//============================================================================ // Name : riscv-bldc.cpp // Author : Eyck Jentzsch // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ #include "riscv-bldc.h" #include "peripherals.h" #include "delay.h" #include "bsp.h" #include "plic/plic_driver.h" #include #include volatile uint32_t nextCommutationStep; std::array cwDriveTable { //! Drive pattern for commutation, CW rotation ((1 << VH) | (1 << WL)), ((1 << UH) | (1 << WL)), ((1 << UH) | (1 << VL)), ((1 << WH) | (1 << VL)), ((1 << WH) | (1 << UL)), ((1 << VH) | (1 << UL)) }; std::array cwSenseTable { //! channels to sense during the applied pattern SENSU_P, SENSV_N, SENSW_P, SENSU_N, SENSV_P, SENSW_N }; std::array ccwDriveTable{ //! Drive pattern for commutation, CCW rotation. ((1 << UL) | (1 << VH)), ((1 << UL) | (1 << WH)), ((1 << VL) | (1 << WH)), ((1 << VL) | (1 << UH)), ((1 << WL) | (1 << UH)), ((1 << WL) | (1 << VH)) }; std::array ccwSenseTable { //! channels to sense during the applied pattern SENSW_P, SENSV_N, SENSU_P, SENSW_N, SENSV_P, SENSU_N }; std::array startupDelays{ /* 200, 150, 100, 80, 70, 65, 60, 55, 50, 45, 40, 35, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 */ 150, 90, 70, 50, 50, 50, 50, 50, 50, 40, 40, 40, 40, 40, 40, 30, 30, 30, 30, 30, 30, 25, 25, 25, }; bool ccw=false; auto& driveTable = ccw?ccwDriveTable:cwDriveTable; auto& senseTable = ccw?ccwSenseTable:cwSenseTable; typedef void (*function_ptr_t) (void); // Instance data for the PLIC. plic_instance_t g_plic; std::array g_ext_interrupt_handlers; extern "C" void handle_m_ext_interrupt() { plic_source int_num = PLIC_claim_interrupt(&g_plic); if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS)) g_ext_interrupt_handlers[int_num](); else exit(1 + (uintptr_t) int_num); PLIC_complete_interrupt(&g_plic, int_num); } // 1sec interval interrupt extern "C" void handle_m_time_interrupt(){ clear_csr(mie, MIP_MTIP); // Reset the timer for 3s in the future. // This also clears the existing timer interrupt. volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME); volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP); uint64_t now = *mtime; uint64_t then = now + RTC_FREQ; *mtimecmp = then; // Re-enable the timer interrupt. set_csr(mie, MIP_MTIP); } void no_interrupt_handler (void) {}; void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1) { g_ext_interrupt_handlers[irq_num] = handler; // Priority must be set > 0 to trigger the interrupt. PLIC_set_priority(&g_plic, irq_num, prio); // Have to enable the interrupt both at the GPIO level, and at the PLIC level. PLIC_enable_interrupt(&g_plic, irq_num); } void platform_init(){ // configure clocks PRCI_use_hfxosc(1); // is equivalent to // init UART0 at 115200 baud auto baud_rate=115200; gpio0::output_en_reg()=0xffffffff; gpio0::iof_sel_reg()&=~IOF0_UART0_MASK; gpio0::iof_en_reg()|= IOF0_UART0_MASK; uart0::div_reg()=get_cpu_freq() / baud_rate - 1; uart0::txctrl_reg().txen=1; // init SPI gpio0::iof_sel_reg()&=~IOF0_SPI1_MASK; gpio0::iof_en_reg()|= IOF0_SPI1_MASK; qspi1::sckdiv_reg() = 8; F_CPU=PRCI_measure_mcycle_freq(20, RTC_FREQ); printf("core freq at %d Hz\n", F_CPU); // initialie interupt & trap handling write_csr(mtvec, &trap_entry); if (read_csr(misa) & (1 << ('F' - 'A'))) { // if F extension is present write_csr(mstatus, MSTATUS_FS); // allow FPU instructions without trapping write_csr(fcsr, 0); // initialize rounding mode, undefined at reset } PLIC_init(&g_plic, PLIC_CTRL_ADDR, PLIC_NUM_INTERRUPTS, PLIC_NUM_PRIORITIES); // Disable the machine & timer interrupts until setup is done. clear_csr(mie, MIP_MEIP); clear_csr(mie, MIP_MTIP); for (auto& h:g_ext_interrupt_handlers) h=no_interrupt_handler; configure_irq(40, pwm0::pwm_interrupt_handler); configure_irq(6, qspi1::spi_rx_interrupt_handler); // Set the machine timer to go off in 1 second. volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME); volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP); uint64_t now = *mtime; uint64_t then = now + RTC_FREQ; *mtimecmp = then; // Enable the Machine-External bit in MIE set_csr(mie, MIP_MEIP); // Enable the Machine-Timer bit in MIE set_csr(mie, MIP_MTIP); // Enable interrupts in general. set_csr(mstatus, MSTATUS_MIE); } unsigned read_adc(unsigned channel){ std::array bytes{ uint8_t(0x06 | (channel>>2 & 0x1)), /* start bit, single ended measurement, channel[2] */ uint8_t((channel&0x3)<<6), /* channel[1:0], fill*/ 0x0 /* fill */ }; // set CS of target qspi1::csid_reg()=0; qspi1::transfer(bytes); return (bytes[1]&0xf)*256+bytes[2]; } /*! \brief Generates a delay used during startup * * This functions is used to generate a delay during the startup procedure. * The length of the delay equals delay * STARTUP_DELAY_MULTIPLIER microseconds. * Since Timer/Counter1 is used in this function, it must never be called when * sensorless operation is running. */ void fixed_delay(unsigned short delay){ pwm0::oneshot_delay(STARTUP_DELAY_MULTIPLIER*delay); } unsigned short measured_zc_time(unsigned short max_delay, unsigned state){ long delay_us = max_delay * STARTUP_DELAY_MULTIPLIER; auto scaling_factor=0; while(delay_us/(1< std::numeric_limits::max()){ scaling_factor++; } pwm0::cfg_reg()=0; pwm0::count_reg()=0; pwm0::cfg_reg().scale = 4+scaling_factor; // divide by 16 so we get 1us per pwm clock pwm0::cmp0_reg().cmp0 = delay_us/(1<3; uint32_t adc_res=0; do{ adc_res=read_adc(channel); if((zc_neg && adc_res<2048) || (!zc_neg && adc_res>2047)){ break; } } while(pwm0::is_active()); uint32_t sreg = pwm0::s_reg(); pwm0::cfg_reg().enoneshot=false; return sreg*(1<=size?size-1:i]); auto bemf_1=read_adc(channel); auto bemf = bemf_1>bemf_0?bemf_1-bemf_0:bemf_0-bemf_1; nextCommutationStep++; if (nextCommutationStep >= 6){ nextCommutationStep = 0; } nextDrivePattern = driveTable[nextCommutationStep]; // if(i>12 && bemf>32 && ((zcPolRise && bemf_0<2048 && bemf_1>2047) || (!zcPolRise && bemf_0>2047 && bemf_1<2048))) // return; } } void run_motor(void){ auto count=0; auto zc_delay=0U; auto tmp=0U; for(;;){ gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK & 0x00ffffff) | driveTable[nextCommutationStep] | nextCommutationStep<<24; zc_delay=measured_zc_time(50, senseTable[nextCommutationStep]); // tmp=zc_delay>>2; // pwm0::oneshot_delay(zc_delay>tmp?zc_delay:zc_delay/2+zc_delay/4+zc_delay/8); pwm0::oneshot_delay(zc_delay); nextCommutationStep++; if (nextCommutationStep >= 6) nextCommutationStep = 0; } } int main() { platform_init(); printf("Starting motor\n"); start_motor(); printf("done...\n"); // Switch to sensorless commutation. run_motor(); return 0; }