HIFIVE1-VP/riscv/incl/iss/arch/riscv_hart_msu_vp.h

1270 lines
49 KiB
C++

/*******************************************************************************
* Copyright (C) 2017, MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* eyck@minres.com - initial API and implementation
******************************************************************************/
#ifndef _RISCV_CORE_H_
#define _RISCV_CORE_H_
#include <elfio/elfio.hpp>
#include <iomanip>
#include <iss/arch/traits.h>
#include <iss/arch_if.h>
#include <iss/log_categories.h>
#include <iss/vm_if.h>
#include <sstream>
#include <unordered_map>
#include <util/ities.h>
#include <util/sparse_array.h>
#include <util/bit_field.h>
namespace iss {
namespace arch {
enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 };
enum csr_name {
/* user-level CSR */
// User Trap Setup
ustatus = 0x000,
uie = 0x004,
utvec = 0x005,
// User Trap Handling
uscratch = 0x040,
uepc = 0x041,
ucause = 0x042,
utval = 0x043,
uip = 0x044,
// User Floating-Point CSRs
fflags = 0x001,
frm = 0x002,
fcsr = 0x003,
// User Counter/Timers
cycle = 0xC00,
time = 0xC01,
instret = 0xC02,
hpmcounter3 = 0xC03,
hpmcounter4 = 0xC04,
/*...*/
hpmcounter31 = 0xC1F,
cycleh = 0xC80,
timeh = 0xC81,
instreth = 0xC82,
hpmcounter3h = 0xC83,
hpmcounter4h = 0xC84,
/*...*/
hpmcounter31h = 0xC9F,
/* supervisor-level CSR */
// Supervisor Trap Setup
sstatus = 0x100,
sedeleg = 0x102,
sideleg = 0x103,
sie = 0x104,
stvec = 0x105,
scounteren = 0x106,
// Supervisor Trap Handling
sscratch = 0x140,
sepc = 0x141,
scause = 0x142,
stval = 0x143,
sip = 0x144,
// Supervisor Protection and Translation
satp = 0x180,
/* machine-level CSR */
// Machine Information Registers
mvendorid = 0xF11,
marchid = 0xF12,
mimpid = 0xF13,
mhartid = 0xF14,
// Machine Trap Setup
mstatus = 0x300,
misa = 0x301,
medeleg = 0x302,
mideleg = 0x303,
mie = 0x304,
mtvec = 0x305,
mcounteren = 0x306,
// Machine Trap Handling
mscratch = 0x340,
mepc = 0x341,
mcause = 0x342,
mtval = 0x343,
mip = 0x344,
// Machine Protection and Translation
pmpcfg0 = 0x3A0,
pmpcfg1 = 0x3A1,
pmpcfg2 = 0x3A2,
pmpcfg3 = 0x3A3,
pmpaddr0 = 0x3B0,
pmpaddr1 = 0x3B1,
/*...*/
pmpaddr15 = 0x3BF,
// Machine Counter/Timers
mcycle = 0xB00,
minstret = 0xB02,
mhpmcounter3 = 0xB03,
mhpmcounter4 = 0xB04,
/*...*/
mhpmcounter31 = 0xB1F,
mcycleh = 0xB80,
minstreth = 0xB82,
mhpmcounter3h = 0xB83,
mhpmcounter4h = 0xB84,
/*...*/
mhpmcounter31h = 0xB9F,
// Machine Counter Setup
mhpmevent3 = 0x323,
mhpmevent4 = 0x324,
/*...*/
mhpmevent31 = 0x33F,
// Debug/Trace Registers (shared with Debug Mode)
tselect = 0x7A0,
tdata1 = 0x7A1,
tdata2 = 0x7A2,
tdata3 = 0x7A3,
// Debug Mode Registers
dcsr = 0x7B0,
dpc = 0x7B1,
dscratch = 0x7B2
};
namespace {
const char lvl[] = {'U', 'S', 'H', 'M'};
const char *trap_str[] = {"Instruction address misaligned", //0
"Instruction access fault", //1
"Illegal instruction", //2
"Breakpoint", //3
"Load address misaligned", //4
"Load access fault", //5
"Store/AMO address misaligned", //6
"Store/AMO access fault", //7
"Environment call from U-mode", //8
"Environment call from S-mode", //9
"Reserved", //a
"Environment call from M-mode", //b
"Instruction page fault", //c
"Load page fault", //d
"Reserved", //e
"Store/AMO page fault"}; //f
const char *irq_str[] = {
"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"};
enum {
PGSHIFT = 12,
PTE_PPN_SHIFT = 10,
// page table entry (PTE) fields
PTE_V = 0x001, // Valid
PTE_R = 0x002, // Read
PTE_W = 0x004, // Write
PTE_X = 0x008, // Execute
PTE_U = 0x010, // User
PTE_G = 0x020, // Global
PTE_A = 0x040, // Accessed
PTE_D = 0x080, // Dirty
PTE_SOFT = 0x300 // Reserved for Software
};
template <typename T> inline bool PTE_TABLE(T PTE) { return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); }
enum { PRIV_U = 0, PRIV_S = 1, PRIV_M = 3 };
enum {
ISA_A = 1,
ISA_B = 1 << 1,
ISA_C = 1 << 2,
ISA_D = 1 << 3,
ISA_E = 1 << 4,
ISA_F = 1 << 5,
ISA_G = 1 << 6,
ISA_I = 1 << 8,
ISA_M = 1 << 12,
ISA_N = 1 << 13,
ISA_Q = 1 << 16,
ISA_S = 1 << 18,
ISA_U = 1 << 20
};
struct vm_info {
int levels;
int idxbits;
int ptesize;
uint64_t ptbase;
};
class trap_load_access_fault : public trap_access {
public:
trap_load_access_fault(uint64_t badaddr)
: trap_access(5 << 16, badaddr) {}
};
class illegal_instruction_fault : public trap_access {
public:
illegal_instruction_fault(uint64_t badaddr)
: trap_access(2 << 16, badaddr) {}
};
class trap_instruction_page_fault : public trap_access {
public:
trap_instruction_page_fault(uint64_t badaddr)
: trap_access(12 << 16, badaddr) {}
};
class trap_load_page_fault : public trap_access {
public:
trap_load_page_fault(uint64_t badaddr)
: trap_access(13 << 16, badaddr) {}
};
class trap_store_page_fault : public trap_access {
public:
trap_store_page_fault(uint64_t badaddr)
: trap_access(15 << 16, badaddr) {}
};
}
template <typename BASE> class riscv_hart_msu_vp : public BASE {
public:
using super = BASE;
using this_class = riscv_hart_msu_vp<BASE>;
using virt_addr_t = typename super::virt_addr_t;
using phys_addr_t = typename super::phys_addr_t;
using reg_t = typename super::reg_t;
using addr_t = typename super::addr_t;
using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &);
using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t);
// primary template
template<class T, class Enable = void> struct hart_state { };
// specialization 32bit
template <typename T>
class hart_state<T, typename std::enable_if<std::is_same<T, uint32_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 31, 1);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0;
void write_mstatus(T val, unsigned priv_lvl){
auto mask = get_mask(priv_lvl);
auto new_val = (mstatus & ~mask) | (val & mask);
mstatus=new_val;
}
T satp;
static constexpr T get_misa() { return (1UL << 30) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
static constexpr uint32_t get_mask(unsigned priv_lvl) {
switch (priv_lvl) {
case PRIV_U: return 0x80000011UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001
case PRIV_S: return 0x800de133UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011
default: return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011
}
}
static inline vm_info decode_vm_info(uint32_t state, T sptbr) {
if (state == PRIV_M) return {0, 0, 0, 0};
if (state <= PRIV_S)
switch (bit_sub<31, 1>(sptbr)) {
case 0: return {0, 0, 0, 0}; // off
case 1: return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; // SV32
default: abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
};
// specialization 64bit
template <typename T>
class hart_state<T, typename std::enable_if<std::is_same<T, uint64_t>::value>::type> {
public:
BEGIN_BF_DECL(mstatus_t, T);
// SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11)))
BF_FIELD(SD, 63, 1);
// value of XLEN for S-mode
BF_FIELD(SXL, 34, 2);
// value of XLEN for U-mode
BF_FIELD(UXL, 32, 2);
// Trap SRET
BF_FIELD(TSR, 22, 1);
// Timeout Wait
BF_FIELD(TW, 21, 1);
// Trap Virtual Memory
BF_FIELD(TVM, 20, 1);
// Make eXecutable Readable
BF_FIELD(MXR, 19, 1);
// permit Supervisor User Memory access
BF_FIELD(SUM, 18, 1);
// Modify PRiVilege
BF_FIELD(MPRV, 17, 1);
// status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty
BF_FIELD(XS, 15, 2);
// floating-point unit status Off/Initial/Clean/Dirty
BF_FIELD(FS, 13, 2);
// machine previous privilege
BF_FIELD(MPP, 11, 2);
// supervisor previous privilege
BF_FIELD(SPP, 8, 1);
// previous machine interrupt-enable
BF_FIELD(MPIE, 7, 1);
// previous supervisor interrupt-enable
BF_FIELD(SPIE, 5, 1);
// previous user interrupt-enable
BF_FIELD(UPIE, 4, 1);
// machine interrupt-enable
BF_FIELD(MIE, 3, 1);
// supervisor interrupt-enable
BF_FIELD(SIE, 1, 1);
// user interrupt-enable
BF_FIELD(UIE, 0, 1);
END_BF_DECL();
mstatus_t mstatus;
static const reg_t mstatus_reset_val = 0xa00000000;
void write_mstatus(T val, unsigned priv_lvl){
T old_val = mstatus;
auto mask = get_mask(priv_lvl);
auto new_val = (old_val & ~mask) | (val & mask);
if((new_val&mstatus.SXL.Mask)==0){
new_val |= old_val&mstatus.SXL.Mask;
}
if((new_val&mstatus.UXL.Mask)==0){
new_val |= old_val&mstatus.UXL.Mask;
}
mstatus=new_val;
}
T satp;
static constexpr T get_misa() { return (2ULL << 62) | ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M; }
static constexpr T get_mask(unsigned priv_lvl) {
switch (priv_lvl) {
case PRIV_U: return 0x8000000f00000011ULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
case PRIV_S: return 0x8000000f000de133ULL; // 0b1...0 0011 0000 0000 0000 1101 1110 0001 0011 0011
default: return 0x8000000f007ff9ddULL; // 0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011
}
}
static inline vm_info decode_vm_info(uint32_t state, T sptbr) {
if (state == PRIV_M) return {0, 0, 0, 0};
if (state <= PRIV_S)
switch (bit_sub<60, 4>(sptbr)) {
case 0: return {0, 0, 0, 0}; // off
case 8: return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV39
case 9: return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV48
case 10: return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV57
case 11: return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT};// SV64
default: abort();
}
abort();
return {0, 0, 0, 0}; // dummy
}
};
const typename super::reg_t PGSIZE = 1 << PGSHIFT;
const typename super::reg_t PGMASK = PGSIZE - 1;
constexpr reg_t get_irq_mask(size_t mode) {
const reg_t m[4] = {
0b000100010001, // U mode
0b001100110011, // S-mode
0,
0b101110111011 // M-mode
};
return m[mode];
}
riscv_hart_msu_vp();
virtual ~riscv_hart_msu_vp() = default;
void reset(uint64_t address) override;
void load_file(std::string name, int type = -1) override;
virtual phys_addr_t v2p(const iss::addr_t &addr);
iss::status read(const iss::addr_t &addr, unsigned length, uint8_t *const data) override;
iss::status write(const iss::addr_t &addr, unsigned length, const uint8_t *const data) override;
virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_msu_vp::enter_trap(flags, fault_data); }
virtual uint64_t enter_trap(uint64_t flags, uint64_t addr) override;
virtual uint64_t leave_trap(uint64_t flags) override;
void wait_until(uint64_t flags) override;
void notify_phase(iss::arch_if::exec_phase phase);
void disass_output(uint64_t pc, const std::string instr) override {
std::stringstream s;
s << "[p:" << lvl[this->reg.machine_state] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)state.mstatus << std::dec << ";c:" << this->reg.icount << "]";
CLOG(INFO, disass) << "0x"<<std::setw(16)<<std::setfill('0')<<std::hex<<pc<<"\t\t"<<instr<<"\t"<<s.str();
};
protected:
virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data);
virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data);
virtual iss::status read_csr(unsigned addr, reg_t &val);
virtual iss::status write_csr(unsigned addr, reg_t val);
uint64_t tohost = tohost_dflt;
uint64_t fromhost = fromhost_dflt;
reg_t fault_data;
using mem_type = util::sparse_array<uint8_t, 1ULL << 32>;
using csr_type = util::sparse_array<typename traits<BASE>::reg_t, 1ULL << 12, 12>;
using csr_page_type = typename csr_type::page_type;
mem_type mem;
csr_type csr;
hart_state<reg_t> state;
unsigned to_host_wr_cnt = 0;
std::stringstream uart_buf;
std::unordered_map<reg_t, uint64_t> ptw;
std::unordered_map<uint64_t, uint8_t> atomic_reservation;
std::unordered_map<unsigned, rd_csr_f> csr_rd_cb;
std::unordered_map<unsigned, wr_csr_f> csr_wr_cb;
private:
iss::status read_cycle(unsigned addr, reg_t &val);
iss::status read_time(unsigned addr, reg_t &val);
iss::status read_status(unsigned addr, reg_t &val);
iss::status write_status(unsigned addr, reg_t val);
iss::status read_ie(unsigned addr, reg_t &val);
iss::status write_ie(unsigned addr, reg_t val);
iss::status read_ip(unsigned addr, reg_t &val);
iss::status write_ip(unsigned addr, reg_t val);
iss::status read_satp(unsigned addr, reg_t &val);
iss::status write_satp(unsigned addr, reg_t val);
protected:
void check_interrupt();
};
template <typename BASE>
riscv_hart_msu_vp<BASE>::riscv_hart_msu_vp()
: state() {
csr[misa] = hart_state<reg_t>::get_misa();
uart_buf.str("");
// read-only registers
csr_wr_cb[misa] = nullptr;
for (unsigned addr = mcycle; addr <= hpmcounter31; ++addr) csr_wr_cb[addr] = nullptr;
for (unsigned addr = mcycleh; addr <= hpmcounter31h; ++addr) csr_wr_cb[addr] = nullptr;
// special handling
csr_rd_cb[time] = &riscv_hart_msu_vp<BASE>::read_time;
csr_wr_cb[time] = nullptr;
csr_rd_cb[timeh] = &riscv_hart_msu_vp<BASE>::read_time;
csr_wr_cb[timeh] = nullptr;
csr_rd_cb[mcycle] = &riscv_hart_msu_vp<BASE>::read_cycle;
csr_rd_cb[mcycleh] = &riscv_hart_msu_vp<BASE>::read_cycle;
csr_rd_cb[minstret] = &riscv_hart_msu_vp<BASE>::read_cycle;
csr_rd_cb[minstreth] = &riscv_hart_msu_vp<BASE>::read_cycle;
csr_rd_cb[mstatus] = &riscv_hart_msu_vp<BASE>::read_status;
csr_wr_cb[mstatus] = &riscv_hart_msu_vp<BASE>::write_status;
csr_rd_cb[sstatus] = &riscv_hart_msu_vp<BASE>::read_status;
csr_wr_cb[sstatus] = &riscv_hart_msu_vp<BASE>::write_status;
csr_rd_cb[ustatus] = &riscv_hart_msu_vp<BASE>::read_status;
csr_wr_cb[ustatus] = &riscv_hart_msu_vp<BASE>::write_status;
csr_rd_cb[mip] = &riscv_hart_msu_vp<BASE>::read_ip;
csr_wr_cb[mip] = &riscv_hart_msu_vp<BASE>::write_ip;
csr_rd_cb[sip] = &riscv_hart_msu_vp<BASE>::read_ip;
csr_wr_cb[sip] = &riscv_hart_msu_vp<BASE>::write_ip;
csr_rd_cb[uip] = &riscv_hart_msu_vp<BASE>::read_ip;
csr_wr_cb[uip] = &riscv_hart_msu_vp<BASE>::write_ip;
csr_rd_cb[mie] = &riscv_hart_msu_vp<BASE>::read_ie;
csr_wr_cb[mie] = &riscv_hart_msu_vp<BASE>::write_ie;
csr_rd_cb[sie] = &riscv_hart_msu_vp<BASE>::read_ie;
csr_wr_cb[sie] = &riscv_hart_msu_vp<BASE>::write_ie;
csr_rd_cb[uie] = &riscv_hart_msu_vp<BASE>::read_ie;
csr_wr_cb[uie] = &riscv_hart_msu_vp<BASE>::write_ie;
csr_rd_cb[satp] = &riscv_hart_msu_vp<BASE>::read_satp;
csr_wr_cb[satp] = &riscv_hart_msu_vp<BASE>::write_satp;
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::load_file(std::string name, int type) {
FILE *fp = fopen(name.c_str(), "r");
if (fp) {
char buf[5];
auto n = fread(buf, 1, 4, fp);
if (n != 4) throw std::runtime_error("input file has insufficient size");
buf[4] = 0;
if (strcmp(buf + 1, "ELF") == 0) {
fclose(fp);
// Create elfio reader
ELFIO::elfio reader;
// Load ELF data
if (!reader.load(name)) throw std::runtime_error("could not process elf file");
// check elf properties
if ( reader.get_class() != ELFCLASS32 )
if(sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file");
if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file");
if ( reader.get_machine() != EM_RISCV ) throw std::runtime_error("wrong elf machine in file");
for (const auto pseg : reader.segments) {
const auto fsize = pseg->get_file_size(); // 0x42c/0x0
const auto seg_data = pseg->get_data();
if (fsize > 0) {
auto res = this->write(
typed_addr_t<PHYSICAL>(iss::DEBUG_WRITE, traits<BASE>::MEM, pseg->get_physical_address()),
fsize, reinterpret_cast<const uint8_t *const>(seg_data));
if (res != iss::Ok)
LOG(ERROR) << "problem writing " << fsize << "bytes to 0x" << std::hex
<< pseg->get_physical_address();
}
}
for (const auto sec : reader.sections) {
if (sec->get_name() == ".tohost") {
tohost = sec->get_address();
fromhost = tohost + 0x40;
}
}
return;
}
}
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::read(const iss::addr_t &addr, unsigned length, uint8_t *const data) {
#ifndef NDEBUG
if (addr.type & iss::DEBUG) {
LOG(DEBUG) << "debug read of " << length << " bytes @addr " << addr;
} else {
LOG(DEBUG) << "read of " << length << " bytes @addr " << addr;
}
#endif
try {
switch (addr.space) {
case traits<BASE>::MEM: {
if ((addr.type & (iss::ACCESS_TYPE - iss::DEBUG)) == iss::FETCH && (addr.val & 0x1) == 1) {
fault_data = addr.val;
if ((addr.type & iss::DEBUG)) throw trap_access(0, addr.val);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if ((addr.val & ~PGMASK) != ((addr.val + length - 1) & ~PGMASK)) { // we may cross a page boundary
vm_info vm = hart_state<reg_t>::decode_vm_info(this->reg.machine_state, state.satp);
if (vm.levels != 0) { // VM is active
auto split_addr = (addr.val + length) & ~PGMASK;
auto len1 = split_addr - addr.val;
auto res = read(addr, len1, data);
if (res == iss::Ok)
res = read(iss::addr_t{addr.type, addr.space, split_addr}, length - len1, data + len1);
return res;
}
}
phys_addr_t paddr = (addr.type & iss::ADDRESS_TYPE) == iss::PHYSICAL ? addr : v2p(addr);
auto res = read_mem(paddr, length, data);
if (res != iss::Ok) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return read_csr(addr.val, *reinterpret_cast<reg_t *const>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr.val + length) > mem.size()) return iss::Err;
switch (addr.val) {
case 2: // SFENCE:VMA lower
case 3: { // SFENCE:VMA upper
auto tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
auto it = atomic_reservation.find(addr.val);
if (it != atomic_reservation.end() && (*it).second != 0) {
memset(data, 0xff, length);
atomic_reservation.erase(addr.val);
} else
memset(data, 0, length);
} break;
default:
return iss::Err; // assert("Not supported");
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::write(const iss::addr_t &addr, unsigned length, const uint8_t *const data) {
#ifndef NDEBUG
const char *prefix = addr.type & iss::DEBUG ? "debug " : "";
switch (length) {
case 8:
LOG(DEBUG) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec
<< ") @addr " << addr;
break;
case 4:
LOG(DEBUG) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec
<< ") @addr " << addr;
break;
case 2:
LOG(DEBUG) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec
<< ") @addr " << addr;
break;
case 1:
LOG(DEBUG) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec
<< ") @addr " << addr;
break;
default:
LOG(DEBUG) << prefix << "write of " << length << " bytes @addr " << addr;
}
#endif
try {
switch (addr.space) {
case traits<BASE>::MEM: {
if ((addr.type & (iss::ACCESS_TYPE - iss::DEBUG)) == iss::FETCH && (addr.val & 0x1) == 1) {
fault_data = addr.val;
if ((addr.type & iss::DEBUG)) throw trap_access(0, addr.val);
this->reg.trap_state = (1 << 31); // issue trap 0
return iss::Err;
}
try {
if ((addr.val & ~PGMASK) != ((addr.val + length - 1) & ~PGMASK)) { // we may cross a page boundary
vm_info vm = hart_state<reg_t>::decode_vm_info(this->reg.machine_state, state.satp);
if (vm.levels != 0) { // VM is active
auto split_addr = (addr.val + length) & ~PGMASK;
auto len1 = split_addr - addr.val;
auto res = write(addr, len1, data);
if (res == iss::Ok)
res = write(iss::addr_t{addr.type, addr.space, split_addr}, length - len1, data + len1);
return res;
}
}
phys_addr_t paddr = (addr.type & iss::ADDRESS_TYPE) == iss::PHYSICAL ? addr : v2p(addr);
auto res = write_mem(paddr, length, data);
if (res != iss::Ok) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 7 (Store/AMO access fault)
return res;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
phys_addr_t paddr = (addr.type & iss::ADDRESS_TYPE) == iss::PHYSICAL ? addr : v2p(addr);
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
return iss::Ok;
case 0x10008000: { // HFROSC base, hfrosccfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
return iss::Ok;
}
case 0x10008008: { // HFROSC base, pllcfg reg
auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
auto &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
return iss::Ok;
} break;
default: {}
}
} break;
case traits<BASE>::CSR: {
if (length != sizeof(reg_t)) return iss::Err;
return write_csr(addr.val, *reinterpret_cast<const reg_t *>(data));
} break;
case traits<BASE>::FENCE: {
if ((addr.val + length) > mem.size()) return iss::Err;
switch (addr.val) {
case 2:
case 3: {
ptw.clear();
auto tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
return iss::Ok;
}
}
} break;
case traits<BASE>::RES: {
atomic_reservation[addr.val] = data[0];
} break;
default:
return iss::Err;
}
return iss::Ok;
} catch (trap_access &ta) {
this->reg.trap_state = (1 << 31) | ta.id;
return iss::Err;
}
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_csr(unsigned addr, reg_t &val) {
if (addr >= csr.size()) return iss::Err;
auto it = csr_rd_cb.find(addr);
if (it == csr_rd_cb.end()) {
val = csr[addr & csr.page_addr_mask];
return iss::Ok;
}
rd_csr_f f = it->second;
if (f == nullptr) throw illegal_instruction_fault(this->fault_data);
return (this->*f)(addr, val);
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_csr(unsigned addr, reg_t val) {
if (addr >= csr.size()) return iss::Err;
auto it = csr_wr_cb.find(addr);
if (it == csr_wr_cb.end()) {
csr[addr & csr.page_addr_mask] = val;
return iss::Ok;
}
wr_csr_f f = it->second;
if (f == nullptr) throw illegal_instruction_fault(this->fault_data);
return (this->*f)(addr, val);
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_cycle(unsigned addr, reg_t &val) {
if (addr == mcycle) {
val = static_cast<reg_t>(this->reg.icount);
} else if (addr == mcycleh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>((this->reg.icount) >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_time(unsigned addr, reg_t &val) {
uint64_t time_val=this->reg.icount>>12;
if (addr == time) {
val = static_cast<reg_t>(time_val);
} else if (addr == timeh) {
if (sizeof(typename traits<BASE>::reg_t) != 4) return iss::Err;
val = static_cast<reg_t>(time_val >> 32);
}
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_status(unsigned addr, reg_t &val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
val = state.mstatus & hart_state<reg_t>::get_mask(req_priv_lvl);
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_status(unsigned addr, reg_t val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
state.write_mstatus(val, req_priv_lvl);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ie(unsigned addr, reg_t &val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
val = csr[mie];
if (addr < mie) val &= csr[mideleg];
if (addr < sie) val &= csr[sideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ie(unsigned addr, reg_t val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
auto mask = get_irq_mask(req_priv_lvl);
csr[mie] = (csr[mie] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_ip(unsigned addr, reg_t &val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
val = csr[mip];
if (addr < mip) val &= csr[mideleg];
if (addr < sip) val &= csr[sideleg];
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_ip(unsigned addr, reg_t val) {
auto req_priv_lvl = addr >> 8;
if (this->reg.machine_state < req_priv_lvl) throw illegal_instruction_fault(this->fault_data);
auto mask = get_irq_mask(req_priv_lvl);
mask &= ~(1<<7); // MTIP is read only
csr[mip] = (csr[mip] & ~mask) | (val & mask);
check_interrupt();
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::read_satp(unsigned addr, reg_t &val) {
reg_t tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
val = state.satp;
return iss::Ok;
}
template <typename BASE> iss::status riscv_hart_msu_vp<BASE>::write_satp(unsigned addr, reg_t val) {
reg_t tvm = state.mstatus.TVM;
if (this->reg.machine_state == PRIV_S & tvm != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return iss::Err;
}
state.satp = val;
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x0200BFF8: { // CLINT base, mtime reg
if(sizeof(reg_t)<length) return iss::Err;
reg_t time_val=this->csr[time];
std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data);
} break;
case 0x10008000: {
const mem_type::page_type &p = mem(paddr.val / mem.page_size);
uint64_t offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
if (this->reg.icount > 30000) data[3] |= 0x80;
} break;
default: {
const auto &p = mem(paddr.val / mem.page_size);
auto offs = paddr.val & mem.page_addr_mask;
std::copy(p.data() + offs, p.data() + offs + length, data);
}
}
return iss::Ok;
}
template <typename BASE>
iss::status riscv_hart_msu_vp<BASE>::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) {
if ((paddr.val + length) > mem.size()) return iss::Err;
switch (paddr.val) {
case 0x10013000: // UART0 base, TXFIFO reg
case 0x10023000: // UART1 base, TXFIFO reg
uart_buf << (char)data[0];
if (((char)data[0]) == '\n' || data[0] == 0) {
// LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send
// '"<<uart_buf.str()<<"'";
std::cout << uart_buf.str();
uart_buf.str("");
}
break;
case 0x10008000: { // HFROSC base, hfrosccfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
if (x & 0x40) x |= 0x80; // hfroscrdy = 1 if hfroscen==1
} break;
case 0x10008008: { // HFROSC base, pllcfg reg
mem_type::page_type &p = mem(paddr.val / mem.page_size);
size_t offs = paddr.val & mem.page_addr_mask;
std::copy(data, data + length, p.data() + offs);
uint8_t &x = *(p.data() + offs + 3);
x |= 0x80; // set pll lock upon writing
} break;
default: {
mem_type::page_type &p = mem(paddr.val / mem.page_size);
std::copy(data, data + length, p.data() + (paddr.val & mem.page_addr_mask));
// tohost handling in case of riscv-test
if ((paddr.type & iss::DEBUG) == 0) {
auto tohost_upper = (traits<BASE>::XLEN == 32 && paddr.val == (tohost + 4)) ||
(traits<BASE>::XLEN == 64 && paddr.val == tohost);
auto tohost_lower =
(traits<BASE>::XLEN == 32 && paddr.val == tohost) || (traits<BASE>::XLEN == 64 && paddr.val == tohost);
if (tohost_lower || tohost_upper) {
uint64_t hostvar = *reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask));
if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) {
switch (hostvar >> 48) {
case 0:
if (hostvar != 0x1)
LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
else
LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar
<< "), stopping simulation";
throw(iss::simulation_stopped(hostvar));
case 0x0101: {
char c = static_cast<char>(hostvar & 0xff);
if (c == '\n' || c == 0) {
LOG(INFO) << "tohost send '" << uart_buf.str() << "'";
uart_buf.str("");
} else
uart_buf << c;
to_host_wr_cnt = 0;
} break;
default:
break;
}
} else if (tohost_lower)
to_host_wr_cnt++;
} else if ((traits<BASE>::XLEN == 32 && paddr.val == fromhost + 4) ||
(traits<BASE>::XLEN == 64 && paddr.val == fromhost)) {
uint64_t fhostvar = *reinterpret_cast<uint64_t *>(p.data() + (fromhost & mem.page_addr_mask));
*reinterpret_cast<uint64_t *>(p.data() + (tohost & mem.page_addr_mask)) = fhostvar;
}
}
}
}
return iss::Ok;
}
template<typename BASE>
inline void riscv_hart_msu_vp<BASE>::notify_phase(iss::arch_if::exec_phase phase) {
BASE::notify_phase(phase);
}
template<typename BASE>
inline void riscv_hart_msu_vp<BASE>::reset(uint64_t address) {
BASE::reset(address);
state.mstatus = hart_state<reg_t>::mstatus_reset_val;
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::check_interrupt() {
auto status = state.mstatus;
auto ip = csr[mip];
auto ie = csr[mie];
auto ideleg = csr[mideleg];
// Multiple simultaneous interrupts and traps at the same privilege level are
// handled in the following decreasing priority order:
// external interrupts, software interrupts, timer interrupts, then finally
// any synchronous traps.
auto ena_irq = ip & ie;
auto mie = state.mstatus.MIE;
auto m_enabled = this->reg.machine_state < PRIV_M || (this->reg.machine_state == PRIV_M && mie);
auto enabled_interrupts = m_enabled ? ena_irq & ~ideleg : 0;
if (enabled_interrupts == 0) {
auto sie = state.mstatus.SIE;
auto s_enabled = this->reg.machine_state < PRIV_S || (this->reg.machine_state == PRIV_S && sie);
enabled_interrupts = s_enabled ? ena_irq & ideleg : 0;
}
if (enabled_interrupts != 0) {
int res = 0;
while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++;
this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id
}
}
template <typename BASE>
typename riscv_hart_msu_vp<BASE>::phys_addr_t riscv_hart_msu_vp<BASE>::v2p(const iss::addr_t &addr) {
const uint64_t tmp = reg_t(1) << (traits<BASE>::XLEN - 1);
const uint64_t msk = tmp | (tmp - 1);
if (addr.space != traits<BASE>::MEM) { // non-memory access
phys_addr_t ret(addr);
ret.val &= msk;
return ret;
}
const auto type = (access_type)(addr.getAccessType() & ~iss::DEBUG);
uint32_t mode = type != iss::FETCH && state.mstatus.MPRV ? // MPRV
mode = state.mstatus.MPP:
this->reg.machine_state;
const vm_info vm = hart_state<reg_t>::decode_vm_info(mode, state.satp);
if (vm.levels == 0) {
phys_addr_t ret(addr);
ret.val &= msk;
return ret;
}
const bool s_mode = mode == PRIV_S;
const bool sum = state.mstatus.SUM;
const bool mxr = state.mstatus.MXR;
auto it = ptw.find(addr.val >> PGSHIFT);
if (it != ptw.end()) {
const reg_t pte = it->second;
const reg_t ad = PTE_A | ((type == iss::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t *)ppte |= ad;
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
#else
// take exception if access or possibly dirty bit is not set.
if ((pte & ad) == ad)
return {addr.getAccessType(), addr.space, (pte & (~PGMASK)) | (addr.val & PGMASK)};
else
ptw.erase(it);
#endif
} else {
// verify bits xlen-1:va_bits-1 are all equal
const int va_bits = PGSHIFT + vm.levels * vm.idxbits;
const reg_t mask = (reg_t(1) << (traits<BASE>::XLEN > -(va_bits - 1))) - 1;
const reg_t masked_msbs = (addr.val >> (va_bits - 1)) & mask;
const int levels = (masked_msbs != 0 && masked_msbs != mask) ? 0 : vm.levels;
reg_t base = vm.ptbase;
for (int i = levels - 1; i >= 0; i--) {
const int ptshift = i * vm.idxbits;
const reg_t idx = (addr.val >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
reg_t pte = 0;
const uint8_t res =
this->read(phys_addr_t(addr.getAccessType(), traits<BASE>::MEM, base + idx * vm.ptesize), vm.ptesize,
(uint8_t *)&pte);
if (res != 0) throw trap_load_access_fault(addr.val);
const reg_t ppn = pte >> PTE_PPN_SHIFT;
if (PTE_TABLE(pte)) { // next level of page table
base = ppn << PGSHIFT;
} else if ((pte & PTE_U) ? s_mode && (type == iss::FETCH || !sum) : !s_mode) {
break;
} else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if (type == iss::FETCH ? !(pte & PTE_X)
: type == iss::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X))
: !((pte & PTE_R) && (pte & PTE_W))) {
break;
} else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
const reg_t ad = PTE_A | ((type == iss::WRITE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
*(uint32_t *)ppte |= ad;
#else
// take exception if access or possibly dirty bit is not set.
if ((pte & ad) != ad) break;
#endif
// for superpage mappings, make a fake leaf PTE for the TLB's benefit.
const reg_t vpn = addr.val >> PGSHIFT;
const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
const reg_t offset = addr.val & PGMASK;
ptw[vpn] = value | (pte & 0xff);
return {addr.getAccessType(), addr.space, value | offset};
}
}
}
switch (type) {
case FETCH:
this->fault_data = addr.val;
throw trap_instruction_page_fault(addr.val);
case READ:
this->fault_data = addr.val;
throw trap_load_page_fault(addr.val);
case WRITE:
this->fault_data = addr.val;
throw trap_store_page_fault(addr.val);
default:
abort();
}
}
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::enter_trap(uint64_t flags, uint64_t addr) {
auto cur_priv = this->reg.machine_state;
// flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0]
// calculate and write mcause val
auto trap_id = bit_sub<0, 16>(flags);
auto cause = bit_sub<16, 15>(flags);
if (trap_id == 0 && cause == 11) cause = 0x8 + cur_priv; // adjust environment call cause
// calculate effective privilege level
auto new_priv = PRIV_M;
if (trap_id == 0) { // exception
if (cur_priv != PRIV_M && ((csr[medeleg] >> cause) & 0x1) != 0)
new_priv = (csr[sedeleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
// store ret addr in xepc register
csr[uepc | (new_priv << 8)] = static_cast<reg_t>(addr); // store actual address instruction of exception
/*
* write mtval if new_priv=M_MODE, spec says:
* When a hardware breakpoint is triggered, or an instruction-fetch, load,
* or store address-misaligned,
* access, or page-fault exception occurs, mtval is written with the
* faulting effective address.
*/
csr[utval | (new_priv << 8)] = fault_data;
fault_data = 0;
} else {
if (cur_priv != PRIV_M && ((csr[mideleg] >> cause) & 0x1) != 0)
new_priv = (csr[sideleg] >> cause) & 0x1 ? PRIV_U : PRIV_S;
csr[uepc | (new_priv << 8)] = this->reg.NEXT_PC; // store next address if interrupt
this->reg.pending_trap = 0;
}
size_t adr=ucause | (new_priv << 8);
csr[adr] = (trap_id<<31)+cause;
// update mstatus
// xPP field of mstatus is written with the active privilege mode at the time
// of the trap; the x PIE field of mstatus
// is written with the value of the active interrupt-enable bit at the time of
// the trap; and the x IE field of mstatus
// is cleared
// store the actual privilege level in yPP and store interrupt enable flags
switch (new_priv) {
case PRIV_M:
state.mstatus.MPP=cur_priv;
state.mstatus.MPIE=state.mstatus.MIE;
break;
case PRIV_S:
state.mstatus.SPP = cur_priv;
state.mstatus.SPIE=state.mstatus.SIE;
break;
case PRIV_U:
state.mstatus.UPIE=state.mstatus.UIE;
break;
default:
break;
}
// get trap vector
auto ivec = csr[utvec | (new_priv << 8)];
// calculate addr// set NEXT_PC to trap addressess to jump to based on MODE
// bits in mtvec
this->reg.NEXT_PC = ivec & ~0x1UL;
if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause;
// reset trap state
this->reg.machine_state = new_priv;
this->reg.trap_state = 0;
char buffer[32];
sprintf(buffer, "0x%016lx", addr);
CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause])<<"' ("<<trap_id<<")"
<< " at address " << buffer << " occurred, changing privilege level from " << lvl[cur_priv]
<< " to " << lvl[new_priv];
return this->reg.NEXT_PC;
}
template <typename BASE> uint64_t riscv_hart_msu_vp<BASE>::leave_trap(uint64_t flags) {
auto cur_priv = this->reg.machine_state;
auto inst_priv = flags & 0x3;
auto status = state.mstatus;
auto tsr = state.mstatus.TSR;
if (cur_priv == PRIV_S && inst_priv == PRIV_S && tsr != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
return this->reg.PC;
}
// pop the relevant lower-privilege interrupt enable and privilege mode stack
// clear respective yIE
switch (inst_priv) {
case PRIV_M:
this->reg.machine_state = state.mstatus.MPP;
state.mstatus.MPP=0; // clear mpp to U mode
state.mstatus.MIE=state.mstatus.MPIE;
break;
case PRIV_S:
this->reg.machine_state = state.mstatus.SPP;
state.mstatus.SPP= 0; // clear spp to U mode
state.mstatus.SIE=state.mstatus.SPIE;
break;
case PRIV_U:
this->reg.machine_state = 0;
state.mstatus.UIE=state.mstatus.UPIE;
break;
}
// sets the pc to the value stored in the x epc register.
this->reg.NEXT_PC = csr[uepc | inst_priv << 8];
CLOG(INFO, disass) << "Executing xRET , changing privilege level from " << lvl[cur_priv] << " to " << lvl[this->reg.machine_state];
return this->reg.NEXT_PC;
}
template <typename BASE> void riscv_hart_msu_vp<BASE>::wait_until(uint64_t flags) {
auto status = state.mstatus;
auto tw = status.TW;
if (this->reg.machine_state == PRIV_S && tw != 0) {
this->reg.trap_state = (1 << 31) | (2 << 16);
this->fault_data = this->reg.PC;
}
}
}
}
#endif /* _RISCV_CORE_H_ */