#ifndef _BSP_QSPI_H #define _BSP_QSPI_H #include #define __IO volatile typedef struct { __IO uint32_t data; // 0x0/0: data, 8bits, 8:write, 9:read, 11:data/ctrl, 31:rxdata valid __IO uint32_t status; // 0x4/0: txavail, 16: rxused __IO uint32_t config; // 0x8/0:1 cpol/cpha, 4: transfer mode (0-FullDuplex) __IO uint32_t intr; // 0xc/0: txien, 1: rxien, 8: txip, 9: rxip, 16: valid? __IO uint32_t __fill0[4]; __IO uint32_t clk_divider; // 0x20/0: sclkToogle // ssGen config __IO uint32_t ss_setup; // 0x24/0: setup __IO uint32_t ss_hold; // 0x28/0: hold __IO uint32_t ss_disable; // 0x2c/0: disable __IO uint32_t ss_activeHigh; // 0x30/0: disable __IO uint32_t __fill1[3]; __IO uint32_t xip_enable; // 0x40/0: enable __IO uint32_t xip_instr; // 0x44/0:7 data, 8: enable, 16:23 dummy data, 24:27 dummy count __IO uint32_t xip_mode; // 0x48/0: instr transfer mode, 8: addr transfer mode, 16: dummy transfer mode, 24: data transfer mode __IO uint32_t __fill2[2]; __IO uint32_t xip_write32; // 0x50 __IO uint32_t xip_readwrite32; // 0x54 __IO uint32_t xip_read32; // 0x58 } __attribute((__packed__)) qspi_t; typedef struct { uint32_t cpol; uint32_t cpha; uint32_t mode; uint32_t clkDivider; uint32_t ssSetup; uint32_t ssHold; uint32_t ssDisable; } spi_cfg; #define SPI_CMD_WRITE (1 << 8) #define SPI_CMD_READ (1 << 9) #define SPI_CMD_SS (1 << 11) #define SPI_RSP_VALID (1 << 31) #define SPI_STATUS_CMD_INT_ENABLE = (1 << 0) #define SPI_STATUS_RSP_INT_ENABLE = (1 << 1) #define SPI_STATUS_CMD_INT_FLAG = (1 << 8) #define SPI_STATUS_RSP_INT_FLAG = (1 << 9) static inline void spi_configure(volatile qspi_t* reg, spi_cfg *config){ reg->config = (config->cpol << 0) | (config->cpha << 1) | (config->mode << 4); reg->clk_divider = config->clkDivider; reg->ss_setup = config->ssSetup; reg->ss_hold = config->ssHold; reg->ss_disable =config->ssDisable; } static inline void spi_init(volatile qspi_t* spi){ spi_cfg spiCfg; spiCfg.cpol = 0; spiCfg.cpha = 0; spiCfg.mode = 0; spiCfg.clkDivider = 2; spiCfg.ssSetup = 2; spiCfg.ssHold = 2; spiCfg.ssDisable = 2; spi_configure(spi, &spiCfg); } static inline uint32_t spi_cmd_avail(volatile qspi_t* reg){ return reg->status & 0xFFFF; } static inline uint32_t spi_rsp_occupied(volatile qspi_t* reg){ return reg->status >> 16; } static inline void spi_write(volatile qspi_t* reg, uint8_t data){ while(spi_cmd_avail(reg) == 0); reg->data = data | SPI_CMD_WRITE; } static inline uint8_t spi_write_read(volatile qspi_t* reg, uint8_t data){ while(spi_cmd_avail(reg) == 0); reg->data = data | SPI_CMD_READ | SPI_CMD_WRITE; while(spi_rsp_occupied(reg) == 0); return reg->data; } static inline uint8_t spi_read(volatile qspi_t* reg){ while(spi_cmd_avail(reg) == 0); reg->data = SPI_CMD_READ; while(spi_rsp_occupied(reg) == 0); while((reg->data & 0x80000000)==0); return reg->data; } static inline void spi_select(volatile qspi_t* reg, uint32_t slaveId){ while(spi_cmd_avail(reg) == 0); reg->data = slaveId | 0x80 | SPI_CMD_SS; } static inline void spi_deselect(volatile qspi_t* reg, uint32_t slaveId){ while(spi_cmd_avail(reg) == 0); reg->data = slaveId | SPI_CMD_SS; } static inline void spi_wait_tx_idle(volatile qspi_t* reg){ while(spi_cmd_avail(reg) < 0x20); } #endif /* _BSP_QSPI_H */