HIFIVE1-VP/riscv.sc/src/core_complex.cpp

484 lines
18 KiB
C++

/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include "sysc/core_complex.h"
#include "iss/arch/riscv_hart_msu_vp.h"
#include "iss/arch/rv32imac.h"
#include "iss/debugger/encoderdecoder.h"
#include "iss/debugger/gdb_session.h"
#include "iss/debugger/server.h"
#include "iss/debugger/target_adapter_if.h"
#include "iss/iss.h"
#include "iss/vm_types.h"
#include "scc/report.h"
#include <sstream>
#include <iostream>
#ifdef WITH_SCV
#include <array>
#include <scv.h>
#endif
namespace sysc {
namespace SiFive {
using namespace std;
using namespace iss;
using namespace logging;
using namespace sc_core;
namespace {
iss::debugger::encoder_decoder encdec;
}
namespace {
std::array<const char, 4> lvl = {{'U', 'S', 'H', 'M'}};
std::array<const char*, 16> trap_str = { {
"Instruction address misaligned",
"Instruction access fault",
"Illegal instruction",
"Breakpoint",
"Load address misaligned",
"Load access fault",
"Store/AMO address misaligned",
"Store/AMO access fault",
"Environment call from U-mode",
"Environment call from S-mode",
"Reserved",
"Environment call from M-mode",
"Instruction page fault",
"Load page fault",
"Reserved",
"Store/AMO page fault"
} };
std::array<const char*, 12> irq_str = { {
"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt",
"User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt",
"User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt" } };
}
class core_wrapper : public iss::arch::riscv_hart_msu_vp<iss::arch::rv32imac> {
public:
using core_type = arch::rv32imac;
using base_type = arch::riscv_hart_msu_vp<arch::rv32imac>;
using phys_addr_t = typename arch::traits<arch::rv32imac>::phys_addr_t;
core_wrapper(core_complex *owner)
: owner(owner) {}
uint32_t get_mode() { return this->reg.machine_state; }
inline void set_interrupt_execution(bool v) { this->interrupt_sim = v; }
inline bool get_interrupt_execution() { return this->interrupt_sim; }
base_type::hart_state<base_type::reg_t> &get_state() { return this->state; }
void notify_phase(exec_phase p) override {
if (p == ISTART) owner->sync(this->reg.icount + cycle_offset);
}
sync_type needed_sync() const override { return PRE_SYNC; }
void disass_output(uint64_t pc, const std::string instr) override {
if (INFO <= Log<Output2FILE<disass>>::reporting_level() && Output2FILE<disass>::stream()) {
std::stringstream s;
s << "[p:" << lvl[this->reg.machine_state] << ";s:0x" << std::hex << std::setfill('0')
<< std::setw(sizeof(reg_t) * 2) << (reg_t)state.mstatus << std::dec << ";c:" << this->reg.icount << "]";
Log<Output2FILE<disass>>().get(INFO, "disass")
<< "0x" << std::setw(16) << std::right << std::setfill('0') << std::hex << pc << "\t\t" << std::setw(40)
<< std::setfill(' ') << std::left << instr << s.str();
}
owner->disass_output(pc, instr);
};
status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->read_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
return owner->read_mem(addr.val, length, data, addr.access && access_type::FETCH) ? Ok : Err;
}
}
status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data) override {
if (addr.access && access_type::DEBUG)
return owner->write_mem_dbg(addr.val, length, data) ? Ok : Err;
else {
auto res = owner->write_mem(addr.val, length, data) ? Ok : Err;
// clear MTIP on mtimecmp write
if (addr.val == 0x2004000) {
reg_t val;
this->read_csr(arch::mip, val);
if (val & (1ULL << 7)) this->write_csr(arch::mip, val & ~(1ULL << 7));
}
return res;
}
}
void wait_until(uint64_t flags) override {
SCDEBUG(owner->name()) << "Sleeping until interrupt";
do {
wait(wfi_evt);
} while (this->reg.pending_trap == 0);
base_type::wait_until(flags);
}
void local_irq(short id, bool value) {
base_type::reg_t mask = 0;
switch (id) {
case 16: // SW
mask = 1 << 3;
break;
case 17: // timer
mask = 1 << 7;
break;
case 18: // external
mask = 1 << 11;
break;
default:
/* do nothing*/
break;
}
if (value) {
this->csr[arch::mip] |= mask;
wfi_evt.notify();
} else
this->csr[arch::mip] &= ~mask;
this->check_interrupt();
}
private:
core_complex *const owner;
sc_event wfi_evt;
};
int cmd_sysc(int argc, char *argv[], debugger::out_func of, debugger::data_func df,
debugger::target_adapter_if *tgt_adapter) {
if (argc > 1) {
if (strcasecmp(argv[1], "print_time") == 0) {
std::string t = sc_time_stamp().to_string();
of(t.c_str());
std::array<char, 64> buf;
encdec.enc_string(t.c_str(), buf.data(), 63);
df(buf.data());
return Ok;
} else if (strcasecmp(argv[1], "break") == 0) {
sc_time t;
if (argc == 4) {
t = scc::parse_from_string(argv[2], argv[3]);
} else if (argc == 3) {
t = scc::parse_from_string(argv[2]);
} else
return Err;
// no check needed as it is only called if debug server is active
tgt_adapter->add_break_condition([t]() -> unsigned {
SCTRACE() << "Checking condition at " << sc_time_stamp();
return sc_time_stamp() >= t ? std::numeric_limits<unsigned>::max() : 0;
});
return Ok;
}
return Err;
}
return Err;
}
core_complex::core_complex(sc_module_name name)
: sc_module(name)
, NAMED(initiator)
, NAMED(clk_i)
, NAMED(rst_i)
, NAMED(global_irq_i)
, NAMED(timer_irq_i)
, NAMED(local_irq_i, 16)
, NAMED(elf_file, "")
, NAMED(enable_disass, false)
, NAMED(reset_address, 0ULL)
, NAMED(gdb_server_port, 0)
, NAMED(dump_ir, false)
, read_lut(tlm_dmi_ext())
, write_lut(tlm_dmi_ext())
, tgt_adapter(nullptr)
#ifdef WITH_SCV
, m_db(scv_tr_db::get_default_db())
, stream_handle(nullptr)
, instr_tr_handle(nullptr)
, fetch_tr_handle(nullptr)
#endif
{
initiator.register_invalidate_direct_mem_ptr([=](uint64_t start, uint64_t end) -> void {
auto lut_entry = read_lut.getEntry(start);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
read_lut.removeEntry(lut_entry);
}
lut_entry = write_lut.getEntry(start);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE && end <= lut_entry.get_end_address() + 1) {
write_lut.removeEntry(lut_entry);
}
});
SC_THREAD(run);
SC_METHOD(clk_cb);
sensitive << clk_i;
SC_METHOD(rst_cb);
sensitive << rst_i;
SC_METHOD(sw_irq_cb);
sensitive << sw_irq_i;
SC_METHOD(timer_irq_cb);
sensitive << timer_irq_i;
SC_METHOD(global_irq_cb);
sensitive << global_irq_i;
}
core_complex::~core_complex() = default;
void core_complex::trace(sc_trace_file *trf) const {}
void core_complex::before_end_of_elaboration() {
cpu = std::make_unique<core_wrapper>(this);
vm = create<arch::rv32imac>(cpu.get(), gdb_server_port.get_value(), dump_ir.get_value());
#ifdef WITH_SCV
vm->setDisassEnabled(enable_disass.get_value() || m_db != nullptr);
#else
vm->setDisassEnabled(enable_disass.get_value());
#endif
auto *srv = debugger::server<debugger::gdb_session>::get();
if (srv) tgt_adapter = srv->get_target();
if (tgt_adapter)
tgt_adapter->add_custom_command(
{"sysc", [this](int argc, char *argv[], debugger::out_func of,
debugger::data_func df) -> int { return cmd_sysc(argc, argv, of, df, tgt_adapter); },
"SystemC sub-commands: break <time>, print_time"});
}
void core_complex::start_of_simulation() {
quantum_keeper.reset();
if (elf_file.get_value().size() > 0) {
istringstream is(elf_file.get_value());
string s;
while (getline(is, s, ',')) {
std::pair<uint64_t, bool> start_addr = cpu->load_file(s);
if (reset_address.is_default_value() && start_addr.second == true)
reset_address.set_value(start_addr.first);
}
}
#ifdef WITH_SCV
if (m_db != nullptr && stream_handle == nullptr) {
string basename(this->name());
stream_handle = new scv_tr_stream((basename + ".instr").c_str(), "TRANSACTOR", m_db);
instr_tr_handle = new scv_tr_generator<>("execute", *stream_handle);
fetch_tr_handle = new scv_tr_generator<uint64_t>("fetch", *stream_handle);
}
#endif
}
void core_complex::disass_output(uint64_t pc, const std::string instr_str) {
#ifdef WITH_SCV
if (m_db == nullptr) return;
if (tr_handle.is_active()) tr_handle.end_transaction();
tr_handle = instr_tr_handle->begin_transaction();
tr_handle.record_attribute("PC", pc);
tr_handle.record_attribute("INSTR", instr_str);
tr_handle.record_attribute("MODE", lvl[cpu->get_mode()]);
tr_handle.record_attribute("MSTATUS", cpu->get_state().mstatus.st.value);
tr_handle.record_attribute("LTIME_START", quantum_keeper.get_current_time().value() / 1000);
#endif
}
void core_complex::clk_cb() {
curr_clk = clk_i.read();
if (curr_clk == SC_ZERO_TIME) cpu->set_interrupt_execution(true);
}
void core_complex::rst_cb() {
if (rst_i.read()) cpu->set_interrupt_execution(true);
}
void core_complex::sw_irq_cb() { cpu->local_irq(16, sw_irq_i.read()); }
void core_complex::timer_irq_cb() { cpu->local_irq(17, timer_irq_i.read()); }
void core_complex::global_irq_cb() { cpu->local_irq(18, global_irq_i.read()); }
void core_complex::run() {
wait(SC_ZERO_TIME); // separate from elaboration phase
do {
if (rst_i.read()) {
cpu->reset(reset_address.get_value());
wait(rst_i.negedge_event());
}
while (clk_i.read() == SC_ZERO_TIME) {
wait(clk_i.value_changed_event());
}
cpu->set_interrupt_execution(false);
vm->start();
} while (cpu->get_interrupt_execution());
sc_stop();
}
bool core_complex::read_mem(uint64_t addr, unsigned length, uint8_t *const data, bool is_fetch) {
auto lut_entry = read_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(lut_entry.get_dmi_ptr() + offset, lut_entry.get_dmi_ptr() + offset + length, data);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay{quantum_keeper.get_local_time()};
#ifdef WITH_SCV
if (m_db != nullptr && tr_handle.is_valid()) {
if (is_fetch && tr_handle.is_active()) {
tr_handle.end_transaction();
}
auto preExt = new scv4tlm::tlm_recording_extension(tr_handle, this);
gp.set_extension(preExt);
}
#endif
initiator->b_transport(gp, delay);
SCTRACE(this->name()) << "read_mem(0x" << std::hex << addr << ") : " << data;
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if (gp.is_dmi_allowed()) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if (initiator->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_read_allowed())
read_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if (dmi_data.is_write_allowed())
write_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
}
return true;
}
}
bool core_complex::write_mem(uint64_t addr, unsigned length, const uint8_t *const data) {
auto lut_entry = write_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(data, data + length, lut_entry.get_dmi_ptr() + offset);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
sc_time delay{quantum_keeper.get_local_time()};
#ifdef WITH_SCV
if (m_db != nullptr && tr_handle.is_valid()) {
auto preExt = new scv4tlm::tlm_recording_extension(tr_handle, this);
gp.set_extension(preExt);
}
#endif
initiator->b_transport(gp, delay);
quantum_keeper.set(delay);
SCTRACE() << "write_mem(0x" << std::hex << addr << ") : " << data;
if (gp.get_response_status() != tlm::TLM_OK_RESPONSE) {
return false;
}
if (gp.is_dmi_allowed()) {
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
tlm_dmi_ext dmi_data;
if (initiator->get_direct_mem_ptr(gp, dmi_data)) {
if (dmi_data.is_read_allowed())
read_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
if (dmi_data.is_write_allowed())
write_lut.addEntry(dmi_data, dmi_data.get_start_address(),
dmi_data.get_end_address() - dmi_data.get_start_address() + 1);
}
}
return true;
}
}
bool core_complex::read_mem_dbg(uint64_t addr, unsigned length, uint8_t *const data) {
auto lut_entry = read_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(lut_entry.get_dmi_ptr() + offset, lut_entry.get_dmi_ptr() + offset + length, data);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_READ_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(data);
gp.set_data_length(length);
gp.set_streaming_width(length);
return initiator->transport_dbg(gp) == length;
}
}
bool core_complex::write_mem_dbg(uint64_t addr, unsigned length, const uint8_t *const data) {
auto lut_entry = write_lut.getEntry(addr);
if (lut_entry.get_granted_access() != tlm::tlm_dmi::DMI_ACCESS_NONE &&
addr + length <= lut_entry.get_end_address() + 1) {
auto offset = addr - lut_entry.get_start_address();
std::copy(data, data + length, lut_entry.get_dmi_ptr() + offset);
quantum_keeper.inc(lut_entry.get_read_latency());
return true;
} else {
write_buf.resize(length);
std::copy(data, data + length, write_buf.begin()); // need to copy as TLM does not guarantee data integrity
tlm::tlm_generic_payload gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_address(addr);
gp.set_data_ptr(write_buf.data());
gp.set_data_length(length);
gp.set_streaming_width(length);
return initiator->transport_dbg(gp) == length;
}
}
} /* namespace SiFive */
} /* namespace sysc */