HIFIVE1-VP/platform/src/sysc/spi.cpp

272 lines
10 KiB
C++

/*******************************************************************************
* Copyright (C) 2017, 2018 MINRES Technologies GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
#include "sysc/SiFive/spi.h"
#include "cci_configuration"
#include "scc/signal_initiator_mixin.h"
#include "scc/signal_target_mixin.h"
#include "scc/tlm_target.h"
#include "scc/utilities.h"
#include "sysc/SiFive/gen/spi_regs.h"
#include "sysc/tlm_extensions.h"
#include <util/ities.h>
namespace sysc {
namespace spi_impl {
using namespace sc_core;
class beh : public sysc::spi, public scc::tlm_target<> {
public:
SC_HAS_PROCESS(beh); // NOLINT
cci::cci_param<bool> bit_true_transfer;
beh(sc_core::sc_module_name nm);
~beh() override;
protected:
scc::tlm_signal_bool_opt_out _sck_o;
scc::tlm_signal_bool_opt_out _mosi_o;
scc::tlm_signal_bool_opt_in _miso_i;
sc_core::sc_vector<scc::tlm_signal_bool_opt_out> _scs_o;
void clock_cb();
void reset_cb();
void transmit_data();
void receive_data(tlm::tlm_signal_gp<> &gp, sc_core::sc_time &delay);
void update_irq();
sc_core::sc_event update_irq_evt;
sc_core::sc_time clk;
std::unique_ptr<spi_regs> regs;
sc_core::sc_fifo<uint8_t> rx_fifo, tx_fifo;
};
beh::beh(sc_core::sc_module_name nm)
: sysc::spi(nm)
, tlm_target<>(clk)
, NAMED(_sck_o)
, NAMED(_mosi_o)
, NAMED(_miso_i)
, NAMED(_scs_o, 4)
, NAMED(bit_true_transfer, false)
, NAMEDD(regs, spi_regs)
, rx_fifo(8)
, tx_fifo(8) {
spi::socket(scc::tlm_target<>::socket);
_sck_o(sck_o);
_mosi_o(mosi_o);
miso_i(_miso_i);
_scs_o(scs_o);
regs->registerResources(*this);
SC_METHOD(clock_cb);
sensitive << clk_i;
SC_METHOD(reset_cb);
sensitive << rst_i;
dont_initialize();
SC_THREAD(transmit_data);
_miso_i.register_nb_transport(
[this](tlm::tlm_signal_gp<bool> &gp, tlm::tlm_phase &phase, sc_core::sc_time &delay) -> tlm::tlm_sync_enum {
this->receive_data(gp, delay);
return tlm::TLM_COMPLETED;
});
regs->txdata.set_write_cb([this](scc::sc_register<uint32_t> &reg, uint32_t data, sc_core::sc_time d) -> bool {
if (!this->regs->in_reset()) {
reg.put(data);
tx_fifo.nb_write(static_cast<uint8_t>(regs->r_txdata.data));
}
return true;
});
regs->rxdata.set_read_cb([this](const scc::sc_register<uint32_t> &reg, uint32_t &data, sc_core::sc_time d) -> bool {
if (!this->regs->in_reset()) {
uint8_t val;
if (rx_fifo.nb_read(val)) {
regs->r_rxdata.empty = 0;
regs->r_rxdata.data = val;
if (regs->r_rxmark.rxmark <= rx_fifo.num_available()) {
regs->r_ip.rxwm = 1;
update_irq();
}
} else
regs->r_rxdata.empty = 1;
data = reg.get() & reg.rdmask;
}
return true;
});
regs->csmode.set_write_cb(
[this](const scc::sc_register<uint32_t> &reg, uint32_t &data, sc_core::sc_time d) -> bool {
if (regs->r_csmode.mode == 2 && regs->r_csmode.mode != bit_sub<0, 2>(data) && regs->r_csid < 4) {
tlm::tlm_phase phase(tlm::BEGIN_REQ);
sc_core::sc_time delay(SC_ZERO_TIME);
tlm::tlm_signal_gp<> gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_value(true);
_scs_o[regs->r_csid]->nb_transport_fw(gp, phase, delay);
}
reg.put(data);
return true;
});
regs->csid.set_write_cb([this](const scc::sc_register<uint32_t> &reg, uint32_t &data, sc_core::sc_time d) -> bool {
if (regs->r_csmode.mode == 2 && regs->csid != data && regs->r_csid < 4) {
tlm::tlm_phase phase(tlm::BEGIN_REQ);
sc_core::sc_time delay(SC_ZERO_TIME);
tlm::tlm_signal_gp<> gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_value(true);
_scs_o[regs->r_csid]->nb_transport_fw(gp, phase, delay);
}
reg.put(data);
return true;
});
regs->csdef.set_write_cb([this](const scc::sc_register<uint32_t> &reg, uint32_t &data, sc_core::sc_time d) -> bool {
auto diff = regs->csdef ^ data;
if (regs->r_csmode.mode == 2 && diff != 0 && (regs->r_csid < 4) && (diff & (1 << regs->r_csid)) != 0) {
tlm::tlm_phase phase(tlm::BEGIN_REQ);
sc_core::sc_time delay(SC_ZERO_TIME);
tlm::tlm_signal_gp<> gp;
gp.set_command(tlm::TLM_WRITE_COMMAND);
gp.set_value(true);
_scs_o[regs->r_csid]->nb_transport_fw(gp, phase, delay);
}
reg.put(data);
return true;
});
regs->ie.set_write_cb([this](scc::sc_register<uint32_t> &reg, uint32_t data, sc_core::sc_time d) -> bool {
reg.put(data);
update_irq_evt.notify();
return true;
});
regs->ip.set_write_cb([this](scc::sc_register<uint32_t> &reg, uint32_t data, sc_core::sc_time d) -> bool {
reg.put(data);
update_irq_evt.notify();
return true;
});
SC_METHOD(update_irq);
sensitive << update_irq_evt << rx_fifo.data_written_event() << rx_fifo.data_read_event()
<< tx_fifo.data_written_event() << tx_fifo.data_read_event();
}
beh::~beh() = default;
void beh::clock_cb() { this->clk = clk_i.read(); }
void beh::reset_cb() {
if (rst_i.read())
regs->reset_start();
else
regs->reset_stop();
}
void beh::transmit_data() {
uint8_t txdata;
tlm::tlm_phase phase(tlm::BEGIN_REQ);
sc_core::sc_time delay(SC_ZERO_TIME);
sc_core::sc_time bit_duration(SC_ZERO_TIME);
sc_core::sc_time start_time;
auto set_bit = [&](bool val, scc::tlm_signal_bool_opt_out &socket,
bool data_valid = false) -> std::pair<bool, uint32_t> {
if (socket.get_interface() == nullptr) return std::pair<bool, uint32_t>{false, 0};
auto *gp = tlm::tlm_signal_gp<>::create();
auto *ext = new sysc::tlm_signal_spi_extension();
ext->tx.data_bits = 8;
ext->start_time = start_time;
ext->tx.m2s_data = txdata;
ext->tx.m2s_data_valid = data_valid;
ext->tx.s2m_data_valid = false;
gp->set_extension(ext);
gp->set_command(tlm::TLM_WRITE_COMMAND);
gp->set_value(val);
tlm::tlm_phase phase(tlm::BEGIN_REQ);
gp->acquire();
phase = tlm::BEGIN_REQ;
delay = SC_ZERO_TIME;
socket->nb_transport_fw(*gp, phase, delay);
std::pair<bool, uint32_t> ret{ext->tx.s2m_data_valid != 0, ext->tx.s2m_data};
gp->release();
return ret;
};
wait(delay); // intentionally 0ns;
while (true) {
wait(tx_fifo.data_written_event());
if (regs->r_csmode.mode != 3 && regs->r_csid < 4) // not in OFF mode
set_bit(false, _scs_o[regs->r_csid]);
set_bit(regs->r_sckmode.pol, _sck_o);
while (tx_fifo.nb_read(txdata)) {
regs->r_txdata.full = tx_fifo.num_free() == 0;
regs->r_ip.txwm = regs->r_txmark.txmark <= (7 - tx_fifo.num_free()) ? 1 : 0;
update_irq_evt.notify();
bit_duration = 2 * (regs->r_sckdiv.div + 1) * clk;
start_time = sc_core::sc_time_stamp();
set_bit(txdata & 0x80, _mosi_o); // 8 data bits, MSB first
auto s2m = set_bit(1 - regs->r_sckmode.pol, _sck_o, true);
wait(bit_duration / 2);
set_bit(regs->r_sckmode.pol, _sck_o, true);
wait(bit_duration / 2);
if (bit_true_transfer.get_value()) {
for (size_t i = 0, mask = 0x40; i < 7; ++i, mask >= 1) {
set_bit(txdata & mask, _mosi_o); // 8 data bits, MSB first
set_bit(1 - regs->r_sckmode.pol, _sck_o);
wait(bit_duration / 2);
set_bit(regs->r_sckmode.pol, _sck_o);
wait(bit_duration / 2);
}
} else
wait(7 * bit_duration);
if (s2m.first) rx_fifo.nb_write(s2m.second & 0xff);
update_irq_evt.notify();
}
if (regs->r_csmode.mode == 0 && regs->r_csid < 4) // in AUTO mode
set_bit(false, _scs_o[regs->r_csid]);
}
}
void beh::receive_data(tlm::tlm_signal_gp<> &gp, sc_core::sc_time &delay) {}
void beh::update_irq() {
regs->r_ip.rxwm = regs->r_rxmark.rxmark < rx_fifo.num_available();
regs->r_ip.txwm = regs->r_txmark.txmark <= tx_fifo.num_available();
regs->r_txdata.full = tx_fifo.num_free() == 0;
irq_o.write((regs->r_ie.rxwm > 0 && regs->r_ip.rxwm > 0) || (regs->r_ie.txwm > 0 && regs->r_ip.txwm > 0));
}
} /* namespace spi:impl */
template <> std::unique_ptr<spi> spi::create<sysc::spi_impl::beh>(sc_core::sc_module_name nm) {
auto *res = new sysc::spi_impl::beh(nm);
return std::unique_ptr<spi>(res);
}
} /* namespace sysc */