Files
opensbi/lib/utils/fdt/fdt_fixup.c
Himanshu Chauhan 199189bd1c lib: utils: Mark only the largest region as reserved in FDT
In commit 230278dcf, RX and RW regions were marked separately.
When the RW region grows (e.g. with more harts) and it isn't a
power-of-two, sbi_domain_memregion_init will upgrade the region
to the next power-of-two. This will make RX and RW both start
at the same base address, like so (with 64 harts):
Domain0 Region01 : 0x0000000080000000-0x000000008001ffff M: (R,X) S/U: ()
Domain0 Region02 : 0x0000000080000000-0x00000000800fffff M: (R,W) S/U: ()

This doesn't break the permission enforcement because of static
priorities in PMP but makes the kernel complain about the regions
overlapping each other. Like so:
[    0.000000] OF: reserved mem: OVERLAP DETECTED!
[    0.000000] mmode_resv0@80000000 (0x0000000080000000--0x0000000080020000) \
	overlaps with mmode_resv1@80000000 (0x0000000080000000--0x0000000080100000)

To fix this warning, among the multiple regions having same base
address but different sizes, add only the largest region as reserved
region during fdt fixup.

Fixes: 230278dcf (lib: sbi: Add separate entries for firmware RX and RW regions)
Signed-off-by: Himanshu Chauhan <hchauhan@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
2023-02-08 11:13:19 +05:30

425 lines
11 KiB
C

// SPDX-License-Identifier: BSD-2-Clause
/*
* fdt_fixup.c - Flat Device Tree parsing helper routines
* Implement helper routines to parse FDT nodes on top of
* libfdt for OpenSBI usage
*
* Copyright (C) 2020 Bin Meng <bmeng.cn@gmail.com>
*/
#include <libfdt.h>
#include <sbi/sbi_console.h>
#include <sbi/sbi_domain.h>
#include <sbi/sbi_math.h>
#include <sbi/sbi_hart.h>
#include <sbi/sbi_scratch.h>
#include <sbi/sbi_string.h>
#include <sbi/sbi_error.h>
#include <sbi_utils/fdt/fdt_fixup.h>
#include <sbi_utils/fdt/fdt_pmu.h>
#include <sbi_utils/fdt/fdt_helper.h>
int fdt_add_cpu_idle_states(void *fdt, const struct sbi_cpu_idle_state *state)
{
int cpu_node, cpus_node, err, idle_states_node;
uint32_t count, phandle;
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 1024);
if (err < 0)
return err;
err = fdt_find_max_phandle(fdt, &phandle);
phandle++;
if (err < 0)
return err;
cpus_node = fdt_path_offset(fdt, "/cpus");
if (cpus_node < 0)
return cpus_node;
/* Do nothing if the idle-states node already exists. */
idle_states_node = fdt_subnode_offset(fdt, cpus_node, "idle-states");
if (idle_states_node >= 0)
return 0;
/* Create the idle-states node and its child nodes. */
idle_states_node = fdt_add_subnode(fdt, cpus_node, "idle-states");
if (idle_states_node < 0)
return idle_states_node;
for (count = 0; state->name; count++, phandle++, state++) {
int idle_state_node;
idle_state_node = fdt_add_subnode(fdt, idle_states_node,
state->name);
if (idle_state_node < 0)
return idle_state_node;
fdt_setprop_string(fdt, idle_state_node, "compatible",
"riscv,idle-state");
fdt_setprop_u32(fdt, idle_state_node,
"riscv,sbi-suspend-param",
state->suspend_param);
if (state->local_timer_stop)
fdt_setprop_empty(fdt, idle_state_node,
"local-timer-stop");
fdt_setprop_u32(fdt, idle_state_node, "entry-latency-us",
state->entry_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "exit-latency-us",
state->exit_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "min-residency-us",
state->min_residency_us);
if (state->wakeup_latency_us)
fdt_setprop_u32(fdt, idle_state_node,
"wakeup-latency-us",
state->wakeup_latency_us);
fdt_setprop_u32(fdt, idle_state_node, "phandle", phandle);
}
if (count == 0)
return 0;
/* Link each cpu node to the idle state nodes. */
fdt_for_each_subnode(cpu_node, fdt, cpus_node) {
const char *device_type;
fdt32_t *value;
/* Only process child nodes with device_type = "cpu". */
device_type = fdt_getprop(fdt, cpu_node, "device_type", NULL);
if (!device_type || strcmp(device_type, "cpu"))
continue;
/* Allocate space for the list of phandles. */
err = fdt_setprop_placeholder(fdt, cpu_node, "cpu-idle-states",
count * sizeof(phandle),
(void **)&value);
if (err < 0)
return err;
/* Fill in the phandles of the idle state nodes. */
for (uint32_t i = 0; i < count; ++i)
value[i] = cpu_to_fdt32(phandle - count + i);
}
return 0;
}
void fdt_cpu_fixup(void *fdt)
{
struct sbi_domain *dom = sbi_domain_thishart_ptr();
int err, cpu_offset, cpus_offset, len;
const char *mmu_type;
u32 hartid;
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 32);
if (err < 0)
return;
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0)
return;
fdt_for_each_subnode(cpu_offset, fdt, cpus_offset) {
err = fdt_parse_hart_id(fdt, cpu_offset, &hartid);
if (err)
continue;
if (!fdt_node_is_enabled(fdt, cpu_offset))
continue;
/*
* Disable a HART DT node if one of the following is true:
* 1. The HART is not assigned to the current domain
* 2. MMU is not available for the HART
*/
mmu_type = fdt_getprop(fdt, cpu_offset, "mmu-type", &len);
if (!sbi_domain_is_assigned_hart(dom, hartid) ||
!mmu_type || !len)
fdt_setprop_string(fdt, cpu_offset, "status",
"disabled");
}
}
static void fdt_domain_based_fixup_one(void *fdt, int nodeoff)
{
int rc;
uint64_t reg_addr, reg_size;
struct sbi_domain *dom = sbi_domain_thishart_ptr();
rc = fdt_get_node_addr_size(fdt, nodeoff, 0, &reg_addr, &reg_size);
if (rc < 0 || !reg_addr || !reg_size)
return;
if (!sbi_domain_check_addr(dom, reg_addr, dom->next_mode,
SBI_DOMAIN_READ | SBI_DOMAIN_WRITE)) {
rc = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 32);
if (rc < 0)
return;
fdt_setprop_string(fdt, nodeoff, "status", "disabled");
}
}
static void fdt_fixup_node(void *fdt, const char *compatible)
{
int noff = 0;
while ((noff = fdt_node_offset_by_compatible(fdt, noff,
compatible)) >= 0)
fdt_domain_based_fixup_one(fdt, noff);
}
void fdt_aplic_fixup(void *fdt)
{
fdt_fixup_node(fdt, "riscv,aplic");
}
void fdt_imsic_fixup(void *fdt)
{
fdt_fixup_node(fdt, "riscv,imsics");
}
void fdt_plic_fixup(void *fdt)
{
u32 *cells;
int i, cells_count;
int plic_off;
plic_off = fdt_node_offset_by_compatible(fdt, 0, "sifive,plic-1.0.0");
if (plic_off < 0) {
plic_off = fdt_node_offset_by_compatible(fdt, 0, "riscv,plic0");
if (plic_off < 0)
return;
}
cells = (u32 *)fdt_getprop(fdt, plic_off,
"interrupts-extended", &cells_count);
if (!cells)
return;
cells_count = cells_count / sizeof(u32);
if (!cells_count)
return;
for (i = 0; i < (cells_count / 2); i++) {
if (fdt32_to_cpu(cells[2 * i + 1]) == IRQ_M_EXT)
cells[2 * i + 1] = cpu_to_fdt32(0xffffffff);
}
}
static int fdt_resv_memory_update_node(void *fdt, unsigned long addr,
unsigned long size, int index,
int parent, bool no_map)
{
int na = fdt_address_cells(fdt, 0);
int ns = fdt_size_cells(fdt, 0);
fdt32_t addr_high, addr_low;
fdt32_t size_high, size_low;
int subnode, err;
fdt32_t reg[4];
fdt32_t *val;
char name[32];
addr_high = (u64)addr >> 32;
addr_low = addr;
size_high = (u64)size >> 32;
size_low = size;
if (na > 1 && addr_high)
sbi_snprintf(name, sizeof(name),
"mmode_resv%d@%x,%x", index,
addr_high, addr_low);
else
sbi_snprintf(name, sizeof(name),
"mmode_resv%d@%x", index,
addr_low);
subnode = fdt_add_subnode(fdt, parent, name);
if (subnode < 0)
return subnode;
if (no_map) {
/*
* Tell operating system not to create a virtual
* mapping of the region as part of its standard
* mapping of system memory.
*/
err = fdt_setprop_empty(fdt, subnode, "no-map");
if (err < 0)
return err;
}
/* encode the <reg> property value */
val = reg;
if (na > 1)
*val++ = cpu_to_fdt32(addr_high);
*val++ = cpu_to_fdt32(addr_low);
if (ns > 1)
*val++ = cpu_to_fdt32(size_high);
*val++ = cpu_to_fdt32(size_low);
err = fdt_setprop(fdt, subnode, "reg", reg,
(na + ns) * sizeof(fdt32_t));
if (err < 0)
return err;
return 0;
}
/**
* We use PMP to protect OpenSBI firmware to safe-guard it from buggy S-mode
* software, see pmp_init() in lib/sbi/sbi_hart.c. The protected memory region
* information needs to be conveyed to S-mode software (e.g.: operating system)
* via some well-known method.
*
* With device tree, this can be done by inserting a child node of the reserved
* memory node which is used to specify one or more regions of reserved memory.
*
* For the reserved memory node bindings, see Linux kernel documentation at
* Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
*
* Some additional memory spaces may be protected by platform codes via PMP as
* well, and corresponding child nodes will be inserted.
*/
int fdt_reserved_memory_fixup(void *fdt)
{
struct sbi_domain_memregion *reg;
struct sbi_domain *dom = sbi_domain_thishart_ptr();
struct sbi_scratch *scratch = sbi_scratch_thishart_ptr();
unsigned long filtered_base[PMP_COUNT] = { 0 };
unsigned char filtered_order[PMP_COUNT] = { 0 };
unsigned long addr, size;
int err, parent, i, j;
int na = fdt_address_cells(fdt, 0);
int ns = fdt_size_cells(fdt, 0);
/*
* Expand the device tree to accommodate new node
* by the following estimated size:
*
* Each PMP memory region entry occupies 64 bytes.
* With 16 PMP memory regions we need 64 * 16 = 1024 bytes.
*/
err = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + 1024);
if (err < 0)
return err;
/* try to locate the reserved memory node */
parent = fdt_path_offset(fdt, "/reserved-memory");
if (parent < 0) {
/* if such node does not exist, create one */
parent = fdt_add_subnode(fdt, 0, "reserved-memory");
if (parent < 0)
return parent;
/*
* reserved-memory node has 3 required properties:
* - #address-cells: the same value as the root node
* - #size-cells: the same value as the root node
* - ranges: should be empty
*/
err = fdt_setprop_empty(fdt, parent, "ranges");
if (err < 0)
return err;
err = fdt_setprop_u32(fdt, parent, "#size-cells", ns);
if (err < 0)
return err;
err = fdt_setprop_u32(fdt, parent, "#address-cells", na);
if (err < 0)
return err;
}
/*
* We assume the given device tree does not contain any memory region
* child node protected by PMP. Normally PMP programming happens at
* M-mode firmware. The memory space used by OpenSBI is protected.
* Some additional memory spaces may be protected by domain memory
* regions.
*
* With above assumption, we create child nodes directly.
*/
i = 0;
sbi_domain_for_each_memregion(dom, reg) {
/* Ignore MMIO or READABLE or WRITABLE or EXECUTABLE regions */
if (reg->flags & SBI_DOMAIN_MEMREGION_MMIO)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_READABLE)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_WRITABLE)
continue;
if (reg->flags & SBI_DOMAIN_MEMREGION_SU_EXECUTABLE)
continue;
if (i > PMP_COUNT) {
sbi_printf("%s: Too many memory regions to fixup.\n",
__func__);
return SBI_ENOSPC;
}
addr = reg->base;
for (j = 0; j < i; j++) {
if (addr == filtered_base[j]
&& filtered_order[j] < reg->order) {
filtered_order[j] = reg->order;
goto next_entry;
}
}
filtered_base[i] = reg->base;
filtered_order[i] = reg->order;
i++;
next_entry:
}
for (j = 0; j < i; j++) {
addr = filtered_base[j];
size = 1UL << filtered_order[j];
fdt_resv_memory_update_node(fdt, addr, size, j, parent,
(sbi_hart_pmp_count(scratch))
? false : true);
}
return 0;
}
int fdt_reserved_memory_nomap_fixup(void *fdt)
{
int parent, subnode;
int err;
/* Locate the reserved memory node */
parent = fdt_path_offset(fdt, "/reserved-memory");
if (parent < 0)
return parent;
fdt_for_each_subnode(subnode, fdt, parent) {
/*
* Tell operating system not to create a virtual
* mapping of the region as part of its standard
* mapping of system memory.
*/
err = fdt_setprop_empty(fdt, subnode, "no-map");
if (err < 0)
return err;
}
return 0;
}
void fdt_fixups(void *fdt)
{
fdt_aplic_fixup(fdt);
fdt_imsic_fixup(fdt);
fdt_plic_fixup(fdt);
fdt_reserved_memory_fixup(fdt);
fdt_pmu_fixup(fdt);
}