ADDRESS_POINTER, sizeof( pxARPHeader->ucSenderProtocolAddress ) );
|
||
|
|
||
|
eReturn = eReturnEthernetFrame;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case ipARP_REPLY :
|
||
|
iptracePROCESSING_RECEIVED_ARP_REPLY( ulTargetProtocolAddress );
|
||
|
vARPRefreshCacheEntry( &( pxARPHeader->xSenderHardwareAddress ), ulSenderProtocolAddress );
|
||
|
/* Process received ARP frame to see if there is a clash. */
|
||
|
#if( ipconfigARP_USE_CLASH_DETECTION != 0 )
|
||
|
{
|
||
|
if( ulSenderProtocolAddress == *ipLOCAL_IP_ADDRESS_POINTER )
|
||
|
{
|
||
|
xARPHadIPClash = pdTRUE;
|
||
|
memcpy( xARPClashMacAddress.ucBytes, pxARPHeader->xSenderHardwareAddress.ucBytes, sizeof( xARPClashMacAddress.ucBytes ) );
|
||
|
}
|
||
|
}
|
||
|
#endif /* ipconfigARP_USE_CLASH_DETECTION */
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Invalid. */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if( ipconfigUSE_ARP_REMOVE_ENTRY != 0 )
|
||
|
|
||
|
uint32_t ulARPRemoveCacheEntryByMac( const MACAddress_t * pxMACAddress )
|
||
|
{
|
||
|
BaseType_t x;
|
||
|
uint32_t lResult = 0;
|
||
|
|
||
|
/* For each entry in the ARP cache table. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
if( ( memcmp( xARPCache[ x ].xMACAddress.ucBytes, pxMACAddress->ucBytes, sizeof( pxMACAddress->ucBytes ) ) == 0 ) )
|
||
|
{
|
||
|
lResult = xARPCache[ x ].ulIPAddress;
|
||
|
memset( &xARPCache[ x ], '\0', sizeof( xARPCache[ x ] ) );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return lResult;
|
||
|
}
|
||
|
|
||
|
#endif /* ipconfigUSE_ARP_REMOVE_ENTRY != 0 */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vARPRefreshCacheEntry( const MACAddress_t * pxMACAddress, const uint32_t ulIPAddress )
|
||
|
{
|
||
|
BaseType_t x = 0;
|
||
|
BaseType_t xIpEntry = -1;
|
||
|
BaseType_t xMacEntry = -1;
|
||
|
BaseType_t xUseEntry = 0;
|
||
|
uint8_t ucMinAgeFound = 0U;
|
||
|
|
||
|
#if( ipconfigARP_STORES_REMOTE_ADDRESSES == 0 )
|
||
|
/* Only process the IP address if it is on the local network.
|
||
|
Unless: when '*ipLOCAL_IP_ADDRESS_POINTER' equals zero, the IP-address
|
||
|
and netmask are still unknown. */
|
||
|
if( ( ( ulIPAddress & xNetworkAddressing.ulNetMask ) == ( ( *ipLOCAL_IP_ADDRESS_POINTER ) & xNetworkAddressing.ulNetMask ) ) ||
|
||
|
( *ipLOCAL_IP_ADDRESS_POINTER == 0ul ) )
|
||
|
#else
|
||
|
/* If ipconfigARP_STORES_REMOTE_ADDRESSES is non-zero, IP addresses with
|
||
|
a different netmask will also be stored. After when replying to a UDP
|
||
|
message from a different netmask, the IP address can be looped up and a
|
||
|
reply sent. This option is useful for systems with multiple gateways,
|
||
|
the reply will surely arrive. If ipconfigARP_STORES_REMOTE_ADDRESSES is
|
||
|
zero the the gateway address is the only option. */
|
||
|
if( pdTRUE )
|
||
|
#endif
|
||
|
{
|
||
|
/* Start with the maximum possible number. */
|
||
|
ucMinAgeFound--;
|
||
|
|
||
|
/* For each entry in the ARP cache table. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
/* Does this line in the cache table hold an entry for the IP
|
||
|
address being queried? */
|
||
|
if( xARPCache[ x ].ulIPAddress == ulIPAddress )
|
||
|
{
|
||
|
if( pxMACAddress == NULL )
|
||
|
{
|
||
|
/* In case the parameter pxMACAddress is NULL, an entry will be reserved to
|
||
|
indicate that there is an outstanding ARP request, This entry will have
|
||
|
"ucValid == pdFALSE". */
|
||
|
xIpEntry = x;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* See if the MAC-address also matches. */
|
||
|
if( memcmp( xARPCache[ x ].xMACAddress.ucBytes, pxMACAddress->ucBytes, sizeof( pxMACAddress->ucBytes ) ) == 0 )
|
||
|
{
|
||
|
/* This function will be called for each received packet
|
||
|
As this is by far the most common path the coding standard
|
||
|
is relaxed in this case and a return is permitted as an
|
||
|
optimisation. */
|
||
|
xARPCache[ x ].ucAge = ( uint8_t ) ipconfigMAX_ARP_AGE;
|
||
|
xARPCache[ x ].ucValid = ( uint8_t ) pdTRUE;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Found an entry containing ulIPAddress, but the MAC address
|
||
|
doesn't match. Might be an entry with ucValid=pdFALSE, waiting
|
||
|
for an ARP reply. Still want to see if there is match with the
|
||
|
given MAC address.ucBytes. If found, either of the two entries
|
||
|
must be cleared. */
|
||
|
xIpEntry = x;
|
||
|
}
|
||
|
else if( ( pxMACAddress != NULL ) && ( memcmp( xARPCache[ x ].xMACAddress.ucBytes, pxMACAddress->ucBytes, sizeof( pxMACAddress->ucBytes ) ) == 0 ) )
|
||
|
{
|
||
|
/* Found an entry with the given MAC-address, but the IP-address
|
||
|
is different. Continue looping to find a possible match with
|
||
|
ulIPAddress. */
|
||
|
#if( ipconfigARP_STORES_REMOTE_ADDRESSES != 0 )
|
||
|
/* If ARP stores the MAC address of IP addresses outside the
|
||
|
network, than the MAC address of the gateway should not be
|
||
|
overwritten. */
|
||
|
BaseType_t bIsLocal[ 2 ];
|
||
|
bIsLocal[ 0 ] = ( ( xARPCache[ x ].ulIPAddress & xNetworkAddressing.ulNetMask ) == ( ( *ipLOCAL_IP_ADDRESS_POINTER ) & xNetworkAddressing.ulNetMask ) );
|
||
|
bIsLocal[ 1 ] = ( ( ulIPAddress & xNetworkAddressing.ulNetMask ) == ( ( *ipLOCAL_IP_ADDRESS_POINTER ) & xNetworkAddressing.ulNetMask ) );
|
||
|
if( bIsLocal[ 0 ] == bIsLocal[ 1 ] )
|
||
|
{
|
||
|
xMacEntry = x;
|
||
|
}
|
||
|
#else
|
||
|
xMacEntry = x;
|
||
|
#endif
|
||
|
}
|
||
|
/* _HT_
|
||
|
Shouldn't we test for xARPCache[ x ].ucValid == pdFALSE here ? */
|
||
|
else if( xARPCache[ x ].ucAge < ucMinAgeFound )
|
||
|
{
|
||
|
/* As the table is traversed, remember the table row that
|
||
|
contains the oldest entry (the lowest age count, as ages are
|
||
|
decremented to zero) so the row can be re-used if this function
|
||
|
needs to add an entry that does not already exist. */
|
||
|
ucMinAgeFound = xARPCache[ x ].ucAge;
|
||
|
xUseEntry = x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( xMacEntry >= 0 )
|
||
|
{
|
||
|
xUseEntry = xMacEntry;
|
||
|
|
||
|
if( xIpEntry >= 0 )
|
||
|
{
|
||
|
/* Both the MAC address as well as the IP address were found in
|
||
|
different locations: clear the entry which matches the
|
||
|
IP-address */
|
||
|
memset( &xARPCache[ xIpEntry ], '\0', sizeof( xARPCache[ xIpEntry ] ) );
|
||
|
}
|
||
|
}
|
||
|
else if( xIpEntry >= 0 )
|
||
|
{
|
||
|
/* An entry containing the IP-address was found, but it had a different MAC address */
|
||
|
xUseEntry = xIpEntry;
|
||
|
}
|
||
|
|
||
|
/* If the entry was not found, we use the oldest entry and set the IPaddress */
|
||
|
xARPCache[ xUseEntry ].ulIPAddress = ulIPAddress;
|
||
|
|
||
|
if( pxMACAddress != NULL )
|
||
|
{
|
||
|
memcpy( xARPCache[ xUseEntry ].xMACAddress.ucBytes, pxMACAddress->ucBytes, sizeof( pxMACAddress->ucBytes ) );
|
||
|
|
||
|
iptraceARP_TABLE_ENTRY_CREATED( ulIPAddress, (*pxMACAddress) );
|
||
|
/* And this entry does not need immediate attention */
|
||
|
xARPCache[ xUseEntry ].ucAge = ( uint8_t ) ipconfigMAX_ARP_AGE;
|
||
|
xARPCache[ xUseEntry ].ucValid = ( uint8_t ) pdTRUE;
|
||
|
}
|
||
|
else if( xIpEntry < 0 )
|
||
|
{
|
||
|
xARPCache[ xUseEntry ].ucAge = ( uint8_t ) ipconfigMAX_ARP_RETRANSMISSIONS;
|
||
|
xARPCache[ xUseEntry ].ucValid = ( uint8_t ) pdFALSE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if( ipconfigUSE_ARP_REVERSED_LOOKUP == 1 )
|
||
|
eARPLookupResult_t eARPGetCacheEntryByMac( MACAddress_t * const pxMACAddress, uint32_t *pulIPAddress )
|
||
|
{
|
||
|
BaseType_t x;
|
||
|
eARPLookupResult_t eReturn = eARPCacheMiss;
|
||
|
|
||
|
/* Loop through each entry in the ARP cache. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
/* Does this row in the ARP cache table hold an entry for the MAC
|
||
|
address being searched? */
|
||
|
if( memcmp( pxMACAddress->ucBytes, xARPCache[ x ].xMACAddress.ucBytes, sizeof( MACAddress_t ) ) == 0 )
|
||
|
{
|
||
|
*pulIPAddress = xARPCache[ x ].ulIPAddress;
|
||
|
eReturn = eARPCacheHit;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
}
|
||
|
#endif /* ipconfigUSE_ARP_REVERSED_LOOKUP */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
eARPLookupResult_t eARPGetCacheEntry( uint32_t *pulIPAddress, MACAddress_t * const pxMACAddress )
|
||
|
{
|
||
|
eARPLookupResult_t eReturn;
|
||
|
uint32_t ulAddressToLookup;
|
||
|
|
||
|
#if( ipconfigUSE_LLMNR == 1 )
|
||
|
if( *pulIPAddress == ipLLMNR_IP_ADDR ) /* Is in network byte order. */
|
||
|
{
|
||
|
/* The LLMNR IP-address has a fixed virtual MAC address. */
|
||
|
memcpy( pxMACAddress->ucBytes, xLLMNR_MacAdress.ucBytes, sizeof( MACAddress_t ) );
|
||
|
eReturn = eARPCacheHit;
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
if( ( *pulIPAddress == ipBROADCAST_IP_ADDRESS ) || /* Is it the general broadcast address 255.255.255.255? */
|
||
|
( *pulIPAddress == xNetworkAddressing.ulBroadcastAddress ) )/* Or a local broadcast address, eg 192.168.1.255? */
|
||
|
{
|
||
|
/* This is a broadcast so uses the broadcast MAC address. */
|
||
|
memcpy( pxMACAddress->ucBytes, xBroadcastMACAddress.ucBytes, sizeof( MACAddress_t ) );
|
||
|
eReturn = eARPCacheHit;
|
||
|
}
|
||
|
else if( *ipLOCAL_IP_ADDRESS_POINTER == 0UL )
|
||
|
{
|
||
|
/* The IP address has not yet been assigned, so there is nothing that
|
||
|
can be done. */
|
||
|
eReturn = eCantSendPacket;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
eReturn = eARPCacheMiss;
|
||
|
|
||
|
if( ( *pulIPAddress & xNetworkAddressing.ulNetMask ) != ( ( *ipLOCAL_IP_ADDRESS_POINTER ) & xNetworkAddressing.ulNetMask ) )
|
||
|
{
|
||
|
#if( ipconfigARP_STORES_REMOTE_ADDRESSES == 1 )
|
||
|
eReturn = prvCacheLookup( *pulIPAddress, pxMACAddress );
|
||
|
|
||
|
if( eReturn == eARPCacheHit )
|
||
|
{
|
||
|
/* The stack is configured to store 'remote IP addresses', i.e. addresses
|
||
|
belonging to a different the netmask. prvCacheLookup() returned a hit, so
|
||
|
the MAC address is known */
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
{
|
||
|
/* The IP address is off the local network, so look up the
|
||
|
hardware address of the router, if any. */
|
||
|
if( xNetworkAddressing.ulGatewayAddress != ( uint32_t )0u )
|
||
|
{
|
||
|
ulAddressToLookup = xNetworkAddressing.ulGatewayAddress;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ulAddressToLookup = *pulIPAddress;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The IP address is on the local network, so lookup the requested
|
||
|
IP address directly. */
|
||
|
ulAddressToLookup = *pulIPAddress;
|
||
|
}
|
||
|
|
||
|
if( eReturn == eARPCacheMiss )
|
||
|
{
|
||
|
if( ulAddressToLookup == 0UL )
|
||
|
{
|
||
|
/* The address is not on the local network, and there is not a
|
||
|
router. */
|
||
|
eReturn = eCantSendPacket;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
eReturn = prvCacheLookup( ulAddressToLookup, pxMACAddress );
|
||
|
|
||
|
if( eReturn == eARPCacheMiss )
|
||
|
{
|
||
|
/* It might be that the ARP has to go to the gateway. */
|
||
|
*pulIPAddress = ulAddressToLookup;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static eARPLookupResult_t prvCacheLookup( uint32_t ulAddressToLookup, MACAddress_t * const pxMACAddress )
|
||
|
{
|
||
|
BaseType_t x;
|
||
|
eARPLookupResult_t eReturn = eARPCacheMiss;
|
||
|
|
||
|
/* Loop through each entry in the ARP cache. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
/* Does this row in the ARP cache table hold an entry for the IP address
|
||
|
being queried? */
|
||
|
if( xARPCache[ x ].ulIPAddress == ulAddressToLookup )
|
||
|
{
|
||
|
/* A matching valid entry was found. */
|
||
|
if( xARPCache[ x ].ucValid == ( uint8_t ) pdFALSE )
|
||
|
{
|
||
|
/* This entry is waiting an ARP reply, so is not valid. */
|
||
|
eReturn = eCantSendPacket;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* A valid entry was found. */
|
||
|
memcpy( pxMACAddress->ucBytes, xARPCache[ x ].xMACAddress.ucBytes, sizeof( MACAddress_t ) );
|
||
|
eReturn = eARPCacheHit;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vARPAgeCache( void )
|
||
|
{
|
||
|
BaseType_t x;
|
||
|
TickType_t xTimeNow;
|
||
|
|
||
|
/* Loop through each entry in the ARP cache. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
/* If the entry is valid (its age is greater than zero). */
|
||
|
if( xARPCache[ x ].ucAge > 0U )
|
||
|
{
|
||
|
/* Decrement the age value of the entry in this ARP cache table row.
|
||
|
When the age reaches zero it is no longer considered valid. */
|
||
|
( xARPCache[ x ].ucAge )--;
|
||
|
|
||
|
/* If the entry is not yet valid, then it is waiting an ARP
|
||
|
reply, and the ARP request should be retransmitted. */
|
||
|
if( xARPCache[ x ].ucValid == ( uint8_t ) pdFALSE )
|
||
|
{
|
||
|
FreeRTOS_OutputARPRequest( xARPCache[ x ].ulIPAddress );
|
||
|
}
|
||
|
else if( xARPCache[ x ].ucAge <= ( uint8_t ) arpMAX_ARP_AGE_BEFORE_NEW_ARP_REQUEST )
|
||
|
{
|
||
|
/* This entry will get removed soon. See if the MAC address is
|
||
|
still valid to prevent this happening. */
|
||
|
iptraceARP_TABLE_ENTRY_WILL_EXPIRE( xARPCache[ x ].ulIPAddress );
|
||
|
FreeRTOS_OutputARPRequest( xARPCache[ x ].ulIPAddress );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The age has just ticked down, with nothing to do. */
|
||
|
}
|
||
|
|
||
|
if( xARPCache[ x ].ucAge == 0u )
|
||
|
{
|
||
|
/* The entry is no longer valid. Wipe it out. */
|
||
|
iptraceARP_TABLE_ENTRY_EXPIRED( xARPCache[ x ].ulIPAddress );
|
||
|
xARPCache[ x ].ulIPAddress = 0UL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
xTimeNow = xTaskGetTickCount ();
|
||
|
|
||
|
if( ( xLastGratuitousARPTime == ( TickType_t ) 0 ) || ( ( xTimeNow - xLastGratuitousARPTime ) > ( TickType_t ) arpGRATUITOUS_ARP_PERIOD ) )
|
||
|
{
|
||
|
FreeRTOS_OutputARPRequest( *ipLOCAL_IP_ADDRESS_POINTER );
|
||
|
xLastGratuitousARPTime = xTimeNow;
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vARPSendGratuitous( void )
|
||
|
{
|
||
|
/* Setting xLastGratuitousARPTime to 0 will force a gratuitous ARP the next
|
||
|
time vARPAgeCache() is called. */
|
||
|
xLastGratuitousARPTime = ( TickType_t ) 0;
|
||
|
|
||
|
/* Let the IP-task call vARPAgeCache(). */
|
||
|
xSendEventToIPTask( eARPTimerEvent );
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
void FreeRTOS_OutputARPRequest( uint32_t ulIPAddress )
|
||
|
{
|
||
|
NetworkBufferDescriptor_t *pxNetworkBuffer;
|
||
|
|
||
|
/* This is called from the context of the IP event task, so a block time
|
||
|
must not be used. */
|
||
|
pxNetworkBuffer = pxGetNetworkBufferWithDescriptor( sizeof( ARPPacket_t ), ( TickType_t ) 0 );
|
||
|
|
||
|
if( pxNetworkBuffer != NULL )
|
||
|
{
|
||
|
pxNetworkBuffer->ulIPAddress = ulIPAddress;
|
||
|
vARPGenerateRequestPacket( pxNetworkBuffer );
|
||
|
|
||
|
#if defined( ipconfigETHERNET_MINIMUM_PACKET_BYTES )
|
||
|
{
|
||
|
if( pxNetworkBuffer->xDataLength < ( size_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES )
|
||
|
{
|
||
|
BaseType_t xIndex;
|
||
|
|
||
|
for( xIndex = ( BaseType_t ) pxNetworkBuffer->xDataLength; xIndex < ( BaseType_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES; xIndex++ )
|
||
|
{
|
||
|
pxNetworkBuffer->pucEthernetBuffer[ xIndex ] = 0u;
|
||
|
}
|
||
|
pxNetworkBuffer->xDataLength = ( size_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
xNetworkInterfaceOutput( pxNetworkBuffer, pdTRUE );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void vARPGenerateRequestPacket( NetworkBufferDescriptor_t * const pxNetworkBuffer )
|
||
|
{
|
||
|
ARPPacket_t *pxARPPacket;
|
||
|
|
||
|
pxARPPacket = ( ARPPacket_t * ) pxNetworkBuffer->pucEthernetBuffer;
|
||
|
|
||
|
/* memcpy the const part of the header information into the correct
|
||
|
location in the packet. This copies:
|
||
|
xEthernetHeader.ulDestinationAddress
|
||
|
xEthernetHeader.usFrameType;
|
||
|
xARPHeader.usHardwareType;
|
||
|
xARPHeader.usProtocolType;
|
||
|
xARPHeader.ucHardwareAddressLength;
|
||
|
xARPHeader.ucProtocolAddressLength;
|
||
|
xARPHeader.usOperation;
|
||
|
xARPHeader.xTargetHardwareAddress;
|
||
|
*/
|
||
|
memcpy( ( void * ) pxARPPacket, ( void * ) xDefaultPartARPPacketHeader, sizeof( xDefaultPartARPPacketHeader ) );
|
||
|
memcpy( ( void * ) pxARPPacket->xEthernetHeader.xSourceAddress.ucBytes , ( void * ) ipLOCAL_MAC_ADDRESS, ( size_t ) ipMAC_ADDRESS_LENGTH_BYTES );
|
||
|
memcpy( ( void * ) pxARPPacket->xARPHeader.xSenderHardwareAddress.ucBytes, ( void * ) ipLOCAL_MAC_ADDRESS, ( size_t ) ipMAC_ADDRESS_LENGTH_BYTES );
|
||
|
|
||
|
memcpy( ( void* )pxARPPacket->xARPHeader.ucSenderProtocolAddress, ( void* )ipLOCAL_IP_ADDRESS_POINTER, sizeof( pxARPPacket->xARPHeader.ucSenderProtocolAddress ) );
|
||
|
pxARPPacket->xARPHeader.ulTargetProtocolAddress = pxNetworkBuffer->ulIPAddress;
|
||
|
|
||
|
pxNetworkBuffer->xDataLength = sizeof( ARPPacket_t );
|
||
|
|
||
|
iptraceCREATING_ARP_REQUEST( pxNetworkBuffer->ulIPAddress );
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void FreeRTOS_ClearARP( void )
|
||
|
{
|
||
|
memset( xARPCache, '\0', sizeof( xARPCache ) );
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if( ipconfigHAS_PRINTF != 0 ) || ( ipconfigHAS_DEBUG_PRINTF != 0 )
|
||
|
|
||
|
void FreeRTOS_PrintARPCache( void )
|
||
|
{
|
||
|
BaseType_t x, xCount = 0;
|
||
|
|
||
|
/* Loop through each entry in the ARP cache. */
|
||
|
for( x = 0; x < ipconfigARP_CACHE_ENTRIES; x++ )
|
||
|
{
|
||
|
if( ( xARPCache[ x ].ulIPAddress != 0ul ) && ( xARPCache[ x ].ucAge > 0U ) )
|
||
|
{
|
||
|
/* See if the MAC-address also matches, and we're all happy */
|
||
|
FreeRTOS_printf( ( "Arp %2ld: %3u - %16lxip : %02x:%02x:%02x : %02x:%02x:%02x\n",
|
||
|
x,
|
||
|
xARPCache[ x ].ucAge,
|
||
|
xARPCache[ x ].ulIPAddress,
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[0],
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[1],
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[2],
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[3],
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[4],
|
||
|
xARPCache[ x ].xMACAddress.ucBytes[5] ) );
|
||
|
xCount++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FreeRTOS_printf( ( "Arp has %ld entries\n", xCount ) );
|
||
|
}
|
||
|
|
||
|
#endif /* ( ipconfigHAS_PRINTF != 0 ) || ( ipconfigHAS_DEBUG_PRINTF != 0 ) */
|