459 lines
16 KiB
C++
459 lines
16 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, MINRES Technologies GmbH
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Contributors:
|
|
// eyck@minres.com - initial API and implementation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <iss/iss.h>
|
|
#include <iss/llvm/vm_base.h>
|
|
|
|
extern "C" {
|
|
#include <softfloat.h>
|
|
#include "internals.h"
|
|
#include "specialize.h"
|
|
}
|
|
|
|
#include <limits>
|
|
|
|
namespace iss {
|
|
namespace vm {
|
|
namespace fp_impl {
|
|
|
|
using namespace std;
|
|
|
|
#define INT_TYPE(L) Type::getIntNTy(mod->getContext(), L)
|
|
#define FLOAT_TYPE Type::getFloatTy(mod->getContext())
|
|
#define DOUBLE_TYPE Type::getDoubleTy(mod->getContext())
|
|
#define VOID_TYPE Type::getVoidTy(mod->getContext())
|
|
#define THIS_PTR_TYPE Type::getIntNPtrTy(mod->getContext(), 8)
|
|
#define FDECLL(NAME, RET, ...) \
|
|
Function *NAME##_func = CurrentModule->getFunction(#NAME); \
|
|
if (!NAME##_func) { \
|
|
std::vector<Type *> NAME##_args{__VA_ARGS__}; \
|
|
FunctionType *NAME##_type = FunctionType::get(RET, NAME##_args, false); \
|
|
NAME##_func = Function::Create(NAME##_type, GlobalValue::ExternalLinkage, #NAME, CurrentModule); \
|
|
NAME##_func->setCallingConv(CallingConv::C); \
|
|
}
|
|
|
|
#define FDECL(NAME, RET, ...) \
|
|
std::vector<Type *> NAME##_args{__VA_ARGS__}; \
|
|
FunctionType *NAME##_type = llvm::FunctionType::get(RET, NAME##_args, false); \
|
|
mod->getOrInsertFunction(#NAME, NAME##_type);
|
|
|
|
using namespace llvm;
|
|
|
|
void add_fp_functions_2_module(Module *mod, uint32_t flen) {
|
|
if(flen){
|
|
FDECL(fget_flags, INT_TYPE(32));
|
|
FDECL(fadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fsub_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fmul_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fdiv_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fsqrt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fcmp_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
|
|
FDECL(fcvt_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fmadd_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fsel_s, INT_TYPE(32), INT_TYPE(32), INT_TYPE(32), INT_TYPE(32));
|
|
FDECL(fclass_s, INT_TYPE(32), INT_TYPE(32));
|
|
if(flen>32){
|
|
FDECL(fconv_d2f, INT_TYPE(32), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fconv_f2d, INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fsub_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fmul_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fdiv_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fsqrt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(8));
|
|
FDECL(fcmp_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
|
|
FDECL(fcvt_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fmadd_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32), INT_TYPE(8));
|
|
FDECL(fsel_d, INT_TYPE(64), INT_TYPE(64), INT_TYPE(64), INT_TYPE(32));
|
|
FDECL(fclass_d, INT_TYPE(64), INT_TYPE(64));
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
using this_t = uint8_t *;
|
|
const uint8_t rmm_map[] = {
|
|
softfloat_round_near_even /*RNE*/,
|
|
softfloat_round_minMag/*RTZ*/,
|
|
softfloat_round_min/*RDN*/,
|
|
softfloat_round_max/*RUP?*/,
|
|
softfloat_round_near_maxMag /*RMM*/,
|
|
softfloat_round_max/*RTZ*/,
|
|
softfloat_round_max/*RTZ*/,
|
|
softfloat_round_max/*RTZ*/,
|
|
};
|
|
|
|
const uint32_t quiet_nan32=0x7fC00000;
|
|
|
|
extern "C" {
|
|
|
|
uint32_t fget_flags(){
|
|
return softfloat_exceptionFlags&0x1f;
|
|
}
|
|
|
|
uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) {
|
|
float32_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r =f32_add(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) {
|
|
float32_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r=f32_sub(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) {
|
|
float32_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r=f32_mul(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) {
|
|
float32_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r=f32_div(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint32_t fsqrt_s(uint32_t v1, uint8_t mode) {
|
|
float32_t v1f{v1};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r=f32_sqrt(v1f);
|
|
return r.v;
|
|
}
|
|
|
|
uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) {
|
|
float32_t v1f{v1},v2f{v2};
|
|
softfloat_exceptionFlags=0;
|
|
bool nan = (v1&defaultNaNF32UI)==quiet_nan32 || (v2&defaultNaNF32UI)==quiet_nan32;
|
|
bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2);
|
|
switch(op){
|
|
case 0:
|
|
if(nan | snan){
|
|
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f32_eq(v1f,v2f )?1:0;
|
|
case 1:
|
|
if(nan | snan){
|
|
softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f32_le(v1f,v2f )?1:0;
|
|
case 2:
|
|
if(nan | snan){
|
|
softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f32_lt(v1f,v2f )?1:0;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) {
|
|
float32_t v1f{v1};
|
|
softfloat_exceptionFlags=0;
|
|
float32_t r;
|
|
int32_t res;
|
|
switch(op){
|
|
case 0: //w->s, fp to int32
|
|
res = f32_to_i32(v1f,rmm_map[mode&0x7],true);
|
|
return (uint32_t)res;
|
|
case 1: //wu->s
|
|
return f32_to_ui32(v1f,rmm_map[mode&0x7],true);
|
|
case 2: //s->w
|
|
r=i32_to_f32(v1);
|
|
return r.v;
|
|
case 3: //s->wu
|
|
r=ui32_to_f32(v1);
|
|
return r.v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) {
|
|
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float32_t res = softfloat_mulAddF32(v1, v2, v3, op&0x1);
|
|
if(op>1) res.v ^= 1ULL<<31;
|
|
return res.v;
|
|
}
|
|
|
|
uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op) {
|
|
softfloat_exceptionFlags = 0;
|
|
bool v1_nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI;
|
|
bool v2_nan = (v2 & defaultNaNF32UI) == defaultNaNF32UI;
|
|
bool v1_snan = softfloat_isSigNaNF32UI(v1);
|
|
bool v2_snan = softfloat_isSigNaNF32UI(v2);
|
|
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
|
|
if (v1_nan || v1_snan)
|
|
return (v2_nan || v2_snan) ? defaultNaNF32UI : v2;
|
|
else
|
|
if (v2_nan || v2_snan)
|
|
return v1;
|
|
else {
|
|
if ((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) {
|
|
return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1);
|
|
} else {
|
|
float32_t v1f{ v1 }, v2f{ v2 };
|
|
return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t fclass_s( uint32_t v1 ){
|
|
|
|
float32_t a{v1};
|
|
union ui32_f32 uA;
|
|
uint_fast32_t uiA;
|
|
|
|
uA.f = a;
|
|
uiA = uA.ui;
|
|
|
|
uint_fast16_t infOrNaN = expF32UI( uiA ) == 0xFF;
|
|
uint_fast16_t subnormalOrZero = expF32UI( uiA ) == 0;
|
|
bool sign = signF32UI( uiA );
|
|
bool fracZero = fracF32UI( uiA ) == 0;
|
|
bool isNaN = isNaNF32UI( uiA );
|
|
bool isSNaN = softfloat_isSigNaNF32UI( uiA );
|
|
|
|
return
|
|
( sign && infOrNaN && fracZero ) << 0 |
|
|
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
|
|
( sign && subnormalOrZero && !fracZero ) << 2 |
|
|
( sign && subnormalOrZero && fracZero ) << 3 |
|
|
( !sign && infOrNaN && fracZero ) << 7 |
|
|
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
|
|
( !sign && subnormalOrZero && !fracZero ) << 5 |
|
|
( !sign && subnormalOrZero && fracZero ) << 4 |
|
|
( isNaN && isSNaN ) << 8 |
|
|
( isNaN && !isSNaN ) << 9;
|
|
}
|
|
|
|
uint32_t fconv_d2f(uint64_t v1, uint8_t mode){
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
bool nan = (v1 & defaultNaNF64UI)==defaultNaNF64UI;
|
|
if(nan){
|
|
return defaultNaNF32UI;
|
|
} else {
|
|
float32_t res = f64_to_f32(float64_t{v1});
|
|
return res.v;
|
|
}
|
|
}
|
|
|
|
uint64_t fconv_f2d(uint32_t v1, uint8_t mode){
|
|
bool nan = (v1 & defaultNaNF32UI)==defaultNaNF32UI;
|
|
if(nan){
|
|
return defaultNaNF64UI;
|
|
} else {
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
float64_t res = f32_to_f64(float32_t{v1});
|
|
return res.v;
|
|
}
|
|
}
|
|
|
|
uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) {
|
|
bool nan = (v1&defaultNaNF32UI)==quiet_nan32;
|
|
bool snan = softfloat_isSigNaNF32UI(v1);
|
|
float64_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r =f64_add(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) {
|
|
float64_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r=f64_sub(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) {
|
|
float64_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r=f64_mul(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) {
|
|
float64_t v1f{v1},v2f{v2};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r=f64_div(v1f, v2f);
|
|
return r.v;
|
|
}
|
|
|
|
uint64_t fsqrt_d(uint64_t v1, uint8_t mode) {
|
|
float64_t v1f{v1};
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r=f64_sqrt(v1f);
|
|
return r.v;
|
|
}
|
|
|
|
uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) {
|
|
float64_t v1f{v1},v2f{v2};
|
|
softfloat_exceptionFlags=0;
|
|
bool nan = (v1&defaultNaNF64UI)==quiet_nan32 || (v2&defaultNaNF64UI)==quiet_nan32;
|
|
bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2);
|
|
switch(op){
|
|
case 0:
|
|
if(nan | snan){
|
|
if(snan) softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f64_eq(v1f,v2f )?1:0;
|
|
case 1:
|
|
if(nan | snan){
|
|
softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f64_le(v1f,v2f )?1:0;
|
|
case 2:
|
|
if(nan | snan){
|
|
softfloat_raiseFlags(softfloat_flag_invalid);
|
|
return 0;
|
|
} else
|
|
return f64_lt(v1f,v2f )?1:0;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) {
|
|
float64_t v1f{v1};
|
|
softfloat_exceptionFlags=0;
|
|
float64_t r;
|
|
int32_t res;
|
|
switch(op){
|
|
case 0: //w->s, fp to int32
|
|
res = f64_to_i64(v1f,rmm_map[mode&0x7],true);
|
|
return (uint64_t)res;
|
|
case 1: //wu->s
|
|
return f64_to_ui64(v1f,rmm_map[mode&0x7],true);
|
|
case 2: //s->w
|
|
r=i64_to_f64(v1);
|
|
return r.v;
|
|
case 3: //s->wu
|
|
r=ui64_to_f64(v1);
|
|
return r.v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) {
|
|
// op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)}
|
|
softfloat_roundingMode=rmm_map[mode&0x7];
|
|
softfloat_exceptionFlags=0;
|
|
float64_t res = softfloat_mulAddF64(v1, v2, v3, op&0x1);
|
|
if(op>1) res.v ^= 1ULL<<63;
|
|
return res.v;
|
|
}
|
|
|
|
uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) {
|
|
softfloat_exceptionFlags = 0;
|
|
bool v1_nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI;
|
|
bool v2_nan = (v2 & defaultNaNF64UI) == defaultNaNF64UI;
|
|
bool v1_snan = softfloat_isSigNaNF64UI(v1);
|
|
bool v2_snan = softfloat_isSigNaNF64UI(v2);
|
|
if (v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid);
|
|
if (v1_nan || v1_snan)
|
|
return (v2_nan || v2_snan) ? defaultNaNF64UI : v2;
|
|
else
|
|
if (v2_nan || v2_snan)
|
|
return v1;
|
|
else {
|
|
if ((v1 & std::numeric_limits<int64_t>::max()) == 0 && (v2 & std::numeric_limits<int64_t>::max()) == 0) {
|
|
return op == 0 ?
|
|
((v1 & std::numeric_limits<int64_t>::min()) ? v1 : v2) :
|
|
((v1 & std::numeric_limits<int64_t>::min()) ? v2 : v1);
|
|
} else {
|
|
float64_t v1f{ v1 }, v2f{ v2 };
|
|
return op == 0 ?
|
|
(f64_lt(v1f, v2f) ? v1 : v2) :
|
|
(f64_lt(v1f, v2f) ? v2 : v1);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t fclass_d(uint64_t v1 ){
|
|
|
|
float64_t a{v1};
|
|
union ui64_f64 uA;
|
|
uint_fast64_t uiA;
|
|
|
|
uA.f = a;
|
|
uiA = uA.ui;
|
|
|
|
uint_fast16_t infOrNaN = expF64UI( uiA ) == 0x7FF;
|
|
uint_fast16_t subnormalOrZero = expF64UI( uiA ) == 0;
|
|
bool sign = signF64UI( uiA );
|
|
bool fracZero = fracF64UI( uiA ) == 0;
|
|
bool isNaN = isNaNF64UI( uiA );
|
|
bool isSNaN = softfloat_isSigNaNF64UI( uiA );
|
|
|
|
return
|
|
( sign && infOrNaN && fracZero ) << 0 |
|
|
( sign && !infOrNaN && !subnormalOrZero ) << 1 |
|
|
( sign && subnormalOrZero && !fracZero ) << 2 |
|
|
( sign && subnormalOrZero && fracZero ) << 3 |
|
|
( !sign && infOrNaN && fracZero ) << 7 |
|
|
( !sign && !infOrNaN && !subnormalOrZero ) << 6 |
|
|
( !sign && subnormalOrZero && !fracZero ) << 5 |
|
|
( !sign && subnormalOrZero && fracZero ) << 4 |
|
|
( isNaN && isSNaN ) << 8 |
|
|
( isNaN && !isSNaN ) << 9;
|
|
}
|
|
|
|
}
|
|
|