Firmwares/riscv-bldc-forced-commutation/src/riscv-bldc.cpp

250 lines
8.3 KiB
C++

//============================================================================
// Name : riscv-bldc.cpp
// Author : Eyck Jentzsch
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include "riscv-bldc.h"
#include "delay.h"
#include "bsp.h"
#include "plic/plic_driver.h"
#include <cstdio>
#include <cstdint>
#include "hifive1_io.h"
volatile uint32_t nextCommutationStep;
/*
Kommutierungsblöcke
1 2 3 4 5 6
U 0 z +1 +1 z 0
V +1 +1 z 0 0 z
W z 0 0 z +1 +1
*/
std::array<uint32_t, 6> driveTable { //! Drive pattern for commutation, CW rotation
((1 << VH) | (1 << UL)), //1
((1 << VH) | (1 << WL)), //2
((1 << UH) | (1 << WL)), //3
((1 << UH) | (1 << VL)), //4
((1 << WH) | (1 << VL)), //5
((1 << WH) | (1 << UL)) //6
};
std::array<uint32_t, 6> senseTable { //! channels to sense during the applied pattern
SENSW_N, //1
SENSU_P, //2
SENSV_N, //3
SENSW_P, //4
SENSU_N, //5
SENSV_P //6
};
std::array<unsigned int, 18> startupDelays{
/*
200, 150, 100, 80, 70, 65,
60, 55, 50, 45, 40, 35,
25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25
*/
150, 90, 70, 50, 40, 35,
30, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25
};
bool ccw=false;
typedef void (*function_ptr_t) (void);
// Instance data for the PLIC.
plic_instance_t g_plic;
std::array<function_ptr_t,PLIC_NUM_INTERRUPTS> g_ext_interrupt_handlers;
extern "C" void handle_m_ext_interrupt() {
plic_source int_num = PLIC_claim_interrupt(&g_plic);
if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS))
g_ext_interrupt_handlers[int_num]();
else
exit(1 + (uintptr_t) int_num);
PLIC_complete_interrupt(&g_plic, int_num);
}
// 1sec interval interrupt
extern "C" void handle_m_time_interrupt(){
clear_csr(mie, MIP_MTIP);
// Reset the timer for 3s in the future.
// This also clears the existing timer interrupt.
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
uint64_t now = *mtime;
uint64_t then = now + RTC_FREQ;
*mtimecmp = then;
// Re-enable the timer interrupt.
set_csr(mie, MIP_MTIP);
}
void no_interrupt_handler (void) {};
void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1) {
g_ext_interrupt_handlers[irq_num] = handler;
// Priority must be set > 0 to trigger the interrupt.
PLIC_set_priority(&g_plic, irq_num, prio);
// Have to enable the interrupt both at the GPIO level, and at the PLIC level.
PLIC_enable_interrupt(&g_plic, irq_num);
}
void platform_init(){
// configure clocks
PRCI_use_hfxosc(1); // is equivalent to
// init UART0 at 115200 baud
auto baud_rate=115200;
gpio0::output_en_reg()=0xffffffff;
gpio0::iof_sel_reg()&=~IOF0_UART0_MASK;
gpio0::iof_en_reg()|= IOF0_UART0_MASK;
uart0::div_reg()=get_cpu_freq() / baud_rate - 1;
uart0::txctrl_reg().txen=1;
// init SPI
gpio0::iof_sel_reg()&=~IOF0_SPI1_MASK;
gpio0::iof_en_reg()|= IOF0_SPI1_MASK;
qspi1::sckdiv_reg() = 8;
F_CPU=PRCI_measure_mcycle_freq(20, RTC_FREQ);
printf("core freq at %d Hz\n", F_CPU);
// initialie interupt & trap handling
write_csr(mtvec, &trap_entry);
if (read_csr(misa) & (1 << ('F' - 'A'))) { // if F extension is present
write_csr(mstatus, MSTATUS_FS); // allow FPU instructions without trapping
write_csr(fcsr, 0); // initialize rounding mode, undefined at reset
}
PLIC_init(&g_plic, PLIC_CTRL_ADDR, PLIC_NUM_INTERRUPTS, PLIC_NUM_PRIORITIES);
// Disable the machine & timer interrupts until setup is done.
clear_csr(mie, MIP_MEIP);
clear_csr(mie, MIP_MTIP);
for (auto& h:g_ext_interrupt_handlers) h=no_interrupt_handler;
configure_irq(40, pwm0::pwm_interrupt_handler);
configure_irq(6, qspi1::spi_rx_interrupt_handler);
// Set the machine timer to go off in 1 second.
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
uint64_t now = *mtime;
uint64_t then = now + RTC_FREQ;
*mtimecmp = then;
// Enable the Machine-External bit in MIE
set_csr(mie, MIP_MEIP);
// Enable the Machine-Timer bit in MIE
set_csr(mie, MIP_MTIP);
// Enable interrupts in general.
set_csr(mstatus, MSTATUS_MIE);
}
unsigned read_adc(unsigned channel){
std::array<uint8_t, 3> bytes{
uint8_t(0x06 | (channel>>2 & 0x1)), /* start bit, single ended measurement, channel[2] */
uint8_t((channel&0x3)<<6), /* channel[1:0], fill*/
0x0 /* fill */
};
// set CS of target
qspi1::csid_reg()=0;
qspi1::transfer(bytes);
return (bytes[1]&0xf)*256+bytes[2];
}
/*! \brief Generates a delay used during startup
*
* This functions is used to generate a delay during the startup procedure.
* The length of the delay equals delay * STARTUP_DELAY_MULTIPLIER microseconds.
* Since Timer/Counter1 is used in this function, it must never be called when
* sensorless operation is running.
*/
void fixed_delay(unsigned short delay){
pwm0::oneshot_delay(STARTUP_DELAY_MULTIPLIER*delay);
}
unsigned short measured_zc_time(unsigned short max_delay){
long delay_us = max_delay * STARTUP_DELAY_MULTIPLIER;
auto scaling_factor=0;
while(delay_us/(1<<scaling_factor) > std::numeric_limits<unsigned short>::max()){
scaling_factor++;
}
pwm0::cfg_reg()=0;
pwm0::count_reg()=0;
pwm0::cfg_reg().scale = 4+scaling_factor; // divide by 16 so we get 1us per pwm clock
pwm0::cmp0_reg().cmp0 = delay_us/(1<<scaling_factor);
pwm0::set_active();
pwm0::cfg_reg().enoneshot=true;
uint32_t channel=senseTable[nextCommutationStep]&0x3;
bool zc_neg = senseTable[nextCommutationStep]>3;
uint32_t adc_res=0;
do{
adc_res=read_adc(channel);
if((zc_neg && adc_res<2048) || (!zc_neg && adc_res>2047))
break;
} while(pwm0::is_active());
uint32_t sreg = pwm0::s_reg();
pwm0::cfg_reg().enoneshot=false;
return sreg*(1<<scaling_factor);
}
void next_commutation_step(void) {
if (ccw) {
if (nextCommutationStep == 0)
nextCommutationStep = 0;
else
nextCommutationStep--;
} else {
if (nextCommutationStep == 5)
nextCommutationStep = 0;
else
nextCommutationStep++;
}
}
void start_motor(void){
nextCommutationStep = 0;
//Preposition.
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK) | driveTable[nextCommutationStep];
fixed_delay(STARTUP_LOCK_DELAY);
next_commutation_step();
auto nextDrivePattern = driveTable[nextCommutationStep];
const size_t size=startupDelays.size();
for (size_t i = 0; i < startupDelays.size()+6*10; i++){
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff)
| nextDrivePattern | nextCommutationStep<<24;
auto channel=senseTable[nextCommutationStep]&0x3;
auto zcPolRise = senseTable[nextCommutationStep]<4;
auto bemf_0=read_adc(channel);
fixed_delay(startupDelays[i>=size?size-1:i]);
auto bemf_1=read_adc(channel);
auto bemf = bemf_1>bemf_0?bemf_1-bemf_0:bemf_0-bemf_1;
next_commutation_step();
nextDrivePattern = driveTable[nextCommutationStep];
// if(i>12 && bemf>32 && ((zcPolRise && bemf_0<2048 && bemf_1>2047) || (!zcPolRise && bemf_0>2047 && bemf_1<2048)))
// return;
}
}
void run_motor(void){
auto count=0;
auto zc_delay=0U;
auto tmp=0U;
auto nextDrivePattern = driveTable[nextCommutationStep];
for(;;){
gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff)
| nextDrivePattern | nextCommutationStep<<24;
zc_delay=measured_zc_time(500);
pwm0::oneshot_delay(zc_delay);
next_commutation_step();
nextDrivePattern = driveTable[nextCommutationStep];
}
}
int main() {
platform_init();
printf("Starting motor\n");
start_motor();
printf("done...\n");
// Switch to sensorless commutation.
run_motor();
return 0;
}