#include "testbench.h" #include #include #undef CHECK #include #include using namespace sc_core; using tlm_gp_shared_ptr_vec = std::vector; factory::add tb; bool is_equal(tlm::tlm_generic_payload const& a, tlm::tlm_generic_payload const& b) { auto ret = true; ret &= a.get_command() == b.get_command(); ret &= a.get_address() == b.get_address(); ret &= a.get_data_length() == b.get_data_length(); for(auto i = 0u; i < a.get_data_length(); ++i) ret &= a.get_data_ptr()[i] == b.get_data_ptr()[i]; // if(a.get_byte_enable_ptr() && b.get_byte_enable_ptr()) { // ret &= a.get_byte_enable_length() == b.get_byte_enable_length(); // for(auto i=0u; i tlm::tlm_generic_payload* prepare_trans(uint64_t start_address, unsigned addr_incr, unsigned len, unsigned width, unsigned id) { auto trans = tlm::scc::tlm_mm<>::get().allocate(len); trans->set_address(start_address); tlm::scc::setId(*trans, id); auto ext = trans->get_extension(); trans->set_data_length(len); trans->set_streaming_width(len); ext->set_size(scc::ilog2(width)); sc_assert(len < (bus_cfg::BUSWIDTH / 8) || len % (bus_cfg::BUSWIDTH / 8) == 0); auto length = (len * 8 - 1) / (8 * width); if(width == (bus_cfg::BUSWIDTH / 8) && start_address % (bus_cfg::BUSWIDTH / 8)) length++; ext->set_length(length); // ext->set_burst(len * 8 > bus_cfg::buswidth ? axi::burst_e::INCR : axi::burst_e::FIXED); ext->set_burst(axi::burst_e::INCR); ext->set_id(id); return trans; } inline void randomize(tlm::tlm_generic_payload& gp) { static uint8_t req_cnt{0}; for(size_t i = 0; i < gp.get_data_length(); ++i) { *(gp.get_data_ptr() + i) = i % 2 ? i : req_cnt; } req_cnt++; } template unsigned run_scenario(STATE& state) { auto& dut = factory::get(); dut.tgt_pe.set_operation_cb([&state](axi::axi_protocol_types::tlm_payload_type& trans) -> unsigned { auto id = axi::get_axi_id(trans); if(trans.is_read()) { for(size_t i = 0; i < trans.get_data_length(); ++i) { *(trans.get_data_ptr() + i) = i % 2 ? i : (state.resp_cnt + 128); } state.read_tx[id].second.emplace_back(&trans); } if(trans.is_write()) state.write_tx[id].second.emplace_back(&trans); SCCDEBUG(__FUNCTION__) << "RX: " << trans; state.resp_cnt++; return 0; }); dut.rst.write(false); sc_start(state.ResetCycles * dut.clk.period()); dut.rst.write(true); sc_start(dut.clk.period()); auto run1 = sc_spawn([&dut, &state]() { unsigned int StartAddr{0x0}; for(int i = 0; i < state.NumberOfIterations; ++i) { tlm::scc::tlm_gp_shared_ptr trans = prepare_trans(StartAddr, 4, state.BurstLengthByte, state.BurstSizeBytes, 1); trans->set_command(tlm::TLM_READ_COMMAND); SCCDEBUG("run1") << "iteration " << i << " TX: " << *trans; dut.intor_pe.transport(*trans, false); state.read_tx[axi::get_axi_id(*trans)].first.emplace_back(trans); StartAddr += state.BurstSizeBytes; } SCCDEBUG("run1") << "finished " << state.NumberOfIterations << " iterations"; }); auto run2 = sc_spawn([&dut, &state]() { unsigned int StartAddr{0x2000}; for(int i = 0; i < state.NumberOfIterations; ++i) { tlm::scc::tlm_gp_shared_ptr trans = prepare_trans(StartAddr, 4, state.BurstLengthByte, state.BurstSizeBytes, 2); trans->set_command(tlm::TLM_WRITE_COMMAND); randomize(*trans); SCCDEBUG("run2") << "iteration " << i << " TX: " << *trans; dut.intor_pe.transport(*trans, false); state.write_tx[axi::get_axi_id(*trans)].first.emplace_back(trans); StartAddr += state.BurstSizeBytes; } SCCDEBUG("run2") << "finished " << state.NumberOfIterations << " iterations"; }); auto run3 = sc_spawn([&dut, &state]() { unsigned int StartAddr{0x1000}; for(int i = 0; i < state.NumberOfIterations; ++i) { tlm::scc::tlm_gp_shared_ptr trans = prepare_trans(StartAddr, 4, state.BurstLengthByte, state.BurstSizeBytes, 3); trans->set_command(tlm::TLM_READ_COMMAND); SCCDEBUG("run3") << "iteration " << i << " TX: " << *trans; dut.intor_pe.transport(*trans, false); state.read_tx[axi::get_axi_id(*trans)].first.emplace_back(trans); StartAddr += state.BurstSizeBytes; } SCCDEBUG("run3") << "finished " << state.NumberOfIterations << " iterations"; }); auto run4 = sc_spawn([&dut, &state]() { unsigned int StartAddr{0x3000}; for(int i = 0; i < state.NumberOfIterations; ++i) { tlm::scc::tlm_gp_shared_ptr trans = prepare_trans(StartAddr, 4, state.BurstLengthByte, state.BurstSizeBytes, 4); trans->set_command(tlm::TLM_WRITE_COMMAND); randomize(*trans); SCCDEBUG("run4") << "iteration " << i << " TX: " << *trans; dut.intor_pe.transport(*trans, false); state.write_tx[axi::get_axi_id(*trans)].first.emplace_back(trans); StartAddr += state.BurstSizeBytes; } SCCDEBUG("run4") << "finished " << state.NumberOfIterations << " iterations"; }); unsigned cycles{0}; while(cycles < 1000 && !(run1.terminated() && run2.terminated() && run3.terminated() && run4.terminated())) { sc_start(10 * dut.clk.period()); cycles += 10; } return cycles; } void axi4_burst_alignment(bool pipelined_wrreq, bool write_bp) { struct { unsigned int ResetCycles{4}; unsigned int BurstLengthByte{16}; unsigned int BurstSizeBytes{8}; unsigned int NumberOfIterations{8}; std::unordered_map> read_tx; std::unordered_map> write_tx; unsigned resp_cnt{0}; } state; auto& dut = factory::get(); dut.intor_bfm.pipelined_wrreq = pipelined_wrreq; dut.tgt_pe.wr_data_accept_delay.set_value(write_bp ? 1 : 0); auto cycles = run_scenario(state); REQUIRE(cycles < 1000); REQUIRE(sc_report_handler::get_count(SC_ERROR) == 0); REQUIRE(sc_report_handler::get_count(SC_WARNING) == 0); REQUIRE(state.resp_cnt == 4 * state.NumberOfIterations); for(auto& e : state.write_tx) { auto const& send_tx = e.second.first; auto const& recv_tx = e.second.second; REQUIRE(send_tx.size() == recv_tx.size()); for(auto i = 0; i < send_tx.size(); ++i) { REQUIRE(send_tx[i]->get_response_status() == tlm::TLM_OK_RESPONSE); CHECK(is_equal(*send_tx[i], *recv_tx[i])); } } for(auto& e : state.read_tx) { auto const& send_tx = e.second.first; auto const& recv_tx = e.second.second; REQUIRE(send_tx.size() == recv_tx.size()); for(auto i = 0; i < send_tx.size(); ++i) { REQUIRE(send_tx[i]->get_response_status() == tlm::TLM_OK_RESPONSE); CHECK(is_equal(*send_tx[i], *recv_tx[i])); } } } void axi4_narrow_burst(bool pipelined_wrreq, bool write_bp) { struct { unsigned int ResetCycles{4}; unsigned int BurstLengthByte{16}; unsigned int BurstSizeBytes{4}; unsigned int NumberOfIterations{8}; std::unordered_map> read_tx; std::unordered_map> write_tx; unsigned resp_cnt{0}; } state; auto& dut = factory::get(); dut.intor_bfm.pipelined_wrreq = pipelined_wrreq; dut.tgt_pe.wr_data_accept_delay.set_value(write_bp ? 1 : 0); auto cycles = run_scenario(state); REQUIRE(cycles < 1000); REQUIRE(sc_report_handler::get_count(SC_ERROR) == 0); REQUIRE(sc_report_handler::get_count(SC_WARNING) == 0); REQUIRE(state.resp_cnt == 4 * state.NumberOfIterations); for(auto& e : state.write_tx) { auto const& send_tx = e.second.first; auto const& recv_tx = e.second.second; REQUIRE(send_tx.size() == recv_tx.size()); for(auto i = 0; i < send_tx.size(); ++i) CHECK(is_equal(*send_tx[i], *recv_tx[i])); } for(auto& e : state.read_tx) { auto const& send_tx = e.second.first; auto const& recv_tx = e.second.second; REQUIRE(send_tx.size() == recv_tx.size()); for(auto i = 0; i < send_tx.size(); ++i) CHECK(is_equal(*send_tx[i], *recv_tx[i])); } } TEST_CASE("axi4_burst_alignment", "[AXI][pin-level]") { axi4_burst_alignment(false, false); } TEST_CASE("axi4_narrow_burst", "[AXI][pin-level]") { axi4_narrow_burst(false, false); } TEST_CASE("axi4_burst_alignment_with_bp", "[AXI][pin-level]") { axi4_burst_alignment(false, true); } TEST_CASE("axi4_narrow_burst_with_bp", "[AXI][pin-level]") { axi4_narrow_burst(false, true); } TEST_CASE("axi4_burst_alignment_pipelined_write", "[AXI][pin-level]") { axi4_burst_alignment(true, false); } TEST_CASE("axi4_narrow_burst_pipelined_write", "[AXI][pin-level]") { axi4_narrow_burst(true, false); } TEST_CASE("axi4_burst_alignment_pipelined_write_with_bp", "[AXI][pin-level]") { axi4_burst_alignment(true, true); } TEST_CASE("axi4_narrow_burst_pipelined_write_with_bp", "[AXI][pin-level]") { axi4_narrow_burst(true, true); }